The family of lines on the

Fano threefold V_5

by

Mikio Furushima ^{*)} Noboru Nakayama ^{**)}

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 West Germany *) Kumamoto National College of Technology Nishigoshi-machi Suya 2659-2 Kikuchi-gun Kumamoto, 861-11 Japan

**) University of Tokyo Hongo, Tokyo, 113 Japan

MPI/88-10

-

·.

.

.

.

. .

·

·

 V_5 can be also obtained as the section of the Grassmannian $G(2,5) \longrightarrow \mathbb{P}^9$ of lines in \mathbb{P}^4 by 3 hyperplanes in general position.

There are some other constructions of the Fano 3-fold V_5 (cf. Fujita [1], Mukai-Umemura [9] and Furushima-Nakayama [3]). But so obtained V_5 's are all projective equivalent (cf. [5]).

The remarkable fact on V_5 is that V_5 is a complex analytic compactification of \mathbf{c}^3 which has the second Betti number one (see Problem 28 in Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal family of lines on V_5 and determine the hyperplane sections

which can be the boundary of \mathbb{C}^3 in V_5 .

In § 1, we will summarize some basic results about V_5 following to Iskovskih [5], Fujita [1] and Peternell-Schneider [6]. In § 2, we will construct a \mathbb{P}^1 -bundle $\mathbb{P}(E)$ over \mathbb{P}^2 , where E is a locally free sheaf of rank 2 on \mathbb{P}^2 , and a finite morphism $\psi: \mathbb{P}(E) \longrightarrow V_5 \hookrightarrow \mathbb{P}^6$ of $\mathbb{P}(E)$ onto V_5 applying the results by Mukai-Umemura [9]. Further, we will show that the \mathbb{P}^1 - bundle $\mathbb{P}(E)$ is in fact the universal family of lines on V_5 . In § 3, we will study the boundary of \mathbb{C}^3 in V_5 and the set $\{H \in [O_V(1)] ; V_5 \setminus H \cong \mathbb{C}^3\}$.

Acknowledgement. The authors would like to thank Max-Planck-Institut für Mathematik in Bonn, especially, Prof. Dr. Hirzebruch for the hospitality and encouragement. § 1. Basic facts on V_5 .

Let $V := V_5$ be a Fano 3-fold of degree 5 in \mathbb{P}^6 (see Introduction) and $\ell \cong \mathbb{P}^1$ is a line on V. Then the normal bundle $N_{\ell \mid V}$ of ℓ in V can be written as follow:

(a) $N_{\ell \mid V} \cong O_{\ell} \oplus O_{\ell}$, or

(b)
$$N_{\ell} | V \cong O_{\ell} (-1) \oplus O_{\ell} (1)$$

We will call a line ℓ of the type (0,0) (resp. (-1,1)) if $N_{\ell \mid V}$ is of the type (a) (resp. type (b)) above.

Let $\sigma: V' \longrightarrow V$ be the blowing up of V along the line ℓ , and put $L': = \sigma^{-1}(\ell)$. Then $L' \cong \mathbb{P}^1 \times \mathbb{P}^1$ if ℓ is of type (0,0), and $L' \cong \mathbb{F}_2$ if ℓ is of type (-1,1). Let f_1, f_2 be respectively fibers of the first and second projection of $\mathbb{P}^1 \times \mathbb{P}^1$ onto \mathbb{P}^1 , and let s, f be respectively the negative section and a fiber of \mathbb{F}_2 . Let H be a hyperplane section of V. Since the linear system $|\sigma^*H - L'|$ on V' has no fixed component and no base point and since $h^0(\ell(\sigma^*H - L')) = 5$ and $(\sigma^*H - L')^3 = (\sigma^*H - L')^2 \cdot L' = 2$, the linear system $|\sigma^*H - L'|$ defines a birational morphism, $\varphi := \varphi_{|\sigma^*H - L'|}$: $V' \longrightarrow$ $\longrightarrow W \longrightarrow \mathbb{P}^4$ of V' onto a quadric hypersurface W in \mathbb{P}^4 , in particular, $Q:=\varphi(L')$ is a hyperplane section of W. Let $E:= E_\ell$ be the ruled surface swept out by lines which intersect the line ℓ and E' the proper transform of E in V'.

Lemma 1.1 (Iskovskih [5], Fujita [1]). W is a smooth quadric hypersurface in \mathbb{P}^4 and $Y := \varphi(E)$ is a twisted cubic curve contained in Q. In particular, $\varphi: V' \longrightarrow W$ is the blowing up of W along the curve Y. Further, we have the following.

(a) If ℓ is of type (0, 0), then $\varphi| : L' \xrightarrow{\sim} Q \cong \mathbb{P}^1 \times \mathbb{P}^1$, and $\overline{Y} \sim f_1 + 2f_2$ in L'.

(b) If ℓ is of type (-1, 1), then $\varphi|_{L^{1}} : L^{1} \longrightarrow Q \cong Q_{0}^{2}$ (a quadric cone) is the contraction of the negative section s of $L^{1} \cong \mathbb{F}_{2}$, and $\overline{Y} \sim s + 3f$ in L^{1} .

In (a) and (b), we denote the proper transform of $Y \hookrightarrow Q$ in L' by \overline{Y} .

Corollary 1.1. (a) If ℓ is of type (0, 0), then E' \cong \mathbb{F}_1 . (b) If ℓ is of type (-1, 1), then E' \cong \mathbb{F}_3 .

Proof. Let $N_{Y|W}$ be the normal bundle of Y in W. Then $N_{Y|W} \cong \partial_{Y}(3)^{-} \oplus \partial_{Y}(4)$ if ℓ is of the type (0, 0), and $N_{Y|W} \cong \partial_{Y}(2) \oplus \partial_{Y}(5)$ if Y is of type (-1, 1). Q.E.D.

Corollary 1.2. (a) If ℓ is of type (0, 0), then there

are two points $q_1 \neq q_2$ of ℓ such that (i) there are two lines in V through the point q_i (i = 1, 2), and (ii) there are three lines in V through every point q of $\ell \setminus \{q_1, q_2\}$.

(b) If ℓ is of type (-1, 1), there is exactly one point q_0 of ℓ such that (i) ℓ is the unique line in V through the point q_0 , and (ii) there are two lines in V through every point q of $\ell \setminus \{q_0\}$.

Proof. (a) Let $p_2: Q \cong \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ be the projection onto the second component. Since $\overline{Y} \sim f_1 + 2f_2$, $p_2|_Y: Y \longrightarrow \mathbb{P}^1$ is a double cover over \mathbb{P}^1 . Thus there are two branched point $b_1 \neq b_2$ in \mathbb{P}^1 . We put $q_1: = \sigma \circ (\varphi|_{L^1}) \circ^1 (p_2|_Y) \circ^{-1} (b_1)$ (i = 1, 2). Then $\ell := \sigma(\overline{Y})$ and $\ell_1: = \sigma(\varphi^{-1}(p_2^{-1}(b_1)))$ (i = 1, 2) are two lines through the point q_1 for each i. For $b \in \mathbb{P}^1 \setminus \{b_1, b_2\}$, $\ell = \sigma(\overline{Y})$ and $\sigma(\varphi^{-1}(p_2^{-1}(b)))$ are three lines through the point $q \in \ell \setminus \{q_1, q_2\}$, since $p_2^{-1}(b)$ consists of two different points. This proves (a).

(b) We put $q_0 := \sigma(\bar{Y} \cap s) \in \ell$. Then $\ell = \sigma(\bar{Y}) = \sigma(s)$ is the unique line through the point $q_0 \in \ell$. For $y \in Y \setminus \phi(s)$, $\ell = \sigma(\bar{Y})$ and $\sigma(\phi^{-1}(y))$ are two lines through a point of $\ell \setminus \{q_0\}$. This proves (b).

Q.E.D.

Corollary 1.3 (Peternell-Schneider [6]). Let E be a non-normal hyperplane section of V_5 . Then the singular locus

- 5 -

of E is a line ℓ on V, in particular, E is a ruled surface swept out by lines which intersect the line ℓ . Further V-E $\cong \mathbb{C}^3$ if and only if the line ℓ is of type (-1, 1).

Proof. By lemma (3.35) in Mori [8], the non-normal locus of E is a line ℓ on V. Since $h^0(\mathcal{O}_V(1) \otimes I_\ell^2) = 1$ and Pic V $\cong \mathbb{Z}$, the linear system $|\mathcal{O}_V(1) \otimes I_\ell^2|$ consists of E, where I_ℓ is the ideal sheaf of ℓ . By Lemma 1, ℓ must be the singular locus of E. Assume ℓ is of type (0,0). Then, by Lemma 1, V-E $\cong \{(x, y, z, u) \in \mathbb{C}^4 : x^2 + y^2 + z^2 + u^2 = 1\} \neq \mathbb{C}^3$. Q.E.D. § 2. Construction of the universal family.

1. Let (x : y), (u : v) be respectively homogeneous coordinates of the first factor and the second factor of $S := \mathbb{P}^1 \times \mathbb{P}^1$. Let us consider the diagonal $SL(2; \mathbb{C})$ - action on S, namely, for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2 := SL(2; \mathbb{C})$,

$$\begin{cases} \mathbf{x}^{\sigma} = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} \\ \mathbf{y}^{\sigma} = \mathbf{c}\mathbf{x} + \mathbf{d}\mathbf{y} , \end{cases} \begin{cases} \mathbf{u}^{\sigma} = \mathbf{a}\mathbf{u} + \mathbf{b}\mathbf{v} \\ \mathbf{v}^{\sigma} = \mathbf{c}\mathbf{u} + \mathbf{d}\mathbf{v} \end{cases}$$

Let $\tau: S \longrightarrow \mathbb{P}^2$ be the double covering of \mathbb{P}^2 given by

$$\begin{cases} \tau * X_0 = x \otimes u \\ \tau * X_1 = \frac{1}{2} (x \otimes v + y \otimes u) \\ \tau * X_2 = y \otimes v \end{cases}$$

where $(X_0 : X_1 : X_2)$ be a homogeneous coordinate on \mathbb{P}^2 . We can also define SL_2 - action on \mathbb{P}^2 as follow:

$$\begin{cases} x_0^{\sigma} = a^2 x_0 + 2abx_1 + b^2 x_2 \\ x_1^{\sigma} = acx_0 + (ad + bc) x_1 + bdx_2 \\ x_2^{\sigma} = c^2 x_0 + 2cdx_1 + d^2 x_2 \end{cases}$$

for
$$\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2$$
.

Then, the morphism τ is SL_2 - linear, that is, $\tau(p^{\sigma}) = \tau(p)^{\sigma}$ for $p \in S$ and $\sigma \in SL_2$. Further, τ is branched along the smooth conic $C := \{X_1^2 = X_0 X_2\} = \tau(\Delta)$, where $\Delta := \Delta_{e_1}$ is the \mathbf{P} diagonal in $\mathbb{P}^1 \times \mathbb{P}^1 = S$. Let f_1 be a fiber of the projection $P_1 : S \longrightarrow \mathbb{P}^1$ onto i-th factor (i = 1, 2). Let $\pi : M :$ $= \mathbb{P}(E) \longrightarrow \mathbb{P}^2$ be the \mathbb{P}^1 -bundle over \mathbb{P}^2 associated with the vector bundle $E := \tau_* \mathcal{O}_S(4f_1)$ of rank 2 on \mathbb{P}^2 .

Lemma 2.1. (1) $\det(\pi_* \hat{\sigma}_S(kf_1)) \cong \hat{\sigma}_2(k-1)$ and $e_2(\pi_* \hat{\sigma}_S(kf_1)) = \frac{1}{2}k(k-1)$ for all $k \ge 0$.

(2) $E \otimes C_{C} \cong O_{\mathbb{IP}^{-1}}^{(3)} \oplus O_{\mathbb{IP}^{-1}}^{(3)}$, where $C = \tau(\Delta)$.

(3) The natural morphism $S \longrightarrow M$ corresponding to the homomorphism $\tau^*E \longrightarrow 0$ (4f₁) is a closed embedding, hence, S can be considered as a divisor on M.

(4) $\mathcal{O}_{M}(S) \cong \mathcal{O}_{E}(2) \otimes \pi * \mathcal{O}_{2}(-2)$, where $\mathcal{O}_{E}(1)$ is the \mathbb{P}^{2} tautological line bundle on M with respect to E.

(5) $Q_{E}(1)$ is nef, i.e., E is a semi-positive vector bundle

(6) We put $\mathcal{O}_{M}(1) := \mathcal{O}_{E}(1) \otimes \pi * \mathcal{O}_{E}(1)$. Then

$$H^{0}(M, \mathcal{O}_{M}(1)) \cong H^{0}(S, \mathcal{O}_{S}(5f_{1} + f_{2}))$$

$$\cong H^{0}(\mathbb{IP}^{1}, \mathcal{O}_{1}(5)) \otimes_{\mathbb{C}} H^{0}(\mathbb{IP}^{1}, \mathcal{O}_{1}(1)) .$$

Proof. (1) Let us consider the exact sequence:

$$0 \longrightarrow \tau_* {}^0_{\mathrm{S}}(\mathrm{kf}_1) \longrightarrow \tau_* {}^0_{\mathrm{S}}((\mathrm{k}+1)\mathrm{f}_1) \longrightarrow \tau_* {}^0_{\mathrm{f}_1} \longrightarrow 0 .$$

Now $\ell_1 = \tau(f_1)$ is a line on \mathbb{P}^2 and $\partial_{\ell_1} \cong \tau_* \partial_{f_1}$. Thus, $\det(\tau_* \partial_S((k+1)f_1)) \cong \det(\tau_* \partial_S(kf_1)) \otimes \partial(1)$ and $c_2(\tau_* \partial_S((k+1)f_1)) = (\det(\tau_* \partial_S(kf_1)) \cdot \partial(1)) + c_2(\tau_* \partial_S(kf_1))$. Since $\tau_* \partial_S \cong \partial \oplus \partial(-1)$, we are done.

0

(2) Let us consider the following diagram:

- 9 -

Since $\tau^*C = 2\Delta$, we have $\tau_* \partial_{2\Delta} (4f_1) \cong E \otimes \partial_C$ and the exact sequence:

$$0 \longrightarrow \tau_* \mathcal{O}_{\Delta} (3f_1 - f_2) \longrightarrow E \otimes \mathcal{O}_C \longrightarrow \tau_* \mathcal{O}_{\Delta} (4f_1) \longrightarrow 0$$

.

•

.

•

To show that $E \otimes O_{C}^{*} \cong O_{1}(3) \oplus O_{1}(3)$, it is enough to prove that

$$H^{0}(C, (E \otimes \mathcal{O}_{C}) \otimes \mathcal{O}_{1}(-4)) \cong H^{0}(\mathcal{O}_{2\Delta}(2f_{1}-2f_{2})) = 0.$$

By the above diagram, we have the exact sequences:

$$0 \longrightarrow P_{2*} \mathcal{O}_{S}(-4f_{2}) \xrightarrow{\phi} P_{2*} \mathcal{O}_{S}(2f_{1}-2f_{2}) \longrightarrow P_{2*} \mathcal{O}_{2\Delta}(2f_{1}-2f_{2}) \longrightarrow 0 ,$$

$$0_{\mathbb{P}^{1}}(-4)$$
 $0_{\mathbb{P}^{1}}(-2)^{\oplus 3}$

and

Ø

2**

$$0 \longrightarrow P_{2} * O_{\Delta}(f_{1} - 3f_{2}) \longrightarrow P_{2} * O_{2\Delta}(2f_{1} - 2f_{2}) \longrightarrow P_{2} * O_{\Delta}(2f_{1} - 2f_{2}) \longrightarrow 0$$

Hence $P_{2*} O_{2\Delta} (2f_1 - 2f_2)$ is locally free and the dual homomorphism $\varphi^*: O_{\mathbb{P}} (2) \xrightarrow{\oplus 3} \longrightarrow O_{\mathbb{P}} (4)$ is surjective. Therefore φ^* is obtained from the natural surjection $H^0(\mathbb{P}^1, O(2)) \otimes O_{\mathbb{P}^1} \xrightarrow{\longrightarrow} O_{\mathbb{P}^1} (2)$ by tensoring $O_{\mathbb{P}^1} (2)$. Thus we have $P_{2*} O_{2\Delta} (2f_1 - 2f_2) \cong$ $\cong O_{\mathbb{P}^1} (-1) \oplus O_{\mathbb{P}^1} (-1)$. Therefore we have $H^0(O_{2\Delta} (2f_1 - 2f_2)) = 0$.

(3) It is enough to show that the natural homomorphism $\operatorname{Sym}^{k} E \longrightarrow \tau_{\star} \partial_{S}(4kf_{1})$ is surjective for $k \gg 0$. Since τ is finite morphism, $\tau_{\star} \partial_{S}(4kf_{1}) \otimes \tau_{\star} \partial_{S}(4f_{1}) \longrightarrow \tau_{\star} \partial_{S}(4(k+1)f_{1})$ is always surjective. Thus we are done.

(4) Since $\tau: S \longrightarrow \mathbb{P}^2$ is a double covering, there is a line bundle L on \mathbb{P}^2 such that $\mathcal{O}_E(2) \otimes \mathcal{O}_M(-S) \cong \pi^*L$. By the exact sequence:

$$0 \longrightarrow \pi^{*}L \longrightarrow \mathcal{O}_{E}(2) \longrightarrow \mathcal{O}_{E}(2) \otimes \mathcal{O}_{S} \cong \mathcal{O}_{S}(8f_{1}) \longrightarrow 0 ,$$

we have $det(Sym^2 E) \cong L \otimes det(\tau_* \theta_S(8f_1))$. Therefore, by (1), $L \cong \theta_{\mathbb{P}^2}(2)$, hence, $\theta_M(S) \cong \theta_E(2) \otimes \tau^* \theta_{\mathbb{P}^2}(-2)$. \mathbb{P}^2

(5) We put $D := \pi^{-1}(C)$. Then, by (2), $D \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $\partial_E(1) \otimes \partial_D \cong \partial_D(s_1 + 3s_2)$, where s_2 is a fiber of $D \longrightarrow C$ and s_1 is a fiber of another projection $D \longrightarrow \mathbb{P}^1$. By (4), we have $\partial_E(2) \cong \partial_M(S + D)$. Assume that there is an irreducible curve γ on M such that $(\partial_E(1) \cdot \gamma) < 0$. Then, $\gamma \subseteq D$ or $\gamma \subseteq S$. Since $\partial_E(1) \otimes \partial_S \cong \partial_S(4f_1)$ and $\partial_E(1) \otimes \partial_D \cong \partial_D(s_1 + 3s_2)$, this is a contradiction. (6) By the exact sequence

we have $\pi_* \mathcal{O}_M(1) \cong \tau_* \mathcal{O}_S(5f_1 + f_2)$. Therefore $H^0(M, \mathcal{O}_M(1)) \cong H^0(S, \mathcal{O}_S(5f_1 + f_2))$.

Q.E.D.

Remark 2.1. There is a SL_2 - action on $(M, \mathcal{O}_M(1))$ compatible to $\tau: S \longrightarrow \mathbb{P}^2$. The last isomorphism in (6) is an isomorphism as a SL_2 - module.

2. Let us consider the subvector space $L \subseteq H^0(S, \theta_S(5f_1 + f_2))$ generated by the following 7 elements (cf. Lemma (1.6) in [9]) :

$$\begin{array}{l} e_0 := x^5 \otimes u \\ e_1 := x^4 y \otimes u + \frac{1}{5} x^5 \otimes v \\ e_2 := x^3 y^2 \otimes u + \frac{1}{2} x^4 y \otimes v \\ e_3 := x^2 y^3 \otimes u + x^3 y^2 \otimes v \\ e_4 := \frac{1}{2} x y^4 \otimes u + x^2 y^3 \otimes v \\ e_5 := \frac{1}{2} y^5 \otimes u + x y^4 \otimes v \\ e_6 := y^5 \otimes v \end{array}$$

Then L is a SL_2 - invariant subspace. By the isomorphism $H^0(M, O_M(1)) \cong H^0(S, O_S(5f_1 + f_2))$, L can be considered as a subspace of $H^0(M, O_M(1))$.

Lemma 2.2. (1) The homomorphism $L \otimes \mathcal{O}_{M} \longrightarrow \mathcal{O}_{M}(1)$ is surjective. Especially, we have a morphism $\psi: M \longrightarrow \mathbb{P}(L) \cong \mathbb{P}^{6}$, which is SL_{2} - linear.

(2) The image V : = $\psi(M)$ is isomorphic to the Fano 3-fold V_5 of degree 5 in \mathbb{P}^6 .

Proof. (1) We have only to show that $g: L \otimes 0$ $\mathbb{P}^2 \longrightarrow \mathbb{P}^2$ $\longrightarrow E \otimes 0$ (1) is surjective. Since SL_2 acts on g, the \mathbb{P}^2 support of Coker(g) is SL_2 - invariant. Now SL_2 acts on \mathbb{P}^2 with two orbits $\mathbb{P}^2 \setminus \mathbb{C}$ and \mathbb{C} . First, take a point $p \in \mathbb{P}^2 \setminus \mathbb{C}$. Then $g \otimes \mathbb{C}(p): L \longrightarrow (E \otimes 0 \otimes \mathbb{Q}^2(1)) \otimes \mathbb{C}(p)$ is described as follow: \mathbb{P}^2

Let $\alpha: L \otimes \partial_S \longrightarrow \partial_S (5f_1 + f_2)$ be the natural homomorphism and let $\alpha(q): L \longrightarrow \partial_S (5f_1 + f_2) \otimes \mathbb{C}(q) \cong \mathbb{C}$ be the evaluation map for $q \in S$. Then $g \otimes \mathbb{C}(p): L \longrightarrow \mathbb{C}^{\oplus 2}$ is nothing but $\alpha(q_1) \oplus \alpha(q_2): L \longrightarrow \mathbb{C}^{\oplus 2}$, where $\{q_1, q_2\}: = \psi^{-1}(p)$. For example, take a point $p = (0: 1: 0) \in \mathbb{P}^2$. Then $q_1 = ((1: 0), (0: 1))$ and $q_2 = ((0: 1), (1: 0))$ in $S = \mathbb{P}^1 \times \mathbb{P}^1$. Then the calculation is as follow:

 $\begin{cases} \alpha_1(e_0) = \alpha_1(e_2) = \dots = \alpha_1(e_6) = 0 , \quad \alpha_1(e_1) = \frac{1}{5} \\ \alpha_2(e_0) = \dots = \alpha_2(e_4) = \alpha_2(e_6) = 0 , \quad \alpha_2(e_5) = \frac{1}{5} , \end{cases}$

- 13 -

where $\alpha_1 := \alpha_1(q_1)$, $\alpha_2 := \alpha_2(q_2)$.

Therefore $g \otimes \mathbb{C}(p)$ is surjective for any $p \in \mathbb{P}^2 \setminus \mathbb{C}$.

Next take $p := (1:0:0) \in C$, $q = ((1:0), (1:0)) \in S$. Let $z_1 = \frac{Y}{x}$, $z_2 = \frac{v}{u}$ be the local coordinate around q. Then $m_p O_S = (z_1 + z_2, z_1 \cdot z_2) \subseteq m_q$. The evaluation map $q \otimes \mathbb{C}(p) : L \longrightarrow \mathbb{C}^{\oplus 2}$ is now the composition

$$\beta: \mathbf{L} \longrightarrow \mathbf{L} \otimes \mathcal{O}_{\mathbf{S}} \longrightarrow \mathcal{O}_{\mathbf{S}}/m_{\mathbf{D}}\mathcal{O}_{\mathbf{S}} \cong \mathbb{C}1 \oplus \mathbb{C}\overline{\mathbf{Z}}_{1} .$$

Since we have isomorphisms

(2) Let $h_0, h_1, \ldots, h_6 \in \overset{\vee}{L}$ be the dual basis of $\{e_0, e_1, \ldots, e_6\}$. Since $\mathbb{P}(L) \cong \overset{\vee}{L} \setminus \{0\}/\mathbb{C}^*$, we denote the point of $\mathbb{P}(L)$ corresponding to $\begin{array}{c} 6\\ \sum\\ j=0 \end{array} \lambda_j h_j \in \overset{\vee}{L} \setminus \{0\}^*$ by $[\begin{array}{c} 2\\ \sum\\ j=0 \end{array} \lambda_j h_j]$. If $\psi(M)$ contains the point $[h_1 - h_5] \in \mathbb{P}(L)$, then $\psi(M)$ contains the $SL_2 - \text{orbit } SL_2[h_1 - h_5]$ and its closure $\overline{SL_2[h_1 - h_5]}$. On the other hand, we know that the closure $\overline{SL_2[h_1 - h_5]}$ is isomorphic to V_5 by $[\S 3, 7]$. Here $h_1 - h_5$ corresponds to $f_6(x, y) = xy(x^4 - y^4)$ in their notation. Therefore we have only to show that $\psi(M)$ contains $[h_1 - h_5] \in \mathbb{P}(L)$. Let $P := (0:1:0) \in \mathbb{P}^2$. Then by (1), the evaluation map $g \otimes \mathbb{C}(p) : L \longrightarrow \mathbb{C} \oplus \mathbb{C}$ with $(g \otimes \mathbb{C}(p))(e_1) = (\frac{1}{5}, 0)$, $(g \otimes \mathbb{C}(p))(e_5) = (0, \frac{1}{5})$, and $(g \otimes \mathbb{C}(p))(e_j) = (0, 0)(j \neq 1, 5)$. Therefore the point $q \in \pi^{-1}(p) \cong \mathbb{P}^1$ corresponding to the linear function $\mathbb{C} \oplus \mathbb{C} \ni (a, b) \longmapsto a - b \in \mathbb{C}$ is mapped to $[h_1 - h_5]$ by ψ .

Q.E.D.

Remark 2.2. (1) By Lemma (1.5) in [8], $V := \psi(M)$ has three $SL_2 - \text{ orbits } \psi(M) \setminus \psi(S)$, $\psi(S) \setminus \psi(\Delta_1)$, and $\psi(\Delta_1)$, in parti- \mathbb{P}^1 \mathbb{P}^1 \mathbb{P}^1 cular, $\psi(\Delta_1)$ is a smooth rational curve of degree 6 in V.

(2) $\psi|_{S} : S \longrightarrow \psi(S)$ is the same morphism as in Lemma (1.6) in [8]. Especially, $\psi|_{S}$ is one to one and Sing $\psi(S) = \psi(\Delta_{I})$, where Sing $\psi(S)$ is the singular locus of $\psi(S)$.

Let us denote $\psi(S)$ and $\psi(\Delta_1)$ by B and Σ .

Lemma 2.3. (1) ψ is a finite morphism of degree 3.

(2) ψ is étale outsides B

- 15 -

- (3) $\psi *B = S + 2D$, hence ψ is not Galois.
- (4) We put $M_t := \pi^{-1}(t)$ for $t \in \mathbb{IP}^2$. Then

 $\ell_t:=\psi(M_t) \text{ is a line of } V\subseteq {\rm IP}^6 \text{ and } \psi|_{M_t}: M_t \longrightarrow \ell_t \text{ is an isomorphism.}$

(5) For
$$t_1 \neq t_2 \in \mathbb{P}^2$$
, we have $\ell_t \neq \ell_t$

(6) Let ℓ be a line in $V \subseteq \mathbb{P}^6$. Then there is a point $t \in \mathbb{P}^2$ such that $\ell = \ell_t$.

Proof. (1) By Lemma (1.1) - (5), $\mathcal{O}_{M}(1)$ is ample. Therefore ψ is a finite morphism and $\psi * \mathcal{O}_{V}(1) \cong \mathcal{O}_{M}(1)$. Thus deg $\psi = (\mathcal{O}_{M}(1))^{3}/(\mathcal{O}_{V}(1))^{3} = 15/5 = 3$.

(2) Since VNB is an open orbit of SL_2 , ψ is étale over V - B .

(3) Since $(0_V(1)^2 \cdot B) = (0_M(1)^2 \cdot S) = (0_S(5f_1 + f_2))_S^2 = 10$, we have $0_V(B) \approx 0_V(2)$. Therefore $0_M(\psi * B - S) \approx \pi * 0_{\mathbb{P}}^2(4)$. Since $\psi * B - S$ is a SL_2 - invariant effective divisor, its support must be D. Thus $\psi * B = S + 2D$.

(4) It is clear since $(\psi * \partial_V(1) \cdot M_+) = (\partial_M(1) \cdot M_+) = 1$.

(5) Assume that $\ell_t = \ell_t$. Since $\psi|_S : S \longrightarrow B$ is one to

one, we have $M_t \cap S = M_t \cap S$. Hence $t_1 = t_2$.

(6) Let ℓ be a line of V. If $\ell \notin B$, then ℓ contains a point $p \in V \setminus B$. By Corollary (2.1) in § 2, we have #{lines through p} ≤ 3 . Thus by (4), (5) above, {lines through p} = = { $\ell_{t_1}, \ell_{t_2}, \ell_{t_3}$ }, where { t_1, t_2, t_3 } = $\pi(\psi^{-1}(p))$. Therefore $\ell = \ell_{t_2}$. If $\ell \subseteq B$, then $\ell = \ell_t$ for some $t \in C$, because $\psi|_{D}: D \longrightarrow B$ is one to one by (3) and $\mathcal{O}_M(1) \otimes \mathcal{O}_D \cong \mathcal{O}_D(s_1 + 5s_2)$ by Lemma 2.1 - (2).

Theorem I. The \mathbb{P}^1 -bundle $\pi: \mathbb{M} \longrightarrow \mathbb{P}^2$ is the universal family of lines on $\mathbb{V} = \mathbb{V}_5$.

Proof. Let T be the space of lines on V, that is, T is a subscheme of the Grassmanian G(2,7) parametrizing lines of $V \subseteq \mathbb{P}^6$. Since $N_{\ell|V} \cong 0 \oplus 0$ or $0(-1) \oplus 0(1)$ for any line ℓ on V, we have $H^1(\ell, N_{\ell|V}) \equiv 0$ and $H^0(\ell, N_{\ell|V}) \cong \mathbb{C}^2$. Therefore T is smooth surface. By the universal property of T, we have a morphism $\delta: \mathbb{P}^2 \longrightarrow T$ corresponding to the family $(\pi, \psi): M \longrightarrow \mathbb{P}^2 \times V$. By Lemma (1.3) - (5), (6), δ is one to one surjective. Therefore δ must be isomorphic.

We put $U_n:=\{x\in V\ ; \ \text{there is at most } n \ \ \text{lines through } x\}$. Then,

Corollary 2.1. $U_3 = V$, $U_2 = B$ and $U_1 = \Sigma$.

§ 3. Compactifications of \mathbb{C}^3

Take any point $t \in C \hookrightarrow \mathbb{P}^2$ and put $\ell_t := \psi(\pi^{-1}(t))$. Then ℓ_t is a line of type (-1, 1). Let $\sigma : V' \longrightarrow V$ be blowing up of V along the line ℓ_t and \overline{E}_t be the proper transform in V' of the ruled surface E_t swept out by lines which intersect the line ℓ_t . Then, by Lemma 1.1 - (b), we have the birational morphism $\varphi : V' \longrightarrow W_t$ of V' onto a smooth quadric hypersurface $W_t \cong \varphi^3$ in \mathbb{P}^4 , a quadric cone $Q_t := \varphi(\sigma^{-1}(\ell_t)) \cong \varphi_0^2$, and a twisted cubic curve $Y_t := \varphi(\overline{E}_t) \hookrightarrow Q_t$. Let g_t be the unique generating line of Q_t such that $Y_t \cap g_t = \{v_t\}$, where v_t is the vertex of Q_t . Take any point $v \in g_t \setminus \{v_t\} \cong \mathfrak{C}$. Let Q_v be the quadric cone in W_t with the vertex v, and put $H_t^v := \sigma(\varphi^{-1}(Q_v))$.

Then, by (4.3) in [2] and [6] (see also § 1), we have the following

Lemma 3.1. (1) For any $t \in C$, (V, E_t) is a compactification of \mathbb{C}^3 with the non-normal boundary E_t . Conversely, let (V, H) be a compactification of \mathbb{C}^3 with a non-normal boundary H. Then there is a point $t \in C$ such that $H = E_t$.

(2) For any $t \in C$ and any $v \in g_t \{v_t\} \cong \mathbb{C}$, (V, H_t^V) is a compactification of \mathbb{C}^3 with the normal boundary H_t^V . Conversely, let (V, H) be a compactification of \mathbb{C}^3 with a normal boundary H. Then there is a point $t \in C$ and a point $v \in g_t \setminus \{v_t\}$ such that $H = H_t^v$.

Remark 3.1. Let Z_t be the line \mathbb{P}^2 which is tangent to C at the point $t \in C$. Then $E_t = \psi(\pi^{-1}(Z_t))$ and $\pi^{-1}(Z_t) \setminus (s_t \cup \pi^{-1}(t)) \cong E_t \setminus \ell_t$, where s_t is the negative section of $\pi^{-1}(Z_t) \cong F_3$.

We put

where
$$\mathbf{P}^{6} := \mathbf{P}(\mathbf{L})$$
.

Then we have

Corollary 3.1. $\dim_{\mathbf{C}} \Lambda_1 = 1$ and $\dim_{\mathbf{C}} \Lambda_2 = 2$.

Corollary 3.2. For each $t \in C$, $\{\lambda \in \Lambda_{\perp} ; \ell_t \subseteq H_{\lambda}\} = \{\text{one point}\}\ \text{and}\ \{\lambda \in \Lambda_2 ; \ell_t \subseteq H_{\lambda}\} \cong \mathbb{C}$.

Now, take a point $t_0 = (1:0:0) \in C$. Then $\ell_t \xrightarrow{} \mathbb{P}^6$ is written as follow:

$$\ell_{t_0} = \{h_2 = h_3 = h_4 = h_5 = h_6 = 0\}$$

(see the proof of Lemma 2.2 - (1)).

Since V is SL_2 - invariant, Λ_1 and Λ_2 are also SL_2 - invariant

By Lemma (1.4) of [9], the 2-dimension SL_2 - orbits are $SL_2x^3y^3$, $SL_2x^4y^2 = SL_2x^2y^4$, $SL_2x^5y = SL_2xy^5$, and $SL_2y^6 = SL_2x^6$ is the only one SL_2 - orbit of dimensional one on \mathbb{P}^6 . Therefore we have $\Lambda_1 = SL_2y^6$. By an easy calculation, we have

 $\{\lambda \in \operatorname{SL}_{2} \mathbf{x}^{3} \mathbf{y}^{3} ; \ell_{t_{0}} \subseteq \operatorname{H}_{\lambda}\} \cong \mathbb{C} \cup \mathbb{C} ,$ $\{\lambda \in \operatorname{SL}_{2} \mathbf{x}^{2} \mathbf{y}^{4} ; \ell_{t_{0}} \subseteq \operatorname{H}_{\lambda}\} \cong \mathbb{C} \cup \mathbb{C} ,$ $\{\lambda \in \operatorname{SL}_{2} \mathbf{x} \mathbf{y}^{5} ; \ell_{t_{0}} \subseteq \operatorname{H}_{\lambda}\} \cong \mathbb{C} .$

Thus, by Corollary 3.2, we must have $\Lambda_2 = SL_2xy^5$. We put $\Lambda := \Lambda_1 \cup \Lambda_2$. Then $\Lambda = SL_2xy^5$. Therefore, by Lemma (1.6) of [9], Λ is the image of $\mathbb{P}^1 \times \mathbb{P}^1$ with diagonal SL_2 - operations by a linear system L of bidegree (5,1) on $\mathbb{P}^1 \times \mathbb{P}^1$.

Thus we have

Theorem 3.1.
$$\Lambda_1 = SL_2y^6$$
, $\Lambda_2 = SL_2xy^5$ and $\Lambda = SL_2xy^5$.

In particular, $\Lambda_1 \cong \mathbb{P}^1$ and $\Lambda_2 \cong \mathbb{P}^1 \times \mathbb{P}^1 \setminus \{\text{diagonal}\}$.

We will show explicitly below that for any $~\lambda~\in~\Lambda$, $V\setminus {\rm H}_{\lambda}~\cong~{\rm C}^3$.

By p. 505 in [9], $V := V_5 \hookrightarrow \mathbb{P}^6$ can be written as follow:

$$h_0h_4 - 4h_1h_3 + 3h_2^2 = 0$$

$$h_0h_5 - 3h_1h_4 + 2h_2h_3 = 0$$

$$h_0h_6 - 9h_2h_4 + 8h_3^2 = 0$$

$$h_1h_6 - 3h_2h_5 + 2h_3h_4 = 0$$

$$h_2h_6 - 4h_3h_5 + 3h_4^2 = 0$$

where $(h_0:h_1:h_2:h_3:h_4:h_5:h_6)$ is the homogeneous coordinate of \mathbb{P}^6 .

First, $(0:0:0:0:0:0:1) \in SL_2y^6$. In $V \cap \{h_6 \neq 0\}$, we consider the following coordinate transformation.

$$\begin{cases} x_0 = h_0 - 9h_2h_4 + 8h_3^2 \\ x_1 = h_1 - 3h_2h_5 + 3h_3h_4 \\ x_2 = h_2 - 4h_3h_5 + 3h_4^2 \\ x_3 = h_3 \\ x_4 = h_4 \\ x_5 = h_5 \end{cases}, \quad h_6 = 1^{-1}$$

Then we have

$$V \cap \{h_6 \neq 0\} \cong \{x_0 = x_1 = x_2 = 0\} \cong \mathbb{C}^3$$
,

and the line $\{h_2 = h_3 = h_4 = h_5 = h_6 = 0\}$ is the singular locus of the boundary V $\cap \{h_6 = 0\}$.

Next, $(0:0:0:0:0:1:0)\in {\rm SL}_2xy^5$. In $V\cap\{h_5\neq 0\}$, we consider the coordinate transformation

$$\begin{cases} x_0 = h_0 - 3h_1h_4 + 2h_2h_3 \\ x_1 = h_1 \\ x_2 = 3h_2 - h_1h_6 - 2h_3h_4 \\ x_3 = 4h_3 - h_2h_6 - 3h_4^2 \\ x_4 = h_4 \\ x_6 = h_6 \end{cases}, \quad h_5 = 1$$

Then we have

$$\forall \cap \{h_5 \neq 0\} \cong \{x_0 = x_2 = x_3 = 0\} \cong \mathbb{C}^3$$

and the boundary $V \cap \{h_5 = 0\}$ has a singularity of A_4 -type at the point (1:0:0:0:0:0:0).

Therefore, for any $\lambda \in SL_2y^6$ (resp. SL_2xy^5), H_{λ} is

non-normal (resp. normal with a rational double point of A_4^- type), and further $V \setminus H_{\lambda} \cong \mathbb{C}^3$.

Since Λ_1 and Λ_2 are SL₂ - orbits, we have the following

Corollary 3.3 (Peternell-Schneider [6]). Let (V, H) and (V, H') be two compactifications of \mathbb{C}^3 with normal (resp. non-normal) boundaries H and H'. Then there is an automorphism α of V such that $H' = \alpha(H)$.

ļ

References

- [1] T. Fujita: On the structure of polarized manifolds with total deficiency one, II, J. Math. Soc. Japan, 33 (1981), 415-434.
- [2] M. Furushima: Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J. 104 (1986), 1-28.
- [3] M. Furushima-N. Nakayama: A new construction of a compactification of C³ which has second Betti number one, preprint Max-Planck-Institut für Mathematik in Bonn, 1987.
- [4] F. Hirzebruch: Some problems on differentiable and complex manifolds, Ann. Math. 60, (1954), 213-236.
- [5] V.A. Iskovskih: Fano 3-fold I, Math. U.S.S.R. Izvestija, 11 (1977), 485-527.
- [6] Th. Peternell-M. Schneider: Compactifications of C³, preprint 1987.
- [7] M. Miyanishi: Algebraic methods in the theory of algebraic threefolds, Advanced study in Pure Math. 1, 1983 Algebraic varieties and Analytic varieties, 66-99.
- [8] S. Mori: Threefolds whose canonical bundle are not numerical effective, Ann. Math., 116 (1982), 133-176.
- [9] S. Mukai-H. Umemura: Minimal rational threefolds, Lecture Notes in Math. 1016, Springer-Verlag (1983), 490-518.