The family of lines on the Fano threefold V_{5}

by

Mikio Furushima
Noboru Nakayama

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3
West Germany
*) Kumamoto National College of Technology
Nishigoshi-machi Suya 2659-2
Kikuchi-gun Kumamoto, 861-11 Japan

Japan

Introduction. A smooth projective algebraic 3-fold V over the field \mathbb{C} is called a Fano. 3-fold if the anticanonical divisor $-K_{V}$ is ample. The integer $g=g(V)=\frac{1}{2}\left(-K_{V}\right)^{3}$ is called the genus of the Fano 3-fold V. The maximal integer $r \geq 1$ such that $0\left(-K_{V}\right) \cong H^{r}$ for some (ample) invertible sheaf $H \in P i c V$ is called the index of the Fano 3-fold V. Let V be a Fano 3-fold of the index $r=2$ and the genus $g=21$ which has the second Betti number $b_{2}(V)=1$. Then V can be embedded in \mathbb{P}^{6} with degree 5 , by the linear system $|H|$, where $O\left(-K_{V}\right) \approx H^{2}$ (see Iskovskih [5]). We denote this Fano 3-fold V by. V_{5}.
V_{5} can be also obtained as the section of the Grassmannian $G(2,5) \longleftrightarrow \mathbb{P}^{9}$ of lines in \mathbb{P}^{4} by 3 hyperplanes in general position.

There are some other constructions of the Fano 3-fold V_{5} (cf. Fujita [1], Mukai-Umemura'[9] and Furushima-Nakayama [3]). But so obtained V_{5} 's are all projective equivalent (cf. [5]).

The remarkable fact on V_{5} is that V_{5} is a complex analytic compactification of \mathbb{a}^{3} which has the second Betti number one (see Problem 28 in Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal family of lines on V_{5} and determine the hyperplane sections
which can be the boundary of \mathbb{C}^{3} in V_{5}.

In § 1 , we will summarize some basic results about V_{5} following to Iskovskih [5], Fujita [1] and Peterneli-Schneider $[6]$. In $\S 2$, we will construct a \mathbb{P}^{1}-bundle $\mathbb{P}(E)$ over \mathbb{P}^{2}, where E is a locally free sheaf of rank 2 on \mathbb{P}^{2}, and a finite morphism $\psi: \mathbb{P}(E) \longrightarrow V_{5} \hookrightarrow \mathbb{P}^{6}$. of $\mathbb{P}(E)$ onto V_{5} applying the results by Mukai-Umemura [9]. Further, we will show that the \mathbb{P}^{1} - bundle $\mathbb{P}(E)$ is in fact the universal family of lines on V_{5}. In $\S 3$, we will study the boundary of \mathbb{a}^{3} in V_{5} and the set $\left\{\mathrm{H} \underset{\mathrm{E}}{ }\left|0_{\mathrm{V}}(1)\right| ; \quad \mathrm{V}_{5} \backslash \mathrm{H} \cong \mathbb{C}^{3}\right\}$.

Acknowledgement. The authors would like to thank Max-PlanckInstitut für Mathematik in Bonn, especially, Prof. Dr. Hirzebruch for the hospitality and encouragement.
§ 1. Basic facts on V_{5}.

Let $V:=V_{5}$ be a Fano 3 -fold of degree 5 in \mathbb{P}^{6} (see Introduction) and $\ell \cong \mathbb{P}^{1}$ is a line on V. Then the normal bundle $N_{\ell} \mid V$ of ℓ in V can be written as follow:
(a)

$$
N_{\ell \mid V} \approx O_{\ell} \oplus O_{\ell} \quad, \text { or }
$$

(b)

$$
N_{\ell \mid V} \cong o_{\ell}(-1) \oplus o_{\ell}(1)
$$

We will call a line l of the type $(0,0)$ (resp. ($-1,1$) if $N_{\ell \mid V}$ is of the type (a) (resp. type (b)) above.

Let $\sigma: V^{\prime} \longrightarrow V$ be the blowing up of V along the line ℓ, and put $L^{i}:=\sigma^{-1}(\ell)$. Then $L^{i} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ if ℓ is of type $(0,0)$, and $L^{1} \cong \mathbb{F}_{2}$ if ℓ is of type $(-1,1)$. Let f_{1}, f_{2} be respectively fibers of the first and second projection of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ onto \mathbb{P}^{1}, and let s, f be respectively the negative section and a fiber of \mathbb{F}_{2}. Let H be a hyperplane section of V. Since the linear system $\left|\sigma^{*} H-L^{\prime}\right|$ on V^{\prime} has no fixed component and no base point and since $h^{0}\left(0\left(\sigma * H-L^{\prime}\right)\right)=5$ and $\left(\sigma^{\star} H-L^{j}\right)^{3}=\left(\sigma^{*} H-L^{+}\right)^{2} \cdot L^{\prime}=2$, the linear system
 $\longrightarrow W \hookrightarrow \mathbb{P}^{4}$ of V^{\prime} onto a quadric hypersurface W in \mathbb{P}^{4}, in particular, $Q:=\varphi\left(L^{\prime}\right)$ is a hyperplane section of W. Let $E:=E_{\ell}$ be the ruled surface swept out by lines which intersect
the line ℓ and E^{\prime} the proper transform of E in V^{\prime}.

Lemma 1.1 (Iskovskih [5], Fujita [1]). W is a smooth quadric hypersurface in \mathbb{P}^{4} and $Y:=\varphi(E)$ is a twisted cubic curve contained in Q. In particular, $\varphi: V^{\prime} \longrightarrow W$ is the blowing up of W along the curve Y. Further, we have the following.
(a) If ℓ is of type $(0,0)$, then $\left.\varphi\right|_{L^{\prime}}: L^{\prime} \xrightarrow{\sim} Q \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$, and $\bar{Y} \sim f_{1}+2 f_{2}$ in L^{i}.
(b) If ℓ is of type $(-1,1)$, then $\left.\varphi\right|_{L^{\prime}}: L^{\prime} \longrightarrow Q \equiv \Phi_{0}^{2}$ (a quadric cone) is the contraction of the negative section s of $L^{i} \cong \mathbb{F}_{2}$, and $\bar{Y} \sim s+3 f$ in L^{i}.

In (a) and (b), we denote the proper transform of $Y \longleftrightarrow 0$ in L^{\prime} by \bar{Y}.

Corollary 1.1. (a) If ℓ is of type $(0,0)$, then $E^{\prime} \cong \mathbb{F}_{1}$. (b) If ℓ is of type $(-1,1)$, then $E^{\prime} \cong \mathbb{F}_{3}$.

Proof. Let $N_{Y} \mid W$ be the normal bundle of Y in W. Then $N_{Y \mid W} \equiv O_{Y}(3) \oplus O_{Y}(4)$ if ℓ is of the type $(0,0)$, and $N_{Y \mid W} \cong O_{Y}(2) \oplus O_{Y}(5)$ if Y is of type $(-1,1)$.
Q.E.D.

Corollary 1.2. (a) If ℓ is of type $(0,0)$, then there
are two points $q_{1} \neq q_{2}$. of ℓ such that (1) there are two lines in V through the point $q_{i}(i=1,2)$, and (ii) there are three lines in V through every point q of $\ell \backslash\left\{q_{1}, q_{2}\right\}$.
(b) If ℓ is of type $(-1,1)$, there is exactly one point q_{0} of ℓ such that (i) ℓ is the unique line in V through the point q_{0}, and (ii) there are two lines in V through every point q of $\ell \backslash\left\{q_{0}\right\}$.

Proof. (a). Let $p_{2}: Q \approx \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ be the projection onto the second component. Since $\bar{Y} \sim f_{1}+2 f_{2}, P_{2} \mid Y: Y \longrightarrow \mathbb{P}^{1}$ is a double cover over \mathbb{P}^{1}. Thus there are two branched point $b_{1} \neq b_{2}$ in \mathbb{P}^{1}. We put $q_{i}:=\sigma 0\left(\left.\varphi\right|_{L}\right)_{0}^{-1}\left(\left.p_{2}\right|_{Y}\right)^{-1}\left(b_{i}\right)(i=1,2)$. Then $\ell=\sigma(\bar{Y})$ and $\ell_{i}:=\sigma\left(\varphi^{-1}\left(p_{2}^{-1}\left(b_{i}\right)\right)(i=1,2)\right.$ are two lines through the point q_{i} for each i. For $b \in \mathbb{P}^{1} \backslash\left\{b_{1}, b_{2}\right\}$, $\ell=\sigma(\bar{Y})$ and $\sigma\left(\varphi^{-1}\left(p_{2}^{-1}(b)\right)\right)$ are three lines through the point $q \in \ell \backslash\left\{q_{1}, q_{2}\right\}$, since $p_{2}^{-1}(b)$ consists of two different points. This proves (a).
(b) We put $q_{0}:=\sigma(\bar{Y} \cap s) \in \ell$. Then $\ell=\sigma(\bar{Y})=\sigma(s)$ is the unique line through the point $q_{0} \in \ell$. For $y \in Y \backslash \varphi(s)$, $\ell=\sigma(\bar{Y})$ and $\sigma\left(\varphi^{-1}(y)\right)$ are two lines through a point of $\ell \backslash\left(q_{0}\right\}$. This proves (b).
Q.E.D.

Corollary 1.3 (Peternell-Schneider [6]). Let E be a non-normal hyperplane section of V_{5}. Then the singular locus
of E is a line ℓ on V, in particular, E is a ruled surface swept out by lines which intersect the line ℓ. Further $V-E \cong \mathbb{C}^{3}$ if and only if the line ℓ is of type $(-1,1)$.

Proof. By lemma (3.35) in Mori [8], the non-normal locus of E is a line ℓ on V. Since $h^{0}\left(0_{V}(1) \otimes I_{\ell}^{2}\right)=1$ and Pic $V \cong \mathrm{z}$, the linear system $\left|0_{V}^{-}(1) \otimes I_{\ell}^{2}\right|$ consists of E, where I_{ℓ} is the ideal sheaf of l. By Lemma $1, \ell$ must be the singular locus of E. Assume ℓ is of type $(0,0)$. Then, by Lemma $1, V-E \cong\left\{(x, y, z, u) \in \mathbb{C}^{4} ; x^{2}+y^{2}+z^{2}+u^{2}=1\right\} \neq \mathbb{C}^{3}$. Q.E.D.
§ 2. Construction of the universal family.

1. Let ($\mathrm{x}: \mathrm{y}$) , ($u: v$) be respectively homogeneous coordinates of the first factor and the second factor of $S:=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Let us consider the diagonal $\mathrm{SL}(2 ; \mathbb{C})$ - action on S, namely, for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}:=\operatorname{SL}(2 ; \mathbb{C})$,

$$
\left\{\begin{array}{l}
x^{\sigma}=a x+b y \\
y^{\sigma}=c x+d y \quad, \quad\left\{\begin{array}{l}
u^{\sigma}=a u+b v \\
v^{\sigma}=c u+d v
\end{array} \quad\right.
\end{array}\right.
$$

Let $\tau: S \longrightarrow \mathbb{P}^{2}$ be the double covering of \mathbb{P}^{2} given by

$$
\left\{\begin{array}{l}
\tau * x_{0}=x \otimes u \\
\tau * x_{1}=\frac{1}{2}(x \otimes v+y \otimes u) \\
\tau * x_{2}=y \otimes v
\end{array}\right.
$$

where $\left(X_{0}: X_{1}: X_{2}\right)$ be a homogeneous coordinate on \mathbb{P}^{2}. We can also define SL_{2} - action on \mathbb{P}^{2} as follow:

$$
\left\{\begin{array}{l}
x_{0}^{\sigma}=a^{2} x_{0}+2 a b x_{1}+b^{2} x_{2} \\
x_{1}^{\sigma}=a c x_{0}+(a d+b c) x_{1}+b d x_{2} \\
x_{2}^{\sigma}=c^{2} x_{0}+2 c d x_{1}+d^{2} x_{2}
\end{array}\right.
$$

for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}$.

Then, the morphism τ is $S L_{2}$ - linear, that is, $\tau\left(p^{\sigma}\right)=\tau(p){ }^{\sigma}$ for $p \in S$ and $\sigma \in S L_{2}$. Further, τ is branched along the smooth conic $C:=\left\{X_{1}^{2}=X_{0} X_{2}\right\}=\tau(\Delta)$, where $\Delta:=\Delta_{\mathbf{P}}$ is the diagonal in $\mathbb{P}^{1} \times \mathbb{P}^{1}=S$. Let f_{i} be a fiber of the projection $P_{i}: S \longrightarrow \mathbb{P}^{1}$ onto i-th factor $(i=1,2)$. Let $\pi: M:$ $=\mathbb{P}(E) \longrightarrow \mathbb{P}^{2}$ be the \mathbb{P}^{1}-bundle over \mathbb{P}^{2} associated with the vector bundle $E:=\tau_{*} \sigma_{S}\left(4 f_{1}\right)$ of rank 2 on \mathbb{P}^{2}.

Lemma 2.1. (1) $\operatorname{det}\left(\pi_{*} \sigma_{S}\left(k f_{1}\right)\right) \cong 0_{\mathbb{P}} 2^{(k-1)}$ and $c_{2}\left(\pi_{\star} O_{S}\left(k f_{1}\right)\right)=\frac{1}{2} k(k-1)$ for all $k \geq 0$.
(2) $E \otimes O_{C} \cong O_{\mathbb{P}}{ }^{(3) \oplus 0_{\mathbb{P}}^{1}}{ }^{(3)}$, where $C=\tau(\Delta)$.
(3) The natural morphism $S \longrightarrow M$ corresponding to the homomorphism $\tau * E \longrightarrow 0_{S}\left(4 f_{1}\right)$ is a closed embedding, hence, S can be considered as a divisor on M.
(4) $\quad O_{M}(S) \approx O_{E}(2) \otimes \pi * O_{\mathbb{P}} 2^{(-2)}$, where $O_{E}(1)$ is the tautological line bundle on M with respect to E.
(5) $Q_{E}(1)$ is nef, i.e., E is a semi-positive vector bundie
(6) We put $C_{M}(1):=O_{E}(1) \otimes \pi * 0 \mathbb{P}^{(1)}$. Then

$$
\begin{aligned}
H^{0}\left(M, o_{M}(1)\right) & \approx H^{0}\left(S, o_{S}\left(5 f_{1}+f_{2}\right)\right) \\
& \cong H^{0}\left(\mathbb{P}^{1}, o_{\mathbb{P}} 1(5)\right) \otimes_{\mathbb{C}} H^{0}\left(\mathbb{P}^{1}, o_{\mathbb{P}}^{1}(1)\right) .
\end{aligned}
$$

Proof. (1) Let us consider the exact sequence:

$$
0 \longrightarrow \tau_{\star} 0_{S}\left(k f_{1}\right) \longrightarrow \tau_{*} 0_{S}\left((k+1) f_{1}\right) \longrightarrow \tau_{*} 0_{f_{1}} \longrightarrow 0
$$

Now $\ell_{1}=\tau\left(f_{1}\right)$ is a line on \mathbb{P}^{2} and $0_{\ell_{1}} \cong \tau_{*} 0_{f_{1}}$. Thus, $\operatorname{det}\left(\tau_{*}{ }_{S}\left((k+1) f_{1}\right)\right) \approx \operatorname{det}\left(\tau_{*} 0_{S}\left(k f_{1}\right)\right) \otimes 0(1)$ and $C_{2}\left(\tau_{*} 0_{S}\left((k+1) f_{1}\right)\right)=\left(\operatorname{det}\left(\tau_{*} O_{S}\left(k f_{f}\right)\right) \cdot 0(1)\right)+c_{2}\left(\tau_{*} 0_{S}\left(k f_{1}\right)\right)$. Since $\tau_{*} 0_{S} \equiv 0 \oplus 0(-1)$, we are done.
(2) Let us consider the following diagram:

Since $\tau * C=2 \Delta$, we have $\tau_{*} \vartheta_{2 \Delta}\left(4 f_{1}\right) \cong E \otimes O_{C}$ and the exact sequence:

$$
\begin{gathered}
0 \longrightarrow \tau_{\star} O_{\Delta}\left(3 f_{1}-f_{2}\right) \longrightarrow E \otimes O_{C} \longrightarrow \tau_{\star} O_{\Delta}\left(4 f_{1}\right) \longrightarrow 0 \\
0_{\mathbb{P}_{1}} 1(2)
\end{gathered}
$$

To show that $E \otimes O_{C} \tilde{\sim} O_{\mathbb{P}} 1^{(3)} \oplus O_{\mathbb{P}} 1^{(3)}$, it is enough to prove that

$$
H^{0}\left(C,\left(E \otimes O_{C}\right) \otimes 0_{\mathbb{P}} 1(-4)\right) \cong H^{0}\left(0_{2 \Delta}\left(2 f_{1}-2 f_{2}\right)\right)=0 .
$$

By the above diagram, we have the exact sequences:
$0 \rightarrow P_{2 \star} O_{S}\left(-4 f_{2}\right) \xrightarrow{\varphi} P_{2 \star}{ }^{\circ} S_{S}\left(2 f_{1}-2 f_{2}\right) \longrightarrow P_{2 \star}{ }_{2 \Delta}\left(2 f_{1}-2 f_{2}\right) \longrightarrow 0$, ${ }^{\text {¹ }}$
${ }^{21}$

$$
0_{\mathbb{P}} 1^{(-4)} \quad 0_{\mathbb{P}} 1^{(-2)^{\oplus 3}}
$$

and
$0 \longrightarrow P_{2 *} 0_{\Delta}\left(f_{1}-3 f_{2}\right) \longrightarrow P_{2 \star} \mathrm{O}_{2}\left(2 f_{1}-2 f_{2}\right) \longrightarrow P_{2 \star}{ }^{0}{ }_{\Delta}\left(2 f_{1}-2 f_{2}\right) \longrightarrow 0$.

$$
{\underset{\mathbb{P}}{ },(-2), ~}_{(-2)}
$$

$$
\mathbb{O P}^{1}
$$

Hence $P_{2 *}{ }^{0}{ }_{2 \Delta}\left(2 f_{1}-2 f_{2}\right)$ is locally free and the dual homomorphism $\varphi^{\star}: 0^{0} 1^{(2)^{\oplus 3}} \rightarrow 0.1^{(4)}$ is surjective. Therefore φ^{\star} is \mathbb{P}
obtained
\mathbb{P}
from the natural surjection
$H^{0}(\mathbb{P}$ by tensoring $0_{\mathbb{P}} 1(2)$. Thus we have $P_{2 \star} O_{2 \Delta}\left(2 f_{1}-2 f_{2}\right) \cong$ $\cong 0_{\mathbb{P}} 1(-1) \oplus 0_{\mathbb{P}} 1(-1)$. Therefore we have $H^{0}\left(O_{2 \Delta}\left(2 f_{1}-2 f_{2}\right)\right)=0$.
(3) It is enough to show that the natural homomorphism Sym $^{k} E \longrightarrow \tau_{*} \dot{O}_{S}\left(4 k f_{1}\right)$ is surjective for $k \gg 0$. Since τ is finite morphism, $\tau_{*} O_{S}\left(4 k f_{1}\right) \otimes \tau_{*} O_{S}\left(4 f_{1}\right) \longrightarrow \tau_{*} O_{S}\left(4(k+1) f_{1}\right)$ is always surjective. Thus we are done.
(4) Since $\tau: S \longrightarrow \mathbb{P}^{2}$ is a double covering, there is a Ine bundle L on \mathbb{P}^{2} such that $O_{E}(2) \otimes O_{M}(-S) \cong \pi * L$. By the exact sequence:

$$
0 \longrightarrow \pi * L \longrightarrow O_{E}(2) \longrightarrow O_{E}(2) \otimes O_{S} \tilde{z} O_{S}\left(8 f_{1}\right) \longrightarrow 0
$$

we have $\operatorname{det}\left(\operatorname{Sym}^{2} E\right) \cong L \otimes \operatorname{det}\left(\tau_{*} 0_{S}\left(8 f_{1}\right)\right)$. Therefore, by (1), $L \cong 0_{\mathbb{P}} 2^{(2)}$, hence, $O_{M}(S) \cong O_{E}(2) \otimes \tau * \delta_{\mathbb{P}} 2(-2)$.
(5). We put $D:=\pi^{-1}(C)$. Then, by (2), $D \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $O_{E}(1) \otimes O_{D} \mp O_{D}\left(s_{1}+3 s_{2}\right)$, where s_{2} is a fiber of $D \longrightarrow C$ and s_{1} is a fiber of another projection $D \rightarrow \mathbb{P}^{1}$. By (4), we have $O_{E}(2) \cong O_{M}(S+D)$. Assume that there is an irreductble curve γ on M such that $\left(O_{E}(1) \cdot \gamma\right)<0$. Then, $\gamma \leqq D$ or $\gamma \leqq S$. Since $0_{E}(1) \otimes \partial_{S} \cong O_{S}\left(4 f_{1}\right)$ and $\partial_{E}(1) \otimes \partial_{D} \cong \partial_{D}\left(s_{1}+3 s_{2}\right)$, this is a contradiction.
(6) By the exact sequence

$$
\begin{gathered}
0 \longrightarrow 0_{M}(1) \otimes 0_{M}(-S) \longrightarrow 0_{M}(1) \longrightarrow 0_{M}(1) \otimes 0_{S} \longrightarrow 0, \\
2 \| \\
0_{E}(-1) \otimes \pi * 0_{\mathbb{P}_{2}}(3)
\end{gathered}
$$

we have $\pi_{\star} 0_{M}(1) \approx \tau_{\star} 0_{S}\left(5 f_{1}+f_{2}\right)$. Therefore $H^{0}\left(M, Q_{M}(1)\right) \approx$ $\approx H^{0}\left(S, O_{S}\left(5 f_{1}+f_{2}\right)\right)$.
Q.E.D.

Remark 2.1. There is a SL_{2} - action on (M, $\mathrm{O}_{\mathrm{M}}(1)$) compatible to $\tau: S \longrightarrow \mathbb{P}^{2}$. The last isomorphism in (6) is an isomorphism as a SL_{2} - module.
2. Let us consider the subvector space $L \subseteq H^{0}\left(S, O_{S}\left(5 f_{1}+f_{2}\right)\right)$ generated by the following 7 elements (cf. Lemma (1.6) in [9]) :

$$
\left\{\begin{array}{l}
e_{0}:=x^{5} \otimes u \\
e_{1}:=x^{4} y \otimes u+\frac{1}{5} x^{5} \otimes v \\
e_{2}:=x^{3} y^{2} \otimes u+\frac{1}{2} x^{4} y \otimes v \\
e_{3}:=x^{2} y^{3} \otimes u+x^{3} y^{2} \otimes v \\
e_{4}:=\frac{1}{2} x y^{4} \otimes u+x^{2} y^{3} \otimes v \\
e_{5}:=\frac{1}{2} y^{5} \otimes u+x y^{4} \otimes v \\
e_{6}:=y^{5} \otimes v
\end{array}\right.
$$

Then L is a SL_{2} - invariant subspace. By the isomorphism $H^{0}\left(M, O_{M}(1)\right) \approx H^{0}\left(S, O_{S}\left(5 f_{1}+f_{2}\right)\right)$, L can be considered as a subspace of $H^{0}\left(M, O_{M}(1)\right)$.

Lemma 2.2. (1) The homomorphism $L \otimes O_{M} \longrightarrow 0_{M}(1)$ is surjective. Especially, we have a morphism $\psi: M \longrightarrow \mathbb{P}(L) \simeq{ }^{(} \mathbb{P}^{6}$, which is SL_{2} - linear.
… (2) The image $V:=\psi(M)$ is isomorphic to the Fano 3-fold V_{5} of degree 5 in \mathbb{P}^{6}.

Proof. (1) We have only to show that $g: L \otimes 0 \mathbb{P}_{2} \longrightarrow$ $\longrightarrow E \otimes 0_{\mathbb{P}}(1)$ is surjective. Since $S L_{2}$ acts on g, the support of Coker (g) is SL_{2} - invariant. Now SL_{2} acts on \mathbb{P}^{2} with two orbits $\mathbb{P}^{2} \backslash C$ and C. First, take a point $p \in \mathbb{P}^{2} \backslash C$. Then $g \otimes \mathbb{C}(p): L \longrightarrow\left(E \otimes O_{\mathbb{P}}{ }^{2}(1)\right) \otimes \mathbb{C}(p) \quad$ is described as follow:

Let $\alpha: L \otimes O_{S} \rightarrow O_{S}\left(5 f_{1}+f_{2}\right)$ be the natural homomorphism and let $\alpha(q): L \longrightarrow 0_{S}\left(5 f_{1}+f_{2}\right) \otimes \mathbb{C}(q) \cong \mathbb{C}$ be the evaluation map for $q \in S$. Then $g \otimes \mathbb{C}(p): L \longrightarrow \mathbb{C}^{\oplus 2}$ is nothing but $\alpha\left(q_{1}\right) \oplus \alpha\left(q_{2}\right): L \longrightarrow \mathbb{C}^{\oplus 2}$, where $\left\{q_{1}, q_{2}\right\}:=\psi^{-1}(p)$. For example, take a point $p=(0: 1: 0) \in \mathbb{P}^{2}$. Then $q_{1}=((1: 0),(0: 1))$ and $q_{2}=((0: 1),(1: 0))$ in $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then the calculation is as follow:

$$
\left\{\begin{array}{l}
\alpha_{1}\left(e_{0}\right)=\alpha_{1}\left(e_{2}\right)=\ldots=\alpha_{1}\left(e_{6}\right)=0, \alpha_{1}\left(e_{1}\right)=\frac{1}{5} \\
\alpha_{2}\left(e_{0}\right)=\ldots=\alpha_{2}\left(e_{4}\right)=\alpha_{2}\left(e_{6}\right)=0, \alpha_{2}\left(e_{5}\right)=\frac{1}{5},
\end{array}\right.
$$

where $\alpha_{1}:=\alpha_{1}\left(q_{1}\right), \alpha_{2}:=\alpha_{2}\left(q_{2}\right)$.

Therefore $g \otimes \mathbb{C}(p)$ is surjective for any $p \in \mathbb{P}^{2} \backslash C$.

Next take $p:=(1: 0: 0) \in C, q=((1: 0),(1: 0)) \in S$. Let $z_{1}=\frac{y}{x}, z_{2}=\frac{v}{u}$ be the local coordinate around. q. Then $m_{p} \dot{O}_{S}=\left(z_{1}+z_{2}, z_{1} \cdot z_{2}\right) \cong m_{q}$. The evaluation map $q \otimes \mathbb{C}(p): L \longrightarrow \mathbb{d}^{\oplus 2}$ is now the composition

$$
B: L \longrightarrow L \otimes O_{S} \longrightarrow 0_{S} / m_{p} 0_{S} \approx \mathbb{C} \mathbb{1} \oplus \mathbb{C} \bar{z}_{1} .
$$

Since we have isomorphisms

$\beta: g \otimes \mathbb{C}(p)$ is calculated by evaluating $x=u=1$ and $y=\bar{z}_{1}=-v=-\bar{z}_{2}$. Therefore $\beta\left(e_{0}\right)=1, \beta\left(e_{1}\right)=\frac{4}{5} \bar{z}_{1}$, $B\left(e_{2}\right)=0, B\left(e_{3}\right)=0, B\left(e_{4}\right)=0, B\left(e_{5}\right)=0$, $B\left(e_{6}\right)=0$. Thus $g \otimes \mathbb{C}(p)$ is surjective for any $p \in C$.
(2) Let $h_{0}, h_{1}, \ldots, h_{6} \in L^{v}$ be the dual basis of $\left\{e_{0}, e_{1}, \ldots, e_{6}\right\}$. Since $\mathbb{P}(L) \cong \mathbb{L}^{V} \backslash\{0\} / \mathbb{C}^{*}$, we denote the point of $\mathbb{P}(L)$ corresponding to $\sum_{j=0}^{6} \lambda_{j} h_{j} \in L^{v} \mid\{0\}$ by $\left[\sum_{j=0}^{6} \lambda_{j} h_{j}\right]$.

If $\psi(M)$ contains the point $\left[h_{1}-h_{5}\right] \in \mathbb{P}(L)$, then $\psi(M)$ contains the SL_{2} - orbit $\mathrm{SL}_{2}\left[\mathrm{~h}_{1}-\mathrm{h}_{5}\right]$ and its closure $\overline{S L_{2}\left[h_{1}-h_{5}\right]}$. On the other hand, we know that the closure $\overline{\mathrm{SL}_{2}\left[\mathrm{~h}_{1}-\mathrm{h}_{5}\right]}$ is isomorphic to V_{5} by $[\S 3,7]$. Here $h_{1}-h_{5}$ corresponds to $f_{6}(x, y)=x y\left(x^{4}-y^{4}\right)$ in their notation. Therefore we have only to show that $\psi(M)$ contains $\left[h_{1}-h_{5}\right] \in \mathbb{P}(L)$. Let $P:=(0: 1: 0) \in \mathbb{P}^{2}$. Then by (1), the evaluation map $g \otimes \mathbb{C}(p): L \longrightarrow \mathbb{C} \oplus \mathbb{C}$ with $(g \otimes \mathbb{C}(p))\left(e_{1}\right)=\left(\frac{1}{5}, 0\right)$, $(g \otimes \mathbb{C}(p))\left(e_{5}\right)=\left(0, \frac{1}{5}\right)$, and $(g \otimes \mathbb{C}(p))\left(e_{j}\right)=(0,0)(j \neq 1,5)$. Therefore the point $q \in \pi^{-1}(p) \approx \mathbb{P}^{1}$ corresponding to the linear function $\mathbb{C} \oplus \mathbb{C} \ni(a, b) \longmapsto a-b \in \mathbb{C}$ is mapped to $\left[h_{1}-h_{5}\right]$ by ψ.
Q.E.D.

Remark 2.2. (1) By Lemma (1.5) in [8], V: $=\psi(M)$ has three SL_{2} - orbits $\psi(\mathrm{M}) \backslash \psi(\mathrm{S}), \psi(\mathrm{S}) \backslash \psi\left(\Delta_{\mathbb{P}} \mathrm{l}^{\prime}\right)$, and $\psi\left(\Delta_{\mathbb{P}} 1\right)$, in particular, $\psi\left(\Delta_{\mathbb{P}} 1\right)$ is a smooth rational curve of degree 6 in V.
(2) $\left.\psi\right|_{S}: S \longrightarrow \psi(S)$ is the same morphism as in Lemma (1.6) in [8]. Especially, $\left.\psi\right|_{S}$ is one to one and $\operatorname{sing} \psi(S)=\psi\left(\Delta_{\mathbb{P}}{ }^{1}\right)$, where Sing $\psi(S)$ is the singular locus of $\psi(S)$.

Let us denote $\psi(S)$ and $\psi\left(\Delta \mathbb{P}^{1}\right)$ by B and Σ.

Lemma 2.3. (1) ψ is a finite morphism of degree 3.
(2) ψ is étale outsides B
(3) $\psi * B=$ S $+2 D$, hence ψ is not Galois.
(4) We put $M_{t}:=\pi^{-1}(t)$ for $t \in \mathbb{P}^{2}$. Then $\ell_{t}:=\psi\left(M_{t}\right)$ is a line of $V \cong \mathbb{P}^{6}$ and $\left.\psi\right|_{M_{t}}: M_{t} \rightarrow \ell_{t}$ is an isomorphism.
(5) For $t_{1} \neq t_{2} \in \mathbb{P}^{2}$, we have $\ell_{t_{1}} \neq \ell_{t_{2}}$.
(6) Let ℓ be a line in $V \cong \mathbb{P}^{6}$. Then there is a point $t \in \mathbb{P}^{2}$ such that $\ell=\ell_{t}$.

Proof. (1) By Lemma (1.1) - (5), $0_{M}(1)$ is ample. Therefore ψ is a finite morphism and $\psi * O_{V}(1) \cong O_{M}(1)$. Thus $\operatorname{deg} \psi=\left(0_{M}(1)\right)^{3} /\left(O_{V}(1)\right)^{3}=15 / 5=3$.
(2) Since VIB is an open orbit of SL_{2}, ψ is étale over V - B .
(3) Since $\left(O_{V}(1)^{2} \cdot B\right)=\left(0_{M}(1)^{2} \cdot S\right)=\left(0_{S}\left(5 f_{1}+f_{2}\right)\right)_{S}^{2}=10$, we have $O_{V}(B) \cong O_{V}(2)$. Therefore $O_{M}(\psi * B-S) \cong \pi * \mathcal{O}_{\mathbb{P}} 2^{(4)}$. Since $\psi^{*} B-S$ is a $S L_{2}$ - invariant effective divisor, its support must be D. Thus $\psi * B=S+2 D$.
(4) It is clear since $\left(\psi * \theta_{V}(1) \cdot M_{t}\right)=\left(0_{M}(1) \cdot M_{t}\right)=1$.
(5) Assume that $\ell_{t_{1}}=\ell_{t_{2}}$. Since $\left.\psi\right|_{S}: S \longrightarrow B$ is one to
one, we have $M_{t_{1}} \cap s=M_{t_{2}} \cap s$. Hence $t_{1}=t_{2}$.
(6) Let ℓ be a line of V. If $\ell \notin B$, then ℓ contains a point $p \in V \backslash B$. By Corollary (2.1) in § 2 , we have \#\{lines through $p\} \leq 3$. Thus by (4), (5) above, \{lines through p\} = $=\left\{\ell_{t_{1}}, \ell_{t_{2}}, \ell_{t_{3}}\right\}$, where $\left\{t_{1}, t_{2}, t_{3}\right\}=\pi\left(\psi^{-1}(p)\right)$. Therefore $\ell=\ell_{t_{2}}$. If $\ell \cong B$, then $\ell=\ell_{t}$ for some $t \in C$, because $\left.\psi\right|_{D}: D \longrightarrow B$ is one to one by (3) and $O_{M}(1) \otimes O_{D} \cong O_{D}\left(s_{1}+5 s_{2}\right)$ by Lemma 2.1-(2).

Theorem I. The \mathbb{P}^{1}-bundle $\pi: M \longrightarrow \mathbb{P}^{2}$ is the universal family of lines on $V=V_{5}$.

Proof. Let T be the space of lines on V, that is, T is a subscheme of the Grassmanian $G(2,7)$ parametrizing lines of $V \subseteq \mathbb{P}^{6}$. Since $N_{\ell \mid V} \approx 0 \oplus 0$ or $0(-1) \oplus 0(1)$ for any line ℓ on V, we have $H^{1}\left(\ell, N_{\ell \mid V}\right)=0$ and $H^{0}\left(\ell, N_{\ell \mid V}\right) \cong \mathbb{C}^{2}$. Therefore T is smooth surface. By the universal property of T, we have a morphism $\delta: \mathbb{P}^{2} \longrightarrow T$ corresponding to the family $(\pi, \psi): M \longleftrightarrow \mathbb{P}^{2} \times V$. By Lemma (1.3)-(5), (6), δ is one to one surjective. Therefore δ must be isomorphic.

We put $U_{n}:=\{x \in V$; there is at most n lines through x) . Then,

Corollary 2.1. $U_{3}=V, U_{2}=B$ and $U_{1}=\Sigma$.
§ 3. Compactifications of \mathbb{d}^{3}

Take any point $t \in C C \mathbb{P}^{2}$ and put $\ell_{t}:=\psi\left(\pi^{-1}(t)\right)$. Then ℓ_{t} is a line of type $(-1,1)$. Let $\sigma: V^{\prime} \longrightarrow V$ be blowing up of V along the line ℓ_{t} and \bar{E}_{t} be the proper transform in V^{\prime} of the ruled surface E_{t} swept out by lines which intersect the line ℓ_{t}. Then, by Lemma 1.1 - (b), we have the birational morphism $\varphi: V^{\prime} \longrightarrow W_{t}$ of V^{\prime} onto a smooth quadric hypersurface $W_{t} \cong Q^{3}$ in \mathbb{P}^{4}, a quadric cone $Q_{t}:=\varphi\left(\sigma^{-1}\left(\ell_{t}\right)\right) \cong \Phi_{0}^{2}$, and a twisted cubic curve $Y_{t}:=\varphi\left(\bar{E}_{t}\right) \longleftrightarrow Q_{t}$. Let g_{t} be the unique generating line of Q_{t} such that $Y_{t} \cap g_{t}=\left\{v_{t}\right\}$, where v_{t} is the vertex of Q_{t}. Take any point $v \in g_{t} \backslash\left\{v_{t}\right\} \approx \mathbb{C}$. Let Q_{v} be the quadric cone in W_{t} with the vertex v, and put $H_{t}^{V}:=\sigma\left(\varphi^{-1}\left(Q_{v}\right)\right)$.

Then, by (4.3) in [2] and [6] (see also § 1), we have the following

Lemma 3.1. (1) For any $t \in C,\left(V, E_{t}\right)$ is a compactification of \mathbb{C}^{3} with the non-normal boundary E_{t}. Conversely, let (V, H) be a compactification of \mathbb{d}^{3} with a non-normal boundary H. Then there is a point $t \in C$ such that $H=E_{t}$.
(2) For any $t \in \mathbb{C}$ and any $v \in g_{t}\left\{v_{t}\right\} \cong \mathbb{C},\left(V, H_{t}\right)$ is a compactification of \mathbb{C}^{3} with the normal boundary H_{t}^{V}. Conversely, let (V, H) be a compactification of \mathbb{C}^{3} with a normal boundary H. Then there is a point $t \in C$ and a point
$v \in g_{t} \backslash\left\{v_{t}\right\}$ such that $H=H_{t}^{v}$.

Remark 3.1. Let Z_{t} be the line \mathbb{P}^{2} which is tangent to C at the point $t \in C$. Then $E_{t}=\psi\left(\pi^{-1}\left(z_{t}\right)\right)$ and $\pi^{-1}\left(z_{t}\right) \backslash\left(s_{t} \cup \pi^{-1}(t)\right) \cong E_{t} \backslash \ell_{t}$, where s_{t} is the negative section of $\pi^{-1}\left(z_{t}\right) \cong \mathbb{F}_{3}$.

We put
$\Lambda_{1}:=\left\{\lambda \in \ddot{P}^{6} ; H_{\lambda}\right.$ is a non-normal hyperplane section of V such that $\left.V \backslash H_{\lambda} \cong \mathbb{C}^{3}\right\}$, and

$$
\begin{aligned}
\Lambda_{2}:= & \left\{\lambda € \mathbb{P}^{6} ; H_{\lambda} \text { is a normal hyperplane section of } V\right. \\
& \text { such that } \left.V \backslash H_{\lambda} \cong \mathbb{C}^{3}\right\},
\end{aligned}
$$

where $\mathbb{P}^{6}:=\mathbb{P}(\underline{L})$.

Then we have

Corollary 3.1. $\quad \operatorname{dim}_{\mathbb{C}} \Lambda_{1}=1$ and $\operatorname{dim}_{\mathbb{C}} \Lambda_{2}=2$.

Corollary 3.2. For each $t \in C,\left\{\lambda \in \Lambda_{\perp} ; \ell_{t} \subseteq H_{\lambda}\right\}=$ \{one point\} and $\left\{\lambda \in \Lambda_{2} ; \ell_{t} \cong H_{\lambda}\right\} \cong \mathbb{C}$.

Now, take a point $t_{0}=(1: 0: 0) \in C$. Then $\ell_{t_{0}} \hookrightarrow \mathbb{P}^{6}$ is written as follow:

$$
\ell_{t_{0}}=\left\{h_{2}=h_{3}=h_{4}=h_{5}=h_{6}=0\right\}
$$

(see the proof of Lemma 2.2-(1)).

Since V is $S L_{2}$ - invariant, Λ_{1} and Λ_{2} are also SL_{2} - invariant

By Lemma (1.4) of [9], the 2 -dimension SL_{2} - orbits are $S L_{2} x^{3} y^{3}, \quad S L_{2} x^{4} y^{2}=S L_{2} x^{2} y^{4}, \quad S L_{2} x^{5} y=S L_{2} x y^{5}$, and $\mathrm{SL}_{2} y^{6}=\mathrm{SL}_{2} \mathrm{x}^{6}$ is the only one SL_{2} - orbit of dimensional one on \mathbb{P}^{6}. Therefore we have $\Lambda_{1}=S L_{2} y^{6}$. By an easy calculation, we have

$$
\begin{aligned}
& \left\{\lambda \in \operatorname{SL}_{2} x^{3} y^{3} ; \ell_{t_{0}} \subseteq H_{\lambda}\right\} \cong \mathbb{C} \cup \mathbb{d}, \\
& \left\{\lambda \in \operatorname{SL}_{2} x^{2} y^{4} ; \ell_{t_{0}} \subseteq H_{\lambda}\right\} \approx \mathbb{C} u \mathbb{C}, \\
& \left\{\lambda \in \operatorname{SL}_{2} x^{5} ; \ell_{t_{0}} \cong H_{\lambda}\right\} \cong \mathbb{C} .
\end{aligned}
$$

Thus, by Corollary 3.2, we must have $\Lambda_{2}=S L_{2} x y^{5}$. We put $\Lambda:=\Lambda_{1} U \Lambda_{2}$. Then $\Lambda=\overline{S L_{2} X y^{5}}$. Therefore, by Lemma (1.6) of [9], Λ is the image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with diagonal $S L_{2}$ - operations by a linear system L of bidegree $(5,1)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Thus we have

Theorem 3.1. $\Lambda_{1}=\operatorname{SL}_{2} Y^{6}, \Lambda_{2}=S L_{2} X Y^{5}$ and $\Lambda=\overline{S L_{2} X Y^{5}}$.

In particular, $\Lambda_{1} \cong \mathbb{P}^{1}$ and $\Lambda_{2} \approx \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\{$ diagonal\}.

We will show explicitly below that for any $\lambda \in \Lambda$, $V_{\backslash H_{\lambda}} \approx \mathbb{C}^{3}$.

By p. 505 in [9], $V:=V_{5} \longrightarrow \mathbb{P}^{6}$ can be written as follow:

$$
\left\{\begin{array}{l}
h_{0} h_{4}-4 h_{1} h_{3}+3 h_{2}^{2}=0 \\
h_{0} h_{5}-3 h_{1} h_{4}+2 h_{2} h_{3}=0 \\
h_{0} h_{6}-9 h_{2} h_{4}+8 h_{3}^{2}=0 \\
h_{1} h_{6}-3 h_{2} h_{5}+2 h_{3} h_{4}=0 \\
h_{2} h_{6}-4 h_{3} h_{5}+3 h_{4}^{2}=0
\end{array}\right.
$$

where $\left(h_{0}: h_{1}: h_{2}: h_{3}: h_{4}: h_{5}: h_{6}\right)$ is the homogeneous coordinate of \mathbb{P}^{6}.

$$
\text { First, }(0: 0: 0: 0: 0: 0: 1) \in \mathrm{SL}_{2} y^{6} \text {. In } V \cap\left\{h_{6} \neq 0\right\}
$$

we consider the following coordinate transformation.

$$
\left\{\begin{array}{l}
x_{0}=h_{0}-9 h_{2} h_{4}+8 h_{3}^{2} \\
x_{1}=h_{1}-3 h_{2} h_{5}+3 h_{3} h_{4} \\
x_{2}=h_{2}-4 h_{3} h_{5}+3 h_{4}^{2} \\
x_{3}=h_{3} \\
\because x_{4}=h_{4} \\
x_{5}=h_{5}
\end{array}\right.
$$

Then we have

$$
V \cap\left\{h_{6} \neq 0\right\} \cong\left\{x_{0}=x_{1}=x_{2}=0\right\} \approx \mathbb{a}^{3},
$$

and the line $\left\{h_{2}=h_{3}=h_{4}=h_{5}=h_{6}=0\right\}$ is the singular locus of the boundary $V \cap\left\{h_{6}=0\right\}$.

Next, $(0: 0: 0: 0: 0: 1: 0) \in \mathrm{SL}_{2} \mathrm{xy}{ }^{5}$. In $V \cap\left\{h_{5} \neq 0\right\}$, we consider the coordinate transformation

$$
\left\{\begin{array}{l}
x_{0}=h_{0}-3 h_{1} h_{4}+2 h_{2} h_{3} \\
x_{1}=h_{1} \\
x_{2}=3 h_{2}-h_{1} h_{6}-2 h_{3} h_{4} \\
x_{3}=4 h_{3}-h_{2} h_{6}-3 h_{4}^{2} \\
x_{4}=h_{4} \\
x_{6}=h_{6} \quad, \quad h_{5}=1
\end{array}\right.
$$

Then we have

$$
v \cap\left\{h_{5} \neq 0\right\} \approx\left\{x_{0}=x_{2}=x_{3}=0\right\} \cong \mathbb{C}^{3},
$$

and the boundary $V \cap\left\{h_{5}=0\right\}$ has a singularity of A_{4}-type at the point (1:0:0:0:0:0:0).
non-normal (resp. normal with a rational double point of $\mathrm{A}_{4}{ }^{-}$ type), and further $V \backslash H_{\lambda} \cong \mathbb{C}^{3}$.

Since Λ_{1} and Λ_{2} are SL_{2} - orbits, we have the following Corollary 3.3 (Peternell-Schneider [6]). Let (V,H) and $\left(V, H^{\prime}\right)$ be two compactifications of \mathbb{C}^{3} with normal (resp. non-normal) boundaries H and H^{\prime}. Then there is an automorphism α of V such that $H^{\prime}=\alpha(H)$.

References

[1] T. Fujita: On the structure of polarized manifolds with total deficiency one, II, J. Math. Soc. Japan, 33 (1981), 415-434.
[2] M. Furushima: Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space $\mathbb{4}^{3}$, Nagoya Math. J. 104 (1986), 1-28.
[3] M. Furushima-N. Nakayama: A new construction of a compactification of \mathbb{a}^{3} which has second Betti number one, preprint Max-Planck-Institut für Mathematik in Bonn, 1987.
[4] F. Hirzebruch: Some problems on differentiable and complex manifolds, Ann. Math. 60, (1954), 213-236.
[5] V.A. Iskovskih: Fano 3-fold I, Math. U.S.S.R. Izvestija, 11 (1977), 485-527.
[6] Th. Peternell-M. Schneider: Compactifications of \mathbb{d}^{3}, preprint 1987.
[7] M. Miyanishi: Algebraic methods in the theory of algebraic threefolds, Advanced study in Pure Math. 1, 1983 Algebraic varieties and Analytic varieties, 66-99.
[8] S. Mori: Threefolds whose canonical bundle are not numerical effective, Ann. Math., 116 (1982), 133-176.
[9] S. Mukai-h. Umemura: Minimal rational threefolds, Lecture Notes in Math. 1016, Springer-Verlag (1983), 490-518.

