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ABSTRACT. Let M? be an open oriented surface the isolated ends of which are
half ladders ﬂl""Tz,T2 the 2-torus. The completed space M" (I, By) of metrics of
bounded geometry splits into components, M™ = 3. comp(g;). We define for a
component comp(go) with K(go) = —1,7inj(g0) > 0,info.(Ag) > 0 the Te-
ichmiiller space 7" (comp(gg)) = complgn)—1/DPy " (g0), where comp(go)—1 is the
submanifold of metrics with K(g) = ~1 and ’DE'H {(go) is the identity component of
the diffeomorphism group. Thereafter we show 77 & (c:omp(gn)/c(rrnp(l))/'DH"‘1 o

comp(Jo)/D5t!. Here comp(l) are conformal factors with Sobolev norm |e¥ — 1[4~
< oo and Jy = J(go) is the almost complex structure associated to go. The first
isomorphism is just Poincaré’s lemma.

MR classification 58D27, 58D17, 58G03

1. INTRODUCTION

The definition and the study of Teichmiiller spaces for closed or compact surfaces
with boundary or surfaces with punctures is long time a frequent topic in geometry
and analysis. There are many approaches. First we must mention Ahlfors in [1]
and Bers in [2] which rely heavily on the theory of quasiconformal maps. Another
more geometric fibre bundle approach has been established by Earle and Eells in
[10], [11]. Finally, an approach which relies on methods of differential geometry
and global analysis has been presented by Fischer and Tromba in [22], [29]. What
they are doing is in a certain sense canonical and at the same time very beautiful.
Let M? be a closed oriented surface of genus p > 1, M its set of Riemannian
metrics, M7 its Sobolev completion, M", the submanifold of metrics g with scalar
curvature K(g) = —1,P" the completed space of positive conformal factors, A" the
completed space of almost complex structures, D™t! the completed diffeomorphism
group, Dy*!, Dm*! the component of the identity. Then Fischer and Tromba define
as Teichmiller space

TT(M?) := AT/D5H! (1.1)

and prove DjT! -equivariant isomorphisms
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MTPT AT (1.2)

and

L MR (1.3)
Hence there are three models for the Teichmiiller space:

"= AT/D5H = (M7/PT)/D5+ = MY, D5+,

The isomorphism MT; = MT"/P" is known as Poincaré’s theorem. Thereafter
they prove the existence of a slice for the action of Dj™' on M", thus obtaining
charts for a manifold structure on 77. In {29], [30] Tromba proves that 7" is
diffeomoprhic to an open (6p — 6) -cell and calculates the curvature of the Weil-
Petersson metric. The whole approach uses standard results of global analysis on
compact manifolds, such as the properness of the D™! -action on M7, the closed
image property of elliptic operators, this discreteness of the spectrum, the index
theorem, the maximum principle and others.

We study Teichmiiller spaces for open oriented surfaces of infinite genus M?2. At
the beginning it is totally unclear how to define completed spaces M"™, M™ |, 77, A" D™+,
A second striking obstruction is the fact that the used results, e.g. the properness
of the D! -action and the theorems of elliptic theory are totally wrong.

Nevertheless, the general uniformization theorem tells us that there are many
complex = almost complex structures and metrics of curvature —1, i.e. there should
be a Teichmuller space which “counts” this structures. The main question is how
to count them, how to define a Teichmuller space? In this paper, we present a
canonical and natural approach but under certain restrictions. We restrict ourselves
to open oriented surfaces of the following kind. Start with a closed oriented surface
and form the connected sum with a finite number of half ladders §$°T?, where
T? is the 2-torus. Now we allow the repeated addition of a finite number of half
ladders in such a manner that there arises a surface with at most countably many
ends. A manifold with uncountably many ends of this kind would not satisfy
second countability. Surfaces of the admitted topological type can be built up by
Y-pieces which guarantees the existence of a metric go satisfying K(go) = —1 and
rinj(go) > 0. We exclude metric cusps. To define M" we restrict to metrics of
bounded geometry, i.e. metrics g satifying

I rinj(M",g) = _inf rin;(z) >0,

|7 RI| < C;,0 << k.

(Bk)

Denote by M(I, By) the set of all such metrics on M™. (I) implies completeness. We
defined in [12] a uniform structure 4" and obtained a completion M”"(I, By),r < k.
MT7(I, B) has a representation as topological sum

2



M"(I,Byx) =) comp(g:)
i€l
and for k > r > % each component comp(g;) is a Hilbert manifold. To each g
we adapt a diffeomorphism group D™!,k < r +1 > 2 + 1. The identity compo-

nent ’D6+](g) is an invariant of comp(g). D(’)"'H acts on comp(g) by (g9,f) = f*g.
Similarly we define a completed space P"(g) of positive conformal factors.

Pr= Zcomp(e“")
i
and comp(1l) C P"(g) is an invariant of comp(g). comp(1) acts on comp(g). If M™
is compact then M"™ = M"(I, By, ), M" and P consist of only one component,
M7" = comp(g) for any g,P" = comp(1). Finally we define a complete space A"(g)
of almost complex structures,

A(g) = Z comp(J;).
Return now to M? of the above topological type. Denote by comp(g)—1 C comp(g)
the subspace of all metrics ¢’ € comp(g) such that K(¢g') = —1. Then we would
define
T"(comp(g)) := comp(g)-1/D5*"

and expect

comp(g)-1 = comp(g)/comp(1). (1.4)

But there are simple examples of components comp(g) with comp(g)—1 = ¢. More-
over, we don’t see any chance to prove (1.4) for arbitrary g. To have comp(g)—1 # ¢,
we start with a metric go € M(J, Boo) with K(go) = —1. To go we attach an almost
complex structure Jo = J(go) := g5 ' 1(go), where u(go) is the volume form. Then
we can sumimarize our main results in the following

Theorem. Suppose go € M(I,Bs), K(g0) = —1, infoe(Ago) > 0,7 > 3. Then
comp(go)—1 C comp(go) is a submanifold. There is a D™ (go) -equivariant isomor-
phism

comp(go)—1 = comp(go)/comp(1) = comp(Jo). (1.5)
If we define the Teichmiiller space T (comp(go)) of comp(go) as

T (comp(go)) := comp(.)ro)/Dg'i'1 (1.6)

then

T (comp(go)) = comp(go)—1/Dy*" = (comp(go)/comp(1))/Dg*". (1.7)
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The first isomorphism in (1.5) is Poincaré’s theorem for the open case. Its proof
occupies the major part of the paper. Moreover, we establish an ILH-version of
(1.5)-(1.7). The paper is organized as follows. In section 2 we recall the main facts
concerning spaces of Riemannian metrics and Sobolev spaces needed in this paper.
In section 3 and 4 we define the space P and A" of conformal factors and almost
complex structures. Section 5 is devoted to the diffeomorphism group D"™+! and
section 6 contains the ILH-version of the considered spaces. In section 7 we prove
Poincaré’s theorem. The sections 8, 9, 10 are devoted to the proof of (1.5), (1.7). In
the concluding section 11 we announce and discuss results concerning the topology
of T7(comp(go) which are the topic of an also long paper in preparation.

The author is deeply indebted to the Max-Planck-Institut fiir Mathematik for
hospitality and good working conditions.

2. SPACES OF RIEMANNIAN METRICS OF
BOUNDED GEOMETRY AND SOBOLEV SPACES
Let (M™,g) be open. Consider the following two conditions (I) and (Bg).

(I Tinj(M) = a:iéILT‘inj(m) > 0,

(Bx)

| V'R <Ci,0< i<k,
where ri,;(z) denotes the injectivity radius at z and R the curvature.
Lemma 2.1. If (M™",g) satisfies (I) then (M™, g) is complete. See [12] for a proof.

d

We say (M™", g) has bounded geometry up to order k if it satisfies (I) and (By).
Given M™ open and 0 < k < oo. Then there always exists g satisfying (I) and
(Bg), i.e. there is no topological obstruction against metrics of bounded geometry

of any order.
Set for given M"

M(I) = {glg satisfies (1)},
M(By) = {g|g satisfies (Bx)}

M(I, By) = M(I) 0 M(Bx).

Denote as above for a tensor ¢ and a metric g by [t|,,z its pointwise and by

*ltly := sup |t]g,«
zeM

its supremum norm with respect to g.



Lemma 2.2. g and ¢’ are quasi isometric if and only if *|g — ¢'|, < co and
blg — |y < 0. O
Let

Ulg) ={d'I’lg — 9|y < oo and Plg—g'|y < o0} =
= quasi isometry class of g.

Set for § > 0,p > 1,7 € Z..

Vs ={(g,9') € M(I,B:)"|¢’ eb U(g) and

19— ¢'lopr = ( / PR T V)P . )dvola(g))'/? < 6.

t=0

Theorem 2.3. Assumer < k,1 < p < oo. Then £ = {Vs}s>0 is a basis for a
metrizable uniform structure U”"(M(I, B)) on M(I, Be)". O

See [12] for the nontrivial proof.

Let M2(I, Bx) = M(I, By) endowed with the uniform topology, MP"™ = M? the
completion. If h > r > % + 1 then MP" still consists of C'-metrics, i.e. does not
contain semi definite elements. This has been proven by Salomonsen in {26].

Theorem 2.4. Letk >2r > 2+ 1,9 € M(I, By), U"(g) = {9’ € MP"(I, Bi)lg'

€ U(g) and |g—g'|; p.» < oo} and denote by comp(g) C MP?"(I, Bi) the component
of g in MP7(I, Bg). Then

comp(g) = UP"(g) (2.1)
and MP"(I, By) has a representation as topological sum
MPT(I,Bi) =) comp(g;), (2.2)
JeJ
J an uncountable set. O

The proof is performed in [12].

Remarks. 1. If M" is compact then the set J consists of one element. 2. If ¢
is non-smooth then there are some small problems to define and to understand
|9 — g'lg,p,» for 7 > 2. In this case one defines (79)" := (V% + (v? — 7)) where
go € comp(g) is smooth and fixed chosen. It is easy to see that (790 + (79 — %))
makes sense since 79 is a smooth differential operator, /7 — 79° is a distributional
tensor field and (%)} ((79 — v?°)7) is well defined. We refer to [20] for details. O

Let T be the bundle of u-fold covariant and v-fold contravariant tensors and

define



QT 9) = {t € CF(T) Ity p,r =

= ([ S (w7l i (9))77 < oo},

=0

QPT(T¥, g) = completion of Q2(T¥, g) with respect to | |g,p,r, 277 (T¥,g) = com-
pletion of C§°(T¥) with respect to | |4, and QP7(Ty,g) = all distributional
tensor fields ¢ with |t|, , » < c0. Then

QT g) CQP(TY,9) COQPT(TY, 9).
Proposition 2.5. Assume g € M(I,By),r < k+2. Then

Qrn(Ty,g) = QP7(TY, g) = QP (T, ). (2.3)
See [13] for a proof. O

Let S?T* be the bundle of twofold covariant symmetric tensors. QP7(S?7T*, g)
is defined as above. :

Theorem 2.6. Assumek >r > 2+1,9 € M(I, By). Thencomp(g) C M?"(I, B)
is a Banach manifold and for p = 2 a Hilbert manifold.

Proof. ¢ : comp(g) — QP 7(S*T*,g),d(¢') = g — ¢', is a homeomorphism onto an

open subset of QP"(S2T*, g). See [12] for details. O
Define
™
bm i
g = su tlg.z,
s =2 supl V't

nUTY,9) = {t € CO(T})| "™}ty < oo},

bmO(TY, g) = completion of 8, Q(T¥, g) with respect to ™| |, and b'mfol(TJ‘,g) =
completion of C§(T®) with respect to ™| |;. Then »™Q(T¥, g) = {t|t C™ -tensor
fleld and ®™|t| < co}.

Theorem 2.7. Assume (M", g) is open and satisfies (I),(Bo). If r > 2 +m, then
there are continuous embeddings

QP (T, ) 5™ QT ), (2.4)
Qr(Ty,g) =™ Ty, g)- (2.5)
If, additionally, (M™, g) satisfies (Bx(M)),k 2 1,k 2 r,v',r — a2 r’ — 2 r',

then
Qrk(Te) o QP (TY) (2:6)
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continuously. |

We refer to [15], [16] for the proof.

Next we discuss the module structure theorem for Sobolev spaces and start with
T =M xR QP (M) =QP"(M xR).

Theorem 2.8. Assume (M", g) with (I) and (Bi),k 2 r1,72,1 < p1,p2,9 <
00,7 < rmun{ry,r2} and one of the following two conditions.

1. There exists i € {1,2} such that r; < & and 7 < 2 —max{> —r;,0} —
m:.a.x{}f‘—2 —7rq,0},

2. forallie {1,2}, > <7y and min{r; — +} > 7~ 2.

Then there exists a constant K = K(g) such that

|f1 'fﬂlg,qn“ <K- |f1|9,1?1."1 ' lf2|9,m,1‘2 (2-7)

Idea of proof. For bounded domains C R™ with cone property or closed manifolds
this is a well known theorem. One has to prove

'Di(fl ’ fQ)lq.O < I{|f1|p1,f1 ’ |f2lpnﬂ‘2'

For this it suffices to show
|Djfl : Di——jf2|q.0 S Iflfl |P1.f'1 ’ |f2|P2,r2 (28)

since D'(f1-fo) =3 (;) DJ f;- D' f,. But (2.8) follows from Hélder’s inequality
J
if

,7 > 0. (2.9)

This is standard in any book on Sobolev spaces. The conditions 1. or 2. imply
(2.9). If (M™, g) satisfies (I) and (Bg), then by means of a uniformly locally finite
cover of M by normal charts and choice of a k-bounded partition of unity it is
possible to carry over the proof from the compact to the open case. See [13] for
details. O

Quite analogously to T} = M x R one defines for Riemannian vector bundles
(E, h,7") = M Sobolev spaces QP"(R) and " Q(E). (Bi(E)) means |(v")'R*| <
C;,0 <1 < k. Then 2.8 generalizes to :

Theorem 2.9. Assume (M™,g) with (I),(By), (Ei, hi, Vi) = M with (Bg),ri,7 <
kyri 2 r,(ry — :—1) +(rg—>=)>2r— 1;—. Then there exists a continuous embed-

Pa’ —
ding QPV"(Ey, ) @ QP22 ( By, \72) <« QP (Ey ® E,, V1 ® V2). The assertion
generalizes to a finite number of bundles. O

Remarks. 1. A special case for E is Ty. Here (Bi(M)) automatically implies
(Bx(E)). 2. For py = p = q =2,r 2 7,r > 5, 2.8 implies a bilinear continuous
map



o : QBT(M) x Q5F(M) = Q27 (M) (2.10)

In particular Q%7(M) becomes aring forr > 2. 3. (2.4) - (2.6) hold for Q7" (E),>™ Q(E)
correspondingly. 4. MP"=Y(1, By) is still well defined since k > r > % + 1 implies
r—1>2Z2 G

»

A question , which is in the main section 7 of extraordinary meaning, is the
invariance of Sobolev spaces under certain changes of the metric and their definition
by other differential operators.

Theorem 2.9. Assume k 2 r > 2+ 1,90 € M(I,By). Then QP"(T,go) is an
invariant of comp(go) C MP"~1(I, By), i.e.

QT v, 90) = QP(T, V%, 9) (2.11)
as equivalent Banach spaces.

Proof. We have for the pointwise norm | |4, ~| |4 since go and g are continuous
and quasi isometric. Writing

V! =9+ (V- %), (2.12)

we obtain for a tensor field 7 a pointwise estimate

(F9)r| < P(I7%°) (99 = %), [(7%)* 7)), (2.13)

where P is a polynomial in the indicated variables, j; < r —1,7; + 72 < ¢, and each
monomial satisﬁes the condition of the module structure theorem and has at least
one |(79°)?* 1| as factor. Hence we obtain after p — th power and integration

719, < ChlTlgop,r (2.14)
and, for symmetry reasons

‘Tlgo,p,‘l‘ S 02|T|g,p,1‘3 (2'15)
C; = Ci(g,90). See [14] for detalils. a

We remark that in (2.12) - (2.15) we did not need g smooth. In section 7 we
consider a slightly more general situation, g € comp(go), 9+ = go + t(g — go) =
go + th € comp(go). Then the constants C;,C; in (2.14), (2.15) will depend on
t,Ci = Ci(go,g:). We need in section 7 the existence of constants C; independent
of t which we will now prove. Now and in the sequel we often denote constants in
different contexts by the same letter where we are convinced that no confusion will
arise.

First, there exist by assumption constants C1, Cy,

Cigo £ 9 < Carg0 (2.16)

which implies



Cigo £ (1 =t)go + tg = g: < Cago, (2.17)

and
Cldetgo S det G < nget Go (218)

Cigo < 97! < Chg5 " (2.19)

Lemma 2.11. If(M?",g) satisfies (I) and (Bi) and U = {(Uq, ¢a)}a is a uniformly
locally finite cover by normal charts, then there exist constants Cg, C‘E, C., such that

|D?gi5] < Cp,|DPg"| < Cp 1Bl <k, DT S Oy S k= 1, (2.20)

all constants independent of «. O
See [17] for a proof.

Corollary 2.12. Let go € M(I,B),g € comp(go) C M"(I,Bx),k 27 > 3 +

1,4 = {Uqa,®a)}a an atlas of normal charts with respect to go as above. Then,
with respect to U,

|DPg| < C, 1Bl < 1. (2.21)

Proof. This follows from the definition of g:j, (2.19), (2.20), g € comp(go),g¢ =
go +1t(g — go) and g — golg, < co. .

Proposition 2.13. Assume go, g,k,r as above. Then there exists a constant C' =
C{go,g) independent of t such that

| 7% = 7% |go,r-1 < C. (2.22)

Proof. Pointwise

i i 2
| 9% = V% | = ITjm(90) = (Tim(90) + 503 (hejim + hemsj + hjmie )],
where ;m = 7%. This and (2.20) for gg, (2.21) imply

| 7% =% | < Co-t-|7h| < Colv Al (2.23)

Wiite [B] = (hejim + hemij + hjmye)- Then 99(v% — v%) = t ¥ gif[h] =
179 + (V% — v%))gi'[h] = t{gi® v [h] + (V% = v%)gi°[h]}, i.e.

V(TP =) S C- v [Rl+ Co-C-| T A% (2.24)
But
| 7% [Rll < | (Rl +1(v" = v®) R < C'|T* Rl +Co - C" | VA (2.25)
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We infer from (2.24), (2.25)

| v (v = V)| < Co| VAP + 1 V7 R)
An easy induction quite similar to [12], [14] yields

(V) (V% — 9| < Pi(] w7t h|*), (2.26)

where P; is a polynomial in the indicated variables and the monomials satisfy the
conditions of the module structure theorem, in particular j; +j; <i4+1<r. (2.26)
implies after p — th power and integration (2.22). O

Rewriting 79 (V¥ — v¥) = (V¥ — v )(V* - v%) + ¥7(v? ~ v¥) and so
n (cf. {12]) and using (2.22) and its proof, we conclude

| Vg“ - Vg' lg:,r—l < C” (2-27)
C' independent of ¢.

Corollary 2.13. Assume go, g, k,r as above. Then

QT 90) = QPN(TH, 91), (2.28)

| IgOIplr S Cl ) I Igt T (2'29)

| Igtu.plr S 02 : | |go,p,7' (2'30)

which constants C; = Ci(¢o, ¢g) independent of ¢. This follows from (2.13) for the
pair go,¢: and (2.26), (2.27). O

Until now we considered Sobolev spaces based on the covariant derivative 579,
QPr(TE, go) = QP7(T,79,90). For r even there is another definition of 27:"
based on 1,A,A%,... ,A™? A = A, = (V) v,

rf2

laosr = ([ 321877, vl (g0)) .

1=0

Theorem 2.15. Assume (I),(B) for (M, go),k > r,r even. Then

QBT (M, 7%, go) = Q¥"(M, Agy, 90) (2.31)
as equivalent Hilbert spaces.

We refer to [5] for a proof. The main part is that the local Garding’s inequality
associated with # = {Uq, }+ has constant independent of @. The proof given in (9],
[13] contains a mistake. , O

There are several techniques to define Q27(M, A, , go) for odd r too, e.g. inter-
polation techniques. (2.31) and its proof, (2.26) - (2.30) imply
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Theorem 2.16. Assume(M",go) with (I) and (By),k > r > 241,9 € comp(go) C
M (I, By),r even. Then

Q27(TY, Agy, 90) = Q2T (TY, 0%, g0) =
2 QT v, 61) = QP (T, Ay, 92) (2.32)
as equivalent Hilbert spaces with constants independent of t. a
Assume go € M(I, Bi) and let 4 = {Uy, o) }a be a uniformly locally finite atlas
of normal charts with respect to go and with radius of Uy = ¢ < rini{90), {¥a}a

an associated partition of unity with |7 ¥4| < Ci,0 < i < k+2. Then, using local
euclidean derivatives, we can for r < k define Sobolev spaces Q" (T, 4, {tba } o 90)-

Theorem 2.17.

QT U, {ata,g0) = Q(TE, 7%, 90) (2.33)
as equivalent Hilbert spaces.
The proof follows from 2.11. O

3. THE SPACE OF BOUNDED CONFORMAL FACTORS

We now define the space of bounded conformal factors adapted to a Riemannian
metric g. Later we assume additionally g € M(I, By). Let

Pm(g) = {30 € Coo(M)l lél;{f QO(I) > 01 supt,o(:l:) < o, l Vi ‘P'g,:l: S Ciao S 1 S Tn‘}
x reM

andsetforrSm,r>%+l

Vs = {((p"pl) € ’Pm(g)2| e — ‘Pflg.p,r =
= ([ Y@ = ¢l cdvolal0)) /7 < 33
i=0

Proposition 3.1. £ = {Vs}s>0 is a basis for a metrizable uniform structure.

We omit the very simple proof. O
Let P?, (g) be the completion,

C'P = {p € C'(M)| inf p(z) >0, sup p(z) < oo}
zeM zeM

and set

PLr(g) = Ph, N C*P.
PrT is locally contractible, hence locally arcwise connected and hence components
coincide with arc components. Let

UR" () = {#' € P9l ¢ = ¢lg,p,r < 00}
and denote by comp(p) the component of ¢ in PP:"(g).

11



Theorem 3.2. For ¢ € PE7(g),

comp(p) = UR" () (3.1)

and P2;"(g) has a representation as topological sum

PLT(g) = Y comp(s). (3.2)

€]
The proof of (3.1), (3.2) is quite similar to that of (2.1) and (2.2) which is
performed in [12]. O

The function identically to 1 is an element of all Pp,(g),0 € m < oo. Write
compl"(1, g) for the component of 1 in PE7(g). Assume k > r > >+L

Proposition 3.3. comp?"(1,g) is an invariant of comp(g) C M"?(I, By), i.e.

compf"(1,9) = comph(1,¢') (3.3)
for ¢’ € comp(g).

Proof. We assume without loss of generality g and g’ smooth. If not, then we apply
the remark 2 after 2.4 and proceed as usual. The proof of 3.3 is quite analogous to
that of 2.10. We present it here for completeness. Set v = 9,7’ = ¢¥ and let
v € comp:(1,g). Then ¢ € C! (since k > r > ria 1) and

o = Llypr = (/ SOV (6 = DI dvol(g)'/7 < 0. (3.4)
=0

We have to show

lo — 1|g7 p,r < 0. (3.5)

The pointwise norms | 7" (¢ — 1)|, and | 7* (¢ — 1), » are equivalent since g and
¢’ are quasi isometric and we simply write | |, =| |. Then

|V (e-DI< |V =Vile—1t+]|v(e-1) (3.6)

[V (e =1 <V = YNV = Vel + (V' = V) Vel+
+| v (V' =)ol + 172 <
SCUV - Plel+ 1V =vIIvel+|v (V' —Wllel +| v2(<§|)7-)

A more general formula for | " (¢ — 1)| estimating this by products of the kind

|V (V' =) AT = N T™ (o — 1) (3.8)

has been established in [12]. Using (2.1) and the module structure theorem for
Sobolev spaces, we obtain

12



( / (T =D | T (T = DN T™ (¢ = D)Pdva) P < oo (3.9)

and (3.9) can be estimated by the Sobolev norms of 7/ — 7 and ¢ — 1. Hence
p € comB"(1,4'), compli™(1,g) C compl:™(1,g). In the same manner we establish
the other inclusion. O

Remark. Proposition 3.3 does not hold for an arbitrary component comp?;” (v, g), ¢ €
Pm(g), since ¥ € Pm(g) does for j > 2,7 < r < m not imply ¢ € Pn(g’). The
latter follows from the fact that we have

[ 197 (@ - plpaot < oo
but not necessarily

SUpzeM | Vj (V' = V)lz < o0,

C
In the sequel we restrict ourselves to the case p = 2 and write Q2" = Q", M%7(I, B;) =
M™(I,By),Ph(g) = Pr(9),| lg2r = g, Next we indicate the structure of
Pr(9)-

Theorem 3.4. Under multiplication P, (g) is a Hilbert-Lie group.

Sketch of proof. It follows immediately from the definition, the product and quo-
tient rule and the module structure theorem that P}, (g) is a group. £ = {Us}s > 0,

Us = {p € PL(9)l e — 1lgr < 6},

is a filter basis centered at 1 € P}, (g) that satisfies all axioms for the neighborhood
fiber of 1 of a topological group. Hence PJ (g) is a topological group (cf. [3]).
Finally, Vs is homeomorphic to an open ball in Q227(M) and has the structure of a
local real Lie group. Hence P}, (g) is a Hilbert-Lie group. O

Assume as always k > r > 3 + 1,9 € M(I, Bx) and consider comp_,(1) C
Pri2(g), comp(g) C M™(1, By).

Proposition 3.5. a. There is a well defined action

compy,(1) x comp(g) = comp(g)
(¢9) = ¢ g
b. The action is smooth, free and proper.

Proof. Let ¢’ € compy (1) C P; ,(g9),9" € comp(g). We have to show ¢’ - ¢’ €
comp(g). There exist sequences ¢, l—} ¢ 90 — g, p, € compy ,(1) C

lg.r (PR

Pr+2(9), 9, € comp(g) N M(I,Bi). Then, according to [8], p. 47, Theorem 4.7
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and the fact, that g, satisfies (I) and ¢, € Piya2(g), we conclude ¢, - g, satisfies
(I). From [23], p. 90 follows that R — RS9 = sum of terms each of them has
bounded derivatives up to order k. Using 7% — 7¥*'% = sum of terms each of
them has bounded derivatives up to order k + 1, we see finally that ¢, - g, satisfies
(Bi), ie. g» € M(I,Bi) . € comp(l) C Pri2(g) imply ¢, - 9. € M(I, By).
Moreover,

v gy —g=0u(gy ~ )+ (ps — l)g
immediately implies |p,g, — 1|g.r < 00,9, - ¢y € comp(g). We conclude from

v -gv—¢ g = -0 g +¢' (g — ¢'),
o= -9)+¢ —9) +g,
(g —g)=(" = g —9") + (90 — 9)

and the module structure theorem

0’9" = glg,r < 00,¢" - g' € comp(g).
b. The smoothness of the action follows from the fact that locally comp(l) and
comp(g) can be treated as linear spaces. ¢’ - ¢’ = ¢’ implies ¢’ = 1. If
vy g = h (3.10)

in comp(g), i.e. with respect to | |;.r, then we have also C''-convergence according
to the Sobolev embedding theorem, explicitly

he(ve,vz)
z) S —— =p(z 3.11
pu(2) o (021 02) ¢(z) (3.11)
pointwise. It is now very easy to infer from (3.10), (3.11) that ¢, = ¢ w.r.t. | |,
]

Corollary 3.6. a. The orbits comp},(1) - ¢’ C comp(g) are smooth submanifolds
of comp(g).

b. The quotient space comp(g)/comp},,(1) is a smooth manifold.

¢. The projection 7 : comp(g) = comp(g)/comp},(1) is a smooth submersion
and has the structure of a principal fibre bundle. O

>~

comp(g) has as tangent space at g' € comp(g) Tycomp(g) = Q" (S*T*,¢')
Q7(S*T*, g), where S®T* are the symmetric 2-fold covariant tensors. There is an
Ly-orthogonal splitting

Ty comp(g) = Q°(S*T*, ¢') @ Q"T(S*T*, ¢"), (3.12)

where

Qe (ST, ¢') = {h € Q(S*T*,¢')h(z) = p(=) - ¢'(z),p € V" (M, )]
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and
QT (ST, ¢") = {h € Q7 (S2T*, ¢')try h = 0}.
The decomposition (3.12) is given by
h= L(trgh)-g + (b= ~(try b))
= o Tg! q n Tgr )g .

See [29] p. 19 for further details.
Corollary 8.7. For [¢'] = comp},(1) ¢’

Ty (complya(1) - ¢') = Q7(S*T*, ¢") (3.13)
and
L
Ty jcomplg)compya(l) = Q7T(SPT", o). (3.14)
O

4. THE SPACE OF ALMOST COMLEX STRUCTURES

Consider M?™ open, oriented, with some fixed Riemannian metric g. Denote
by Q(AutTM) = C®(AutTM) C QTHM)) = C>(T}) the set of all smooth
automorphisms of TM covering i1dp;.

A= {J e Q(Aut TM)|J* = —idrp,J compatible with the fixed orientation}

is the subset of almost complex structures. Here J is compatible with the fixed
orientation if each basis of the kind X;,... , X, JX1,... ,JX; gives the fixed
orientation. ¢ induces a metric connection ¢ on 7}. Assume g with (I) and
(Bi),k>27> 5 +1,6 >0 and set
Vs = {(J,J") € A%||J = J'ly,r < 8}
Lemma 4.1. £ = {Vs}s50 is a basis for a metrizable uniform structure. O
Denote by A" = A"(g) the completion.
Proposition 4.2. A"(g) has a representation as a topological sum
A" = Z comp(J;) (4.1)
iel

where the component comp(J) is given by

comp(J) ={J € A"||J — J'|4,r < o0}. (4.2)
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Proposition 4.3. Each component has the structure of a Hilbert manifold of class
k—r.

Proof. A™ can be considered as the space of sections of a bundle B — M with
fibre GL*(2m, R)/GL(m,C), where B can be endowed with a metric of bounded
geometry of order k — 1 associated to the Sasaki metric on TM. Then the result
follows from [14]. O

Remark. For dim M = 2, we give below another equivalent description. a

Proposition 4.4. A"(g) is an invariant of comp(g) C M"(I,By), ie. for g’ €
comp(g),

A'(g) = A"(¢). (4.3)

O

5. DIFFEOMORPHISM GROUPS ON OPEN MANIFOLDS

Let (M",g),(N™ k) be open, satisfying (I) and (Bi) and let f € C°(M,N).
Then the differential df = f, = Tf is a section of T*M @ f*TN. f*TN is endowed
with the induced connection f*<7*. The connections 77 and f*<7" induce connec-
tions 7 in all tensor bundles TJ(M) ® f*T*(N). Therefore, 7™ df is well defined.
Assume m < k. We denote by C®™(M, N) the set of all f € C°(M, N) satisfying

m—1
bmdf) =Y sup| ¢ df. < co.
i=0 TEM
Let Y € Q(f*TN) = C®°(f*TN). Then Y, can be written as (Yy(,),z) and we
define a map gy : M = N by
gy(z) = (expY)(z) = exp Yy := exps(o) Yy(2)-
Then the map gy defines an element of C°(M, N). More generally we have:
Proposition 5.1. Assume m < k and *™|Y| = Y., sup| 7' Y|, < 6y <
reM
Tinj(N), f € C*™(M,N). Then

gy =expY € C®™(M,N).
We refer to [14] for a proof. The main point is, that one shows

| 7* dexpY | < Pu(| 7 df|,| VYD), i S p,j S p+1, (5.1)

where the P, are certain universal polynomials in the indicated variables without
constant term and each term has at least one | 77 Y|[,0 <7 < p+ 1, as a factor. O

Now consider manifolds of maps in the L, -category. According to the Sobolev em-
bedding theorem, for r > 2 +s,Y € QP T(f*TN) arbitrary, there exists a constant
D such that
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"YY< DYy, (5.2)

where |V, = (f S0 |V Y|Pdvol)/?. Set for 6§ > 0,6-D < 6y < rinj(N)/2,1 <
p<o®

Vs = {(f,g) € C®™(M,N)*| thereexistsa Y € QP(f*TN) such that
g=gy =expY and [Y|,,< §}.

Theorem 5.2. £ = {Vs}ocs<ri,;(N)/2D is a basis for a metrizable uniform struc-
ture YP"(C"(M, N)).

The proof essentially uses several iterated estimates of type (5.1) and others,
where the arising polynomials P,,Q, are p-integrable. It is rather complicated,
occupies 40 pages and is performed in [14]. O

Let ™QP"(M, N) be the completion of C°™(M, N) with respect to this uniform
structure. From now on we assume r = m and denote Q" (M, N) =" Q"?(M, N).

Theorem 5.3. Let (M™,g),(N™ k) be open, satisfying (I) and (By),1 < p <
oo, 7 < k,r > }’} + 1. Then each component of Q7" (M, N) is a C¥*1~" _Banach
manifold, and for p = 2 it is a Hilbert manifold.

We refer to [14} for the proof. O

Let (M™,g) be open, satisfying (I) and (Bi),k,p,r as above. Set

DPT(g) = {f € QP"(M,M)|f is injective, surjective,

preserves orientation and  |A|in(df) > 0}.

Theorem 5.4. DP" is open in QP"(M, M); in particular, each component is a
C*+1-7 _Banach manifold, and for p = 2 it is a Hilbert manifold. a

Theorem 5.5. Assume (M",g),k,p,r as above.
a. Assume f,g € DP", g € comp(idy) C DP". Thengo f € D*" and go f €

comp(f).
b. Assume f € comp(idpy) C DP". Then f~' € comp(idp) C DP".

c. comp(idy) is a metrizable topological group.

We refer to [14] for the proof. a

Denote D" = comp(idp).

Theorem 5.6. (« -lemma). Assumer < k,r > 2 +1,f € DP". Then the right
multiplication ay : D" — DP", as(g) = go f, is of class Ch+l-r,
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Theorem 5.7. (w-lemma). Letk4+1—(r+s)>s,f e D2 r > %+ 1. Then
the left multiplication wy : DP'" — DP" w,(g) = f o g, is of class C5.

The proofs are performed in [19]. O

We defined for C°™ a uniform structure 4", Consider now C**®(M,N) =
NmC™(M,N). Then we have an inclusion 1 : C**°(M,N) — C>™(M,N)
and i x 1 : C%%®(M,N)? = C°™(M,N)?, hence a well defined uniform structure
UOPT = (i x 1) 71UPT (cf. (28], p. 108-109). After completion we obtain once again
the manifolds of mappings Q°?"(M, N), where f € Q>?"(M,N) if and only if
for every € > 0 there exists an f € C°°(M, N) and a Y € QP"(f*TN) such that
f =-expY and |Y|, r < €. Moreover, each connected component of Q°7"(M, N)
is a Banach manifold and TyQ*P"(M,N) = QP'"(f*TN). As above we set

DPT (M, g) = {f € QP"(M,M)|f 1is injective, surjective,
preserves orientation and  |A|min(df) > 0}.

We assume p = 2 and write Q®7(M,N) = Q®P"(M,N) and D>*"(M,q) =
D>%"(M,g). The only difference between our former construction and the new
one is the fact that the spaces 2" are based on maps which are bounded up to
arbitrary high order. For compact manifolds we have C*°(M,N) = C*"(M,N) =
C>®(M,N),Q>>"(M,N) = Q" (M,N) and D*"(M,g) = D" (M, g) for all r. For
open manifolds we have strong inclusions C** C C%" and D" C D". It is very
easy to construct a diffeomorphism f € C®!(R, R) such that f ¢ C°%(R,R). This
supports the conjecture that the inclusion D™° < D" s > 1, is not dense. We
settle this question in a forthcoming paper. The space D*'"** is densely and contin-
uously embedded into D*". This follows easily from the corresponding properties

for Sobolev spaces. The components of the identity have special nice properties:

Proposition 5.8. Assume the conditions for defining D". Then
D" = Dy. (5.3)

Proof. Let f € Df. Given any é < ri,;/D, there exist vector flelds X;,... , X, €
QUUTM), | Xplr <bu=1,...,m, f=expXno...0 exp X, | X| € D|X|,. We
are done if we can show that for X € Q"(TM),|X|, < é and given € > 0 there
exists a diffeomorphism fx € C®*® and Y € Q"(fxTM) = Q"(TM) with |[Y|, < ¢
such that ezp X = expY = expy, Y o fx. But this is very easy. For ¢; arbitrary
small, there exists a smooth vector field Y7 € C§°(T'M) with compact support such
that |X — Y3|, < €. Choosing ¢; sufficiently small, there exists a unique vector
field Y € Q"((expY1)*TM) such that ezpY = ezpespy;Y 0 ezpYy = expX and
Y], < Qr(e1), where @, is a polynomial without constant term. This follows
from the geodesic triangle argument of [ |. Hence, for € sufficiently small we
have Y|, < e. We set fx = expY;. For f = ezpX;m 0...0expX, we apply the
techniques of the proof for D being a group of [14] and obtain for any given small
¢ > 0 a representation f = ezp;Y o f with f € C°, Y € Q"(J*TM), |V}, < e
and f is built up from the fx, € C**. d
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Remarks. 1. A detailed proof of proposition 5.8 would occupy dozens of pages but
the arguments needed are all contained in [14]. 2. The essential reason for the
special good property of Df is that :d € C*°°(M,M). For diffeomorphisms in
other components of D" this is in general wrong.

Proposition 5.9. For g € M(I, By),D§(M,g) is an invariant of comp(g), i.e. if
g € comp(g) then
Dy(M,g) = Dg(M, g'). (5.4)

Proof. We restrict to the case g’ € comp(g) N M(I, Bx). The more general case
induces rather delicate approximation procedures but is also true. Already the
definitions are much more involved. The assertion follows immediately from

P didplg ~™ |didyl g, (5.5)
Q(T*M,q) ~ Q" (T* M, g'), (5.6)
QUT*M,g) ~ Q ((exp X)* M, (exp X)*g). (5.7)

(5.5) holds since g and ¢’ are quasi isometric. (5.6) is theorem 2.10 and (5.7) is the
last equation on p. 292 of [14]. O

Assume now k> r,7 > 2+ 1,9 € M(I,Byy.).
Proposition 5.10. Dj*!(g) acts on comp(g) C M"(I, By).

Proof. We have to show g’ € comp(g), f € Dyt (g) imply f*¢' € comp(g). There
exists a sequence (g,)y,9y € comp(g) N M(I, Bk), g, I —|> ¢'. We start with f =
ar

ezpX,X € Q"(TM). X can be approximated by (Xp)“,}fﬂ € C§P(TM), X, !—|>

X. Set fu, = ezpX,. Consider the diagonal sequence (f;g,),. Then f}g, €
comp(g) N M(I,By) which follows from g, € comp(g) N M(I,By) and X, €
CS(TM). We are done if we can show

fiow = S 65)
and
1f*g' = §'lgr < 00. (5.9)
Write
Foav—f9' = = Mg + g~ 9, (5.10)
9 =(9o—9)+ 9, (5.11)
f*=(f* —d*) +id" (5.12)
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Inserting (5.11), (5.12) into (5.10), using the (rather delicate) proof of theorem
3.1 of [21], the r-boundedness of g and id* and the module structure theorem, we
obtain |f}g, — f*¢'lg,r 2 0, i.e. (5.8). Write

o' =g == f)g' + £ - 90)+ (£ -V + (9. — '), (5.13)
9 =4"-9)+g, (5.14)

fo=(f) —id’) +id", (5.15)

g =(—-9)+g (5.16)

Inserting (5.14) - (5.16) into (5.13), we obtain by the same arguments

[f*g' - gllg,r < 00.
Assume now f = ezp X, o ezp X;. Replacing ¢’ of the first case by (ezpX2)*¢’
and applying the same procedure, we obtain again f*¢' € comp(g). For f =
exp X 0...0expX; we perform induction. a

6. THE ILH-VERSION OF THE CONSIDERED SPACES

For metrics g satisfying the conditions (I) and

| V' R| < Ciyi =0,1,n,...
(Bso)

we have additional structures. Then Dg(g) = Dy (g) is defined for all » > 2 + 1.
As we shall see now, we can form DJ°(g) = l(igl’D(’;(g) which is an ILH-group. To

make this clear, we recall some definitions whicrh are a little bit different from them
originally given a long time ago by Omori. We adapt to [27].

A collection of groups {G®°,G"|r > ro} is called an ILH-Lie group if it satisfies
the following connections.
1. Each G is a Hilbert manifold of class C*("} modelled by a Hilbert space ET and
k(r) = co as r — oo.
2. For each r > rg there are linear continuous, dense inclusions E™t! < E7 and
dense inclusions of class C*(") Gr+1 — G,
3. Each G is a topological group and G*° = l(i_n_lG" is a topological group with the

-
inverse limit topology.

4. If (U,¢",E") is a chart of G, then (U™ N G*,o"
forallt > r.

5. The multiplication y : G® x G® — G™ extends to a C* -map p: G™* x G™ —
G" for all r with s < k(7).

6. Inversion v : G® — G extends to a C* -map v : G™* — G" for all r with
s < k(r).

7. Right multiplication R, by g € G” extends to a C¥") -map R, : G" = G".

urngt, EY) is a chart for G¥,
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Theorem 6.1. Assume (M", g) oriented, open with (I) and (Bso). Set D (g) :=
li(_rn’Dg(g) with the inverse limit topology. Then {D§°(g),Dg(g)lr > & + 1} is an

ILH-Lie group.

Proof. In this case k(r) =k -r+1=00~r+1=o00. 1. Df is a Hilbert manifold
of class C* modelled on E" = Q"(TM,g) = T. Dg, r > & + 1. 2. The inclusions
QFHTM) — Q"(TM) are dense and continuous. Using charts,

rp;+1

Bs(0) c TyDit =L Uit copt LU o
(exp})~*
—

Bs(0) C Ty D (6.1)

and k = oo, we obtain that ¢ is dense and C'* since (e:r:;p})‘1 0to0 ea:p}’*'l is of class
C°. 3. Each Dy is a topological group and D§° = 1{ir_nfD6 by definition. 4. follows
from (6.1) replacing r + 1 by t. 5. follows from 5.6 using k = co. 6. can be proved
quite similar (cf. [14], (6.8) - (6.11) and the proof of 6.5). 7. follows from 5.6. O

Proposition 6.2. f € D§°(g) if and only if f is a C™ -diffeomorphism satisfying
bmdf| < oo for all m,|Amin(df) > 0 and which is homotopic in this set (with
respect to the inverse limit topology) to the identity. O

Omitting all group properties in the above definition, we obtain an ILH-manifold.
Similarly one defines ILB-Lie groups (cf.[27]). Set DJ'™ = 1<i_r_an’r.

Theorem 6.3. {D§'*°, Df'"(r > & + 1} is an ILB-Lie group. a

Furthermore, quite natural one defines C*-ILH maps between ILH-manifolds and
ILH-principal fibre bundles P — P/G of class C¥. Consider g € M(I, Bo),comp™(g) C
MT(I, Beo), comp™(g) := limcomp(g), P, (9), P& (g) = ImPL(g), compZ(1) C
P&(g)-

Theorem 6.4. {comp®(g),comp(g)|r > § +n}, {comp(1), compl,(1)|r > 5 +
1} are ILH-manifolds and comp®(g) — comp™(g)/comp3(1) is an ILH-bundle. O

I8 ™

7. THE SPACE OF HYPERBOLIC METRICS FOR n = 2

We will show that for certain classes of open surfaces, a suitable metric go and
the space comp(go)—1 C comp(go) of constant scalar curvature —1 holds

comp(go)—1 = comp(go)/comp(1) (7.1)

where this spaces are manifolds and D§(go) -equivariant diffeomorphic to a certain
component in the space of almost complex structures. comp_1(g0)/D§(Go) will be
one of our models for the Teichmuller space.

We consider open surfaces M?%. Each such surface has ends. We exclude punc-

tures as ends. If each end is isolated then M? has a finite number of ends, each of
0

them is given by an infinite half ladder = § T2, where T? is the 2-Torus. If M? has

n=I1
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an infinite number of ends then there exists at least one nonisolated end, i.e. an end
that has no neighborhood which is not a neighborhood of another end. This occurs
e.g. if we have repeated branchings of half ladders. In any case, such a surface can

be built up by Y-pieces which we explain now. We follow the representation given
in [6].

Lemma 7.1. Let a,b,c be arbitrary positive real numbers. There exists a right
angled geodesic hexagon in the hyperbolic plane with pairwise non-adjacent sides
of length a, b, c. a

Next we paste two copies of such a hexagon together along the remaining three
sides to obtain a hyperbolic surface ¥ with three closed boundary geodesics of
length 2a,2b,2c. They determine Y up to isometry (Theorem 3.17 of {6]).

Two different Y -pieces can be glued along their boundary geodesics if they have
the same length. The same holds for two “legs” of same boundary length of one
Y-piece. It is a deep result of hyperbolic geometry that one obtains as a result
smooth hyperbolic surfaces. Moreover, we can perform gluing with an additional
twisting (cf. [6]). But here we consider gluings without twisting, at least for our
starting metric gg. As a well known matter of fact, any topologically given open
surface of the above kind can be built up by Y-pieces and we obtain in this way
a hyperbolically metrized surface (M2, go). If the lengths of all closed boundary
geodesics are > a > 0 then rjn;(M?,g0) >0, i.e. go € M(I, Bs).

Given an open surface M? of the above type, i.e. M? is the connected sum of
a closed surface with a finite number of half ladders or adding to such a surface
step by step a countable numbers of half ladders, fix a hyperbolic metric go €
M(I,Bs) by gluing Y-pieces with closed boundary geodesics of length > a >
0. Later we must impose that this lengths must grow exponentially. Consider
Poolg0) = Q'Pm (g0), PL,(go) defined by the induced uniform structure. It is a very

simple fact that comp(1, go) C P[(go) and compl (1, g0) C P (go) coincide, &k > 1.
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We fix r > 3 and write comp(1) = comp”(1, go). Consider comp(go) C M™(I, Boo).
As we already know, comp(1) acts on comp(go) and comp(go)/comp(1) is a Hilbert
manifold. Let comp(go)-1 C comp(go) be the subspace of all metrics ¢ € comp(go)
such that the scalar curvature K(g) equals —1. Since we assume r > 3 = % +2,9
is at least of class C% and K (g) is well defined. Usually K(g) denotes the sectional
curvature but we use it for scalar curvature which is twice the sectional curvature.
We could also work with sectional curvature but then in the differential equation
below appears a factor 2 which we should take into account in all calculations.
Only for this reason we decided to work with scalar curvature. Both approaches
are trivially equivalent.

We wish to show that comp(go)—-1 C comp(go) C M"(I, B) is a smooth sub-
manifold of comp(go) which is diffeomorphic to comp(go)/comp(1). This is a rather
deep fact which requires a series of preliminaries and is valid only under an addi-
tional spectral assumption. Let g € comp(ge). Then, according to (2.32), A, maps
Qr = QT(M, vgo,go) into Qr_2 C LQ(M, g‘o)

Lemma 7.2. A, + 1 is surjective.

Proof. Consider A, + 1 with domain " C @772, Then the closure of (Q7,| |r—2)
with respect to |- [,—2 4+ [(Ag + 1) - |;—2 is just Q7, i.e. Ay +11is a closed operator
in the Hilbert space 272, Moreover, (A, + 1)pl—2 > ¢ |@|r-2,¢ = 1,0 € Q.
Hence (A, + 1)p; — ¢ gives ¢; Cauchy and ¢; — ¢ in 772, Ay + 1 is closed,
hence (Ag + 1) = ¢,im(A4 + 1) closed. Finally, the orthogonal complement of
im(Ag + 1) in Q72 is {0} since the adjoint (in 7~2) operator to A, + 1 has no
kernel. O

Let h € T, comp(go) = Q7 (S*T*,g). For h the divergence §,h is defined by
(65h); = T*hjr = ¢ v! hjr. For w = w; = wide' a l-form and X, = wi%
the corresponding vector field the divergence 4, is defined by d,w = d,z, =
\%%(w‘ﬂ). Hence for h € Q7(S*T*, g) the expression 646,k is well defined.
As we already mentioned, for » > 3 = % + 2,9 € comp(go) is at least of class C?
and the scalar curvaure K(g) is well defined.

Lemma 7.3. K(g)—1=K(g) — K(g0) € Q™%

This follows immediately from the topology in comp(go) and the definition of

K(qg). a

Consider the C° -map

¥ : comp(go) — (M, go)
g— K(g)-1.
Then comp(go)-1 = ¥~1(0).
Theorem 7.4. comp(go)—1 C comp(gp) is a smooth submanifold.

Proof. Tt suffices to show, 0 is a regular value for %, i.e. if K(g) = —1 for some g
then Di|, : Ty comp(ga) — Q77%(M, go) is surjective. Hence we have to calculate
D|g(h), h € Ty comp(go) = Q7(S*T*, g). This has been done in [29],
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1
Dilg(h) = Byltryh) + 848,k + Stryh. (7.2)

D1, is already surjective if the restriction to h of the kind h = X - g, A € Q" (M),
is surjective. Then (7.2) becomes

Dylg(A-g) = DgA+ A =(Ay + 1),
but A, + 1 is surjective according to 7.2. d

Next we prepare Poincaré’s theorem which roughly spoken asserts comp(go)-; =
comp(go)/comp(1). Denote by o.(A) the essential spectrum of A. Here we omit
the bar in the unique self adjoint extension A which equals to the closure.

Proposition 7.5. ¢.(A,,) is an invariant of comp(go), i.e. for g € comp(go),
Te(Dg) = 0e(Dgy).

Proof. Let A € 0c(Ay,) and (p,), be a Weyl sequence for A, ie. ¢, € Dja, ,
bounded, not precompact and li’m (Ago — M)y = O. Then, according to (2.32),
V=00

(pu)y C Dg,, is bounded and not precompact with respect to Lq(M,g). Writing

Ay = A=Ay — A+ Ay — by, it is possible to show le (Ag — Agy)py = 0, 1e.
v—rQ0

0e(Agy) C 0e(Ay). By symmetry we conclude o.(Ay,) = 0.(Ay). We refer to [7],

[18] for details. 0O

Lemma 7.6. Assume info.(Ag, > 0. Then info(Ay) > 0 for all g € comp(go),
where o denotes the spectrum.

Proof. According to 7.5 inf 0.(Ay,) = info.(Ay). From g € M(I,Bx),g €
comp(go) C M"(I,Bs),r > 3 follows that g satifies (I) and (Bp) which implies
vol(M?,g) = co. Hence A = 0 cannot be an eigenvalue. All other spectral values
between 0 and info.(Ag) belong to the purely discrete point spectrum opq4(A,),
ie. info(Ay) > 0. a

Now we state the first main theorem of this section.

Theorem 7.7. Assume (M?,go) with go smooth, K(go) = —l,r,-n_,-(Mz,go) >
0,infoe(Ag,) > 0. Let g € comp(go) C M"(I,Bx),r > 3. Then there exists a
unique p € comp(1l) C PL(go) such that K(p-g) = —1.

Proof. Let p = e*. For the existence we have to solve the PDE

Ayju+ K(g)+e" =0. (7.3)

We seek for a solution u € Q"(M, g0). u € Q"(M,go),r > 3 imply e —1 € Q" as we
will see below. (7.3) has a solution according to the general uniformization theorem.
But this theorem does not provide u € 7. Therefore we have to sharpen our
considerations. The existence will be established by the implicit function theorem
and a version of the continuity method. Consider g; = (1—t)go+tg = go+t(9—go) =
go + th € comp(go) and the map
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F:[0,1]xQ" - Q2
(t,u) = Ft,u) = Agu+ K(g¢) + " =
= Ag+ (K(g) - (~1)) + ¥ — 1 (7.4
We want to show that there exists a unique u; € Q"(M, go) such that F(1,u;) = 0.
For this we consider the set
§={t€[0,1)] Thereexists u, € Q" suchthat F(¢,u;) =0}
and we want to show § = [0,1]. We start with § # ¢. For t = 0,9 = go, K(g0) =
—1 and ug = 0 satisfies (7.3). Moreover,
Fu(0,0) = D2F|(0,0) = Ago +1 (7.5)

is bijective between 2" and Q7~%, as we have already seen. Hence there exist
4 > 0,¢ > 0 such that for ¢ €]0, é[ there exists a unique u; € U.(0) C Q" with

By the same consideration we can show that S is open in [0, 1]. To show § = {0, 1]
we should show & is closed. This would be done if we could prove the following.
Assume t; < t, < ... ,t, € §,t, = to, then {9 € §. The canonical procedure to
prove this would be to prove :

(ue, )n 1s a Cauchy sequence in Q" uy, — uy,, (7.7)

Agqtits + K(gio) € €0 = 0. (7.8)
We prefer a slightly other version of this establishing the following

Proposition 7.8. There exists a 6 > 0,6 independent of to, such that to € S
implies |t — o,t9 + 6[N[0,1] C S.

We will see later that the proof of 7.8 is equivalent to that of (7.7) and (7.8).
The proof of 7.8 is based on careful estimates in the implicit function theorem to
which we turn now our attention. Roughly speaking, the proof goes as follows.

Let tg € S,u, € Q7

F(tO; uto) = Ag'outo -+ I{(g‘o) + euto =0.
Set g(tau) = Fu(to,uto)u - F(t,u). Then F(t,u) = 0 is equivalent to

u = Fy(to,us,) 'g(t,u). (7.9)

If we define Tyu := Fy(to,us,) " g(t,u), then we are done if we can find for any
to € S a complete metric subspace My, 5, C Q7(M, go) such that
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Tt : Mto,Jl — Mf-o,(sl (710)

and

T, is contracting (7.11)

for all t €]tg — 4,tp + 6[N[0, 1], independent of to. Indeed, in this case Ty would
have a unique fixed point u, solving (7.6).

We now prepare the construction of My, s, and the proof of (7.10), (7.11) by
a series of estimates. First we apply the mean value theorem. From g,(¢,v) =

Fy(to,uty) — Fu(t,v) follows

l9(t,u) — g(t,0)lr—2 < sup lgu(t,v + D —v))lr—z - [u = vls,

0<9<1
|Ttu - Ttv|r < I(Ag‘o + eulo)_l |r—2,r‘
- sup |(Bg,y — Ag) + (%0 = ")) g fu— ), (7.12)

0<A<]

where | |; ; denotes the operator norm (M, go) = Q7 (M, go). We estimate

|(Aﬂto + (eu.n'))—l |1"""2|f‘ : Agto - Agt |T-"—2 (713)

and

|(A9‘!o + (e"o-)) T (e o )|z re
|(1 _ ev—u¢0+ﬁ(u—u,0—(v—u:0))) . |rr—2 (714)

and start with (7.13). In the sequel, the same letters for constants in different in-
equalities can denote different constants. The key role in all following considerations
plays the Lipschitz continuity of |Ag,|i ;.

Lemma 7.9. Assume go,g,t,t0,7 as above. Then there exists a constant C' =
C(g0,7, |9 — golge,r) > O such that

|Ag:0 - Agglr,r——Z S C ' |t0 - t|- (7.15)

Proof. Set A(T):= Ay, = Ayorr(g—go) = Dgotr-h- Then [Ay, — Ay i; < [A(E+
I(to —1))]i,; - |(fo — t)|. We calculate and estimate A'(7).
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1
Vo
1 . .
8:/37(97)' 83,

1
(V9r)' = 5V/artry. h,
1, 11
\/g_'r) - __—tr!i'-rh‘

(6 = ~g g i = —h),

T

A7) = =l ) 0B 05 + —=0i ) o0+

+

(

1 11
A'(r)w = (—=tr, h - =

0:/grh7 D85 )w =

0; Vartrg. h gf,ié)j+
1

Vi
1
= —§(v9"tr9,h, 79 w),, + (

+

1

We estimate the first term on the right hand side of (7.16), using

Vitrg h =T g7 hij = g7 ¥ hij = g7 hij,

or more general,

vgrtrgr h = trg‘r (vgr h’)1
(vgr )itrg'r h’ = trg'r (vgr )iﬁ

](Vyf)itrgrmgr = |t7'gr(vgr)£h|yr < Cll(vg')ihlgf:

and, according, to 2.14,

(/ Kvgr)ihlzr,szOl:‘:(gr))l/2 S Czui|h'|90|f':7: S r,

( ] (9% Yitry b2, _dvole(ge))/2 < Celhlgorri < 7-

We infer from (7.17), 2.9, 2.14
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\/Ea,-\/g—,h‘f“)aj)w.

(7.16)

where here try_ refers to the trace with respect to the first two indices. Moreover

(7.17)



1
| - §(v9*h,v9’w)|go,r-z SCi|(wTtrg, h, 797 w)lg, r—2 =

r—2
= ¢ / S () (99 by, by 90 0)g, 2. dvoly(gr))? =

1=0
r—1
= Cl(/z Z |(try, (Vg’)”lh,(vg')k“w)g,|3,,xdv03z(9r))1/2 <
i=0 j+k=i
< Gy [ ST HAR, - (99 ) wf2, Ldvola(ge)) 2 <
b k=i
< C3|hig1-,r—l . |w|g,,r_1 < C4(go,h,r) . |w|go,r..1. (7.18)

Hence there remains to estimate

1 .
=0, N ASL R Py (7.19)
! 8i\/g-h 05w =
N
1 g
= \/g_(a,-\/gr')h”(f)a,-wﬁt (7.20)
;
+0;h () 9w+ (7.21)
+h()5,8,w. (7.22)
One way to estiamte (7.20) - (7.22) in the | |4, r~2 -norm is to introduce a cover

U =A{(Uq,ba)}as{¥a}a and to apply (2.33). We present a more covariant proce-
dure of estimation. For abbreviation, v = (1) = w9 ,h" = (") = ghigeip,,
hit = (g = go)ut, TF; = T(7).

%(a;\/g_,)h‘fajw = I'}ih" 050 = Dishigy 85w =

= Thhi(vw)’, (7.23)

(0:h")050 = Bi(higt)djw = (Bihl)(Tw)"+
+hi(8ig%) 0w = Tihi(Tw)® — (Di,he — TR (Tw)®~
—(hilg,g% + hill,g"*)8w =
= (8grh, Yw)gr — (P:.'sh: - F?ehi)(vw)°~
—(hilg,(Vw)® + k(80w — i V;j w)), (7.24)
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where we used for the components of a covariant derivative

Vi0sw = 8;0,w — T 9w,
P{sajw = 0;0,w — ViVs W.

Adding (7.23), (7.24), (7.22), yields
AT,

;- /9rhY Ow =
V9r g ’

= TRAL(TW)® + (8,,, Vw)g, — Tihs(Vw)"+
+T1 Ry (Vw)® — T, (Tw)® — AV 9;8;w+
+hY Vi Vjw-+ hijafajw =

= (85, h, V)y, + 1Y Vi V5w, (7.25)
We write
h i Vw = (hij, Vi 75 W)y, (7.26)
Using
Viw = Vv Vw ~Veoy.w (7.27)
we can rewrite (7.26) as
hij ViVw = (h: ng)yr + (hij: Vv;ajw)gf- (728)

(7.27) and hence (7.28) has a generalization to higher covariant derivatives (cf.
[14]). From this, g, € comp(go), pointwise estimates for /g,a;, and other mixed
derivatives with respect to gp, corresponding Sobolev estimates with respect to g,
(97 = 9 4 9 — 9% etc.), the module structure theorem and 2.16, 2.17 we
obtain finally

1
Var
1

<C Oi/grh 1 05wy, g =
1|\/g_r \/g_ 7 |9| 2

(—=0: - V/arh"(0jwlgq -2 <

= Cl(/i(v)’((égrha VW), + (hij, Vi V5 w)g, Jdvol(gr))/? <

3=0

S Czlh'.?ra’"—'] ’ |10|§r1f S
S Calh|gOvr_l : |w|90|r (7'29)

Here we again used |(7)%6,,. k) < C - | 7* ! k| (7.18) and (7.29) imply
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|(Ay:o - Agt)w|r—2 < |t0 - tl ' C(QO;ha’”) : |w|go.ra

ie. A —Aglrr—2 < C-|to — t|, where C depends on go, h,r but is independent
of ¢t. This finishes the proof of 7.9. |

Now we continue to estimate (7.13) and have to estimate

(Agiy + (€40 )) 7 rma,r

First we recall that Ay, is self adjoint on Q*(M,A,,,9:) = Q*(M, A, 9) C
Ly(M) = Q°%(M). For u € Q",r > 3, the operator v — e - v is symmetric
and bounded on L;. Hence A, + e* is self adjoint.

Lemma 7.10. There exists a constant ¢ > 0 such that info(Ay,) > ¢,0<t < 1.

Proof. Assume the converse. Then there exists a convergent sequence ¢; — t* in
[0,1] such that /\min(Ayti) — 0. Hence /\min(Ag”) is the minimal spectral value of
Ay,,- Tt is > 0 and either equal to inf oe(A,, ) or an isolated eigenvalue of finite
multiplicity. According to 7.9, Ay, — Ay, in the generalized sense of [24], IV, §
2.6. Then, according to [24], V, § 4, remark 4.9, Anin(Ay, ) = Anin(Ag,. ), ie.
necessary Amin(Qg,.) = 0, a contradiction. d

Corollary 7.11. For arbitrary ¢t € [0,1],u € Q7

inf o(Ag, +€%) > ¢,

A, -{-e":/ AEx(t, ),

(Agt + eu)—l = /\_ldE,\(t,u),

(A, +e*)™! is a bounded operator on Lp and, according to [24], p.357, (5.17), the
operator norm of (Ag, +e*)7!is < L. a

We want to prove more and to estimate

((Ag +€") o2y (7.30)
First we have to assure that (7.30) makes sense.

Lemma 7.12. Foru € Q",r > 3, the map v — e® - v is a bounded map Q' —
Qf,i < r, which

le*]ii < C(u,7) < C(3) - supe - |ul,. (7.31)

Proof. This follows immediately from 2.7, 2.8. O

Corollary 7.18. The Sobolev spaces based on the operators A, and Ay, + e are
equivalent for 7 <,
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Qi(MZ)’Agaigﬂ) = Qi(M2’Agrt + eu)’i S T. (7‘32)
0O

Remark. The heart of the estimate for (7.30) consists in proving that the constants
arising in (7.31), (7.32) can be chosen independent of ¢ and u if u solves

F(t,u) = Agu+ K(g) +e* = 0.

Consider " C Q2 C Q% = L,,Q72? C L, and assume 7 even.

Lemma 7.14. A, +e* : Q% — Q° = L, induces a bijective morphism between
Q" C Q? and Q7% C Q°.

Proof. Surely, Ay, -+ €e* maps Q" C Q2 into Q72 C Q° = Ly. This map is injective
according to 7.10. It is surjective: Let v € 772 C Q% Then (A, +e*) v € Q2
(Ag, +€*) ((Ag, +€*) " v) = (A+e*)~'v is square integrable ; < I. The assertion
now follows from 7.13. ]

Now we state our main
Proposition 7.15. Assume r > 3 even. Then there exists a constant C =

C{g0,9) > 0, independent of t, such that

Ay, +e*) e, SC (7.33)

for any solution uy € Q" = Q"(M, go) of Ag,us + K(g¢) +e* =0.

Proof. We would be done if we could show

[(Ag, + )7 wlo < Colvlo (7.34)

. _ . 7"
A5 (B, + ") vlo < Cilvlainz < Cilvlraz, 1< < 5, (7.35)

Ci = Ci(90,9),| |i =1 lgo,j- We perform induction. (7.34) follows from (7.11).
Consider ¢ = 1 in (7.35) and denote Ay, + e = A 4+ e*. Then

AA+e* ) v=0v—(e*)o(A+e*)  u. (7.36)
Lemma 7.16. There exists a constant D > 0 independent of t such that
supe"t <D (7.37)

for any solution of Ag,uy + K(g:) + €t =0.

Proof. Let (M?,g) be a Riemannian 2-manifold, oriented. Then ¢ defines an inte-
grable almost complex structure J; such that (M?,g,J,) is Kahlerian. Moreover,
Jg = Jeu - g. Consider now our case id : (M, gy, Jg,) = (M, e* - g1, Jy,). idis a
nonconstant holomorphic map. We repeat Yau'’s
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General Schwarz Lemma. Let (M, g) and (N, h) complete Riemannian surfaces
with sectional curvatures K and Ky and f : M = N a nonconstant holomorphic
map. Assume Ky > Ky and Ky < I, < 0. Then K; < 0 and

h I‘L’]
Sh< (7.38)
See [32] for a proof. O
(7.38) implies in our case with id : (M, g¢) = (M, e"t - g¢)
e* < —inf K(g:)(z)/2, (7.39)
TEM
where in (7.39) K denotes the scalar curvature = 2. sectional curvature. g, €
comp(go), I (go) = —1 and r > 3 imply mfI\(g;)(x) < —1 but we must prove that
inf K(g:)(z) really exists. This is the content of
reM
Lemma 7.17. There exists a constant Dy > 0 independent of t such that
|K(g:)(z)| < Dy forall te€[0,1],z € M. (7.40)
Proof. (7.40) would follow if we could prove
= 1= K(g)] =%° |~ 1 - K(g)| < Ds. (7.41)

but this follows immediately from the facts g,q: = go(t(g — g0) € comp(g) C
M7 (I, Boo),r >3 =2 42,29, — golgo =t -"% g~ go| < D3 -t-|g— golgo,r, (2.34)
and scalar curvature has an expression by derivatives of order < 2 of the metric.
This proves (7.40) and hence (7.37). a

Now, according to (7.36), 2.14,

IA(A +€e*)" ol < [vlo + D|(A +e*) oo <
< |vjo + D - Colvlo = Cilvlo

which finishes the proof of (7.35) for : = 1. Assume now

1A (A + ") olo < Cj - oljmp,d <i—1,i < % (7.42)
Then
A A+ ) o = ATHA(A +et) ) =
= A7y — AFT((e*)(A 4 e*) M), (7.43)
Clearly,
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lAi_lv|0 S |vig:,25—2 < C- |Ul90,2f—2: (744)

hence we have to estimate

ATH((e*) (A + ) t). (7.45)

As follows from
Alv-w) =v- Aw + wAv — 2(Yu, Jw), (7.46)
Ae* = e*(Au — | 7 ul?) (7.47)

and the induction assumption applied to AJ(A +e*)~! v, we have a desired estimate
for (7.45) if we have an estimate for |uo, |Aulo, ... ,|A* 'ulp, independent of ¢,u =
uy solution of Ag u; + K(g:) + e*t = 0. The proof of 7.15 would be finished if we

could prove

Proposition 7.18. Assumer > 3 even. Then there exist constants D; = D;(g, go)
independent of t, such that

[A;oulo < Diai < ) (748)

o3

for u = uy; a solution of Aguy + K(g¢) + €% =0.
Proof. According to 2.16, we are done if we could show |A;‘u|0 < D; and write in
the sequel simply u = v, A = Ay, , K = K(g¢). Then
Au+K+e*=0
is equivalent to

e* —1

U

(A +

)u = _(K + 1)7

e —1

u=(A+ )H(=(K +1)). (7.49)

Here iu_—l- is well defined, > 0 and (A + £==2)~1 is a well defined bounded operator

u

according to 7.11. We would be done for : = 0 in (7.48) if we could show |K(g) —
llo £ C = C(g, go) independent of t. We prove more general

Lemma 7.19. Let t,to € {0,1}. Then

|K(g10) — K(ge)lr—2 < fto = 2| - C, (7.50)
C = C(go, g) independent of t.

Proof. According to the mean value theorem for maps into Banach spaces,
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K (gt) — K(ge)lr-2 < Yto =t sup |K'(gr)]r—2. (7.51)
<<t

d
K'(g;) = EK(gg +7h+ oh)|s=0 =

1
= T(Agrtrgrh’ + 591’ 591‘ h’ - iIf(gT)trg"' h)’

hence

[ (g0)s < 7+ (Clllisa + 5 K (gr)trg, Bl (7.52)

We have to estimate |K(g,)try hli. For i =0, i.e. | |o, there does not arise any
problem since |K(g-) < C§,C{ independent of 7 and {try hlo < C§' - |hlo. We
continue with 7 = 2 to indicate the general rule.

K(g,-) =2 R1212(91')(det(97‘)!

%A K(g:) = %A(K(g,) +1)= %A(K(gr) — K(go)) =

= 5 AlRiais(g.)(det(go) — det(gr))+
+(Ri212(gr) — Raz12(go))det(go))/det(go) - det(g-)], (7.53)

where A = Ay Choose an atlas U = {(Uq, da)}« as in section 2. Then goj,-j,géj, det go
and all of its derivatives are bounded,

det(go) > ¢ > 0. (7.54)
r < 3 and g = go + 7h, |h|; < co imply

grij, g, det(gr) bounded, det(g,)>c >0 -(7.55)
There holds

F;k(gf) = Fj‘k(go +7h) = P_iik(90)+

1 .
+597 (Thejik + Theksj + Thie) (7.56)
and
Rg'ré(gf) = (aT P,gé' - 8'5 Fg‘y + ng: 1—‘56 - Srf Fg-y)(g‘n")ﬁ (757)

where ; j denotes 74°. Finally we conclude from (7.53)-(7.57), ||, < oo, V¥ =
V9 + v — 97, the module structure theorem, 2.16 and 2.17 that
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|AK (gr)lo < Da(|hla) (7.58)

D; a polynomial in |h|,. Similar for higher derivatives,

|A7K (gr)lo < Daj(|Al2j+2) (7.59)
We omit the very long but rather simple details. This finishes the proof of 7.19. O
Hence
-1, _ . C
o = |(& + =)} (~(K +1))lo < == = Do. (7.60)
Next we study Au to indicate the general rule.
et -1 _;
Au=A((A+ S0 - (K +1) =
et —1 e* -1, _, . et -1 et —1, 4
=(A+ NA + )TH(=(E 4+ 1) = ( A+ )T (= (K + 1)
e’ —1 et —1.._4 .
= —(K+1) +( WA+ ——=))7 (~(K +1)) (7.61)
e —1

can even pointwise be estimated by a constant independent of t: Let |u(z)} >
1. Then, according to (7.37),

u(e) _q
< | <|e*® —1|<D+1=C"

I

u(z)

If |u(z)| < 1, then |%—1—| <Y 2, % <e=C". Hence |Aufg < D;. Assume now

=1 ;

|Aulo < Dj,j <i-1,i < g,
and consider A'u. According to (7.61),
e* —1 e" —

Aty = —A7THEK +1) - A" of (A + 1)—1(K +1)) (7.62)

u
for 1 > 2. 7.19 yields A"} (K +1)|o < D'. If we write A'u to determine a Sobolev
norm, this means A;ou since our general reference Sobolev norm is | |g,,;,7 £ 7.
But for the calculations in the sequel we have often to work with A;t since then
formulas become easier. But this does not touch the proof of our desired a priori
Sobolev estimates according to 2.16.

We have to find an a priori estimate

e¥ —1 et —

((A+

A L1 + 1) < D, (7.63)

e’ —1
2 !

D" = D"(g,go) independent of ¢. Consider A*~!(v - w). In our case v =
w = (A + £=1)"1(K + 1). We obtain from
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Av - w) = vAw + wAv — 2(Yv, Yw) (7.64)

that A*~!(v - w) has a representation

ANy w) = Z A¥y- A*w +  sum of mixed terms. (7.65)

Jtk=i-1
It follows from (2.32), (I), (Bs) for go and the module structure theorem that a
priori estimates for all
|ATv - Afwly

imply such estimates for all mixed terms too.

Remark. We could also work exclusively with covariant derivatives. But then all of
our expressions grow rapidly. Therefore we decided to work only with every second
derivative, i.e. to work with the A’s. a

Consider now all products

e* —1

U

A A A K ey k=i -

euu"l =145+ ‘5—,2 +... and % + ‘g—?+ converges in 27 since all u! € Q7, |u’|, <

- ; Klu2 | K2|uf®
K1 |ult and J%J,L + —Jslf-if- + %‘f- + ... converges. We have already seen

e* =1

i

Using Auf = — @7 g uf = —k(k — Du*72| v u|? + kuF~' Au, we see that at least
formally

| < Co.

et —1 1 2u  3u?
A( " )=Au(§+¥+?+...)
2 2.3-u 3-4-u°
-—|Vu]2(§+ T +...). (7.63)

But the same argument as above and the module structure theorem yields A(-euu—_l)

and its series (7.63) as a well defined element of 27~%. We want to establish an a
priori etsimate for [A(£=2)|o. We already proved

U

|Aulo < Dy (7.64)
which implies
|Aw - él—'|o < Dyj2. (7.65)
We continue to establish an a priori estimate for

36



1 2u  3u?
|Au(5; +3—‘,‘+ LA TR (7.66)

The a priori etsimate for |u|o and |Aulp yield such an estimate for |uls.
lul2 £ Dj. (7.67)

According to remark 2 after 2.9, 2 is an algebra and we have an estimate

lu?|2 < Kalulf, [u*lz < K37 ulz,

together with (7.67),
[u¥lz < Ky~ Dy,

Hence 2% + 3% + ... is a well defined element of Q? (even of Q" as we have seen)
and there exists an estimate

2u  3u? 2D’ 3I( D2
G+ + <+ —

Now we apply the first half of the module structure theorem 2.8. In our case
n'=21p1=p2=q= Z‘E‘_nq—lAUGQO—LQ,T‘l_O<1

’E;nT p2
(3¢ +3n%4l4+...) € Q%1 = 2. Set 7 = 0, then 0 < 1—max{1—0,0} —max{1-2,0}
and, according to 2.8,

+...=Dj. (7.68)

2u  3u? : 2u 3u
e S Y

<K-D,-Df,

|Au- (5 Sz <

together with (7.65),

2 u
|Au - (1+ -j‘Ti + ’_ +..)o<Dy/2+K-Dy D =D (7.69)
Quite similar we manage the second term in (7.63) using that yu € Q1,0 <1 —
max{1 — 1 0} ma.x{l — 1,0}, | vul® € Ly, || v ul2o € K1) v ul? < Ky|ul? and

again (%3¢ +...) € Q. We obtain
2 2-3.-u  3-4-u?
IV uf(Gg + =+ =+ No < D5, (7.70)
le.
A=) < DY, (7.71)

Now it is every easy to recognize the general rule. One forms AJ(& £=1), obtains
a finite sum of factors x series, the factors are in L; = g and ha.ve an a priori
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Lj-estimate coming from |A*u|o < Di,k < 57— 1. The series are in 2 and have an
a priori | |2 -estimate which yields together

e —1
U

A

o <D%j<i-1, (7.72)
D = D}(g, go) independent of ¢. Finally we want to establish a priori estimates for

e —1

AR((A +

K +1),k<i-1. (7.73)

But if we replace in (7.42)-(7.47) e* by euuhl, then we see that we get a priori
estimates if we have such estimates for

et —1

U

Al o, S kb <i-—1.

But these we have just established. i.e. we obtain

1

eu

|AF((A +

—) 7K +1)lo < B,k <i— 1.

1

K+1eQ 2 (A+ =) YK+1) €, AF(Aa+ e"T"l)'l(.i’( + 1)) € Q? since
E<i—-1<%-1, A-"(euT“l) € Q° = L,. Applying once again the first half of 2.8,
we obtain

a0y ak(a + S

)THE + 1)l < Fii,
Fjx = Fj (9, 90) independent of ¢. Quite similar we conclude

|mixed terms|o < F.

Hence

et —1 e
(—.

|AF? (A +

—1 .
TUE+D)o < F+ > Fi,

U
Jtk=i—-1

together with (7.50),

|A*ulo < Dy (7.74)

D; = Di(g, go) independent of ¢, < 7. This proves 7.18, hence (7.35) and our main
proposition 7.15. a

Corollary 7.20. There exists a constant C' = C(g, go) such that
I(Agto + (eu""))—l'r—Z,r ) 'Agzo - Age 'r,r—2 <C- |t - tOI- (7-75)
0

The estimate of the first factor of (7.14) is already done,
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(g, + (e¥0)) T (€M) rmayr <
<(Agy + (€0 ) rmzyr - [(e0)lrmz,r—2.

According to (7.33),

I(Ag,, + (e*0)) 7 22 < Cy, (7.76)
and, according to (7.31), (7.37) and |[Afuly < D;,0 < j < I,
[(e*0Yr—2,r—2 < Co, (7.77)
1e.

[(Agiy +(™0)) T (e )] rma,r < Ci, (7.78)

C3 = C3(g, go) independent of t. The final estimate concerns

|(1 _ ev—uto+ﬂ(u—u:0—(9_“tg))) . |r,r—2: (779)

where as usual the point indicates that the corresponding expression acts by mul-
tiplication. We write

1 _ eU—‘UgO"l"ﬂ(u_uto-(v“ulg)) -_—

=) o —ur +I(u — ugy — (v = ugy)) /!

=1

As above, this series.converges-in-Q™-and: for- {v-— w5 + Hu-— ugg — (v-— ugy))|r- - -

sufficiently small | 352 [v — gy + 9(u — ugg — (v — ug,))]*/i!|» becomes arbitrary
small.

For any f € Q7, the operator norm of (f-) : Q" = Q"2 (f)w = f - w, can be
estimated by C(r) - |f|». This yields

Lemma 7.21. For any €; > 0 there exists é; > 0 such that
(1 = ev=motP(umsig=(r=uio)) | | ) < ¢

for all w,v with |u — uy|r, |V — ug]r < 61.

Proof. Given €; > 0, there exists 8] such that for |[v—uy,+0(u—rug,—(v—uy))|r < 6

Cr) - IS o — o+ 0w = wgy = (v = wg,))) /il < e
1=1
Set §; = &} /4. Then
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[V =g + Du —ute = (v = wo))lr < |0 = wsolr + |1 — uoly + v — wgolr =

= |U - UtOIT -+ 2|‘U — Utolr < 2(|u - ’U,gol,- + |U —_ uto|,~) S 451 = (;i

d

Corollary 7.22. There exists é; > 0 such that |u — uy|r < 81, [v — uy|r < &
implies

(A + (e"0)) T (e - |ra,r

[(1 _ ev-—-ugo-i—:?(u—uzo—(v—uzo)) . |r,r-—2 < % (780)

Proof. Set in (7.21) ¢ = & - —C—l.;,C’g from (7.78). O

Corollary 7.23. There exists §; > 0 such that for ju — ug|r < 61, v — wyylr < 6
1

[Tgu—T;T)lr S (C |t—t0|+z)|u—v|,-, (781)

where C' comes from 7.9.
Proof. This follows immediately from (7.12), (7.13), (7.14), (7.15) and (7.80). O

If we would choose |tp—t| sufficiently small, then the map 7} would be contractive.
But this does not make sense since until now we did not define a complete metric
space on which T; acts. This will be the next and last step in our appraoch. But
we will use the inequality (7.81) in this step.

Proposition 7.24. Suppose uy, € Q7,7 > 3,44, us, + K(g1,) + e*0 = 0. There
exist 6,8; > 0 independent of tq such that Ty maps My, 5, = {u € Q7| |u—uyglr < 6}
into itself for-|t — to| <'§. Moreover Ty is contracting. = - - :

Proof. We start estimating Tyu — wy,:

|Ttu _— ut0|r = 'Tfu - Ttoutolf' S
S |Ttu - Ttut0|r + lT{ltro — Ttouto|,-. (782)

For |u — uy,|, < 61,6, from 7.23,

1
ITt’LL — Ttut0|,. S (c ' lt — t0| -I— Z)lu — Uty |r-

Hence for [t — to| < &, fu — ug,lr < &

[Nl e

1
(C-|f—to|+Z)S

and
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1 1
IT{U - Ttu¢0|,. S -2‘|’LL - 'U,t0|r S 561 (783)

It remains to estimate |Tyuy, — Ty us, |- But by an easy calculation

Tiw, — Trotity = —(Ag,, + (€*0)) T (A, — Dyo)usy+
+I(g1) — I(g1,)).

We are done if for |t — to| < 6"

|(A910 + (euto.))_l (Agto - Ag‘ )u¢0|r < & /4. (784)

I(Age, + (€))7 (K (g10) = K(g1))lr < 1/4. (7.85)

The existence of such a ¢" follows immediately from 7.9, 7.15, (7.74) for (7.84)
and from 7.15, 7.19 for (7.85). Let now § = min{é’,6"}. Then we infer from
(7.82)-(7.85)

|Tew — |y < 61,
Le. Ty : My, 5, = My, 5,- Tt is contractive according to (7.81) since for |t —tg| < 6

1 1
(C‘|t—t0|+z) < 7"
This finishes the existence proof of theorem 7.7 and yields uniqueness in a moving
ball M;s,,0 <t < 1. We prove now the uniqueness in all of Q7.
Fix zo € M? and denote by d(z) = d(z,zo) the Riemannian distance. Let
w,v € Q7,7 > 3, be solutions of

Agu+ K(g)+e" =0.

We obtain u, v, u — v bounded, C? and

Ag(u—v)=—(e" —¢€").

There are two cases.

1. u — v obtains its supremum in Uy(zo) = {z|d(z) < 1}. eg. in z;. Then
Alu — v)(zy) > 0,—(et=) — e(#1)) > 0, e*(#) < ¥(#1) (y — v)(z1) < 0 of the
supreme point z;, hence (u — v)(z) < 0 everywhere, u(z) < v(z).

2. Or we apply Yau’s generalized maximum principle: f € C2,

f(=z) — f(zo)

lim sup <0
d(zx)—0c0 d(:E)
and
L K@) = fo)
d(z)=ro0 d(.?:)
f{z)2 (o)
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Then there are points (zx)x C M such that klim f(zx) =supf, klim vV flze) =0
—00 —3+00
and limsup A f(zx) > 0. See [31] for the proof.

k—o0
In our case f = u—v. Then we have (z ) such that klim (u—v)(zr) = sup(u—v),
t— o0
kliin ¥ (u —v)(zg) = 0, limsup A(u — v)(zx) > 0, hence limsup(e” — e*)(zr) > 0,
)

limsup(v — u)(zx) 2 0, limsup(u — v)(zx) < 0, sup(u — v) < 0,u < v everywhere.
Quite similar v < u, i.e. u = v. This finishes uniqueness and the proof of
theorem 7.7. 0O

Remarks. 1. We had several versions of the proof. But the particular useful pro-
posal to work with the equation v = (A + euT_l)"l(—(K + 1)) has been made by
Gorm Salomonsen.

2. A seemingly more direct approach proving § = [0, 1] would amount to prove the
following assertion. Assume t; < {2 <...<to,t, = to, Ay, us, +e*» = 0. Then

a. (ug, )y 1s a Cauchy sequence with respect to | |,
b. Uy, — Uy,
C, ./_\gtnutu + I\r(gtn) + e%to = ().

But writing down a straightforward approach proving a., c. leads immediately to
the key estimates performed by us.

3. We assumed info.(Agy) > 0. This implied info(Ay) > ¢ > 0,0 <t < 1,
which was of essential meaning for all of our ¢ independent a priori estimates. The
assumption € g.(Ay) > 0 would be redundant if we would know that u,(z) > a
for all t and = € M. We even proved this fact but in the proof we essentially used
inf oe(Ag,) > 0. From u, € Q7,7 > 3, follows us(z) > u, for all z € M but it could
be that inf u, with growing ¢ becomes smaller and smaller. Then, if inf 0.(A4,) = 0,
the norm of (A, + (e"t-))™! grows and grows. This would destroy the existence
proof for the § in (7.10), (7.11). If infoe(Ay,) = 0 then inf o (A4 + %) =1 but
this insight would not help immediately. We could conclude that below 1 there
are only isolated eigenvalues of finite multiplicity. They ‘are > 0 for all .- But -
we are not able - at least until now - to prove the existence of a ¢ > 0 such that
Amin(Ag, +€%) > ¢,0 <t < 1. The proof of 7.10 does not work since there we used
the convergence Ay, — Ay, for t — t*. If we replace A by A + e* then we must
prove u; — ug for t — t* in a certain sense. But this is more or less equivalent
to theorem 7.7 and the natural proof of u; — us would just use info.(A,,) > 0.
Nevertheless it could be possible to drop this assumption. But then we would have
to study very carefully the intimate relation between inf u,, and

|(A9t + eu!)_l Ir—2,r1t e]to - E,to + e[ﬂ[O, 1].

4. Now there arises the natural question, do there exist metrics go with K {go) =
—1,7inj(90) > 0 and inf o, (A, ) > 0 7 The answer is yes. Consider Y -pieces
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where the lenghts a; of the boundary geodesics grow exponentially, roughly spo-
ken with 7, more carefully spoken with the distance from a fixed point. Built up all
ends by each metrically dilated Y-pieces. Then, using Cheegers constant, one can
show that in this case inf o.(Ag,) > 0 in addition to K = —1 and rin;(g0) > 0. We
shortly explain this. If K is any smooth, compact submanifold of M2,dim K = 2,
we set

vol(ON)
wol(N)

where N C M \ I is a neighborhood of the isolated end of ¢, 0N dividing ¢ into a
compact and noncompact part (which is an element of €). Denote h%?*(¢) = sup h¥.
K

Then

h¥(e) = inf

i(heu)z < inf oe(Agg(€)).

See {4] for details. If we construct go as above then h%** > 0. We refer to {7]. O.

We have shown in theorem 7.4 and corollary 3.6 that comp(go)-1 and comp(go)/comp(1)

have the structure of Hilbert manifolds.- Now we are able to state -

;
Theorem 7.25. Assume go € M(I,By) with K(go) = -1, info.(Ay) > 0,7 > 3.
Then comp(go)-1 C M"(I,Be) and comp(go)/comp(1),comp(1) C TL(go), are
diffeomorphic manifolds.

Proof. Consider 7 : comp(go) — comp(go)/comp(1l) and 7_1 = 7|comp(go)_,- Lhe
latter map is bijective according to theorem 7.7. We are done if we can show that
the differential d m_; is well defined and an isomorphism at any point. Now

Tig comp(go)/comp(1) = T, comp(go)/Ty(comp(1) - g) =
= {[h]|h € Q"(S?T",9)},[h] = {h + Mg|X € Q"(M)}.

Then, by an easy consideration, dw—1]g is given by h — [h]. d m_; is surjective at g if
for any [h] we find a representative h+Ag € T, comp(go)-1 = kerd(K +1) = ker dK,
ie. d(K(g)+ 1)(h 4+ A\g) = 0. By suitable choice of A, we can assume w.l.o.g.
tryh = 0. Then we have to solve
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28X+ 8,0,h — AgA+ A =0
Agh+ A= =§,64h,

but Ay + 1 is bijective, as we already know. O

If we assurne for a moment that D7 (go) acts on comp(go), then we can sharpen
7.25 as follows.

Lemma 7.28. The diffeomorphism 7~y : comp(go)-1 — comp(go)/comp(l) is
DS'H equivariant.

Proof. 1f D™ + 0 acts on comp(go) then on comp(go)_1 too: K(f*)
K(g)o f,ie K(g)= -1 implies K(f*g) = —1. Furthermore 7_;(f* =
frr-i(g). O

This allows to establish at least formally an isomorphism between comp(go)—1/D5 1
and (comp(go)/comp(1))/D5+!. We discuss this in sections 9 and 10.

&
==
o

8. THE SPACES OF ALMOST COMPLEX AND COMPLEX STRUCTURES FOR n = 2

In this section we develop the approach, sketched in section 4 for arbitrary
n = 2m, for n = 2. First we start with arbitrary n = 2m, M™ oriented. Fix any
metric g and r > 1. Then

A= Ar(g) = 3 comp(Ji)
iel
1s well defined. Here

comp(J) ={J € A"||J = J'|g,r < o0} (8.1)

is a Hilbert manifold. The Hilbert manifold structure can be seen as follows. There
is a real representation GL(m,C) - GL*(2m,R) given by

(A +iB) — (_AB i)

which gives the coset space GL"(2m,R)/GL(m,C). GL(m,C) is just the isotropy
Im 2m

L, 0 ) on R*™. Let L be

the GL1(2m,R) principal bundle of frames lying in the fixed orientation. Then the

space A of all almost complex structures is given by

group of the canonical almost complex structure

A= C®(L Xgp+amz) CL¥(2m,R)/GL(m,C) C C=(T}(M)).

On open manifolds with infinite volume it does not make sense to speak of square
integrable (together with derivatives) sections in A4, since such sections do not exist
because det J = 1. C®°(T}(M)) is endowed with a canonical uniform structure "
generated by the basis £ = {Vs}s>o,
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Vs = {(t,t") € C¥(TY (M))| |t = t']y,r < 6}

which induces the uniform structure of lemma 4.1 on A thus giving A™ = A"(g).
For later applications we do not consider A C C%(T}(M)) but restrict ourselves
to 5 A(g) = {J € A||(V9)'J|y; £ C; for all i}. Then 8 A(g) C 5.QTi,g) =
n b Q(T}, g). The elementsof 5, .A(g) are the almost complex structures of “bounded
geometry”.

Now we restrict for our purposes to n = 2,m = 2. Then J? = —1 if and only
if to J = 0 and detJ = 1. Denote by t_Q(TJ,g) the completion of ®_Q(T},g)
with respect to U™. Let t € & Q(T},g) and comp(t) C goQ(Tll,g)r its component
in &Q(T},g)r. Then comp(t) = t + Q7(T},g) is an affine space with Q7(T}, g) as
vector space. If trt ¢ Q"(M,g) then comp(A) does not contain a tensor field s
with trs = 0. Such a component does not contain any almost complex structure.
Iftrt € Q' (M,g) then tr(t+¢t') = 0 if and only if tr ¢’ = trt and for tr : comp(t) —
(M, g), tr=(0) = ~tr(D)g} + (97(T}, ) N {tr = 0}) = 07 (T2, ) {tr = 0} which
is a closed linear subspace N of Q7(T\}, g) with tangent space Q7 (T}, g) N {tr = 0}.
Similarly, if 1 ¢ det(comp(t)) then comp(t) does not contain any almost complex
structure. In the other case M = det™" (1) is a submanifold of comp(t) with T; M =
{H € Q™(T},9)|tr(JH) = 0}. Hence if trt € Q"(M, g} and 1 € det(comp(t)), then
comp(t) contains a component comp(J) = N N M C comp(t), N and M intersect
transversally. Moreover, tr H = 0 and ¢tr JH = 0 if and only if JH + HJ = 0. The
topology of comp(J) is that induced from comp(t), i.e. we have (8.1).

Since we consider in the sequel only & A( g)lr we denote this for the sake of brevity
once again with A"(g) but always keeping in mind that we completed a space of
bounded almost complex structures. Then

A"(g) = Z comp (J;).
HT
Forming N.A"(g), we obtain back all co -bounded smooth almost complex structures.

It is an absolutely standard fact that a smooth almost complex structure J is
integrable, i.e. induced from a complex structure ¢ = {(U;, ;) }: if and only if the
Nijenhius tensor N(J) equals to zero, N(J) = 0,

N(J)(X,Y) =2{[JX,JY] - [X,Y] - J[X,JY] = J[JX,Y]}.

Denote for general n = 2m by C" all elements J € A" such that N(J) = 0. As well
known, for n =2m =2, N(J) =0 for all J.

9. THE ACTION OF Djt!

We consider (M™, g0),90 € M(I,B),k 2 r+1> 2 +2, comp(go) C M"(I, Bx).
Then D3 (g0) = D" (go) = DT (comp(go)) is well defined. We want to show
that Dj*! acts on comp(go), i-e. if g € comp(go), f € Dy, then f*g € comp(go).
If f € D', then there exist vector fields X1,...,Xn, X; € Q11(TM,go) such
that
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f=expX,o0...0expX;.

More carefully, X, € Q™! ((exp X1 )*TM, (exp X;)*v?) and so on, but if f; ~ f;,
then Q(frT, frv) = (5T, f37) as equivalent Hilbert spaces, which will be dis-
cussed below. We start with a simple special case, f = exp X, X € Q"T(TM, go).
According to (2.3), there exists a sequence X, € C§*(TM), X, | -— X. This

a0 T
implies expX, — expX = f in our topology of Dit'. Moreover exp X, €
C°(M,M) n Dyt'. Hence (exp X,)*g’ satisfies (I) and (By) for any ¢’ €
comp(go) N M(I, By).

We want to estimate (exp X, )*¢’ — ¢’ which needs some explanations.

If E — M is a vector bundle, f = (fg, fa) a bundle map, ¢: M — E a section,
then it is impossible to compare ¢ and f*c since they live in different bundles,
c is a section of E — M, f*c a section of f*E — M. If we must or want to
compare them we must use a canonical equivalence between E and f*F - if such an
equivalence exists. Consider g’ as a section of $?T*, f*g' as a section of f*S%T".
If f=expX,X € Qrp1(TM,go) N*F Q(TM, go), then we have a canonical bundle
equivalence, the parallel displacement of the fibre over exp X along exp sX to exp 0.
If go has bounded geometry up to order k then this equivalence is also bounded
up to order k. Having this construction in mind, it makes sense to consider for a
section ¢: M — T

frfe—c=(f" —id)e

or the pointwise operator norm

|fre—cle.

Our considerations generalize to the case where we replace ¢d by some f and exp X
is now defined for X € Q"(f*TM). We proved in {14], p. 284, (4.95) and p. 292,
(5.16) the following key.

Proposition 9.1. Assume (M™,g),(N™ ,h) with (I} and (Bg),k > r+1 > 5+
2,f € Q2™ M, N), f' =expY,Y € Q" (f*TN). Then there exist polynomials
R,(YLIVY)|,-..,| v*TY]) such that

| O* (= f")e S Ry <. (9.1)

Moreover, the R, are square integrable, [|Ru|* < R),(|Y|s,rt+1), where R, is a
polynomial without constant term. In particular

17" = " gor < 20 : (9.2)

and |f* — f"*|gor = 0 if
IYlyo,f+1 — 0. (9'3)
0

Corollary 9.2. Under the assumptions of 9.1,
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QY fTN) 2 Q™ (f*TN) (9.4)
as equivalent Hilbert spaces. O
After this preparations we are ready to state

Theorem 9.3. Assume go € M(I,Bi),k > r+1> 2 +2. Then Dj*!(go) acts on
comp(go) C M"(1, Bi).

Proof. We have to show, g € comp(go), f € Dit' imply f*g € comp(go). The
other properties of an action are trivially satisfied. We start with the simplest case
f=expX,X € QY (TM,g0). We know from g € comp(go) that there exists a
sequence g, )y, g, € M(I, Bx) N comp(go), gu —|> g. In particular

I aor
l9v — 90lgo,r < 19w — lgo,r + 19 — Golgo,r < C (9.5)

for all ». Moreover, according to (2.3), there exists a sequence (X,),, X, €
CE(TM), X, |—> X. If we define f, := exp X, then f, — f in DjH'.
go.r+1

Consider the diagonal sequence f}g,. Clearly, f¥g, € M(I,Bt). fig, € comp(go)
since

\fo = 9vlgor = [(f2 — id)gulge,r <
<|(f2 —1d)(go + gv — 90)lgo,r (£ — id)g0lgo,r+
+H(f2 —id)golgo,r +1(f0 — 1d)(gy — 90)lgo,r < 0

The latter follows from

| fo —idlgo,r < RL(IX0]r41),

(2.20) for |a| = 0 and Y9%g = 0, (9.5) and the module structure theorem. We
would be done if we could show (exp X, )*g, — (exp X)*g, i.e. |f}1gv— " Glgor —

=00
0. But

|frgv — ftglgo.r <I|(fs - F)gvlgor + 1 f (9w — Dlgor £
<2 = f)golgo,r +1(f0 — F*) (9w = 90)lgo,r+
+|(f* - id)(gu - g)lgo.r + Igu - glgo.r- (9.6)

All terms on the right hand side of (9.6) converge to zero for v — co. Now we
consider the general case f € 'DS"’I, f=expX, = circ...oexp X; and write

f*—id=(expXyo...0expX;)* — (expXy—10...0expX;)"+
+(expXy_10...0expXq)* — (expXy—20...0expXi)" +...
+(exp Xo exp X1)* — (exp X1)* + (exp X1)* —id. (9.7)
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We approximate as above X;, — X, , X;, € C§°(TM). Then f, = expX,, 0

go.7
..oexpXy, 2> expXyo0...0expX; = f. Applying the triangle inequality to (9.7)
and the general version (9.1) and its integration we conclude quite similar as in the
case f = exp X. O
As we have already seen, the action of Dj*!(go) on comp(go) induces an action
of D§*! on comp(go)-1. Now we state a very nice property of this action.

Theorem 9.4. The action of Dyt" on comp(go)—1 is free.

Proof. Assume f € Dyt! f*g = g for some g € comp(go)—1. We must show
f = idpy2. f € D' implies the existence of a homotopy hs,0 < ¢t < 1,h; =
foho=1d,hy € Dr+1 Let 7 : (f&ﬁ,g) (M?, g) be the universal metric covering.
Then there are liftings ho = id, ht of h; and 51 = f covers f. f commutes with the
deck-transformations and hence dist(, f(£)) depends only on z = ().

Lemma 9.5. Assume (M",g) with nonpositive sectional curvature and with nega-
tive definite Ricci tensor, f as above. If dist(%, f(#)) obtains an absolute maximum
at ©o € M then (&) = &o, le. f=id f=id

See [25], p. 57-59 for a proof. |
But in our case f = expX, 0...0exp Xy, hy = exptXy, 0...exptX,,X; €
QHUM, g0), | Xilgx < Tinj(M%,g),7+1 > 4, for every € > 0 there exist a compact

set K such that *2?|X;| < € outside of . Hence dist(Z, f(Z)) attains a maximum
at some zo € M. If dist(Zo, f(z0)) = 0, we are done. In the other case we conclude
once again from 9.5 f(Z) = Zo, i.e. in any case f = id, f = id. In our case g must
not be smooth, but it is C3 and into all calculations and considerations of [25], p.
57-59, enter only second derivatives of g. d

Corollary 9.6. Dit! acts freely on comp(go)/comp(1).
This follows immediately from 7.25 and 9.4. J
10. THE CONNECTION BETWEEN HYPERBOLIC
METRICS AND ALMOST COMPLEX STRUCTURES

Start with a metric go € M(1,,Bw),K(go) = —1, as in the sections above.
Define an almost complex structure Jy = J(go) as follows. Write the volume form
of go in local coordinates as

1(go)r;dz® A dat.
Then | | ‘
Joj = J(g0); = —g¥11(g0) 5,

or in a more invariant form,

Jo = J(g0) = —g5 ' 11(90)

or

go(X, J(g0)Y) = —p(g0)(X,Y).
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An easy calculation shows

JEJI =81, e J2=—id,

(Vgﬂ)iz](go) =0 forall >0

and sup|J(go)|go,z < C, Le. J(g0) € % A(go). Consider now comp(Jy) C A"(go)
and define for g € comp(go)

d(g) == J(g) := g pulg),

1.e.

J(Q)j’ = ‘“gikﬂ'(g)k_j-

Proposition 10.1. ¢ has the following properties.

. ¢ maps comp(go) C M7(I, By) into comp(Jo) C A"(go).

. g is Hermitian with respect to J(g), i.e. g(J(9)X,J(9)Y) = g(X,Y).

. ¢(e” - g) = #(9)

. ¢(g1) = ¢g2) implies g1 = " - g2,€" € comp(1).

. ¢ maps comp(go) onto comp(Jp).

. ¢ comp(go) = comp(Jp) Is a submersion with ker D¢ = Q"¢(S?T*,g) = {h €
Q7(S*T*, g)lh(z) = p(z) - g(z),p € Q"}.

e R N B e I e

Proof. 1. There exists a sequence (g,) in comp(go) N M(I,Bs), g — g.

loo.r
This implies J(g,) = g;'ulgn) — g7 'u(g) = J(g), i.e. if g € comp(go) then

| oo

7(9) € compl(J(g0)).

2. This has been proved in [29)].

3. pe*-g) = (e*g) (e - g) = e g7 (") Pp(g) = g7 ulg) = b(9)

4. Assume ¢(g1) = ¢(g2), 97 1(91) = g3 ' 11(g2). Moreover p(gz) = €*-pu(¢1). Hence
e'-g;' = g7, g2 = €* - g1. By assumption |gy — g1, ,r < 00, i.e. |€¥g1 — gilg, r =
|(e* — 1)g1lg,,» < o0 which is equivalent to |e* — 1|, » < co,le* — 1|4 < co. The
other condition for e* € comp(1) can be similarly easy proven.

5. Let J € comp(Jp). We have to show that there exists g € comp(go) such that
#(g) = J. There exists a sequence J, € comp(Jo),J, € % Algo), Jo 1 —|> J.

0,7

Define g, by

9,(X,Y) = %(go(X,Y) + g9o(Ju X, ,Y)). (10.1)

Then g, and go are quasi isometric. g, € M(I, Bo) follows from J, € % A(go).
Moreover,
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90 =00 = 3(00(Turs o) = g0(1)) =

- %(QO(JU'? Ju) - QU(JU'?JOI)) =

= 5 (@0((Jy = Jo) (s = o)+

+2gO(JO',(Jy - JO))) (10.2)

Now (79)igo = 0,|J, —Jolgo,s < 00 imply |gu—golge,r < 00,1.. g» € comp(go). We
additionally infer from (10.2) that (g,). is a Cauchy sequence, g, = g € comp(go).
Forming the limit v = oo in (10.1), we conclude

9(X,Y) = 5(90(X,Y) + go(Ju X, 1, Y)). (10.3)

| =

The fact that (10.3) implies ¢(g) = J has been proven in [29].
6. Let h € T, comp(go) with local components h;;. It has been shown in [29], p.
23, that

i 1 i i
(Dg(g)(h)j = =[(H = 5 (tr H)I)J]j, H = (h}). (10.4)
We conclude from the invertibility of J and (10.4)

ker Dé(g) = Q"¢(S*T*, g)

which is a closed subspace.
For J € comp(Jy)

HJ=-JH ifandonlyif trH =0 and H is g-symmetric.

Hence (H — 4(tr H) - I)J runs through all of T comp(Jo) = {K|KJrJK = 0} if
H runs through all of {H|tr H = 0}, i.e. D¢ is surjective, ¢ an submersion. O

According to 10.1, 3. and 4., ¢ induces a map ¢ : comp(go)/comp(l), and we
just proved

Theorem 10.2. The induced map

¢ : comp(go)/comp(1) = comp(Jo),
[g] = —g7 ulg),

is an isomorphism of Hilbert manifolds. O
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Theorem 10.3. Dj*! acts on comp(Jy) from the right as follows:
J-fi=fJ:=f17f

Proof. 1t is abolutely trivial that (J - f)* = —id, J - (fi - f2) = (J - fi) - f2. The
nontrivial fact we must show is that f*J € comp(Jp). We indicate how to do this
but omit the details. There exists a sequence J, € comp(Jo),J, — J,J, €

Q0.7

? A(go). First we consider the simpler case for f, f = exp X, X € Q+(TM, go).
Then X = limX,,X, € C(TM). Set f, = expX,. f € % A(go) and f*J, €
comp(Jo) since |fyJ, — Ju|ge,r < 00. It remains to show

$de = FT=Tf

g0, "

But

F3dy = £10 =
= o (o = Dfou + £ T fon = f) + (£ = FT)I s (10.5)
We get from [14] estimates that | 7* £, [go.25 | V° Foalgo,zr | 7° folgo,z are bounded
by integrable polynomials, and [id| for ¢ < r(f, = f, — id +id). Thereafter we use
(V) J = (v9)(J — Jo).[Ju = Jlgo,r = 0,
| fus = filgor = 0, f - f:llgo.f‘ —0 (10.6)

and the module structure theorem thus obtaining {f}J, — f*Jlgor = 0. If f =
exp Xy 0 ...0expX; then we apply the decomposition (9.7) and proceed in the
same manner. (10.6) is a highly nontrivial result in [14] related to the topology =
untform structure of ’DE'H . d

Lemma 10.4. The diffeomorphism

¢ : comp(go)/comp(l) = comp(Jp)
is ’Dg"'l -equivariant.

Proof.

o(F*l9) = ¢lfgl = (fr9)*u(f*g) =
= (f*g)7 (ful9) = fH g™ ulg)) = F ().

This yields
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Theorem 10.5. Suppose go € M(I,B),K(go) = —1, infoe(Ay) > 0,7 > 3.
Then for comp(go) C M"(I, Bso), comp(1) C PL(g0) and comp(Jo) C A™(g0)

comp(go)-1/DyT, (comp(go)/comp(1))/ D5+, comp(Jo)/ D5+
are isomorphic topological spaces. O
This justifies the following preliminary
Definition. Each of the spaces

comp(go)—-1/Dy*", (comp(go)/comp(1)) /D5, comp(Jo)/ D+
is called the Teichmiiller space

T"(comp(go))

of comp(go).
The main task of Teichmiiller theory consists of describing the topology and
geometry of the Teichmiiller space.

Remarks. 1. If M? is closed then M"(I,By), 77, A" consist of one component
and

TT(M?) = ML, [Dg*! = (M"/T")/Dg*! = A/DgH.

In the open case M"(I, By ) consists of uncountably many components. To each
component comp(go) we can attach comp(1) C PL(go) and comp(J(go)) C A"(go).
Each component has its own Teichmiiller space and theory.

TT(M*) = (comp(go)/comp(1))/Dg** 2 comp(Jo)/Dy*

is defined for any component. But in the compact case a nice manifold struc-
ture and explicit charts can be established easily and transparently by means of
M_1/D;*!. Having this in mind, we considered comp(go)—1. But only such com-
ponents with comp(go)-1 # ¢ are interesting. Therefore we started with a metric
go with K(go) = —1. Then comp(go)—1 C comp(go) is a Hilbert submanifold as
expressed by 7.4. The isomorpism of comp(go)—1 /D5t to comp(Jo)/DFT?, i.e. toa
moduli space of complex structures could be established only under the additional
assumption info.(Ay ) > 0. This is in a certain sense natural, at least not strange.
(comp(go)/comp(1))/Dy*! is defined without any hint to partial differential equa-
tions. comp(go)-1/D5t" = (comp(go)/comp(1)/Dy*! refers to the moduli space of
a family of partial differential equations, Aju + K(g) + e* = 0,9 € comp(go). This
family must be “good”, which means in our case inf g.(Ay,) > 0.

2. Tt is very easy to give examples of components comp(g) C M7(I,Bs) such
+oo

that comp(g)—1 = ¢. Consider the infinite ladder L2 = § T2,7? the 2-torus,
— 00

straightly embedded into R® with periodic curvature K(g). If there would be a

metric ¢' € comp(g) with K(g') = —1 then [|K(g) — K(¢’| = oo in contra-

diction to [|K(g) — K(¢')} < o for g,¢’ in the same component. Nevertheless
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(L, g) has a canonical conformal = complex structure and is, according to the gen-
eral uniformization theorem, pointwise conformally equivalent to a metric go with
K(go) = 1. But go ¢ comp(g), i.e. the conformal factor is not contained in comp(1).
This supports our procedure: not counting g's € M"(I, Bs,) and associated con-
formal structures but counting the components comp(go) with comp(go)-1 # ¢ and

counting the metrics with ' = —1 inside such components. Moreover, in this way
we get manifold structures for comp(go)-1,comp(go)/comp(1l), comp(Zy), and, if
things are going well, even for the Teichmiiller spaces. O

11. TOPOLOGY AND GEOMETRY OF THE TEICHMULLER SPACE. AN OUTLOOK

The further procedure concerning topology and geometry of Teichmiiller spaces is
indicated by the compact case and the usual approach to moduli spaces in geometry
and global analysis. The steps are as follows.

1. To show that the orbits under the action of D5t! are submanifolds.

2. To prove the existence of a slice.

3. The slice produces charts and a manifold structure.

4. The dimension of this manifold coincides with the dimension of the tangent
space to the slice and is given in the compact case by the index theorem. In the
open case it will be infinite.

5. The geometry of Teichmiiller spaces with respect to the Weil-Petersson metric
can be similarly calculated as in the compact case. In the compact case, the solution
of steps 1-3 is more or less standard, it uses well known theorems of Ebin, Palais
and others and has been successfully been performed by Tromba in [29]. In the
open case, 1-3 are totally unclear since the applied theorems of Ebin, Palais are not
available. Hence we have to reestablish some versions of them for our noncompact
case.

1. has been already solved by us, the solution is nontrivial.

2. The existence of a slice has not yet been completely established. The standard
proofs use the properness of the action of D™! on M7 in the compact case. This
is definitely wrong for open manifolds. But our situation in Teichmiiller theory
is much better. We have to consider only the action of Dyt on comp(go)—1.
Moreover, we do not need the full properness. What we need is the following fact.
Assume g, — g, f¥ — g’ in comp(go)—1 C M"(I,Bs), fo € Dy, Then there
exists f € DS"'I such that f*g = ¢g’. This already follows from the statement:
fi(g) = ¢ in comp(go)-1,f, € Dy*! imply the existence of f € DF+! such that
f*g9=4'. In our applications even g = ¢’. The main point is that we do not require
fo = f. We are able to prove the assertion if all f, are contained in a metric
ball B, and outside B,,,€; < €2, then there exists f outside B, and f, = f on
compact sets.

As conclusion, the step 2 has not yet been completed. In classical Teichmuller
theory only smooth metrics and smooth diffeomorphisms have been considered and

T(M*):=M_1/Dy or (M/P)/Do or A/Ds.

But in the strong language of global analysis one needs good topologies in M, T, Dy,
A, M _,, good properties of the actions and the implicit function theorem. M”, T,
Dyt A", M" | have this properties but they contain many nonsmooth elements.
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For this reason one would like to apply ILH-theory. This assumes smooth Hilbert
manifolds, i.e. (B). But we started with go € M(I,Bs) hence 6.1 - 6.4 are
applicable and we set as in section 6

comp®(go) = limecomp’(go), comp™(go) = comp(go) C M"(I, Boo),

r

Dy = 1<iLn’D6+l,comp°°(Io) kﬂlcomp (Zo),
p"(go)-1

comp™(go)-1 = limcom
T

Then the isomorphisms

comp™(go)—1/Dgtt =3 (comp”(go)/comp”(1))/ Dyt =5

= comp'"(Jc.)/”Dg+l

pass into isomorphisms for r = 0o

comp™(go)-1/D§° — (comp™(go)/comp®™(1))/ D
= comp®(Jo)/D§°.

These are spaces of smooth elements with an IHL-topology. One now would like to
define

T (comp(go)) = T*(comp(go)) := comp™(go)—1 /DS
= (comp™(go)/comp™(1))/D§° = comp™(Jo) /D

Hence knowledge of all T7(comp(go)) would imply knowledge of T°{comp(go)).
We study to topology and geometry of T (comp(go)) in the second part of this

paper.
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