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Introduction. A smooth projective algebraic 3-fold V

over the field € is called a Fano 3-fold if the anticano-
nical divisor --KV is ample. The integer g = g(V) = % (--KV)3
is called the genus of the Fano 3-fold V . The maximal integer
r 2 1 such that O(-KV) s H* for some (ample) invertible sheaf
H € Pic V 1is called the inde# of the Fano 3-fold V . Let V

be a Fano 3~fold of the index r = 2 and the genus g = 21
which has the second Betti number bz(V) = 1 . Then V can be
embedded in ®° with degree 5, by the linear system |H| , where
0(-K,) = u?

by V

(see Iskovskih [5]). We denote this Fano 3-fold V

5 -

V5 can be also obtained as the section of the Grassmannian

G(2,5) C—eﬁmg of lines in 2P4 by 3 hyperplanes in general po-

sition.

There are some other constructions of the Fano 3-fold V5
(cf. Fujita [1], Mukai-Umemura [9] and Furushima-Nakayama [3]).

But so obtained Vs's are all projective equivalent (cf. ([5]).

The remarkable fact on Vg is that Ve is a complex

analytic compactification of m3 which has the second Betti

number one (see Problem 28 in Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal

family of lines on Ve and determine the hyperplane sections



which can be the boundary of E3 in V5 .

In § 1, we will summarize some basic results about V5
following to Iskovskih [5], Fujita [1] and Peternell-Schneider
[6]. In § 2, we will construct a IP1-bund1e P(E) over IP2 '
where £ 1s a locally free sheaf of rank 2 on ZPZ , and a
finite morphism ¢ : IP(E) —> Vg C—»IPG- of TP(E) onto V5
applying the results by Mukai-Umemura [(9]. Further, we will

show that the :P1 - bundle IP(E) 1is in fact the universal family
of lines on V5 . In § 3, we will study the boundary of E3 in

. 3
Ve and the set {g ¢ }ov(1)| i Vg\H = €7}
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for the hospitality and encouragement.



§ 1. Basic facts on V5 .

Let V: = V5 be a Fano 3-fold of degree 5 in IP6 (see:
Introduction) and { = IP1 is a line on V . Then the normal

bundle NE.IV of £ in V <can be written as follow:

(a) N£|V 3 02 & 0£ , or
(b) N£|V = Oz(- 1) @ 02(1)
We will call a line £ of the type (0, 0) (resp. (-1, 1})

if N!LlV is of the type (a) (resp. type (b)) above.

Let 0:V' — V be the blowing up of V along the line

-1 1

£ , and put L:=o0 (£) . Then L' =T xP' if £ is of

type (0,0) , and L" T, if £ is of type (-1,1) . Let

f1 ' f2 be respectively fibers of the first and second projection

of IP1 xIP1 onto IF’1 , and let s , £ Dbe respectively the

negative section and a fiber of- F, . Let H be a hyperplane

section of V . Since the linear system |c*H-L;| on V' |has
no fixed component and no base point and since ho('0~(c*H—L"')) =5
and (cf*H—Li‘)3 = (<:v="H-L*l)2 - L" = 2 , the linear system

|o*H - L‘l defines a birational morphism: ¢ : = © Y —
. |o*H-L" |

—_ W L>IE-’4 of V' onto a quadric hypersurface W in IP4 ’

in particular, Q: = ¢@(L') is a hyperplane section of W . Let

E: = E!L be the ruled surface swept out by lines which intersect



the line £ and E' the proper transform of E in V' ,

Lemma 1.1 (Iskovskih [5], Fujita (1]). W 1is a smooth

quadric hypersurface in ZP4 and Y : = ¢(E) 1is a twisted cubic

curve contained in Q . In particular, ¢:V' —> W is the

blowing up of W along the curve Y . Further, we have the

following.
(a) If £ is of type (0,0) , then o : Lt —> Q EZP1xE’ ’
L'
and ¥ ~ £,+2f, in L" .
(b) If £ is of type (=1,1) , then o :L' —>Q = Q7
Ll
(a quadric cone) is the contraction of the negative section s of
L}, = F, , and ¥ ~ s+ 3f 4in L' .
In (a) and (b), we denote the proper transform of Y <— Q
in L' by Y
Corollary 1.1. (a) If £ 1is of type (0, 0) , then
E sF, . (b) If £ is of type (=-1,1) , then E' T,
Proof. Let NYIW be the normal bundle of Y in W . Then
NYlw s OY(3)' ® 0y(4) if £ 1is of the type (0, 0) , and
NYlW 5 OY(Z) @ QY(S) if Y is of type (=-1,1) .

Corollary 1.2. (a) If £ is of type (0, 0) , then there



are two points dq # 95 of £ such that (i) there are two lines
in V through the point q; (i =1,2) , and (ii) there are three

lines in V through every point g of £\{ag }

1092
(b) TIf £ 1is of type (-1, 1) , there is exactly one point
d, of £ such that (i) £ is the unique line in V through the

point dg - and (ii) there are two lines in V through every point

q of £\{q0}

Proof. (a) Let P Q s ]P1 xJP1 —>]P‘I be the projection

onto the second component. Since Y ~ f1+2f2 ' pZJY : Y —~>JP1

1

is a double cover over P . Thus there are two branched point

b, # b, in P . We put q, @ = c°(w|Li):1(p2|Y)-1(bi) (i =1, 2)
Then £ = o(¥) and £, :=o(e '(p, (b)) (i =1,2) are two
lines through the point qy for each i . For b €21P1\{b1 ,b2} '
£ = o(Y) and c(w-1(p£1(b))) are three lines through the point
q € £\{q1 ,qz} , Since 951(b) consists of two different points.

This proves (a).

(b) We put dg ¢ = c(¥ns) € £ . Then £ = o(Y) = o(s) is
the unique line through the point q, € £ . For y € Y\o(s) ,
£ = o(¥) and c{w_1(y)) are two lines through a point of

L\(qo} . This proves (b).

Corcllary 1.3 (Peternell-Schneider [6]). Let E be a

non-normal hyperplane section of V5 . Then the singular locus



of E is a line £ on V , in particular, E is a ruled
surface swept out by lines which intersect the line £ . Further

V-E s ¢3 if and only if the line £ is of type (-1, 1) .

Proof. By lemma (3.35) in Mori [8], the non~normal locus

of E 1is a line £ on V . Since ho(Ov(1) ® Ii) = 1 and

Pic V s Z , the linear system |0§(1) ® Ii! consists of E ,
where I£ is the ideal sheaf of £ . By Lemma 1, £ must be the
singular locus of E . Assume £ is of type (0, 0) . Then, by
Lemma 1, V-E = {(x,y,z,u) € ¢4 : x2-+y2-+22-+u2 =1} # E3 .

Q.E.D.



§ 2. Construction of the universal family.

1. Let (x:y) , (u:v) be respectively homogeneous

coordinates of the first factor and the second factor of
1 1

S:=1 xIP . Let us consider the diagonal SL(2; C) - action
on S , namely, for o = a b € SL, : = SL(2:;T) ,
c d 2
o of
X~ = ax + by u’ = au+ bv
o}
y0=cx+dy ’ V = cu+dv

Let 1T:85 —>TP be the double covering of I92 given by

{T*X, = (x @ v+y @ u)

where (xo : X :X‘z) be a homogeneous coordinate on JP2 . We can

1
also define SL2 - action on JP2 as follow:

(T _ 2 2
_XO = a X+ 2abX, +b X,
O —
1X] = acXy + (ad + be) X, + bdX,
&xg = c2x0'+ 2cdx, + d2X2



ab

for o = (c a

) e s,
Then, the morphism 1 is SL, - linear, that is, r(pc)-= T(p)O

for p €S and o € SL, . Further, 1t 1s branched along the

smooth coniec C: = {X1 = xoxz} = 1{(A) , where A: = A is the
P

diagonal in :m1 nm1 = S . Let fi be a fiber of the projection
Pi : S ——:-]P1 onto i-th factor (1 =1,2) . Let mw:M:
=P (E) ——>-JP2 be the IP1-bundle over II?2 associated with the
vector bundle E: = T*OS(4f1) of rank 2 on P>

Lemma 2.1. (1) det(m,0_.(kf.)) = 0O (k-1) and

*S 1 E,Z

. ) 1 _
cy(mOg(kf)) = 5 k(k=-1) for all k 20

(2) E®CG. 0 ,(3) ®0 .(3) , where C = t(a)
i P
(3) The natural morphism S —> M corresponding to the
homomorphism T*E —> Oé(4f1) is a closed embedding, hence, S

can be considered as a divisor on M .

(4) Oﬂ{s) = 0%(2) ® ﬁ*OI)Z(-Z) , where 0?(1) is the
tautological line bundle on M with respect to E

(5) OE(1) is nef , i.e., E is a semi-positive vector

bundie

(6) We put 0,(1) : = OE(1) ® m*0 . Then

(1)
M E,Z



n

0 0
H™ (M ,OM(1)) H (S, os(5f1+ fz))

g% '

u

0 1
, 0 (5)) L H (P , 0 (1))
P 1 T n>1

Proof. (1) Let us consider the exact sequence:

0 —> 1,05(kf,) ~—> 1,0 ((k+1)f,) —> 1',‘\,0f1 —> 0 .

Now £, = T(f,) is a line on :[P2 and 0 = 1,0 . Thus,
1 1 f..l f1

det(r*OS((k-+1)f1)) = det(T1,0g(kf,)) ® 0(1) and
cé(T*Os((k-+1)f1)) = (det{r*osjkf1)) .0(1))-+c2(r*os§kf1)) . Since

T*OS =0 ®0(-1) , we are done.

(2) Let us consider the following diagram:

0

l

0 O'A(Sf1 - f

1 |

0 —->-Q'T-S(2f1 -2f2) —_— O.S(4f1) —_ O.A(4f1) — 0

|

0 —»QS(3f1-f2) OS(4f1) —"O'ZA(4f1) —> 0

| l

0"'A(3f1 -fz) 0

|

0

5)
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Since 1*C = 2A , we have T*OzA(4f1) = E @’OC and the exact

sequence:

0 —> 'r,,,OA(Iif1 -f2) —> E @ OC —> T,0,04£,) —> 0

!‘II ]
0- 1(2) 0 ,(4)
P r

1(3) , it is enough to prove

To show that E ® 0"C = ( 1(3) ® 0
P r

that

in

0
H(C, (E®0,) 80 ,(-4))

0, -
H (0, ,(2£, - 2£.)) = O
P 20°°F1 7 %2

By the above diagram, we have the exact sequences:

(D .
0 —> P, 04 (=4£,) —> P, 0. (2£,-2£,) —> P,,0,,(2£,-2£,) —> 0 ,

R 2l

0 (-4) 0 ,(-2%
P

0 —> PZ*&A(f1-3f2) — Pzg%a(2f1-2f2) —_— PZ*OA(2f1-2f2) —> 0
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Hence P,,0,,(2f, - 2f

1 2) is locally free and the dual homomorphism

W* : Q- 1(2)93 > . 1(4) ié'surjective. Therefore o* 1is
r P
obtained from the natural surjection H0(2P1,0(2)) ® 0 1 > 0 1(2)
r )i
by tensoring 03)1(2) . Thus we have P,,0,,(2f,-2f,) =
= 0 1(— 1) @ 0 1(- 1) . Therefore we have H0(02A(2f1- 2f2)) =0 .
P r

(3) It is enough to show that the natural homomorphism
Sym"E — T.0g(4kf,) is surjective for k >> 0 . Since 1T is
finite morphism, T*OS(4kf1) ® T;OS(4f1) — 1;08(4(k-+1)f1) is

always surjective. Thus we are done.

(4) Since T1T:8 — E’z is a double covering, there is a
line bundle L on 2@2 such that OE(Z) ® OM(-S) = m*L

By the exact sequence:
0 —> ¥l —> 0.(2) —> 0.(2) ® 0y = 0,(8f)) —> 0,

we have det(Sym2E) = L ® det(r*05(8f1)) . Therefore, by (1),

L =0 2(2‘) , hence, 0_(S) = 05(2) ® t*0 ,(=2) .

M P

(5} - We put D: = w_1(C) . Then, by (2), D 52P1 ﬁP1 and

05(1) @'OD 3 Ob(s1+ 352) , wWhere s, is a fiber of D — C
1

and s, is a fiber of another projection D — I . By (4), we
have OE(Z) H OM(S+~D) . Assume that there is an irreducible curve
Yy on M such that (GE(1) Y} <0 . Then, yegD or yg¢S8

Since 0%(1) @'OS = OS(4f1) and OE(1) ® OD 3 OD(514-332) , this

is a contradiction.
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(6) By the exact sequence

0 —> OM(1) ® OM(-S) —_— OMH) ——>—OM(1) ® U-'S — 0 ,

L ) 4l

OE(-1) @ ﬂ*0ﬁ>2(3) OS(5f1+f2)

: 0 -
we have m,0,(1) = 7,0,(5f, +f,) . Therefore H (M, Gy (1)) =
"

S H (S, 0(5E, +£,))

Q.E.D.

Remark 2.1. There is a SL, - action on (M, OM(T))
compatible to T :S -—>IL>2 . The last isomorphism in (6) is an

isomorphism as a SL2 - module

2. Let us consider the subvector space L ¢ HO(S ' Os(Sf1 + fz))

‘generated by the following 7 elements {(cf. Lemma (1.6} in [9])

5

( . =
ey ¢ xT @ u
4 1 .5
e1:=xy@u+g-x. ® v
e2:=x3y2®u+%x4jr@v
1 €3 =x2y3®u+x3y2®v

e4:-%xy4@u+x2y3®v
1.5 4
es. 3 ®u+xy O vV

ysev
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Then L 1is a SL2 - invariant @ subspace. By the isomorphism

HO(M ’ OM('I)) & HO(S ' 08(51‘31 + f2)) , L can be considered as a

subspace of HO(M ’ OMH))

Lemma 2.2. (1) The homomorphism L @ OM —_— OM(1) is
surjective. Especially, we have a morphism ¢ :M —IP(L) = TP ,

which is SL2 - linear .

(2) The irhage V:= (M) is isomorphic to the Fano 3-fold

VS of degree 5 in II:"6

Proof. (1) We have only to show that g:L & 0

Ir

—> E ® 0 ,(1) is surjective. Since SL, acts on g , the
Ir

2

support of Coker(g) is SL, - invariant . Now SL'2 acts on 192

with two orbits JP2\C and C . First, take a point p €IPZ\C
Then g ® T(p) : L —> (E® 0 ,(1)) ® Cfp) 4is described as follow:
P
Let a:L @ AOS — (J'S(Sf1 + f2) be the natural homomorphism

and let «a(g) : L —> OS(Sf‘1 + f2) ® C(g) = € be the evaluation map

for g€ S . Then g ® C(p) : L —> (L‘Q?' is nothing but
a(q1) o a(qz) : L — 0:@2 , wWhere {q1 ’ q2} : = 11!-1(.91 . For example,
take a'point p = (0:1:0) €’ . Then q, = ((1:0), (0: 1)

and 9, = ({(0:1) ,(1:0)) 4in s =II?1 xfIlE’1 . Then the calculation

is as follow:

[{}
—
I}

[}

o

-

=
Ul —

l:>t1(e0) = a1(e2) a1(e6)

_ - _ _ _ 1
' az(eo) vae = 02(e4) = az(e6) =0 ’ az(es) = -5' ’
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where a, : = a1(q1) N a,{qy)

Therefore g @ C(p) is surjective for any p E:PZ\C

Next take p:= (1:0:0)€C , g= ({(1:0),(1:0)) €58

‘ Let z, = § ' 22' = % be the local coordinate around. q . Then
mp_os = (z.I *2Z, 42,0 22) = mq . The evaluation map
g ® C(p) : L —> mez is now the composition

8:L — L @ OS —_— Os/mpos = C1-9 Tz, .

Since we have isomorphisms

Os(f1)q = Oé}q Os(fz)q = OS,q
y | | }
X — 1 u —
y — 0 v — 0 ’

B:g @ C(p) is calculated byevaluating x = u = 1 and

y = 51 ==-v =—52 . Therefore B(ey) =1, B(e)) = % 'z'1 ,
B(ez) =0 ’ B(e3) =0, Bleg) =0 ’ B(es) =0,
B(es) =0 . Thus g ® T(p) 1is surjective for any p € C

Y4
(2) Let h0 ; h ; h6 € 'L be the dual basis of

1' . e
\'A
{eo P es} . Since TP(L) = L'\ {0}/C* , we denote the point

6 6
of P(L) corresponding to § Xi,h, € L\{0F by I Y Ashll
j=o I3 y=0 J 1
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If ¢(M) contains the point [h1-h5] € P(L) , then (M)

contains the SL, - orbit SL2[h1-h5] and its closure

SLz[h1-hsl . On the other hand, we know that the closure

SLz[h1-h5] is isgmorphic to V¢ by [§ 3, 7]1. Here h1--h5

corresponds to f6(x y YY) = xy(x4-y4) in their notation. There-

fore we have only to show that (M)} contains [h1-h5] € P(L) .
Let P:= (0:1:0) E:Pz . Then by (1), the evaluation map
g®C(p) :L—>COTC with (g8aip)le) = (+,0 ,

(9@ C(p))leg) = (0,3) , and (g ® C(p))(ey) = (0,0)(3 + 1,5)

'S
Therefore the point g € n-1(p) EZP1 corresponding to the linear
function CT @ € 3 (a,b) > a-b € C is mapped to [h1-h

by v

5]

Remark 2.2. (1) By Lemma (1.5) in [8], V:= ¢(M} has three

SL., - orbits Y(MI\y(S) , ¢(S)\yp(a ) , and Y(A ) , in parti-
2 P 1 E’1
cular, (A 1) is a smooth rational curve of degree 6 in V .
r

(2) w|sz § —> Y(S) is the same morphism as in Lemma (1.6)
in [8]. Especially, w[s is one to one and Sing Y(S) = Y(A 1) '

P
where Sing y(S) 1is the singular locus of ¢ (S)

Let us denote ¢(S) and (A 1) by B and I

r

Lemma 2.3. (1) ¢ 1s a finite morphism of degree 3.

(2) ¢ 1is étale outsides B
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{(3) uw*B = S+2D , hence ¢ 1is not Galois.

(4) We put M, : = T e) for t ¢ P% . Then
. 6 ) .

£t: "w(Mt) is a line of V ¢  and wlMt P M —> £t is an
isomorphism.

(5) For t, % t €ZP2 , we have £ £ £

1 2 t1 t2

(6) Let £ be a line in V c=:]P6 . Then there is a point
t € IP‘2 such that £ = £t

Proof. (1) By Lemma (1.1) - (5), OM(1) is ample. There-
‘fore ¢ is a finite morphism and w*OV(1) z OM(1) . Thus

deg ¥ = (0, (1) 3/(0,(1)> = 15/5 = 3

(2) Since V\B 1is an open orbit of SL, » ¥ is étale

over V - B

. 2 A 2 _ 2
(3) Since (0v(1) - B) = (OM(1) - 8) = (OS(5f1+ fz))s =10 ,

we have 0O_(B) s 0. (2) . Therefore 0. (y*B-S) & m*0 (4) . Since
v \Y M E,Z
Yy*B-S 1is a SL2 invariant effective divisor, its support must

be D . Thus ¥*B = S+ 2D .,
| (4) It is clear since (w*ob(1)- Mt) = (0&(1)- Mt) =1
(5) Assume that £ = £, . Since w|s :S —> B is one to

1 2
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M NS . Hence t, =t

one , we have M n s 1
2

t t

1 2

(6) Let £ Dbe a line of Vv . If £ & B , then £ contains
a point p € V\B . By Corollary (2.1) in § 2, we have #{lines
through p} s 3 . Thus by (4), (5) above, {lines through p} =

= {£ "£ r ‘E
1 2 %3
¢ If £ B, then £ = tt for some t € C , because
5 =

w|D: D —> B is one tp one by (3) and 0,(1) @ 0y = 0 (s, +5s,)

N } ., where {t1 ,t2 ,t3} = n(w_1(p)) . Therefore

t
£ =12
by Lemma 2.1 - (2).

Thecrem I. The ZP1—bundle T:M ——+1P2 is the universal
family of lines on V = V5‘.

Proof. Let T be the space of lines on V , that is, T
is a subscheme of the Grassmanian G(2,7) parametrizing lines of
v g]@s . Since Nﬂ(v = 090 or 0O(-1) & 0(1) for any line £

1 - 0 . ml -

on V , we have H (£ ,N£|V) = 0 and H (£ ’Nﬂlv) = €~ . There
fore T 1is smooth surface. By the universal property of T , we
have a morphism 3§ ﬁmz —=> T corresponding to the family
(m,¥) : MS—> D% xV . By Lemma (1.3) - (5), (6), .8 is one to

one surjective. Therefore ¢ must be isomorphic.

We put Un := {Xx € V ; there is at most n lines through
x} . Then,
Corollary 2.1. U, =V, U, =B and U, = I

3



§ 3. Compactifications of m3

Take any point ¢t € C»C—oﬁwz and put ﬂt : = w(w-1(t))
Then £t is a line of type (-1,1) . Let ¢:V' —> V Dbe

blowing up of V along the line £t and Et be the proper

transform in V' of the ruled surface E, swept out by lines

which intersect the line ﬂt . Then, by Lemma 1.1 ~ (b), we

have the birational morphism ¢ : V' —> Wt of V' onto a smooth
quadric hypersurface Wt 5 m3 in IP4 , a quadric cone

w(c-1{£t)) = Qg , and a twisted cubic curve

Qt=
Y

e w(ﬁt) € Q. . Let g_ be the unique generating line of

Qt such that Y. n 9, = {vt} , where v is the vertex of Q

t
Take any point v € gf\{vt} = C . Let Q  be the quadric cone

t

in W with the vertex v , and put H

_ -1
N = oy (QV)) .

v -
e
Then, by (4.3) in [2] and [6] (see also § 1), we have the

following

Lemma 3.1. (1) For any t € C , (V ,Et) is a compacti-
fication of ¢3 with the non-normal boundary Et . Conversely,
let (V, H) be a compactification of E3 with a non-normal
boundary H . Then there is a point t € C such that H = Et .

(2) For any t € C and any v € 9y {vt} = C , (V ,Hz)
is a compactification of ¢3 with the normal boundary HZ
Conversely, let (Vv ,H) be a compactification of m3 with a

normal boundary H . Then there is a point t € C and a point
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_ A\
v € gt\{vt} such that H = H_
Remark 3.1. Let zt be the line 192 which is tangent to
C at the point t € C . Then E_ = w(n'1(zt)) and

-1 -1 . .
n (zt)\(st um (t)) = Et\zt , where s is the negative section

-...1 -
of (Z.t) =-Il:"3

We put

{x Eiﬁs ; H is a non-normal hyperplane section of

-
[}

A
V such that V\HA 3 013} , and

Ay = {)\ € 11‘56' H is a normal hyperplane section of V

oy

-

A
such that V \HA

mn

where ﬂss s = IP(]‘.’)) .

Then we have

Corollary 3.1. dim¢A1 =-1 and dima:l\2 = 2

Corollary 3.2. For each te€cC, {r €A ; £ cHI =

L1}

{one point} and {Xx € A, ; ;t S H} =@

Now, take a point t0 = (1:0:0) € C . Then !it <> 17

is written as follow:
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(see the proof of Lemma 2.2 - (1)).

Since V is SL2 - invariant, A1 and A2 are also

SL2 - invariant

By Lemma (1.4) of {9], the 2-dimension SL2 - orbits are

3.3 4 2 2 4 5 5
SL2x VAR SL2x y = Ssz Yy Ssz y = Sszy , and
SLzy6 = SL2x6 is the only one SL2 - orbit of dimensional one
on ZPG . Therefore we have A1 = SL2y6 . By an easy calculation,
we have
{AFSLx3y3-£ cH,} =Q U
N 2 ! t0 = A !
2 4 -
{» esLxy ;£ <cH/}lscgucC,
2 t0 = A
{:» € sL xy5 ; £, < H,} s ¢C
2 ! t0 = A

Thus, by Corecllary 3.2, we must have A2 = Sszy5 . We put
Ae o= A1 u A2 . Then A = Sszy5 . Therefore, by Lemma (1.6) of
(9], A 1is the image of P nm1 with diagonal SL2 - operations

by a linear system L of bidegree (5,1) on Eﬂ ::JPT

Thus we have

_ .6 _ 5 _ 5
Theorem 3.1. A1 = SL2y ' A2 = Sszy and A = SLoxy™ .
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In particular, A1 =1P1 and A2 51P1 MPT\{diagonal}

We will show explicitly below that for any A € A ,

. 3
V\Hku(l: .

By p. 505 in [9], V:= V. &> can be written as follow:

h0h4 - 4h1h

2 _
3-4-3h2 =0

1'10h5 - 3h1h4 + 2112h3 =0

2 _
{ hghg = 9hyh, +8h3 = 0
h hg = 3h,h  + 2hgh, = 0
| 2 _
h,h. - 4hsh_ +3h. = 0

276 375

where (hO: h1: h2: h3: h4: h5: hG). is the homogeneous coordinate
6 .

of TP

First, (0:0:0:0:0:0:1) ESL2y6.In v {hg s 0},

we consider the following coordinate transformation.

—

-~ .

- 9h

[ x. = h 2

2
0 0 h, + 8hy

x, = h, -3h,h. + 3h,h

1 1 275 34

‘ _ _ 2
< x2 = h2 4h3h5 + 3h4
*3 7 M
x4 = h4"
Xx. = h h, =17

-\ Xg 5 , 6
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Then we have
v"n'{hs*O}.S(x0=x = x, =0} = ¢° ,

and the line {h2 =hg =h, =h; =h = 0} 1is the singular locus

of the boundary V n {h6 = 0}

Next, (0:0:0:0:0:1:0) ESszys.In v {hg + 0},

we consider the coordinate transformation

Xo = hg=3h h, +2hh

0 0 4 273

:h-t1 =h1
X, = 3h2--h1h6--2h3h4

T 2
Xy = 4h3-h21'16-3h4
x4=h4

L Xg = D¢ r By =1

Then we have
vni{h # 0} 5 {x, = x, = X =0}Eﬂ:3
5 0 2 3 !

and the boundary VvV n {h5 = 0} has a singularity of A,-type at
the point (1:0:0:0:0:0:0) .

Therefore, for any A € SL2y6 {resp. Sszys) ’ ‘H)\ is
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non-normal (resp. normal with a rational double point of A

4
type) , and further V\Hk s ¢

= C° .

Since A1 and Az are SL2 - orbits, we have the following

Corollary 3.3 (Peternell-Schneider [6]).

. Let (V,H) and
(V,H') be two compactifications of ¢3

with normal (resp.
non-normal) boundaries H

and H' . Then there is an automorphism
a of V such that H' = a(H) .
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