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ABSTRACT. Let M 2 be an open oriented surface the isolated ends of which are
half ladders ~rT2,T2 the 2-torus. The completed space M r (I I Bk) of metries of
bounded geometry splits into components , M r = L: i comp(gi). We define for a
component comp(go) with K(go) == -l,rinj(gO) > O,inflTe (6. go ) > 0 the Te­
iehmüller space rr (comp(go )) = comp(go) -1 /'D~+1 (go) I where comp(go) -1 is the
submanifold of metrics with ]«(g) == -1 and 'D~+1 (go) is the identity eomponent of

the diffeomorphism group. Thereafter we show rr ~ (comp(go)/comp(1))/'D~+1 ~

comp(Jo)/'D~+ 1
. Here comp( 1) are conformal fadors with Sobolev norm 1eU

- 1190, r

< co and Ja = J (go) is the almost eomplex strueture assoeiated to go. The first
isomorphism is just Poincare's lemma.

MR classifieation 58D27, 58D17, 58G03

1. INTRODUCTION

The definition and the study of Teichmüller spaces for closed 01' compact surfaces
with bounda1'Y 01' surfaces with punctures is long time a frequent topic in geolnet1'Y
and analysis. There are many approaches. First we must mention Ahlfors in [1]
and Bers in [2] which rely heavily on the theory of quasiconformal maps. Allother
more geometrie fibre bundle approach has been established by Eade and Eells in
[10], [11]. Finally, an approach which relies on methods of differential geometry
and global analysis has been presented by Fischer and Tromba in {22], [29]. What
they are doing is in a certain sense canonical and at the same time very beautiful.
Let M 2 be a closed oriented surface of genus p > 1, M its set of Riemannian
metries, Mr its Sobolev completion, M~l the submanifold of metries 9 with scalar
curvature 1((9) _ -1, pr the completed space of positive conformal factors, Ar the
completed space of almost complex structures, V r+1 the completed diffeomorphism
group, D~+l, vr+l the component of the identity. Then Fischer and Tromba define
as Teichmüller space

(1.1 )

and prove D~+1 -equivariant isomorphisms

Typeset by AMS-TEX
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and

M~l ~ M r/pr.

Hence there are three models for the Teichmüller space:

(1.2)

(1.3)

T r = Ar/'D~+1 f"V (M r/pr)/v~+l ~ M~l/'D~+l.

The isomorphism M~l f"V Mr /pr is known as Poincare's theorem. Thereafter
they prove the existence of a slice for the action of V~+l on M~l thus obtaining
charts for a manifold structure on Tr. In {29], [30] Tromba proves that Tr is
diffeomoprhic to an open (6p - 6) -cell and calculates the curvature of the Weil­
Petersson metric. The whole approach uses standard l'esults of global analysis on
compact manifolds, such as the properness of the V r+1 -action on M r , the closed
image property of elliptic operators, this discreteness of the spectrum, the index
theorem, the maximum principle and others.

We study Teichmüller spaces for open oriented surfaces of infinite genus M 2 . At
the beginning it is totally unclear how to define cornpleted spaces M r, M ~1 , Tr, Ar, V r+1 .

A second striking obstruction is the fact that the used results, e.g. the properness
of the vr+l -action and the theorems of elliptic theory are totally wrong.

Nevertheless, the general uniformization theorem teIls us that there are many
complex = ahnost complex structures and metrics of curvature -1, i.e. there should
be a Teichmüller space which "counts" this structures. The main question is how
to count them, how to define a Teichmüller space? In this paper, we present a
canonical and natural approach but undel' certain restrietions. We restriet ourselves
to open oriented surfaces of the following kind. Start with a closed oriented surface
and form the connected surn with a finite number of half ladders WiT2, where
T 2 is the 2-torus. Now we allow the l'epeated addition of a finite number of half
ladders in such a manner that there arises a surface with at most countably many
ends. A manifold with uncountably many ends of this kind would not satisfy
second countability. Surfaces of the admitted topological type can be built up by
Y-pieces which guarantees the existence of a rnetric go satisfying I«go) _ -1 and
rinj(gO) > O. We exclude rnetric CUSpS. To define Mr we restriet to metries of
bounded geometry, i.e. lnetl'ics 9 satifying

(I)

Denote by M(I, Bk) the set of all such metries on Mn. (I) implies completeness. We
defined in [12] a uniform structure ur aod obtained a completion M r(I, Bk), r ::; k.
Mr(I, Bk) has a representation as topological sum
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MT(I,B k ) = Lcomp(gd
iE!

and for k ;::: l' > ~ each component comp(gi) is a Hilbert manifold, To each 9
we adapt a diffeomorphism group V r+1

, k ::; r + 1 > ~ + 1. The identity compo­
nent 'D~+1 (g) is an invariant of comp(g). V~+1 acts on comp(g) by (g, f) -t f* g.
Similarly we define a completed space pr(g) of positive conformal factors.

pr = L comp(eUi
)

i

and comp(l) C PT(g) is an invariant of comp(g). comp(l) acts on comp(g). If Mn
is compact then MT = MT(I, B oo ), Mr and pT consist of only one component,
Mr = comp(g) for any g, pr = comp(l). Finally we define a complete space Ar(g)
of almost complex structures,

Ar(g) = L comp(Ji).
I

Return now to M 2 of the above topological type. Denote by comp(g)-1 C comp(g)
the subspace of all metrics g' E comp(g) such that 1((g') == -1. Then we would
define

and expect

comp(g)-1 I'.J cornp(g)jcomp(l). (1.4)

But there are simple examples of components comp(g) with comp(g)-1 = 4>. More­
over, we don't see any chance to prove (1.4) for arbitrary g. To have comp(g)-1 f:. </.>,

we start with ametrie go E M(1, B oo ) with !«go) == -1. To go we attach an almost
complex structure Jo = J(go) := gol/l-(gO) , where f-l(go) is the volume form, Then
we can summarize our main results in the following

Theorem. Suppose go E M (1, B oo ), K(go) =-1, inf (J'e(!~.gO) > 0, r > 3. Then
comp(go)-1 C comp{go) is a submanifold. There is a D~+1 (go) -equivariant isomor­
phism

comp(gO)-1 I'.J comp(go)jcomp(l) ~ comp(Jo).

If we defi.ne the Teichmüller space rr(comp(go)) of comp(go) as

then

(1.5)

(1.6)
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The first isomorphism in (1.5) is Poincare's theorem for the open case. Its proof
occupies the major part of the paper. Moreover, we establish an ILH-version of
(1.5)- (1.7). The paper is organized as follows. In section 2 we recall the main facts
concerning spaces of Riemannian metrics and Sobolev spaces needed in this paper.
In section 3 and 4 we define the space pr and Ar of conformal factors and almost
complex structures. Section 5 is devoted to the diffeomorphism group V r+1 and
section 6 contains the ILH-version of the considered spaces. In section 7 we prove
Poincare's theorem. The sections 8, 9,10 are devoted to the proof of (1.5), (1.7). In
the concluding section 11 we announce and discuss results concerning the topology
of rr(comp(go) which are the topic of an also long paper in preparation.

The author is deeply indebted to the Max-Planck-Institut für Mathematik for
hospitality and good working conditions.

2. SPACES OF RIEMANNIAN METRICS OF

BOUNDED GEOMETRY AND SOBOLEV SPACES

Let (Mn ,g) be open. Consider the following two conditions (I) and (Bk)'

(I) Tinj(M) = inf Tinj(X) > 0,
xEM

where rinj(X) denotes the injectivity radius at x and R the curvature.

Lenlma 2.1. If(Mn
1 g) satisnes (I) then (Mn 1 g) is complete. See [12} {ar a proof

o
We say (Mn 1 g) has bounded geometry up to order k if it satisfies (I) and (Bk).

Given Mn open and 0 ::; k ::; 00. Then there always exists g satisfying (I) and
(Bk), i.e. there is no topological obstruction against metries of bounded geometry
of any order.

Set for given Mn

M (I) = {g Ig satisfies (I)},

M(Bk ) = {gig satisfies (Bk)}

and

Denote as above for a tensor t and a metric g by Itl9 ,x its pointwise and by

its supremum norm with respect to g.
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Lemma 2.2. 9 and g' are quasi isometrie ifand only ifblg - g'I9 < 00 and
blg - g'19' < 00. D

Let

bU(g) = {g'lblg _ g'I9 < 00 and bl g - g'19' < oo} =
= quasi isometry dass of g.

Set for 0 > O,p 2:: 1,7' E Z+

r-]

Ig - g'19,p,r := (J (lg - g'I~,x +L 1(\79);(\79 - \7g')I~,x)dvolx(g))l/p < J}.
i=O

Theorem 2.3. Assume r ::; k, 1 ::; p < 00. Tben.c = {Vö }ö>O is a basis for a
metrizable uniform strueture tiP,r (M (I , Bk)) on M (I , Bk) n . D

See [12] for the nontrivial proof.

Let M~(I,Bk) = M(I, Bk) endowed with the uniform topology, MP,r = M~ the
completion. If h 2:: r > ~ + 1 then MP,r still consists of C1-metrics, i.e. does not
contain semi definite elements. This has been proven by Salomonsen in [26].

Theorem 2.4. Let k 2:: r > ~ + 1,g E M(I,Bk), up,r(g) = {g' E MP,r(I,Bk)lg'

Eb U(g) and Ig-g'19,p,r < oo} and denote bycomp(g) C MP,r(I, Bk) the eomponent
of9 in MP,r(I, Bk). Then

comp(g) = up,r(g)

and MP,r(I, Bk) has a representation as topological sum

MP,r(I,B k ) = L comp(gi) ,
JE]

J an uneountable set.

(2.1)

(2.2)

D

The proof is performed in [12].

Remarks. 1. If Mn is compact then the set J consists of one element. 2. If 9
is non-smooth then there are some small problems to define and to understand
Ig - g'19,p,r for r 2:: 2. In this case one defines (\79)i := (\790+ (\79 - \790 ))i where
go E cornp(g) is smooth and fixed chosen. It is easy to see that (V90 +(V9- V 90) )i

makes sense since \790 is a smooth differential operator, \79 - \790 is a distributional
tensor field and (V90 )i((\79 - V 90 )i) is weil defined. We refer to [20] for details. D

Let T:: be the bundle of u-fold covariant and v-fold contravariant tensors and
define
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Q~(T: ,g) = {t E COO (T:)11tl g,p,r :=

= (/ t 1(\7g)itl~,xdvolx(g»llp < oo},
i=O

o

flp,r(T:; ,g) = completion of Q~(T: ,g) with respect to I Ig,p,r, QP,r(T:, g) = com-
pletion of Co (TvU ) with respeet to I Ig,p,r and Qp,r(T:;, g) = all distributional
tensor fields t with Itlg,p,r < 00. Then

o
QP,r(Tvu,g) ~ f!p,r(T:,g) ~ QP,r(T:,g).

Proposition 2.5. Assume g E M(I, Bk), r ~ k + 2. Then

(2.3)

See [13} for a proof. D

Let S2T* be the bundle of twofold eovariant symmetrie tensors. f!p,r(S2T* ,g)
is defined as above.

Theorem 2.6. Assurne k 2: r > ~+1, g E M(I, Bk). Then comp(g) C MP,r(I, Bk)
is a Banach manifold and for p = 2 a Hilbert manifold.

Proof. 4>: comp(g) -+ QP, r ( S2 T *,g), 4>(g') = g - g', is a homeomorphism onto an
open subset of f!p,r( S2T*, g). See [12] for details. D

Define

rn
b,rnltl g = L sup I 'Vi t!g,x,

i=O xEM

':nf!(T:,g):= {t E COO(T:;)lb,rnltlo < oo},

o

b,rn f!(T:: ,g) = completion of ~ f!(T::, g) with respeet to b,rn I 10 and b,rnf!(T:: ,g) =
eompletion of Ccr(T::) with respeet to b, rn 1 10' Then b,rnf!(T:: ,g) = {t]t crn -tensor
field and b,mltl < oo}.

Theorem 2.7. Assume (Mn, g) is open and satisfies (I), (Bo). If r > ~ +1'11, then
there are continuous embeddings

(2.4)

(2.5)

IE, additiona11y, (M'\ g) satisfies (Bk(M)), k 2: 1, k 2: r, r', r - ~ ~ '1" - ;, r ~ r',
tben

(2.6)
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continuously.

We refer to [15], [16] for the proof.

D

Next we discuss the module structure theorem for Sobolev spaces and start with
T: = M x IR, np,r(M) _ np,r(M x IR).

Theorem 2.8. Assume (Mn, g) with (I) and (Bk), k 2:: TI, TZ, 1 ::; PI, P2, q <
00, f ::; min{rl, TZ} and one of the following two conditions.

1. There exists i E {1,2} such that ri < ;i and f ::; ~ - max{ p~ - rl, O} ­
max{..!!.. - TZ O}

P2 "
2. for all i E {I 2} lL < T' and min{r' - lL} > f - .!!., 'Pi - , l Pi - q

Then tbere exists a constant !( = K(g) such that

(2.7)

1dea 0/ prooj. For bounded domains C IR n with cone property or closed manifolds
this is a weIl known theorem. One has to prove

For this it suffices to show

(2.8)

(2.9)

since Di(ft· 12) = 2( (;) Dj ft ·Di-jJz. But (2.8) follows from Hölder's inequality

if

n n n
Tl - - + TZ - - 2:: f - -, f 2:: O.

P1 pz q

This is standard in any book on Sobolev spaces. The conditions 1. or 2. imply
(2.9). If (M n , g) satisfies (I) and (Bk), then by means of a uniformly locaIly firnte
cover of M by normal charts and choice of a k-bounded partition of unity it is
possible to carry over the proof from the compact to the open case. See [13] for
details. 0

Quite analogously to Tvu = M x IR one defines for Rienlannian vector bundles
(E, h, 'Vh) -r M Sobolev spaces s1p ,r(R) and b,mn(E). (Bk(E)) means 1('Vh)iIRhl :S
Ci,O :S i :S k. Then 2.8 generalizes to

Theorelll 2.9. Assume (Mn ,g) witll (I), (Bk)' (Ei, h i , 'Vi) -+ M with (Bk), 1'i, r ::;
k,Ti 2:: T,(rl - ;1) + (TZ - ; •.J 2:: r -;. Tben tbere exists a continuous embed­
ding npt,r1 (EI, \7d 0 np2 ,r2 (Ez, \7z) y np ,r(E1 0 E2 , \71 0 \7z). Tlle assertion
generalizes to a finite number of bundles. 0

Remarks. 1. A special case for E is Tv
u • Here (Bk(M)) automatically implies

(Bk(E)). 2. For Pl = P2 = q = 2, r 2:: f, r > ~, 2.8 implies abilinear continuous
map
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(2.11)

• :n2,T(M) x n2 ,f(M) --+ n2,T(M) (2.10)

In particular n2,T(M) becomes a ring for r > ~. 3. (2.4) - (2.6) hold for np,T(E),b,m n(E)
correspondingly. 4. MP,T-l (1, Bk) is still weIl defined since k 2:: r > ~ + 1 implies
r-1>!!. 0p'

A question 1 which is in the main section 7 of extraordinary meaning, is the
invariance of Sobolev spaces under certain changes of the metric and their definition
by other differential operators.

Theorem 2.9. Assume k 2:: r > ~ + 1,go E M(I,Bk). Then np,r(T:),go) is an
invariant of comp(go) C MP,T-l (I, Bk), i.e.

np,T(TvU, \790,gO) ~ np,T(T:, \79,g)

as equivalent Banach spaces.

Praa/. We have for the pointwise norm I 190 r"V I 19 since go and 9 are continuous
and quasi isometrie. Writing

(2.12)

we obtain for a tensor field T a pointwise estimate

(2.13)

where P is a polynomial in the indieated variables,)1 ~ r - 1,)) +)2 ~ i, and each
monomial satisfies the condition of the module strueture theorem and has at least
one I(\790)J.1c Tl as factor. Hence we obtain after p - th power and integration

and, for symmetry reasons

IT 190 1P,T ~ C2 1T19,p,T'

Ci = Ci(g, go). See [14] for details.

(2.14)

(2.15)

D

We remark that in (2.12) - (2.15) we did not need 9 smooth. In section 7 we
eonsider a slightly more general situation, 9 E comp(go), gt = go + t(g - go) =
go + th E comp(go). Then the eonstants Cl, C2 in (2.14), (2.15) will depend on
t, Ci = Ci(gO, gt). We need in section 7 the existence of eonstants Ci independent
of t whieh we will now prove. Now and in the sequel we often denote constants in
different eontexts by the salne letter where we are eonvinced that uo confusion will
anse.

First, there exist by assumption eonstants Cl, C2 ,

(2.16)

which implies
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(2.17)

and

C' < -1 < C' -1190 - gt - 2g0 .

(2.18)

(2.19)

Lenlma 2.11. If(Mn ,g) satisfies (I) and (Bk) and II = {(UOl 4>o)}o is a uniformly
loca1ly finite cover by normal charts, then there exist constants Cß, Cß,C~ such that

a1l constants independent oE 0'. 0

See [1 7] for a proof.

Corollary 2.12. Let go E M(I, Bk),g E comp(go) C Mr(I, Bk), k 2:: r > ; +
1,ll = {Uo, 4>0 )}o an atlas of normal charts with respect to go as above. Then,
wi th respect to ll,

(2.21 )

Proof. This follows from the definition of g;j, (2.19), (2.20), 9 E comp(go) , gt =
go + t(g - go) and b,llg - goluo < 00. 0

Proposition 2.13. Assume go,g, k, l' as above. Then there exists a constant C =
C(gO, g) independent oft such that

(2.22)

Proof. Pointwise

where ; m = \l!fii. This and (2.20) for go, (2.21) imply

I \luo - \l9t I :::; Co . t . I\l hl :::; Col \l hl· (2.23)

Write [h] = (hej;rn + hern;j + hjm;e). Then \l90(\l90 - \79t) t \l90 g;l[h]
t( \lUt + (\luo - \l9t ))g;' [h] = t{g;e \jUt [h] + (\79t - \790 )g;e [h]) l i.e.

\790 (\l90
- \79 t )1 ~ C . 1 \J9t [h]l + Co . C . 1 \7 h1 2. (2.24)

But
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We infer from (2.24), (2.25)

An easy induction quite similar to [12], [14] yields

(2.26)

where Pi is a polynomial in the indicated variables and the monomials satisfy the
conditions of the module structure theorem, in particular )1 +)2 ::; i + 1 ~ r. (2.26)
iInplies after p - th power and integration (2.22). 0

Rewriting \l9t (\190 - \791) = (\79r - \190)(\190 - \l9t ) + \190(\190 - v91 ) and so
on (cf. [12]) and using (2.22) and its proof, we conclude

In90 - n91 I -1 < C'v V gt,r - ,

C' independent of t.

Corollary 2.13. Assurne 90,9, k, r as above. Then

(2.27)

(2.28)

(2.29)

(2.30)

which constants Ci = Ci(90, g) independent of t. This follows from (2.13) for the
pair 90, 9t and (2.26), (2.27). 0

Until now we considered Sobolev spaees based on the covariant derivative \190,
0,p,r(Tvu,90) = 0,p,r (T::, \190 ,90)' Für r even there is anüther definition of 0,p,r
based on 1,6.,6..2, ... ,6. r

/
2 , 6. = 6.90 = (\190)*\190,

r/2

Irlgo,p,r = (J L lb.irl~o,xdvolx(go))IIP.
i=O

Theorenl 2.15. Assume (1), (Bk) für (M,90), k ;::: r, r even. Tben

f22,r(M n90 9 ) ~ f22,r(M 6. 9)
'v ,0 - '90' 0 (2.31)

as equivalent Hilbert spaces.

We refer to [5] for a proof. The main part is that the loeal Garding's inequality
associated with 11 = {Un}n has eonstant independent of a. The proof given in [9],
[13] eontains amistake. 0

There are several techniques to define 0,2,r(M, 6.90 ,90) for odd 7' tao, c.g. inter­
polation techniques. (2.31) and its proof, (2.26) - (2.30) imply
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Theorem 2.16. Assume (Mn, go) witb (I) and (Bk), k ~ r > ~+l, 9 E comp(go) C
Mr(l, Bk), r even. Tben

n2 ,r(T:, 6. 90 ,go) ~ n2,r(Tv
u , 'V90 ,go) r-v

r-v [},2,r(Tv
u , 'V9t , gd ~ [},2,r(Tv" , L1

9n
gt) (2.32)

as equivalent Hilbert spaces witb constants independent oft. 0

Assurne go E M(I, Bk) and let II = {Ua,4>a)}a be a uniformly locally finite atlas
of normal charts with respect to go and with radius of Ua = C < Tinj(gO), {7Pa}a
an associated partition of unity with IVi 'l/Ja I ~ Ci, 0 ~ i ~ k + 2. Then, using loeal
euelidean derivatives, we ean for r ~ k define Sobolev spaces nr (T~t, ll, {7Pa }a, go ).

Theorem 2.17.

[},r(T~\ll,{7Pa}a, go) r-v nr(Tv"' V 90 , go)

as equivalent Hilbert spaces.

The proof follows from 2.11.

3. THE SPACE OF BOUNDED CONFORMAL FACTORS

(2.33)

o

We now define the space of bounded conformal faetors adapted to a Riemannian
metric g. Later we assume additionally 9 E M (I, Bk)' Let

Pm (g) = {ep E COO(M)I inf ep(x) > 0, sup ep(x) < 00, I 'Vi epl9,X ~ Ci, 0 ~ i ~ 1n}
xEM xEM

and set for r ~ m, r > ~ + 1

Vo = {(ep, ep') E Pm(g)21Iep - ep'19,p,r :=

= (J t I(V'g)i(ep - epf)I~,xdvolx(g))l/P < 8}.
i=O

Proposition 3.1 . ..c = {Vo}o>o is a basis for a metrizable uniform structure.

We omit the very simple proof. 0

Let 15~,r(g) be the completion,

Clp = {ep E Cl(M)1 inf ep(x) > 0, sup ep(x) < oo}
xEM xEM

and set

pI;;r(g) = P!:t rn Clp.
I

p!:;r is locally contractible, hence locally arcwise connected and hence components
coincide with are components. Let

uI;t(ep) = {ep' E P;,t(g)llep - ep'19,p,r < oo}
and denote by comp(ep) the component of <p in P!:t (g).

11



Theorem 3.2. For cp E P!:,((g),

comp( cp) == U:;t (cp)

and P~,t(g) has a representation as topological sum

Pt;t (g) == L c01np(CPi).
iE!

(3.1 )

(3.2)

The proof of (3.1), (3.2) is quite similar to that of (2.1) and (2.2) which is
performed in [12]. 0

The function identically to 1 is an element of all Pm(g), 0 ~ m < 00. Write
comPPrr((l, g) for the component of 1 in Pf:((g). Assurne k 2:: r > *+ l.

Proposition 3.3. com~r(l,g) is an invariant of comp(g) c Mr,p(I, Bk), i.e.

(3.3)

for g' E comp(g).

Proof. We assume without loss of generality 9 and g' smooth. If not, then we apply
the remark 2 after 2.4 and proceed as usual. The proof of 3.3 is quite analogous to
that of 2.10. We present it here for completeness. Set V == V 9 , V' == V 9' and let
cp E com~r(l,g). Then cP E Cl (since k 2:: r > *+ 1) and

1'1' - llg,p,r = (J t 1,f ('I' - l)I~,xdvolx(g)I'lp < 00. (3.4)
i=O

We have to show

Icp - 119' ,p,r < 00. (3.5)

The pointwise norms Iv'i (cp - 1) 19 ,x and Ivi (cp - 1) 19' ,x are equivalent since 9 and
g' are quasi isometrie and we simply write I Ix I I. Then

(3.6)

I\l'2 (cp - 1) I ~ I(V' - V) (V' - V) cp I+ I(V' - V) V cpI+
+ IV ('V' - V)cp] +IV2 cpl ~

::; 0(1 V' - V 12 1cpl + IV' - V 11 V cpI + IV (V' - v)llcp! + IV 2 cpl)·
(3.7)

A more general formula for IV'i (cp - 1)I estimating this by products of the kind

(3.8)

has been established in [12]. Using (2.1) and the lnodule strueture theorem for
Sobolev spaees, we obtain
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and (3.9) can be estimated by the Sobolev nonns of '\J' - '\J and <p - 1. Hence
<p E com~r(l,g'), c01n~r(1,g) ~ com~r(l,g). In the same manner we establish
the other inclusion. D

Remark. P roposi tion 3.3 does not hold for an arbitrary cornponent cam~ r ( 'IjJ, g), 'IjJ E
Pm(g), since'lj; E Pm(g) does for j > 2,j :s; l' :s; m not imply 'Ij; E Pm(g'). The
latter follows from the fact that we have

JIVi (V' - VWdvol < 00

but not necessarily

o
In the sequel we restriet ourselves to the case p = 2 and write nz,r _ n r , MZ,r(I, Bk) =

Mr(I,Bk), P~{(g) == P~(g), I 19,z,r = I Ig,r. Next we indicate the strueture of
P~(g).

Theorem 3.4. Under multiplication 'P~(g) is a Hilbert-Lie group.

Sketch 01 proof. It follows imrnediately from the definition, the product and quo­
tient rule and the module structure theorem that P~(g) is a group . ..c = {U8}8 > 0,

U8 = {<p E P~(g)ll<p - Ilg,r < o},

is a filter basis centered at 1 E P~ (g) that satisfies all axioms for the neighborhood
fiber of 1 of a topologkal group. Hence P~ (g) is a topological group (cf. [3]).
Finally, V8 is homeomorphic to an open ball in nZ,r(M) and has the structure of a
Ioeal real Lie group. Hence P~ (g) is a Hilbert-Lie group. 0

Assume as always k ~ T > I + 1, 9 E M(I, Bk) and consider c01nPk+z(1) C
Pk+Z(g), comp(g) c Mr(I, Bk)'

Proposition 3.5. a. There is a well defined action

comPk+Z (1) x comp(g) -t comp(g)

(
I ') , I<p,g -t<p .g.

b. Tbe action is smooth, (ree and proper.

Praaf. Let <p' E c01nPk+z(1) C Pk+Z(g), g' E comp(g). We have to show <p' . g' E

camp(g ). There exist sequences <p v --t 'P' , 9v --t g', <p v E carnPk+ Z( 1) C
I 19,r I Ig,r

Pk+Z(9),gv E comp(g) n M(I, Bk). Then, according to [8], p. 47, Theorem 4.7

13



and the fact, that gv satisfies (I) and <.pv E Pk+2(g), we conclude <.pv . gv satisfies
(I). From [23], p. 90 follows that R9", - R S""9'" = sum of terms each of them has
bounded derivatives up to order k. Using V 9'" - VIf'''''9", = sum of terms eaeh of
them has bounded derivatives up to order k + 1, we see finally that 'Pv . gv satisfies
(Bk), i.e. gv E M(I,Bk),<.pv E comp(l) C Pk+2(g) irnply <.pv . gv E M(I,Bk)'
Moreover,

immediately implies l<.pvgv - 119,r < 00, <.pv . gv E comp(g). We conclude from

, '( ') '( ')4'v . gv - <.p . 9 = <.pv - <.p gv + 'P gv - 9 ,

gv = (gv - g') + (g' - g) +g,

<.p' (gv - g') = (<.p' - 1)(gv - g') + (gv - g')

and the module strueture theorem

I'P'g' - gl9,r < 00, <.p' . g' E comp(g).

b. The smoothness of the action follows from the fact that locally cOlnp( 1) and
con1.p(g) can be treated as linear spaces. <.p' . g' = g' implies <p' _ 1. If

<.pv . g' --+ h (3.10)

in cOlnp(g), i.e. with respect to I Ig,n then we have also C1-convergence according
to the Sobolev embedding theorem, explicitly

() hx(vx,vx) _ ()
'Pv x --+ '( ) = <.p xgx Vx,Vx

pointwise. It is now very easy to infer from (3.10), (3.11) that 'Pv --t 'P w.r.t.

(3.11)

o
Corollary 9.6. a. The orbits comPk+2(1) . g' C comp(g) are smooth submanifolds
of comp(g).

b. The quotient space comp(g)/cornpk+2(1) is a smooth manifold.
c. The projection 7r : comp(g) --+ comp(g)/con1.Pk+2(1) is a smooth submersion

and has the strueture of a principal fibre bundle. 0

comp(g) has as tangent space at g' E comp(g) Tgl cornp(g) = nr ( 52T* , g') "'-J

nr (S2T*, g), where 52T* are the symmetrie 2-fold covariant tensors. There is an
L2-orthogonal splitting

(3.12)

where

14



and

n r,T(s2T*,g') = {h E n r (S2T*,g')lt1' g l h = O}.

The decomposition (3.12) is given by

h = ~(trg,h). g' + (h - ~(trglh)g').
n n

See (29] p. 19 for further details.

Corollary 9.7. Für {g'] = comPk+2(1) . g'

(3.13)

and

l

(3.14)

o

4. THE SPACE OF ALMOST COMLEX STRUCTURES

Cünsider M 2m open, oriented, with some fixed Riemannian metric g. Denote
by f2(AutTM) =COO(AutTM) C fl(Tl(lvf)) == COO(Tl) the set of all smooth
automorphisms of TM covering idM .

A = {J E fl(AutT.i\1)IJ2 = -idT !l1,J compatible with the fixed orientation}

is the subset of almost complex stnlctures. Here J is compatible with the fixed
orientation if each basis of the kind Xl, ... ,Xm, J X I , ... , JX m gives the fixed
orientation. ginduces a metric connection \lg on Tl. Assume 9 with (1) and
(Bk ), k 2:: r > ~ + 1, J > 0 and set

Vo = {(J, J') E A2 11J - J'jg,r < J}.

Lemlna 4.1. ,c = {Vo}o>o is a basis for a metrizable uniform structure. 0

Denote by Ar = Ar(g) the completion.

Proposition 4.2. Ar(g) has a representation as a topological sum

Ar = 2:= comp(Ji)
iEI

where tbe component comp(J) is given by

comp(J) = {J' E Ar 11J - J'lg,r < oo}.

15
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Proposition 4.3. Each component has the structure of a Hilbert manifold of c1ass
k -T.

Proof. Ar can be considered as the space of sections of a bundle B -+ M with
fibre GL+(2rn, R)jGL(m, C), where B can be endowed with a metric of bounded
geometry of order k - 1 associated to the Sasaki metric on TM. Then the result
follows from [14]. 0

Remark. For dirn M = 2, we give below another equivalent description. 0

Proposition 4.4. Ar(g) is an invariant of cornp(g) C Mr(I, Bk), i.e. for g' E
comp(g),

(4.3)

o

5. DIFFEOMORPHISM GROUPS ON OPEN MANIFOLDS

Let (Mn, g), (N n' , h) be open, satisfying (1) and (Bk) and let f E GI 00 (li;f, N).
Then the differential df = f * = T f is a section of T* M 0 f* T N. f* T N is endowed
with the induced connection f* \Jh. The connections \J9 and f* \Jh induce connec­
tions \J in all tensor bundles Tl(M) 0 f*T:(N). Therefore, \Jmdf is well defined.
Assume m ~ k. We denote by coo,m(M, N) the set of all f E COO(M, N) satisfying

m-I

b,mldfl = L sup I \Ji djlx < 00.
i=O xEA1

Let Y E f2(f*TN) - COO(j*TN). Then Yx cau be written as (Y!(x),x) and we
define a map gy : M -+ N by

gy(x) := (exp Y)(x) := exp Yx := eXPf(x) Yf(x)'

Then the map gy defines an element of COO(M, N). More generally we have:

Proposition 5.1. Assume m ~ k and b,mlYI = I:::o sup I 'Vi Ylx < ON <
xEM

rinj(N), f E coo,m(M, N). Then

gy _ exp Y E coo,m(M, N).

We refer to [14] for a proof. The main point is, that one shows

where the Pil are certain universal polynomials in the indicated variables without
constant term and each term has at least one I 'V j YI, 0 ~ i ~ f-t + 1, as a factor. 0

Now consider manifolds of maps in the L p -category. According to the Sobolev em­
beclding theorem, for r > !! + s, Y E f2p,r(f*T f.l) arbitrary, there exists a constantp

D such that
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b,81YI ::; D . IYlp,r, (5.2)

where IYlp,r = (J l:~=o I 'Vi YI Pdvol)l/p
• Set for 0 > 0,8· D ::; ON < rinj(N)/2, 1 ::;

p< 00

V8 = {(f,g) E coo,m(M,N?1 there exists a Y E n~(f*TN) such that

9 = gy = exp Y and IYlp,r < 8}.

Theorem 5.2 . ..c = {Vo }o<o<rinj (N)/2D is a basis for a metrizable uniform struc­
ture tip,r(coo,m(M, N)).

The proof essentially uses several iterated estimates of type (5.1) and others,
where the arising polynomials P/-l' QJJ are p-integrable. It is rather complicated,
occupies 40 pages and is performed in [14]. D

Let mnp,r(M, N) be the cOlnpletion of coo,m(M, N) with respect to this uniform
structure. From now on we assume r = m and denote np,r(M, N) =r nr,p(M, N).

Theorem 5.3. Let (Mn, g), (Nn
l

,h) be open, satisfying (1) and (Bk), 1 ::; p <
00, r ::; k, r > ~ + 1. Tben eacb component of np,r(M, N) is a C k+1 - r -Banach
mallifold, and for p = 2 it is a Hilbert manifold.

Vle refer to [14] for the proof.

Let (Mn, g) be open, satisfying (I) and (Bk), k, p, r as above. Set

DP,r(g) = {f E np,r(M, M)lf is injective, surjective,

preserves orientation and 1,\ Im in (df) > O}.

D

D

Theorem 5.4. DP,r is open in np,r(M, M); in particular, eacb component is a
C k+1

-1' -BaJlacb manifold, and for p = 2 it is a Hilbert manifold. 0

Theorem 5.5. Assume (lvln, g), k,p, r as above.
a. Assume f, 9 E DP,r, 9 E comp(idM ) C DP,1'. Then gof E DP,r and gof E

comp(f)·
b. Assume f E comp(idM) C DP,r. Then /-1 E comp(idM) C DP,r.
C. comp(idM ) is a metrizable topologicaJ group.

We refer tü [14] für the proof.

Denote Dg'1' == comp(idM ).

Theorem 5.6. (a -lemma). Assume r ::; k, r > ~ + 1, f E DP,1'. Tben tbe right

multiplicatioll af : D~'1' -t DP,1', O'f(9) = go /, is of dass C k +1
-

1' .
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Theorelll 5.7. (w-lemma). Let k + 1 - (r + s) > s, I E Db,r+~, r > ~ + 1. Then
the left multiplicatioll WJ : Dp,T --+ vp,r,wp(g) = log, is oE dass C5.

The proofs are performed in [19]. 0

We defined for coo,m a unifornl structure llP,r. Consider now Coo,oo(M, N) ­
nm coo,m(M, N). Then we have an inclusion i : Coo,oo(M, N) --+ coo,m(Jvf, N)
and i xi: Coo,oo(M, N)2 --+ coo,m(M, N)2, hence a weIl defined unifonn structure
iloo,p,T = (i x i)-lilp,r (cf. [28], p. 108-109). After completion we ohtain Ollce again
the manifolds of mappiugs f/,oo,p,r(M, N), where I E f/,oo,p,r(M, N) if and only if

for every E > 0 there exists an J E COO,oo(M, N) and a Y E D,p,r(J*TN) such that
I = exp Y and IYlp,T ::; E. Moreover, each connected component of f/,oo,p,r(M, N)
is a Banach manifold and Tff/,oo,p,r(M, N) = f/,p,T(/*TN). As ahove we set

Doo,p,r(M, g) = {I E f/,oo'P,T(M, M) 1I is injective, surjective,

preserves orientation and 1,\1mi n (dI) > O}.

We assulne p = 2 and write f/,oo,T(M, N) == fJoo,p,r(M, N) and voo,r(M,g) ­
D oo,2,r(M,g). The only difference hetween our former construction and the new
one is the fact that the spaces D,oo,r are based on luaps which are bounded up to
arbitrary high order. For compact manifolds we have Coo(M, N) = coo,r(M, N) =
Coo,oo(M, N), nOO,r(M, N) = nr(M, N) and Doo,r(M, g) = DT(M,g) for all 7'. Für
open manifolds we have strong inclusions coo,oo c coo,r and voo,r c V r. It is very
easy to cOllstruct a diffeomorphism f E Coo,I(IR, IR) such that f ~ c oo ,2(IR, IR). This
supports the conjecture that the inclusion V r+s y V r , s :2:: 1, is not dense. We
settle this question in a forthcoming paper. The space voo,r+s is densely and contin­
uously embedded into Doo,r. This foIlows easily from the corresponding properties
for Sobolev spaces. The components of the identity have special nice properties:

Proposition 5.8. Assume the cünditiüns für defining V r . Then

(5.3)

Proof. Let f E Va. Given any 8 < r inj / D, there exist vector fields X], ... ,Xm E
nr(TM), jXpl r < J, J-l = 1, ... ,m, f = expXm 0 ... 0 expXI ,b,] lXI::; DIXl r . We
are done if we cau show that for X E nr(TM),IXlr < 8 and given E > 0 there
exists a diffeolllorphism Ix E COO,OO and Y E nr(fxTM) = D,r(TM) with IYlr < E

such that expX = expY _ eXPfx Y 0 Ix. But this is very easy. For EI arbitrary
small, there exists a smooth vector field Y] E Co(TM) with compact support such
that IX - Y]lr < EI' Choosing EI sufficiently small, there exists a unique vector
field Y E nT((expY])*TM) such that expY == eXPexpYIY 0 expYi = expX and
IYlr ::; Qr(Et}, where Qr is a polynolnial without constant term. This foIlows
from the geodesic triangle argulnent of [ ]. Hence, for E] sufficiently small we
have IYlv < E. We set Ix = exp Y I . For f = expXm 0 •.• 0 expX] we apply the
techuiques of the proof for Va being a group of [14] and obtain for any given small
E > 0 a representation f = eXPjY 0 J with f E COO,OO, Y E n r (j*Tlil), IYlr < E

and J is built up from the fx~ E COO,OO. 0

18



Remarks. 1. A detailed proof of proposition 5.8 would occupy dozens of pages but
the arguments needed are all contained in [14]. 2. The essential reason for the
special good property of 'D~ is that id E COO1OO(M, M). For diffeolllorphisms in
other components of vr this is in general wrong.

Proposition 5.9. For 9 E M(I, Bk), Vü(M,g) is an invariant of comp(g), i.e. iE
g' E cornp(g) then

Vü(M, g) = Vo(A1, g'). (5.4)

Proof. We restrict to the ease g' E comp(g) n M(I, Bk). The more general case
induces rather delicate approximation proeedures hut is also true. Already the
definitions are mueh more involved. The assertion follows immediately from

nr(T* M,g) r"V nr((expX)* M, (expX)*g).

(5.5)

(5.6)

(5.7)

(5.5) holds sinee 9 and g' are quasi isometrie. (5.6) is theorem 2.10 and (5.7) is the
last equation on p. 292 of [14]. 0

Assullle now k 2:: r, l' > ~ + 1,g E M(I, Bk+d.

Proposition 5.10. 'D~+1 (g) acts on c01np(g) C Mr(I, Bk)'

Proof. We have to show g' E comp(g), j E D~+l (g) imply j*g' E comp(g). There
exists a sequenee (gv)lI,gll E comp(g) n M(I, Bk),91l --+ g'. We start with f =

I Ig,r
expX,X E nr(TM). X ean he approximated by (X Il )Il,XJJ E Cff(TM),X'l --+

I Ig,r

X. Set f JJ = expXJJ • Consider the diagonal sequence (f:gv)v' Then f:gv E

comp(g) n M(I, Bk) which follows from gll E comp(g) n M(I, Bk) and XII E
C/f(TM). We are done if we ean show

f* --+ I*g' (5.8)
&/g&/ I Ig.r

and

If* g' - g'l9lr < 00. (5.9)

Write

I:g&/ - f* g' = (f: - f*)g&/ + f* (gv - g'), (5.10)

9&/ = (9&/ - g) + g, (5.11)

j* = (f* - id*) + id*. (5.12)
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Inserting (5.11), (5.12) into (5.10), using the (rather delicate) proof of theorern
3.1 of [21], the r-boundedness of 9 and id* and the module structure theorem, we
obtain I/:gll - l*g'19,r --+ 0, i.e. (5.8). Write

11-+00

g' = (g' - g) +g,

f; = (I: - id*) + id* ,

gll = (gll - g) + g.

Inserting (5.14) - (5.16) into (5.13), we obtain by the same arguments

(5.13)

(5.14)

(5.15)

(5.16)

1/* g' - g'lg,r < 00.

Assume now 1 = expX2 0 expX1 • Replacing g' of the first case by (expX2 )*g'
and applying the same procedure, we obtain again 1*g' E comp(g). For f ­
expXn 0 ... 0 expX1 we perform induction. 0

6. THE ILH-VERSION OF THE CONSIDERED SPACES

For metrics 9 satisfying the conditions (I) and

1 'Vi RI ::; Ci, i = 0, 1, n, ...

we have additional structures. Then 'Do(g) == 'D~,r(g) is defined for all 7' > ~ + l.
As wc shall see now, we can form 'DOO(g) = lim'Do(g) which is an ILH-group. To

~
r

make this clear, we recall some definitions which are a little bit different from thenl
originally given a long time ago by Omori. We adapt to [27].

A collection of groups {GOO 1 Grlr 2:: ro} is called an ILH-Lie group if it satisfies
the following connections.
1. Each Gr is a Hilbert manifold of dass ek(r) modelled by a Hilbert space Er and
k(r) --t 00 as r --t 00.

2. For each r 2:: ra there are linear continuous, dense inclusions E r+1 y Er and
dense inclusions of class ek(r) Gr+l y Gr.
3. Each er is a topological group and eoo = limGr is a topological group with the

~
r

inverse limit topology.
4. If (ur, <pr, Er) is achart of er, then (ur n Gt , <pr 1v" nGI 1 E t

) is achart for G t
,

for all t 2:: T.

5. The multiplication J.l : eoo X Goo ~ eoo extends to a es -map J1 : Gr+s x er --t

er for all 7' with s ::; k(r).
6. Inversion v : eoo --t Goo extends to a es -map v : er+s --t G" for all r with
s :::; k(1·).
7. Right multiplication Rg by gEer extends to a ck(r) -map Rg : er --t er.
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Theorem 6.1. Assume (Mn ,g) oriented, open witb (I) and (Boo ). Set DÖ(g) :=

~'Da(g) witb tbe inverse limit topology. Then {DOO(g), Da(g)lr > I + 1} is an
7"

ILH-Lie group.

Proof. In this case k( r) = k - r + 1 = 00 - r + 1 = 00. 1. Dü is a Hilbert manifold
of class Coo moclelled on Er = nr(TM, g) = Te 'Dü, r > I + 1. 2. The inclusions
n r+1 (TM) y nr(TM) are elense anel continuous. Using charts,

expr+l .

Bö(O) C TfD~+l --.!..., Ur+ 1 c D~+l ~ ur -t

(exP/~-l Bö(O) C Tf D~ (6.1 )

and k = 00, we obtain that i is dense and Coo since (exPf )-1 0 i 0 expj+1 is of class
coo. 3. Each 'Da is a topological group and Dü = Ern 'Da by definition. 4. follows

+--
frorn (6.1) replacing r + 1 by t. 5. follows frorn 5.6 using k = 00. 6. can be proved
quite similar (cf. [14], (6.8) - (6.11) and the proof of 6.5). 7. follows froln 5.6. 0

Proposition 6.2. f E 'Dü(g) if and only if f is a Coo -diffeomorpbism satisfying
b,mldfl < 00 for a11 m, IAlmin(df) > 0 and whicb is homotopic in tbis set (witb
respect to tbe inverse limit topology) to tbe identi ty. 0

Ornitting all group properties in thc abovc definition, we obtain an ILH-manifold.
Similarly one defines ILB-Lie groups (cf. [27]). Set DÖ'oo = lim Db,r.

+--

Theorem 6.3. {Db'oo, DÖ,r (r > ~ + 1} ia an ILB-Lie group. 0

Furthermore, quite natural one defines Ck-ILH maps between ILH-manifolds and
ILH-principalfibre bundles P ~ PfC of class Ck • Consider 9 E M(I, B oo ), compr(g) C

)\Ar(I, B oo ), contpoo(g) := lirncompr(g) ,P~(g), P~(g) = limP~(g), comp~(l) C
+-- +--

r r

P~(g).

TheorelTI 6.4. {compoo(g),compr(g)lr 2:: I +n}, {comp~(1),c01np~(1)lr> I +
1} are ILH-manifolds and compoo(g) -t compoo(g)fcomp:(1) is an ILH-bundle. 0

7. THE SPACE 01" HYPERBOLIC METRICS FOR n = 2

We will show that for certain classes of open surfaces, a suitable metric go and
the space carnp(gO )-1 C comp(go) of constant scalar curvature -1 holds

comp(go)-l ~ comp(go)/comp(1) (7.1)

where this spaces are manifolds and 'Dü(go) -equivariant diffeornorphic to a certain
component in the space of allllOSt complex structures. CQ1'np-1 (go) fDü(Co) will be
one of our models for the Teichlnüller space.

We consider open surfaces fvf2. Each such surface has ends. "vVe exclude punc­
tures as ends. If each end is isolated then M 2 has a finite number of ends, each of

00

them is given by an infinite half ladcler = ~ T 2
, where T 2 is the 2-Torus. If M 2 has

n=l
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an infinite number of ends then there exists at least one nomsolated end, i.e. an end
that has no neighborhood which is not a neighborhood of another end. This occurs
e.g. if we have repeated branchings of half ladders. In any case, such a surface can
be built up by Y-pieces which we explain now. We follow the representation given
in [6].

Lemma 7.1. Let a, b, c be arbitrary positive real numbers. Tbere exists a right
angled geodesie hexagon in tbe byperbolic plane witb pairwise non-adjacent sides
oflengtb a,b,c. 0

Next we paste two copies of such a hexagon together along the remaining three
sides to obtain a hyperbolic surface Y with three closed boundary geodesics of
length 2a,2b,2c. They determine Y up to isometry (Theorem 3.17 of [6]).

c
?r

Two different Y -pieces can be glued along their boundary geodesics if they have
the same Iength. The same holds for two "Iegs" of same boundary Iength of one
yr-piece. It is a deep result of hyperbolic geometry that oue obtains as a result
smooth hyperbolic surfaces. Moreover, we can perform gluing with an additional
twisting (cf. [6]). But here we consider gluings without twisting, at least for our
starting metric 90. As a weIl known matter of fact, any topologically given open
surface of the above kind ean be built up by Y -pieces and we obtain in this way
a hyperbolically metrized surface (M2

, 90)' If the lengths of all closed boundary
geodesics are;::: a> 0 then rinj(M2 ,90) > 0, i.e. 90 E M(I,Boa ).

Given an open surface M 2 of the above type, i.e. M 2 is the connected SUfi of
a closed surface with a finite number of half ladders or adding to such a surface
step by step a countable numbers of half ladders, fix a hyperbolic metric 90 E
JVI(I, Boa) by gluing Y-pieces with c10sed boundary geodesics of length ;::: a >
O. Later we must impose that this lengths must grow exponentially. Consider
P oa (90) = nPm (90), P~(90) defined by the induced uniform structure. It is a very

m
simple fact that comPk(l, 90) C P[(90) and comp~(1,90) C P~(go) coincide, k 2:: 1.
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We fix r > 3 and write comp(l) = compr(l,go). Consider comp(go) C Mr(1,Boo )'

As we already know, comp( 1) acts on comp(go) and comp(go) / comp( 1) is a Hilbert
manifold. Let comp(go)-l C comp(go) be the subspace of all metries 9 E c01np(go)
such that the scalar curvature ]((g) equals -1. Since we assume r > 3 = ~ + 2, 9

is at least of class 0 2 and 1«(g) is well defined. Usually 1((g) denotes the sectional
curvature but we use it for scalar curvature which is twice the sectional curvature.
We could also work with sectional curvature but then in the differential equation
below appears a factor 2 which we should take into account in all calculations.
Only for this reason we decided to work with scalar curvature. Both approaches
are trivially equivalent.

We wish to show that comp(gO)-l C comp(go) C Mr(l, B oo ) is a smooth sub­
manifold of comp(go) which is diffeomorphic to comp(go) / comp( 1). This is a rather
deep fact which requires aseries of preliminaries and is valid only under an addi­
tional spectral assumption. Let 9 E comp(go). Then, according to (2.32), ~g maps
nr = nr(M, \790,go) into n r- 2 C L 2 (M,go).

Lelnma 7 .2. ~g + 1 is surjective.

Proof. Consider ~g +1 with domain nr C n r- 2. Then the closure of (nr , I Ir-2)
with respect to I· Ir-2 + I(~g + 1) . Ir-2 is just n r, i.e. ~g + 1 is a closed operator
in the Hilbert space nr- 2. Moreover, I(~g + 1)'Plr-2 2:: c . 1'Plr-2, c = 1, 'P E nr.
Hence (~g + 1)'Pi --t 1/J gives 'Pi Cauchy anel 'Pi --+ 'P in nr

-
2

• ~g + 1 is closed,
hence (.6.. g + 1)'P = 7jJ, inl,(.6..g + 1) closed. Finally, the orthogonal complement of
im(~g + 1) in nr - 2 is {O} since the adjoint (in nr

- 2 ) operator to 6.g + 1 has no
kernel. D

Let h E Tgcomp(go) = nr (S2T*, g). For h the divergence Jgh is defined by
(Jgh)j = \Jkhjk = gik \7f h jk . For W = Wi = Widxi aI-form and X w = w i a~'
the corresponding vector field the divergence Jw is clefined by Jgw := OgX w =
jg a~' (w i yg). Hence for h E n r (S2T*, g) the expression ogogh is weIl defined.

As we already mentioned, for r > 3 = ~ + 2, 9 E comp(go) is at least of class 0 2

anel the scalar curvaure ]((9) is wen defined.

Lenlma 7.3. 1«(9) - 1 = K(g) - 1«(go) E nr
-

2 .

This follows immediately frorn the topology in comp(go) and the definition of
1«(g). D

Consider the 0 00 -map

7jJ : comp(go) --t nr
-

2(M, 90)

9 --+ 1«(g) - 1.

Then comp(go)-l = 7jJ-l (0).

Theorem 7.4. comp(go)-l C c01np(go) is a slnootb submanifold.

Proof. It suffices to show, 0 is a regular value for 7jJ, i.e. if 1«(g) = -1 for some 9
then D1/Jlg : Tgcomp(go) --t nr - 2 (M,go) is surjective. Hence we have to calculate
D7jJlg(h), h E Tg comp(go) = nr(S2T* ,g). This has been done in [29],
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(7.2)

D1flg is already surjective if the restrietion to h of the kind h = A . 9, A E [F(M),
is surjective. Then (7.2) becomes

but C:1 g + 1 is surjective according to 7.2. D

Next we prepare Poincan§'s theorem which roughly spoken asserts cornp(go)-l :::
comp(gO )/ camp( 1). Denote by U e ( C:1) the essential spectrum of C:1. Here we omit
the bar in the uniqu,e self adjoint extension .6. which equals to the closure.

Proposition 7.5. u e (..6. go ) is an invariant of comp(go), i.e. for 9 E comp(go),

Proof. Let A E ue(C:1 go ) and ('Pv)v be a Weyl sequence for A, i.e. 'Pv E Di5:. ,"0
bounded, not precompact and Ern (C:1 g0 - A)'Pv = O. Then, according to (2.32),

v--+oo

('Pv)v C Df:. is botmded and not precompact with respect to L2 (M,g). Writing
9

C:1 g - A = C:1 g0 - A + C:1 g - OgOl it is possible to show Ern (.ö g - C:1 go )'Pv = 0, i.e.
v--+oo

U e (C:1 go ) ~ U e (..6. g). By symmetry we conclude U e (C:1 go ) = U e (..6. g). We refer to [7],
[18] for details. D

Lenuua 7.6. Assurne in! ue (C:1 go > O. Then inf u(C:1 g ) > 0 for a11 9 E comp(go),
where U denotes the spectrum.

Proof. According to 7.5 inf ue(C:1 go ) = infue (C:1 g). From 9 E M(I,Boo),g E
comp(go) C Mr(I, B oo ), r > 3 follows that 9 satifies (I) and (Bo) which implies
vol(lvI2 , g) = 00. Hence A = 0 cannot be an eigenvalue. All other spectral values
between 0 and inJue (C:1 g) belong to the purely discrete point spectrum Upd(C:1 g),
i.e. infu(C:1g) > O. D

Now we state the first main theorem of this section.

Theorem 7.7. Assurne (M 2 ,go) with go smooth, K(go) -1,rinj(M2 ,go) >
0, infue (..6. go ) > O. Let 9 E comp(go) C Mr(I, B oo ), r > 3. Then therc exists a
unique p E comp(1) C P~(go) sud] that I{(p· g) == -1.

Proof. Let p = eU
• For the existence we have to salve the PDE

(7.3)

We seek for a solution u E nr(M, go). u E nr(M, go), r > 3 imply eU -1 E nr as we
will see below. (7.3) has a solution according to the general uniformization theoreln.
But this theorem does not provide u E nr . Therefore we have to sharpen our
considerations. The existence will be established by the iInplicit function theorem
and aversion ofthe continuity method. Consider gt = (1-t)go+tg = go+t(g-go) =
go + th E comp(go) and the map
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F : [0,1] x nr --+ nr
-

2

(t,u) --+ F(t,u) = ßgtU + ]((gt} + eU =

= ßgtU + (]((gt} - (-1)) + eU -1. (7.4)

We want to show that there exists a unique Ul E nr(M,go) such that F(l, ud = 0.
For this we consider the set

S={tE[0,1]1 Thereexists UtEnr suchthat F(t,ut}=O}

and we want to show S = [0,1]. We start with S #- cP. For t = O,gt = go, K(go) =
-1 and Uo =°satisfies (7.3). Moreover,

(7.5)

is bijective between nr and nr - 2
, as we have already seen. Hence there exist

8 > 0, E > °such that for t E]O, 8[ there exists a uruque Ut E Uf;(O) c nr with

F(t, ud = o. (7.6)

By the same consideration we can show that S is open in [0,1]. To show S = [0,1]
we should show S is closed. This would be done if we could prove the following.
Assulne t] < t2 < ... ,tu ES, tu --+ to, then to ES. The canonical procedure to
prove this would be to prove

(7.7)

(7.8)ß gto Uto + ]((gto) E eUto = 0.

We prefer a slightly other version of this establishing the following

Proposition 7.8. There exists a 0 > 0,0 independent oE to, such that to E S
implies ]t - 80, to + J[n[O, 1] C S.

We will see later that the proof of 7.8 is equivalent to that of (7.7) and (7.8).
The proof of 7.8 is based on careful estimates in the implicit funetion theorem to
whieh we turn now our attention. Roughly speaking, the proof goes as follows.

Let to E S, Uto E nr
,

F(to, Uto) = ß gto Uto + ]((gto) + eUto = O.

Set g(t, u) := Fu (to ,Uto)u - F(t, u). Then F(t, u) = °is equivalent to

(7.9)

If we define Ttu := Fu(to, Uto)-] g(t, u), then we are done if we ean find for any
to E S a complete metric subspace M to !6 1 C nr(M, go) such that
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and

Tt is contracting

(7.10)

(7.11)

for all t E]to - 0, to + o[n[O, 1],0' independent of to. Indeed, in this case Tt would
have a urnque fixed point Ut solving (7.6).

We now prepare the construction of lvlto ,&l and the proof of (7.10), (7.11) by
aseries of estimates. First we apply the mean value theorem. From gu (t, v) =
Fu ( to, U to) - Fu ( t, v) follows

Ig(t, u) - g(t, V)lr-2:::; sup Igu(t, v + t9(u - V))lr-2 . lu - vl r,
0<19<1

ITtu - Ttvl r :::; I(ßgto + eUto )-1Ir-2,r'

. sup I(ßgt - ß gt ) + ((eUto - ev+ t9 (u-v»)')!r,r_2 . Ju - vl r ,
0<19<1 0

(7.12)

where I ki denotes the operator norm ni(M,go) --t ni(lvl,go). We estimate

and

I(ßgto + (eUto.))-1(eUto·)lr_2,r·

'1(1- eV-Uto+t9(u-Uto-(v-Uto») ·lr,r-2

(7.13)

(7.14)

and start with (7.13). In the sequel, the same letters for constants in different in­
equalities can denote different constants. The key role in all following considerations
plays the Lipschitz continwty of Ißgt li,i'

Lemma 7.9. Assume go, g, t, to, r as above. Then there exists a constant C
C(gO, r, 19 - 90 !go,r) > 0 such that

(7.15)

Proof. Set ß(T) := ß gT = ßgo+r(g-go) = ßgo+r.h. Then Ißgto - ß gt ki ::; Iß'(t +
t9(to - t))li,j ·I(to - t)]. We calculate and estimate ß'(T).
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Vle estimate the first term on the right hand side of (7.16), using

'\7 9r t1' }~ - '\7 9r gi j h .. - gi j '\7 9r h·· - gi j h· . kv k 9r" - v k T lJ - T V k lJ - T tJ;',

01' more general,

'\7
9r tr h = tr ('\7 9r h)v 9r 9r v ,

(\j9r )i tr9r h = tr9T (\79r)i,

where here tr9r refers to the trace with respect to the first two indices. Moreover

and, according, to 2.14,

(J 1(\79T)i hl~T,. dvolx(gr ))1/2 ~ C2 ,ilh I90'r, i ~ r,

(J 1(\79T )i tr9T hl~T,. dvolx(gr ))1/2 ~ Cc ,;IhI9o ,r, i ~ r. (7.17)

vVe infel' from (7.17), 2.9, 2.14
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1
I - 2. ('\7U", h, \7u", w) 190 ,r-2 ::; Cl I(V q

,.. tr9,.. h, V 9,.. W) Iu,.. ,r-2 =

r-2

= C1(j L 1(\79T)i(\79Tir9Th, \79T W)9T 1;,>xdVOlx(gr))I/2 =
z=O

r-]

= Cl(j L L I(ir9T (\79T)i+1h, (\79T )k+1 W)9T I;,>xdvolx(gr) )1/2 ::;
i=O j+k=i

::; C2(j L 1(\79T )i+1hl;,>x . 1(\79T )k+1wl;,>xdvolx(gr ))1/2 ::;
j+k=i

::; C3lh lg,.. ,r-I . Iw 19,.. ,r-I ::; C4 (gO, h, r) . ltu Igü,r-I. (7.18)

Hence there remains to estimate

I 1 8· ~hij(r)8 !y9; iV gr jW go,r-2· (7.19)

(7.20)

(7.21 )

+hij(r)8i8jw. (7.22)

One way to estiamte (7.20) - (7.22) in the I Igü,r-2 -norm is to introcluce a cover
II = {(Ua,<Pa)}a, {l/;a}a anel to apply (2.33). We present a more covariant proce­
dure of estimation. For abbreviation, V = V(T) = V g,.., hij = hij( r) = g~ig~jhkl,
hk1 = (g - gO)kl, r:j = r:j(T).

1 (8. ~)hij8' - r k hU8. - r k hi eja. -. I'ii': IV gr JW - ik JW - ik e9r JW-
v gr

= r7kh~(Vwr, (7.23)

(8ihU)8j1O = ai(h~g~j)8jw = (8ih~)(V1O)e+

+h~(8i9~j)8jw = \7ih~('V1O)e - (r~sh: - rieh~)(V1Or­

-(hir~ gsj + hir~ gC8)8'w =
e 18 reIs J

= (6gr h, VW)gr - (r~sh: - rieh~)(\7wr­

-(h~ris(vw)S +hij(aiap.v - 'Vi \7j 10)),
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where we used for the components of a covariant derivative

\7iasW = 8i8sw - ri~8jw,

risBjw = 8ia~W - \7 i \7 s w.

Adding (7.23), (7.24), (7.22), yields

1 ..
--8i . Jg;h 1J 8j w =;g;

= r7kh~(\71O)e + (09r' \71O)gr - r:sh:(\7w)e+

+rieh~(\71O)e - h~ri~(\71Or - hij 8iBj1O+

+hij
\7i' \7j 10 +hij 8iBj1O =

= (Ogr h, \71O)9r + h
ij

\7i \7jw.

We write

Using

2
\7v,w = \7v \7w -\7'\7V,W

we can rewrite (7.26) as

(7.25)

(7.26)

(7.27)

"" 2
h1J \7i \7j1O = (h, \7 1O)9T + (hij, \7V'i 8 j 1O)9r' (7.28)

(7.27) and hence (7.28) has a generalization to higher covariant derivatives (cf.
[14]) . From this, 9r E cornp(gO ), pointwise estimates for '\J \l i Bj and other mixed
derivatives with respect to go, corresponding Sobolev estimates with respect to gr
(\79 r = \790 + \79 r

- \790 etc.), the module structure theorem and 2.16, 2.17 we
obtain finally

1 ""( )
( mai' Jg;h 1J

r 8 j 10190,r-2 ::;
ygr

< c11-1-a· ~ghij
(r)8·101 -2 =- ~ 1y&r J gr,r

ygr

r-2

= CI (! 2)'V)'((OgT h, 'VW)gT + (hij, 'Vi 'Vj w)gT)dvol(gr))l j
2 ::::::

s=o
::; C2 lhI9r ,r-l ·Iwlgr,r ::;

::; C3 Ihl go ,r-l 'Iwlgo,r (7.29)

Here we again used ](\7)SOgrhl ::; C·] '\JS+l h]. (7.18) and (7.29) imply
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(7.30)

i.e. lßgto - ß gt !r,r-2 ::; C ·Ito - tj, where C depends on 90, h, r but is independent
of t. This finishes the proof of 7.9. 0

Now we continue to estimate (7.13) and have to estimate

I(ß gto + (eUto .))-ljr_2,r

First we recall that ß gt is self adjoint on Q2(M,ß gt ,gt} = Q2(M,ßgo ,go) C
L2 (M) = [lO(M). For u E [lr, r > 3, the operator v --+ eU

• v is symlnetric
and bounded on L 2 . Hence ß gt + eU is self adjoint.

Leluma 7.10. There exists a constant c > °such that in! a(6.gt ) 2:: c,°::; t ::; 1.

Proof. Assume the converse. Then there exists a convergent sequence ti --+ t* in
[0,1] such that Am in(6.gtj ) --+ 0. Hence Amin(ßgtj ) is the minimal spectral value of
ö'gtj. It is > 0 and either equal to in! O"e(6. gt ) 01' an isolated eigenvalue of finite
multiplicity. According to 7.9, 6. gt . --+ 6. gt _ in the generalized sense of [24], IV, §
2.6. Then, according to [24], V, § 1 4 , remark 4.9, Amin (6. gt .) --+ A m in(6.gt _), i.e.

f

necessary Amin(ö'gt_) = 0, a contradiction. 0

Corollary 7.11. For arbitrary t E [0,1], u E nr

in! a(ßgt + eU
) 2:: c,

I:::. g , + eU= ['0 )'dEA(t,u),

(I:::.g, + eU)-1 = [>0 ),-ldEA(t, u),

(ß gt +eu)-l is a bounded operator on L 2 and, according to [24], p.357, (5.17), the
operator nonn of (ß gt + eu )-l is ::; ~. 0

We want to prove more and to estimate

((6. gt + eU )-1Ir_2,r'

First we have to assure that (7.30) makes sense.

Lemma 7.12. For u E nr
, r > 3, the map v --+ eU

• v is a bounded map ni --+
ni ,i ~ r, whieh

Proof. This follows iInmediately from 2.7, 2.8.

(7.31)

o
Corollary 7.13. The Sobolev spaces based on the operators ß gt and 6 gt + eU are
equivalent for i ::; r,
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(7.32)

o
Remark. The heart of the estimate for (7.30) consists in proving that the constants
arising in (7.31), (7.32) can be chosen independent of t and u if u solves

o
Consider .o r c .02 C .00 = L2 , .o r - 2 C L2 and assume r even.

Lenlnla 7 .14. ~gt + eU
: n2 ---+ .00 = L 2 induces a bijective morpbism between

nr c .02 and .or - 2 C .00.

Proof. Surely, ~gt + eU maps .o r c n2 into .o r - 2 C .00 = L 2 . This map is injectivc
according to 7.10. It is surjective: Let v E nr - 2 C .00. Then (~gt + eU )-1 v E .02,
(ß gt +eu)i((~gt +e tL )-1 v ) = (ß+etL)i-l v is square integrable i ::; ~. The assertion
now follows from 7.13. 0

Now we state our main

Proposition 7.15. Asstune r > 3 even. Then tl1ere exists a constant C
C(gO,g) > 0, independent oft, such that

1(6. gt +etLt )-1!J.-2 ,r ::; C

for any solution Ut E nr = nr(M, go) of ß gt Ut + J((gt} + e tLt = o.
Proo/. We would be done if we could show

(7.33)

(7.34)

1~~I(6.gt + etLt)-lvlo::; Cilv l2i-2 ::; Cilv lr-2, 1::; i ::; ~, (7.35)

Ci = Ci(gO,g), I Ij = I IgOlj· We perform induction. (7.34) follows from (7.11).
Consider i = 1 in (7.35) and denote 6. gt + e tLt ::= ß + eU

• Then

(7.36)

Lemma 7.16. There exists a constant D > 0 independent oft such tbat

(7.37)

for any solution of ß gt Ut + J{(gt} + e"t = O.

Proo/. Let (M2
, g) be a lliemannian 2-manifold, oriented. Then 9 defines an inte­

grable almost COlnplex structure J9 such that (M2
, g, Jg) is Kählcrian. Moreover,

Jg = Jeu· g. Consider now our case id : (lvI, gt, Jgt ) ---+ (M, e"t . gt, J gt ). id is a
nonconstant holomorphic map. We repeat Yau's
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General Schwarz Lemnla. Let (M,g) and (N, h) complete Riemannian surfaces
with sectiOllal curvatures J(M and J(N and ! : M -t N a IlOllconstant holonlorpllic
Inap. Assume 1{M 2:: K 1 and K N ::; 1(2 < O. Then 1{1 < 0 and

! *h<1<1.
-}" 9\2

See [32] for a proof.

(7.38) implies in our case with id : (M, gt) -t (M, eUt
• 9d

eU
::; - in! J«(gd(x )/2,

xEM

(7.38)

D

(7.39)

where in (7.39) J< denotes the scalar curvature = 2· sectional curvature. gt E
comp(go) ,1«(90) =-1 and r > 3 imply in! K(gt,)(x) ::; -1 hut we mnst prove that

xE/l.1

in! J«(9t}(x)'really exists. This is the content of
xEM

Lelnma 7.17. There exists a constant D} > 0 independent oE t such that

IJ«(gt)( x) I ::; D l for all t E [0, 1], x E M.

Proof. (7.40) would follow if we could prove

(7.40)

(7.41 )

but this follows immediately from the facts 9,9t = go(t(g - 90) E cOlnp(g) C
MT(1, B oo ), r > 3 = ~ + 2, b,2lgt - 90190 = t .b!2 19 - 901 ::; D 3 . t . 19 - 90190,7-' (2.34)
and scalar curvature has an expression by derivatives of order::; 2 of the luetric.
This proves (7.40) and hence (7.37). 0

Now, according to (7.36), 2.14,

lß(ß + eU)-lvlo ::; Ivlo + DI(~ + eU)-lvlo ::;

::; Ivlo + D . Colvlo = Cllvlo

which finishes the proof of (7.35) for i = 1. Assume now

Ißi(~ + eU)-lv]o ::; Ci ·lvli-2,j ::; i -l,i ::; ~.

Then

. ,ßi(ß + eU)-lv = ßi-l(ß(~ + eu)-lv) =
= ~i-lV _ .öi-1((eu.)(ß + eu )-l v ).

Clearly,
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(7.44)

hence we have to estimate

As follows from

ß(V· w) = v· ßw + wßv - 2(\7u, \710),

ße U = eU(ßu - 1\7 u1 2
)

(7.45)

(7.46)

(7.47)

(7.48)

and the induction assllmption applied to ßj(ß+eu )-1 v, we have a desired estimate
for (7.45) if we have an estimate for lulo, Ißulo,... ,Iß i-1 u lo, independent of t, U =
Ut solution of 6 gt Ut + [«(gt) + eUt = O. The proof of 7.15 would be finished if we
could prove

Proposition 7.18. Assumer > 3 even. Tben there exist constants Di = Di(9,90)
independent oft, such that

. r
!ß ~o u 10 ::; D i, i ~ 2"'

for U = 'Ut a solution of ß gt Ut + ]«(gd + eUt = O.

Proof. According to 2.16, we are done if we cOllld show Iß~tulo ~ Di and write in
the sequel simply U Ut, ß - ß gt , [( =[«(gt). Then

ßu +[( + eU = 0

is equivalent to

eU -1
(ß+ )u=-(K+1),

u

l.e.

e U
- 1

u = (ß + )-1(_([{ + 1)).
u

(7.49)

Here e
U

u
-1 is weH defined, .2 0 and (ß + e

U

;1 )-1 is a weil defined bounded operator
according to 7.11. We would be done for i = 0 in (7.48) if we cOllld show 1]«(gt) ­
110 ~ C = C(g, go) independent of t. We prove more general

Lemma 7.19. Let t, to E {O, 1}. Then

I[{(gto) - ]«(gdlr-2 ::; lto - tl .C,

C = C(gO' g) independent oft.

Proof. According to the mean value theorem for maps irrto Banach spaces,
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II{(gto) - K(gdlr-2 ~ Ito - tl· sup II('(gr)I,·-2. (7.51)
to<r<t

[{'(gT) = d~ [{(gO + Th + uh)lu=o =

= T(L:!..gTtrgT h + agTagTh - ~K(gT)tr9Th),

hence

(7.52)

Vve have to estimate II«(gr)tr9r hl i . For i = 0, i.e. I 10, there does not arise any
problem since IK(gr) ~ cg, cg independent of T and !trgr hlo ~ cg' . Jhlo. We
continue with i = 2 to indicate the general rule.

K (gr) = 2 R1212 (9r)(det(9r),

~L:!..[{(gT) = ~L:!..(J((gT) + 1) = ~L:!..(K(gT) - K(go)) =
1

= 2ß[R1212(gr)(det(go) - dei(gr))+

+(R1212 (gr) - R1212 (go))det(go))/det(go)' dei(gr)], (7.53)

where ß = ß 90. Choose an atlas i( = {(Ua, cPa)} a as in section 2. Then go ,ij, g~J , det 90
and all of its derivatives are bounded,

det(go) 2:: c > 0.

r < 3 and 9r = 90 + Th, Ihl r < 00 imply

9r,ij, 9~, det(gr) bounded, det(gr) 2:: c' > °
There holds

r~k(gr) - r~k(gO +Th) = r~k(gO)+

+~g~e(Thej;k +Thek;j +Thjk;e)

and

(7.54)

. (7.55)

(7.56)

Rß~/i(gr) = (a~ rß/i - 8/i rß~ + r~'Y rß/i - r~/i rß~)(gr), (7.57)

where ; j denotes \7~0. Finally we conclude from (7.53)-(7.57), Ihl r < 00, \790 =
\79r + \790 - \79r, the module structure theorem, 2.16 and 2.17 that
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(7.58)

D2 a polynomial in Ihl r . Similar for lügher derivatives,

(7.59)

We omit the very long hut rather simple details. This finishes the proof of 7.19. 0

Hence

eU -1 C
lulo = I(~ + )-1 (-(K + 1))10 ::; - = Do.

u c

Next we study ~u to indicate the general rule.

(7.60)

e
U;l can even pointwise he estimated by a constant independent of t: Let lu(x)1 ;;:::

1. Then, according to (7.37),

eU(X) - 1
J u(x) 1::;leu (x)-11::;D+1=C'.

H lu(x)1 < 1, then leU~~:)ll::; L:~1 n< e = C". Hence l~ulo::; D 2 • Assume now

l.öju]o ::; Dj,j::; i - 1,i ::; ~,

and consider ~ i u . Accorcling to (7.61),

~ iU = _~ i -1 (]( + 1) _ ~ i-I 0 ( e
U

- 1.) ((~ + e
U

- 1)-1 (]( + 1))
u u

(7.62)

for i ;;::: 2. 7.19 yields 16.i-I (!( + 1) 10 ::; D'. If we write ~ i u to determine a Sobolev
norm, this means ~~ou since our general reference Sobolev norm is I Igo,j,j::; r.
Hut for the calculations in the sequel we have often to work with ~~t since then
fonnulas become easier. Hut this does not touch the proof of our desired apriori
Sobolev estimates according to 2.16.

We have to find an apriori estimate

(7.63)

D" = D" (g ,90) independent of t. Consider ~ i -1 (v . w). In our case v =
7.V = (.ö + e

U

u
-1 )-1 (]( + 1). Vve ohtain from
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~(V' w) = V~w + w~V - 2(\7v, \7w)

that ~ i-I (V . W) has a representation

~i-I(V' W) = L ~jv· ~kw + sum ofmixed tenns.
j+k=i-l

(7.64)

(7.65)

It follows from (2.32), (I), (Boo ) for go and the module structure theorem that a
priori estinlates for all

imply such estimates for all mixed tenns too.

Remark. We could also work exclusively with covariant derivatives. But then all of
our expressions grow rapidly. Therefore we decided to work only with every second
derivative, i.e. to work with the ~'s. 0

Consider now all products

u 1 ~ ~ . .
e 1-: = 1 + ~ + ~! + ... and 'TI + ~! + ... converges in nr since allu1E nr, lullT' S;
1>'" i-I I li d l!:1:. I<lul~ I<2Iul~ W lId
.l\. . uran 2! + 3! + 41 + ... converges. e lave a rea y seen

Using ~uk = - \7j \7 jU k = -k(k - 1)u k - 2
1 \7 ul 2 + ku k - 1~u, we see that at least

fonnally

eU
- 1 1 2u 3u 2

~( )=~u(1"+-, +-, + ... )
u 2. 3. 4.

22 2·3·u 3·4·u2

- 1\7 u] (1" + I + , + ... ).3. 4. 5.
(7.63)

But the salne argument as above and the module structure theorem yields ~(eU;l)

and its series (7.63) as a weil defined element of nr
-

2
• We want to establish an a

priori etsimate for I~( eUu-1 )10. We already proved

(7.64)

which implies

(7.65)

Vve continue to establish an apriori estimate for
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1 2u 3u 2

l~u(2! + 3T + 4! + ... )10

The apriori etsimate for lulo and I~ulo yield such an estimate for JUI2.

According to remark 2 after 2.9, 0 2 is an algebra and we have an estiInate

tagether with (7.67),

(7.66)

(7.67)

lu k l2 ~ K;-l D~k.

Hence ;~ + 3:!2 +... is a weIl defined element of 0 2 (even of or as we have seen)
ancl there exists an estimate

1(
2u 3u

2 ) I 2D~ 3!(2D~2 "
-31 + -, +... 2 ~ -, + I + ... = D 2 .. 4. 3. 4.

(7.68)

Now we apply the first half of the module structure theorem 2.8. In our case
n = 2,Pl = P2 = q = 2,..!!.. = ..!!.. = nq = 1, .6..u E 00 = L 2 ,rl = 0 < 1,

P1 P2

(;~ +3n2 4! +... ) E 0 2 ,1'2 = 2. Set f = 0, then 0 ~ 1-max{1- 0, O} -max{1- 2, O}
and, accordin1? to 2.8,

2u 3u2 2u 3u2

l.6..u· (-, + -, +... )10 ~ K ·1.6..'lllo .1(-, + -, +... )12 ~
3. 4. 3. 4.

~!(. D2 • D~,

together with (7.65),

1 ( 2u 3u
2

)1 / r 11 'I!.6..u· 1 + -, + -, +... 0 ~ D2 2 + J\ . D2 . D2 = D2 .
3. 4.

(7.69)

Quite similar we manage the second term in (7.63) using that V'u E 0 1 , 0 ~ 1 ­
max{1 - 1, O} - max{1 - 1, O}, I V' ul2E L 2 , 11 \7 ul210 ~ K 1 1 \7 uli ~ J<llu l~ and

. (2.3U 3·4u
2

) n2 W bt'agaln 4! +~ + ... E ~{,. e 0 aln

l.e.

22 2·3·u 3·4·u2
(4)

11 \7 u I (31 + 4! + 5! +... )10 ~ D 2 , (7.70)

(7.71)

Now it is every easy to recognize the general rule. One forms .6.. j ( e
U

u-
1

), 0 btains
a finite SUfi of factors x series, the factors are in L 2 = 0 0 and have an apriori
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L 2-estimate coming from I~kulo ::; Dk, k ::; j -1. The series are in n2 and have an
apriori I b -estimate which yields together

(7.72)

Dj = Dj(g,go) independent oft. Finally we want to establish apriori estiInates for

(7.73)

But if we replace in (7.42)-(7.47) eU by C

U;l, then we see that we get apriori
estimates if we have such estimates for

I eU
- 1 .

~ ( 10,1::; k,k::; z - 1.
u

But these we have just established. Le. we obtain

I~k((~+ e
U

-l)-I(K + 1))10::; Ek,k::; i-1.
1t

!( + 1 E nr-2, (~ + C

U

;l )-1 (1( + 1) E or, ~k((~ + C

U

;l )-1 (K + 1)) E 0 2 since

k ::; i-I ::; ~ - 1, ~j( C

U

;I) E 0° = L 2 • Applying once again the first half of 2.8,
we obtain

Fi,k = Fj,k(g, go) independent of t. Quite similar we conclude

Imixed termsI° ::; F.

Hence

. eU
- 1 e

U
- 1 '"""'I~1-1 ( U • ((~ + u ) -1 (!( + 1)) 10 ::; F + L.J Fj, k ,

i+k=i-l

together with (7.50),

(7.74)

D i = Di(g, go) independent of t, i ::; ~. This proves 7.18, hence (7.35) and our main
proposition 7.15. 0

Corollary 7.20. There exists a constant C = C(g, go) such that

(7.75)

o

The estimate of the first factor of (7.14) is already done,

38



1(6.yto + (eUtO.))-I(eUtO·)lr_2,r:::;

:::; I(6. gto + (eUto
.)) -11 r-2,r . I(eUto

.) Ir-2,r-2.

According to (7.33),

1(6.gto + (eUto
.)) -1Ir-2,2 ::; Cl,

and, according to (7.31), (7.37) and l6. j ulo :::; Dj, 0 :::; j :::; ~,

l.e.

I(ßgto + (eUto.))-1(eUto·)lr_2,r:::; C3 ,

C3 = C3 (9, 90) independent of t. The final estimate concerns

(7.76)

(7.77)

(7.78)

(7.79)

where as usual the point indicates that the corresponding expression acts by mul­
tiplication. 'Are write

co

= I)v - Uto + 19(u - Uto - (v - Uto)]i Ji!
i=l

As above, this series.converges·inhnr-·and· for'lv,- Uto· + t9(u-- Utü- - (V·- Uto))lr"
sufficiently small 12:::1 [v - Uto + iJ( U - Uto - (v - Uto) )]i /i! Ir becomes arbitrary
small.

For any f E n r , the operator norm of (f·) : n r -+ n r- 2, (f·)w = f . w, can be
estimated by C(r) . I/Ir. This yields

Lemnla 7.21. For any €] > 0 there exists J1 > 0 such that

for all u, v with Iu - Uto Ir, Iv - Uto Ir :::; 0] .

Proof. Given €] > 0, there exists Ji such that for IV-Uto+{}(u-Uto-(v-uto))lr < Si
co

C(r)·1 I)v - Uto + t?(u - Uto - (v - Uto))]iJi!lr :::; €1·

i=l

Set J] = JiJ4. Then
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Iv - Uto + 'l9(U - Uto - (v - Uto))lr < Iv - Utolr + IU - Utolr + Iv - Utolr =
= Iu - Utolr + 21v - Utolr < 2(lu - Utolr + Iv - Utolr)::; 401 = O~.

D

Corollary 7.22. There exists 0) > 0 such that Iu - Uto Ir::; 0), Iv - Uto Ir::; 0)
inlplies

(7.80)

Proof. Set in (7.21) €) = t .6
3

, Ca from (7.78). D

Corollary 7.23. There exists 01 > 0 such that for Iu - Utol,· :::; 01, Iv - Utolr ::; 01

1!Ttu - Ttv Ir::; (C . It - ta I+ 4) Iu - v Ir,

where C comes from 7.9.

(7.81)

Proof. This follows immediately from (7.12), (7.13), (7.14), (7.15) and (7.80). D

Ifwe would choose Ita-t! sufficiently small, then thc map Tt would be contractive.
But this does not make sense since until now we did not define a complete metric
space on which Tt acts. This will be the next and last step in our appraoch. But
we will use the inequality (7.81) in this step.

Proposition 7.24. 8uppase Uto E nr
, r > 3, .6.gto Uto + 1((9to) + eUto = O. There

exist 0, 01 > 0 independent afta such that Tt maps MtO,<h = {u E nrllu-Utolr ::; 01}
in to itself for 'I t ~-"-. ta1- :::;. O. M oreover Ti is con tracting. ..'. ~

Proof. We start estimating Ttu - Uto:

ITtu - Ufo Ir = ITtu - Tto Uto Ir::;
::; ITtu - TtUtolr + ITtUto - TtoUtolr.

For Iu - Uto Ir ::; 0), 0) from 7.23,

1ITtU - TtU to Ir::; (C . It - ta I+ 4) lu - U to Ir.

Heuce for It - tal:::; 0', lu - Uto!r ::; 01

1 1
(C·lt- ta l+ 4)S;2

and
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1 1
jTtu - TtUto Ir ::; 21u - Uto Ir ::; 201'

It remains to estimate ITt!tto - Tto Uto Ir. But by an easy calculation

TtUto - Tto Uto = - (6. gto + (eUto .))-1 ((6.gt - 6.gtO )Uto+
+J((gd - J((gto))'

We are done if for It - to I ::; 8"

(7.83)

(7.84)

l(L\gro + (eUto.))-l(I{(gto) - K(gd)lr < 81 /4. (7.85)

The existence of such a 8" follows immediately from 7.9, 7.15, (7.74) for (7.84)
and from 7.15, 7.19 for (7.85). Let now 0 = min{o',o"}. Then we infer from
(7.82)-(7.85)

ITtu - Uto Ir :S 01,

1.e. T t : Mt 0, eh --+ Mto ,01' Tt is contractive according to (7.81) since for It - toI :S 0

1 1
(C . It - to I+ 4) :S 2"'

This finishes the existence proof of theorem 7.7 alld yields ulliqueness in a moving
balllvlt,ol'O :S t :S 1. We prove now the uniqueness in all of fF.

Fix Xo E M 2 and denote by d( x) = d( x, xo) the Riemannian distance. Let
U, v E nr

, T > 3, be solutions of

6.gu + J{(g) + eU = O.

We obtain-u, v, u - v bounded, C2 and

There are two cases.
1. u - v obtains its supremum in Ul(xo) = {xld(x) ::; 1}. e.g. in Xl. Then
6.(U - v)( Xl) 2: 0, -(eU(x1) - ev(xt}) ;::: 0, eu(xt} ::; eV(Xl), (u - v)( Xl) ::; 0 of the
supreme point Xl, hence ('U - v)(x) :S 0 everywhere, u(x) ::; v(x).
2. 01' we apply Yau's generalized maximum principle: f E C 2

,

1· f(x) - f(xo) < 0
Imsup

d(x)--+oo d(x) -

and

lim
d(x)--+oo

/(x)?f(xo)

J((x)(f(x) - f(xo)) = 0
d(x) .

41



Then there are points (Xk)k C M such that lim f(Xk) = sup /, lim \l f(Xk) =°
k-+OCl k-+OCl

and limsupßj(Xk) ~ O. See [31] for the proof.
k-+OCl

In our case f = 7.l-v. Then we have (Xk)k such that lim (7.l-V )(Xk) = sup(7.l-v),
k-+OCl

liln \l (u - v)(Xk) = 0, lim sup ß( 7.l - v)(Xk) ~ 0, hence lim sup(eV
- eU )(Xk) ~ 0,

k-+oo

linlsup(v - U)(Xk) ~ 0, limsup(u - V)(Xk) :::; 0, sup(u - v) :::; O,u:::; veverywhere.
Quite similar v :::; u, i.e. U = v. This finishes uniqueness and the proof of

theorem 7.7. D

Remarks. 1. We had several versions of the proof. But the particular useful pro­
posal to work with the equation U = (ß + e

U

;;l )-1 (-(1( + 1)) has been lnade by
Gorm Salomonsen.
2. A seemingly more direct approach proving S = [0,1] would amoullt to prove the
following assertion. Assurne t) < t2 < ... < ta,t v --t ta, ß gto Ut v + eU/v = O. Then

a. (Utl...)v is a Cauchy sequence with respect to I Ir.
b. Ut", -r Uto

C. .6. gto Uto + 1((9to) + eU10 = O.

But writing down a straightforward approach proving a., c. leads inlmediately to
thc key estimates performed by uso
3. Vve assumed inf 0"e(ß go ) > O. This implied inf 0"( .6.gl ) .2: c > 0,°:::; t :::; 1,
which was of essential meaning for all of our t independent apriori estimates. The
assumption E O"e(ß go ) > 0 would be redundant if we would know that Ut(x) ~ a
for all t and x E M. We even proved this fact but in the proof we essentially used
infO"e(.6. go ) > O. From Ut E nr,r > 3, follows Ut(x) ~ Ut for all x E M hut it could
be that inf Ut with growing t becomes smaller and smaller. Then, if inf O"e{ß go ) = 0,
the norm of (ß g, + (e Ut .))-1 grows and grows. This would destroy the existence
proof for the 0 in (7.10), (7.11). If inf 0"e(.6. go ) = 0 then inf 0"e(.6. gt + eUt ) = 1 hut
this insight would not help immediately. We could conclude that helow 1 there
are only isolated 'eigenvalues offinite nlultiplicity: They 'are > 0 for all t.· But
we are not able - at least until llOW - to prove the existence of a c > 0 such that
Amin (.6. gt + eUt ) ~ c,O :::; t :::; 1. The proof of 7.10 does not work since there we used
the convergence .6.g, --t D.g1 • for t --t t*. If we replace ß hy ß + eU then we fiUSt
prove Ut -r Ut. for t -r t* in a certain sense. But this is more 01' less equivalent
to theorem 7.7 and the natural proof of Ut -r Ut. would just use inf O"e(.6. go ) > O.
Nevertheless it could he possihle to drop this assulnption. But then we would have
to study very carefully the intiulate relation between inf Uto and

I(~gl + eUt )-1Ir-2,n t E]to - E, to + E[n[O, 1].

4. Now there arises the natural question, da there exist metrics 90 with [((90) =
-1, rinj(gO) > 0 alld inf O"e(~go) > 0 ? The answer is yes. Consider Y-pieces
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where the lenghts ai of the boundary geodesics grow exponentially, roughly spo­
ken with i, more carefully spoken with the distance from a fixed point. Built up all
ends by each rnetrically dilated Y -pieces. Then, using Cheegers constant, one can
show that in this case inf O"e(~go) > 0 in addition to K =-1 and rinj(gO) > O. We
shortly explain this. If I( is any smooth, compact submanifold of M 2 , dirn K = 2,
we set

hk( ) = 'nf vol(aN)
€ 1 vol(N) '

where lV C j'vI \ I( is a neighborhood of the isolated end of €, aN dividing € into a
compact and noncompact part (which is an element af €). Denote h~'''(e) = suphK .

K
Then

~(h''')2 ::; info-.(Llgo(e)).

See [4] for details. H we construct 90 as above then heu> O. We refer to [7]. D.

We have shown in theorem 7.4 and corollary 3.6 that comP(gO)-l and comp(go)/comp(1)
have the structure of Hilbert manifolds .. ·Now we are ahle to state .,. - '. .

(

Theorem 7.25. Assume go E M(I, Bco ) with K(go) =-1, inf O'e(.~~go} > 0, r > 3.
Then comp(gO)-1 C ;\ttr(I, B oo ) and comp(go)jcomp(l), comp(l) C T~(go}, are
diffeomorphic manifolds.

Proof. Consider 7r : comp(go) -+ comp(go)/comp(l} and 1t'-1 = 1t'lcomp(go)_l' The
latter map is bijective according to theorem 7.7. We are done if we can show that
the differential d 1t'-1 is weIl defined and an isomorprnsm at any point. Now

7[gjcomp(go)/comp(1) /"V Tg comp(go)/Tg(comp(1) . g) =

= ([hllh E nr(S2T* ,g)}, [h} = {h + AglA E nr(M)}.

Then, by an easy consideration, d1t' -llg is given by h -+ [h}. d 1t'-1 is surjective at 9 if
for any [h] we find a representative h+;\g E Tg comp(go)-1 = kerd(K +1) = ker dK,
i.e. d(I((g) + 1)(h + >..g) = O. By suitable choice of A, we can assume w.l.o.g.
tr9 h = O. Then we have to salve
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· 2~gA + ogogh - ~gA + A = 0

~gA +A = -ogogh,

hut ö'g + 1 is bijective, as we already know. 0

If we assume for a moment that V~+l (go) acts on comp(go) , then we can sharpen
7.25 as foIlows.

Lemma 7.26. The diffeomorphism 7r-l : comp(go)-l --+ c01np(go)/contp(l) is
V r+l . . to equlvanan.

Proof. If vr+1 + 0 acts on comp(go) then on comp(go)-1 too: J«(j*) = j* J«(g) =
J{(g) 0 j, i.e. K(g) - -1 implies J((/*g) =-1. Furthermore 7r-l(/*g) = [/*g] =
j* 7r-I (g). 0

This allows to establish at least fonnally an isomorphism between conl,p(gO )-1 / V~+ I

and (comp(go)/co7np(1))/V~+1.We discuss this in sections 9 and 10.

8. THE SPACES OF ALMOST COMPLEX AND COMPLEX STRUCTURES FOR n = 2

In this section we develop the approach, sketched in section 4 for arbitrary
n = 2m, for n = 2. First we start with arbitrary n = 2m, Mn oriented. Fix any
lnetric 9 and r 2:: 1. Then

Ar = Ar(g) =L comp(Jd
iE!

is weIl defined. Here

comp(J) = {J' E ArllJ - J'lg,r < oo} (8.1 )

is a Hilhert manifold. The Hilbert manifold structure can be seen as follows. There
is areal representation GL (m, C) --+ GL + (2m, IR) giyen hy

(A + iB) --t (_AB ~)

whichgives the eoset spaee GL+(2m,IR)/GL(m,C). GL(m,C) isjust the isotropy

group of the canonical alrnost complex structure (-~m Ia) on IR 2m. Let L be

the GL + (2m, IR) principal bundle of frarnes lying in the fixed orientation. Then the
space A of all almost complex structures is given hy

On open manifolds with infinite volulne it does not make sense to speak of square
integrahle (together with derivatives) seetions in A, since such sections do not exist
because det J = 1. COO(Tl(M)) is endowed with a canonical uniform structure ur
generated by the basis ..c = {VIS}J>O,
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Vo= {(t, t') E COO(Tl (M))llt - t'!9,r < ö}

which induces the uniform strueture of lemma 4.1 on A thus giving Ar = Ar(g).
For later applieations we do not eonsider A c COO(Tl(M)) but restriet ourselves
to ~A(g) = {J E AII(\79)iJlg ::; Ci for all i}. Then ~A(g) c ~n(Tl,g) =
n ~n(Tl, g). The elements of~A(g) are the almost eomplex struetures of "bounded
m

geometry" .
Now we restriet for our purposes to n = 2, m = 2. Then J2 = -1 if and only

if to J = 0 anel det J = 1. Denote by ~n(Tl,g) r the eompletion of ~n(Tl ,g)
with respeet to ur. Let t E ~n(Tl,g) and comp(t) C ~n(Tl,g)r its component

r
in ~n(Tl,g) . Then cornp(t) = t + fY(Tl, g) is an affine space with nr(Tl, g) as
vector spaee. If tr t ~ nr (M, g) then comp(A) does not eontain a tensor field s
with tr s == O. Such a eomponent does not contain any almost complex strueture.
If tr t E nr ( M, g) then tr (t +t') = 0 if and only if tr t' = tr t and for tr : comp(t) --+
nr(M,g), tr-1 (0) f"'o.J -t1·(t)g; + (nr(Tl, g) n {tr = O}) ~ nr(Tl ,g) n {tr = O} whieh
is a closed linear subspace N of nr(Tl ,g) with tangent space nr(Tl ,g) n {tr = O}.
Similarly, if 1 f/:. det(comp(t)) then comp(t) does not contain any alrllost eomplex
strueture. In the other case M = det-1(1) is a submanifold of c01np(t) with TjM =
{H E nr(Tl,g)ltr(JH) = O}. Hence iftrt E nr(M,g) anel1 E det(comp(t)), then
c01np(t) contains a c01nponent comp(J) = N n M c comp(t), N anel M interseet
transversally. Moreover, tr H = 0 and tr J H = 0 if and only if J H + H J = O. The
topology of comp(J) is that induced from comp(t), i.e. we have (8.1).

~--r

Sinee we eonsider in the sequel only ~A(g) we denote this for the sake of brevity
Ollce again with Ar(g) but always keeping in mind that we completed aspace of
bounded ahnost eomplex structures. Then

Ar(g) = Lcomp(JI).
iEI

Forming nAr(g), we obtain back all 00 -bounded smooth almost complex struetures.
r

It is an absolutely standard fact that a smooth almost eomplex strueture J is
integrable, i. e. induced from a eomplex structure c = {(Ui, SO i)}i if and only if the
Nijenhius tensor N( J) equals to zero, N( J) = 0,

N(J)(X, Y) = 2{[JX, JY] - [X, Y] - J[X, JY] - J[JX, Y]}.

Denote for general n = 2m by er all elements J E Ar such that N(J) = O. As wen
known, for n = 2m = 2, N(J) = 0 for all J.

9. THE ACTION OF 'O~+1

Vve consider (A1 n , go), go E M (I, Bk), k 2:: r +1 > ~ +2, comp(go) C Mr(l, Bk).
Then 'O~+l(gO) = '0:,7'+1 (go) = 'O~+l(comp(go)) is weH defined. We want to show
that 'O~+1 aets on contp(go), i.e. if 9 E con~p(go), 1 E V~+l, then I*g E c01np(go).
If f E 'O~+1, then there exist vector fields XI, . .. ,Xn , Xi E nr + 1(TM, go) such
that
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1 = exp X n 0 ... 0 exp X 1 .

More carefully, X 2 E nr +1 ((exp Xd*TM, (expX])*\7 90 ) and so on, but if f1 "/'"V 12,
then ni (/l*T, 1;\7) /'"V ni(f;T, 1;\7) as equivalent Hilbert spaces, which will be dis­
cussed below. We start wi th a simple special case, 1 = exp X, X E nr+ 1(TM, go ).
According to (2.3), there exists a sequence Xv E CÖ(TM),Xv --+ X. This

I I"o,r
implies exp X v -t exp X = 1 in our topology of D~+1 . Moreover exp Xv E
COOlOO(M,M) n D~+1. Henee (expXv)*g' satisfies (I) and (Bk) for any g' E
comp(go) n M(I,Bk).

We want to estimate (exp X v) *g' - g' whieh needs same explanations.
If E -t lvI is a veetor bundle, 1 = (fE, fM) a bundle map, c : !vI --+ E a seetion,

then it is impossible to eompare c and f* c sinee they live in different bundles,
c is a seetion of E -t M, f* c a seetion of f* E -t M. If we must or want to
eompare them we must use a eanonieal equivalenee between E and f* E - if such an
equivalenee exists. Consider g' as a seetion of S2T*, f* g' as a seetion of f* S2T*.
If 1 = expX,X E nr +1 (TM,go) nb,k n(TM,go), then we have a canonieal bundle
equivalenee, the parallel displaeement of the fibre over exp X along exp sX to exp o.
If go has bounded geometry up to order k then this equivalence is also bounded
up to order k. Having this eonstruetion in mind, it makes sense to eonsider for a
section c : M -t T:

f* c - c = (f* - id)c

or the pointwise operator norm

Ij*c - cl x '

Dur eonsiderations generalize to the ease where we replaee id by sOIne j and exp X
is now defined for X E nr(/*TM). We proved in [14], p. 284, (4.95) and p. 292,
(5.16) the following key.

Proposition 9.1. Assume (Mn, g), (Nn', h) witb (I) and (Bk), k 2:: r + 1 > ~ +
2,1 E n2,r+1 (M, N), f' = exp Y, Y E nr +1 (f*T N). Then tllere exist polynomials
RJl(lYI, 1\7 YI, ... ,I \7n+1 YI) such that

(9.1)

lvloreover, the RJl are square integrable, JIR Jl l
2

::; R~ (IYlga,r+1), where R~ is a
polynomial without constant term. In particular

If* - f'* Iga,r < 00

and 1/* - j'*lga,r -t 0 iE

Corollary 9.2. Under the assumptions of 9.1,
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(9.4)

D

nr +1 (f*TN) ~ nr +1 (f'*TN)

as equivalent Hilbert spaces.

After this preparations we are ready to state

Theorem 9.3. Assume go E M(1,Bk),k 2:: r+ 1 > I + 2. Tl1en 'D~+I(gO) acts on
eomp(go) C Mr(1, Bk)'

Proof. We have to show, 9 E eomp(go),1 E 'D~+l imply I*g E eomp(go). The
other properties of an action are trivially satisfied. We start with the simplest ease
f = expX,X E nr+I(TM,go). We know from 9 E eomp(go) that there exists a
sequence gy )y, gy E M (I, Bk) n eomp(go) , gy --+ g. In particular

I loo,r

Igy - go loo,r ::; Igy - gloo,r + Ig - go Igo ,r ::; C (9.5)

for all v. Moreover, according to (2.3), there exists a sequence (XJA)Jl,XJl E

Cgo(TM), X Jl --+ X. If we define l JA := exp X JA' then 1Jl --+ 1 in 'D~+1.
I I"o,r+l

Consider the diagonal sequence I:gy. Clearly, I:gv E M(1, Bk)' I:gv E eomp(go)
since

1/: - gy Igo,r = 1(/: - id)gv Igo,r ::;

::; I(I: - id) (gO + gv - gO) Igo ,r ::; I(I: - id)gO loo,r+
+1(1: - id)gOlgo,r + 1(1: - id)(gy - gO)lgOlr < 00.

The latter follows from

1/: - idlgo,r ::; R~(IXvlr+l)'

(2.20) for laI = 0 and '1OOgo = 0, (9.5) and the module structure theorem. We
would be done if we could show (exp X v)* gv --+ (exp X)* g, i.e. I/:gv - 1*glgo,r --+

y-too

O. But

I/:gv - f*glgo,r ::; I(f: - f*)gylgo,r + If*(gy - g)lgo,r ::;

::; 1(/: - 1*)gOlgo,r + 1(/: - I*)(gv - go)lgo,r+

+I(f* - id)(gy - g)lgo,r + Igv - glgo,r' (9.6)

All terms on the right hand side üf (9.6) converge tü zero für v --+ 00. Now we
consider the general case 1 E 'D~+l, 1 = expXu = eire ... 0 exp Xl and write

1* - id = (exp X u 0 ... 0 expXI )* - (exp X u - l 0 .•• 0 expX1 )* +

+(exp X u - 1 0 ... 0 exp X I )* - (exp X u - 2 0 ... 0 exp Xt)* + ...

+(expX2 expXI )* - (expXI )* + (expXt)* - id. (9.7)
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We approximate as above Xiv ---+ Xv, Xiv E Co(TM). Then Iv = exp X ULJ 0

I I"o,r
'" oexpX1v -+ expXu 0 .•• o exp Xl = f. Applying the triangle inequality to (9.7)
and the general version (9.1) and its integration we cone!ude quite similar as in the
case f = expX. 0

As we have already seen, the action of 'D~+1 (go) on com.p(go) induces an action
of V~+l on comp(go)-l. Now we state a very nice property of this action.

Theorem 9.4. The action ofV~+l on comp(go)-l is free.

Proof. Assurlle / E V~+l, 1*9 = 9 for some 9 E comp(go)-l. We must show
f = idM 2. f E 'D~+l implies the existence of a homotopy ht ,°:::; t :::; 1, h1 =
/,ho = id,h t E V~+l. Let 1T: (M2,g) -+ (M2,g) be the universal metric covering.
Then there are liftings ho = id, ht of h t and h1 = j covers I. j commutes with the
deck-transformations and hence dist(x, ](x)) depends only on x = 11"(x).

Lemma 9.5. Assume (Mn ,9) with nonpositive sectional curvature and with nega­
tive definite Ricci tensor, f as above. If dist(x, ](x)) obtains an absolute maximum
at Xo E M tben 1(xo) = xo, i.e. ] = id, I = id.

See (25], p. 57-59 for a proof. 0
But in our case I = expXu 0 ... 0 expX1 , h t = exptXu 0 .. . exptX1 ,X1 E

nr+1 (M,go), IXilglx :::; r'inj(M2,g),r+ 1 > 4, for every € > °there exist a compact
set J( such that b,2lXil < € outside of JC Hence dist(15, /(15)) attains a maximurll
at some Xo E M. If dist(15o, !(xo)) = 0, we are done. In the other case we cone!ude
Ollce again from 9.5 j(15o) = 150 , i.e. in any case f = id, f = id. In our case 9 must
not be smooth, hut it is C3 and into a11 calculations and considerations of [25], p.
57-59, enter only second derivatives of g. 0

Corollary 9.6. 'D~+l acts freely on cornp(go)jcomp(l).

This fo11ows immediately from 7.25 and 9.4. 0

10. THE CONNECTION BETWEEN HYPERBOLIC

METRICS AND ALMOST COMPLEX STRUCTURES

Start with ametrie 90 E M (J, , B 00 ), K (go) == -1, as in the sections above.
Define an almost complex structure Jo = J(90) as follows. Write the volume form
of 90 in loeal coordinates as

Then
Ti J()i. ik ( )JOj = go j .= -go f.l 90 kj,

or in a more invariant form,

or

go(X, J(go)Y) = -j.l(go)(X, V).
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An easy calculation shows

l k Ji - d 1 2 'dOi Ok - -vi' l.e. 0 = -z ,

(\790)i J(go) = 0 for all i > 0

and supIJ(go)190'X ~ C, i.e. J(go) E ~A(go). Consider now comp(Jo) c Ar(go)
x

and define for 9 E comp(go)

q,(g) := J(g) := g-1 J.l(g) ,

l.e.

Proposition 10.1. q, has the following properties.
1. q, maps comp(go) C Mr(I, B oo ) into comp(Jo) C Ar(go).
2. 9 is Hermitian with respect to J(g), i.e. g(J(g)X, J(g)Y) = g(X, V).
3. 4>(e U

• g) = 4>(g)
4. 4>(gl) = 4>(g2) implies gl = eU

• g2, eU E comp(l).
5. q, maps comp(go) onto comp( Jo).
6. q, : comp(go) ---+ con-l,p(Jo) is a submersion with ker Dq, = nr,C(S2T* ,g) = {h E
nr(S2T*, g)!h(x) = p(x) . g(x),p E nr }.

Proof. 1. There exists a sequence (gv) in comp(go) n M(I, B oo ), gv ----+ g.
I I"o.r

This implies J(9v) = g;;lJ.L(gv) ---+ g-l/1(g) = J(g), Le. if 9 E comp(go) then
I IoD,"

J(g) E comp(J(go)).
2. This has been proved in [29].
3. 4>(eu

. g) = (e u g)-l p (e u . g) = e- U g- 1(e U ?/2/1(g) = g-l/1(g) = 4>(g)
4. Assurne q,(gl) = q,(g2), 9;1/1(91) = g:;l /1(g2). Moreover J-l(g2) = eU

• /1(gl)' Hence
U -1 -1 U B t' I I . I U Ie . 92 = 91 ,g2 = e . 91· Y assump Ion 92 - 91 91,r < 00) l.e. e 91 - gl 91,r =

l(eU
- l)g] 191 ,r < 00 which is equivalent to leU - 1191,r < 00, leU - llgo,r < 00. The

other condition for eU E comp(l) can be similarly easy proven.
5. Let J E comp(Jo). We have to show that there exists 9 E comp(9o) such that
q,(g) = J. There exists a sequence Jv E comp(Jo), Jv E ~A(90), Jv ---+ J.

I loo.r
Define 9v by

9v(X, Y) := ~(90(X,Y) +90(JvX, JvY))' (10.1 )

Then 9v and go are quasi isonletric. 9v E M(I, B oo ) follows from J II E ~A(90)'

Moreover)
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1
gv - 90 = 2(go(Jv" Jv') - 90(', .)) =

1=2(go(Jv·, Jv') - go(lo·, Jo')) =
1

= 2(gO((Jv - Jo)', (lv - Jo)')+

+2go(Jo·, (Jv - Jo)·)). (10.2)

Now (\7go)i gO = 0, IJv-Jo]gO'v < 00 imply Igv-gOlgo,r < 00, i.e. gv E comp(go). We
adclitionally infer frqm (10.2) that (gv)v is a Cauehy sequenee, gv --t 9 E com.p(go).
Forming the limi t v --t 00 in (10.1), we conclude

g(X, Y) = ~(go(X,Y) + go(JvX , JvY)). (10.3)

The faet that (10.3) implies 4>(g) = J has been proven in [29].
6. Let h E Tgcomp(go) with loeal eomponents hij . It has been shown in [29], p.
23, that

(D4>(g)(h))~ = -[(H - ~(tr H)I)J]j, H = (h~).

We conclude from the invertibility of J and (10.4)

which is a closed subspace.
For J E comp(Jo)

H J = - J H if and only if tr H = 0 and H is g-symmetric.

(10.4)

Hence (H - ~(tr H) . I)J runs through all of TJ comp(Jo) = {I(II( JrJ I{ = O} if
H runs through all of {Hltr H = O}, i.e. DcjJ is surjective, cjJ an submersion. D

According to 10.1, 3. and 4., </> induces a map cP : cornp(go)/comp(l), and we
just proved

Theorem 10.2. The induced map

</> : comp(go)/comp(l) --t comp(Jo),

[g] --t _g-l J.l(g) ,

is an isornorphisln of Hilbert Inanifolds.
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Theorem 10.3. V~+l acts on comp( Jo) from the right as follows:

Proof. It is abolutely trivial that (J . f)2 = -id, J . (fl . f2) = (J . f1) . f2. The
nontrivial fact we must show is that f* J E comp(Jo). We indicate how to do this
but omit the details. There exists a sequence Jv E comp(Jo), Jv ---+ J, Jv E

I I~o,r

~A(go). First we consider the simpler case for f,f = expX, X E nr+1 (TM,go).
Then X = limXv , Xv E Cü(TM). Set fv = expXv . f~ E ~A(go) and f~Jv E
comp(Jo) since lf~Jv - Jv190 ,r < 00. It remains to show

f: Jv ---+ f* J = J. f·
I loo,r

But

f:Jv - f* J =

= f;/ (Jv - J)fv* + f;*1 J(fv* - 1*) + (/~* - 1;1)J1*. (10.5)

We get froln [14} estimates that I 'Vi 1;..1190'X' I 'Vi Iv* Igo,x, I 'Vi 1* 190'X are bounded
by integrable polynomials, and lidl for i ::; r(/* = 1* - id + id). Thereafter we use
('V 90 ) iJ = ('V 90 ) i(J - J0) .1 Jv - J I90, r -t 0,

I/v* - 1* 190,r --+ 0, If;} - 1;119o,r --+ 0 (10.6)

and the module structure theorem thus obtaining !f~ J v - f* J!go,r --+ O. If I =
exp X u 0 . . . 0 exp Xl then we apply the decomposition (9.7) and proceed in the
same manner. (10.6) is a highly nontrivial result in [14] related to the topology =
uniform structure of V~+l. 0

Lenlma 10.4. The diffeomorphism

4> : comp(go)jc01np(1) -t comp(Jo)

is V~+l -equivariant.

Proof.

4>(/* [g]) = </J(f* g] = (/*g) -2J-l(f* g) =

= (/* g) -1 (f* J-l(g)) = f* (g-1 J-l(g)) = 1* 4>([g]).

o

This yields
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Theorem 10.5. Suppose go E M(I,Bco ),]«(go) == -1, infae(ßgo) > O,T > 3.
Tl1en for comp(go) C Mr(I, B co ), comp(1) C P~(go) and comp(Jo) C Ar(go)

comp(go)-I /V~+l, (colnp(go)/comp(1))/V~+1,comp(Jo)/V~+l

are isonlorpbic topological spaces.

This justifies the following preliminary

Definition. Each of the spaces

comp(go) -I /V~+I , (comp(go) / comp( 1))/V~+l , comp(Jo)/V~+l

is called the Teichmüller space

,r(comp(go))

o

of comp(go).
The lnain task of Teichmüller theory consists of describing the topology anel

geometry of the Teichmüller space.

Remarks. 1. If M 2 is closed then Mr(I, B oo ), rr, Ar consist of one component
and

In the open case Mr(l, B co ) consists of uncountably many components. To each
component comp(go) we can attach con~p(1) C P~(go) anel comp(J(go)) C Ar(go).
Each component has its own Teichmüller space and theory.

is defined for any component. But in the compact case a nice manifold struc­
ture and explicit charts can be established easily and transparently by means of
M_l/V~+l. Having this in mind, we considered comp(go)-l. But only such com­
ponents with comp(go)-1 #- 4> are interesting. Therefore we started with ametrie
go with 1((go) =-1. Then comp(go)-l C comp(go) is a Hilbert submanifold as
expressed by 7.4. The isomorpismof con~p(go)_l/V~+l to comp(Jo)/V~+l,i.e. to a
moduli space of complex structures could be established only under the additional
assumption infae(ßgo) > O. This is in a certain sense natural, at least not strange.
(comp(go) / cOlnp(1))/V~+l is defilled without any hint to partial differential equa­
tions. cOlnp(go)-l /V~+1 ~ (comp(go)/comp(1)/V~+1 refers to the moduli space of
a family of partial differential equations, ßgu +K(g) +eU = O,g E comp(go). This
family must be "good", which means in our case inf ae(.ß go ) > O.
2. It is very easy to give examples of components comp(g) C Mr(l, B co ) such

+co
that comp(g )-1 = cP. Consider the infinite ladder L 2 = ~ T 2

, T 2 the 2-torus,
-co

straightly embeclded into 1R3 with periodic Cllrvature K(g). If there would be a
metric g' E comp(g) with ]«g') == -1 then J11«g) - 1{(g'l = 00 in contra­
diction to JI]«(g) - 1((g')1 < 00 for g, g' in the same compOllent. Nevertheless
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(L, g) has a canonical conformal = complex structure and is, according to the gen­
eral uniformization theorem, pointwise conformally equivalent to a metric 90 with
1((go) =1. Eut go ~ cmnp(g) , i.e. the conformal factor is not contained in comp(l).
This supports our procedure: not counting g's E Mr(I, B oo ) and associated con­
formal structures but counting the components comp(go) with comp(go)-l =f=. ep and
counting the metrics with !( =-1 inside such components. Moreover, in this way
we get manifold structures for comp(gO )-1 , comp(gO )/ comp(1), comp(To ), and, if
things are going weIl, even for the Teichmüller spaces. 0

11. TOPOLOGY AND GEOMETRY OF THE TEICHMÜLLER SPACE. AN OUTLOOK

The further procedure concerning topology and geometry of Teichmüller spaces is
indicated by the compact case and the usual approach to moduli spaces in geometry
and global analysis. The steps are as follows.
1. To show that the orbits nnder the action of V~+l are subnlanifolds.
2. To prove the existence of a slice.
3. The slice produces charts and a manifold structure.
4. The dimension of this manifold coincides with the dimension of the tangent
space to the slice and is given in the compact case by the index theorem. In the
open case it will be infinite.
5. The geometry of Teichmüller spaces with respect to the Weil-Petersson metric
can be sirnilarly calculated as in the compact case. In the compact case, the solution
of steps 1-3 is more 01' less standard, it nses weH known theorems of Ebin, Palais
anel others and has been successfuHy been performed by Tromba in [29}. In thc
open case, 1-3 are totally unclear since the applied theorems of Ebin, Palais are not
available. Hence we have to reestablish SOlne versions of them for our noncompact
case.
1. has been already solved by us, the solution is nontrivial.
2. The existence of a slice has not yet been completely established. The standard
proofs use the properness of the action of VT+l on MT in the compact case. This
is definitely wrong for open manifolds. But our situation in Teichmüller theory
is much better. We have to consider only the action of V~+l on comp(go)-I'
Moreover, we do not need the full properness. What we need is the foHowing fact.
Assume gv -+ 9, I: -+ g' in cornp(gO)-l C MT(I, B oo ), Iv E 'D~+l. Then there
exists I E V~+l such that 1*9 = g'. This already follows from the statement:
I: (g) --+ 9' in comp(go)_l, Iv E V~+l imply the existence of I E V~+l such that
1*9 = g'. In our applications even 9 = g'. The main point is that we do not require
Iv --+ f· We are able to prove the assertion if all Iv are contained in a metric
ball B E2 and outside BEl' EI « 1:2, then there exists f outside BEl and Iv --+ f on
compact sets.

As conclusion, the step 2 has not yet been completed. In classical Teichluüller
theory only smooth metrics and smooth diffeomorphisms have been considered al1d

T(M2
) := M-l/'DO 01' (M/P)/'Do 01' A/'Do.

But in the strong language of global analysis one needs good topologies in M, T, Vo,
A, M_l, good properties ofthe actions and the implicit fUl1ction theorem. MT, rr,
'D~+I, Ar, M~l have this properties but they contain lnany nonsmooth elements.
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For this reason one would like to apply ILH-theory. This assumes smooth Hilbert
manifolds, i.e. (Boo ). But we started with go E M(I,Boo ) hence 6.1 - 6.4 are
applicable and we set as in section 6

Then the isomorphisms

compr(go)_ltD~+l --=-+ (compr(go)/compr(l))/v~+l ~

--=-+ compr(Jo)/v~+l

pass into isomorphisms for r = 00

~ ~

compOO(go)_l/V~~ (conl-pOC>(go)/compOO(l))/V~~

~

-=-t compOO(Jo)jDo.

These are spaces of smooth elements with an IHL-topology. One now would like to
define

T(comp(go)) := TOO(comp(go)) := compOO(gO)-l/'DO
~ (compOO(go)/compOO(l))jV~ ~ compoo(Jo)jVr: .

Hence knowledge of all Tr(conlp(go)) would imply knowledge of TOO(comp(go)).
We study to topology and geometry of Tr (comp(go)) in thc second part of this
paper.
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