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1. Introduction. In the present ﬁaper we shall prove a zeroes estimate
on algebraic groups that also takes into account multplicities with re-
spect to a given analytic subgroup. This is part of an extensive program
which was started by D.W. Masser and the author with [13] and continued
with [14] . It is attached directly to section 9 of [13) and lays out
another stage of this program. We shall outline this more preéisely in

the last section.

Before we can state the main result of this paper we have to introduce
some concepts and notations. Let G be a quasi-projective connected
commutative algebraic group of dimension n 21 defined over a subfield

K of the complex numbers. We shall assume that this field is algebraically
closed. In most applications the field K will be the field Q@ of alge-
braic numbers. We remark at this point that the results remain true if

we take instead of the field of complex numbers L its p-adic analoge

Ep for some fixed prime p and for K a corresponding subfield K

of cp . We restrict ourselves to the complex case in order to avoid some
minor complications appearing in the p-adic domain. These complications
always arise when analytic functions come in. Our functions are defined
globally in the case of complex numbers but only locaily in the case when
we are dealt with the p-adic domain. These difficulties can be avoided by
a purely algebraic approach. If we took this approach the only condition
on the ground field would be that it should be algebraically clos.d and of
characteric zero. But we prefer to avoid such an approach in order to keep
the text understandable also for those who are mainly interested in the

applications in transcendence.

Let Zys c0e 5 2 be the coordinates in the tangent space T(G) at the

n
neutral element of the algebraiz group G . This group can be compactified

and this compactified group G can be embedded in some projective space



PN by means of a very ample divisor D in G defined over K (for
details see [17]). Then the exponential map exp, : T(G) —>»> G is given
by holomorphic functions fo(z1,...,zn),...,fn(:1,...,zn) with no
common zero. The embedding just described has the property that the

partial derivatives %; seces %; are derivations of the ring
n

K[fI/fO""’fN/fO] (sel [17],§ 1,1.3. and [13], Propostion 1.2.3) since
they are a basis of the Lie algebra L(G) of translation invariant vector
fields on G . We remark at this point that the function fo does not

play an exceptional role. Instead of it we could take any linear combin-
ation g of fo,...,fN with coefficients in K. This changes the embedding
by a projective automorphism of PN . This makes it for example possible to
choose the embedding in such a way that for any set of points in G defined

over some finitely generated extension of @ the function fo does not

vanish at any point of this set.

For an integer d with 1SdSn let:now be ¢ : l:d —>» G a d-parameter sub-

group of G . By definition this is a group homomorphism ¢ which makes the
Lie group t? into a Lie subgroup of G . (for details see for example [19]).
We frequently identify a Lie subgroup of G with its image in G . We say
that a subgroup A of G 1is an analytic subgroup if it is the image of a
Lie subgroup. We point out that the topology of A is in general not the
topology induced by the topology of G . We say that a subgroup H of G

is algebraic if it is analytic and closed in the Zariski topology of G.

Now it is clear that the image m(ld) of Ed is an analytic subgroup A

d with

of G and the differential d&p of ¢ can be used to identify €
the tangent space T(A) of A at the neutral element of G . Since T(A)

is a subspace of T(G) we can write ¢ as

(p-expceL



where L is a linear map L : T(A) ——> T(G). Let Cyseeesly be the

coordinates in T(A). Then we can write L as
g = Li(c‘,...,cd) (1ts$isnm)

with linear forms l‘i""l‘n in C1,..,t;d;. The§e linear forms have rank
d . It follows that there are n - d linearly independent linear forms

H‘ 9 LR N » Hn.d with

Mj(L1' seee o Ln) -0 (15551‘1‘6) .

Therefore we can define the space T(A) in T(G) by the relations
Mj(zt, cwse "n) .o (1Sjsn’d).

Therefore the analytic homomorphism ¢ is given by the analytic functions
g; = £, oL (0sisN)

and we can write 8; = gi(C‘,..,cd) for 0SiS N .The Lie algebra L(A)

L 3 _
ac‘ .ooo.a;d

of A is a subalgebra of L(G) and the partial derivations
form a basic of L(A) . We say that ¢ or equivalently A is defined over
K if the coefficients of H!"”'Hn-d are in K. If follows then that the
linear forms Li""’l‘n can be chosen in such a way that the coefficients

are in K. If these coefficients are in K then comversely ¢ and A are

defined over K.

Next we define the order of a homogenous polynomial in the coordinates
xo,...,xn of l’N with respect to a d -parameter subgroup @ of G im
the following way. Let P(xo,...,x") be a homogenous polynomial. Let x

be in T(G) and g in G defined by g-expc(x). Without loss of generality

ve may assume that fo(x)to. Then we define Y(g) for [ = (c‘,...,cd)



as

¥() = P(t,f,/fo,...,fnlfo)(x + L(3)) .

This function is analytic at [ =0, If Y 1is identically zero we let the
order of P in g along ¢ be infinite. Otherwise this order is the

greatest integer T2 0 such that

9ty 9_ytd y(o) =
(ar,,) e ( 3cd) ¥(0) = 0

with t.+ ... + t <T. This

for all non-negative integers t‘, ’td 1 d

number is denoted by ordg(w,P).

All spaces which occure in this paper are complex spaces. They have there-
fore a well-defined dimemsion. If X and Y are complex spaces and if

X< Y as sets then we denote by codyX or - if there is no danger for con-
fusion - by cod X the codimension of X in Y . This is by definition

the number
cod.Yx=dimY-dimX .

Next we define for integers r with 1SrSn non-negative integers T,
in the followihg way. Let A = (p(l:d) be the analytic subgroup defined by
¢ . Suppose A 1is defined over K . Then let T, be the minimum over all
codimensions codA VNA where V runs through all algebraic subvarieties
of G of codimension r which are defined over K and do contain an

element of A. Then we c¢bviously have 0§ TrSmin(r,d). With these numbers

we define the exponent 'r(tp;G)K as

= 1(p;G), = min (’l’r/ r)

T
K K 1Srsn

If K=T we simply SUpPressthe gubspricpt and simply write T= 1(9;C).



This exponent corresponds in a certain sense to the exponent V(I';G) in
[13]. The exponent (J(«);G)K that corresponds to the exponent u([;G) in
[13] is defined in the following way. For integers r with 1SrSn we
let o, be min(r,d) if G does not contain an algebraic subgroup of
‘codimension r defined over K . Otherwise we let o, be the minimal
codimension t:odA HNA where H runs through all algebraic subgroups
of G of codimension r which are defined over K . Then we put

= o(w;c)‘ "l;i;n(ot/r) .
) o

%
Again we have 03 6r$nin(r,d) and it follows that 0 S o,T S d/n . Further-
more a necessary and sufficient condition for A to be dense in the Zariski
topology is that ¢ > 0 . Since A and ¢ correspond to each other uniquely

we also write O(A;G)K instead of CI‘(((’;G)K and in the same way T(A;G)x

instead of ‘t((p;G)x.

To any subset V of G we associate the set S(V) consisting of all g in
G such that g+V < V . This is obviously a subgroup of G . If V is an

irreducible algebraic variety then S(V) 1is an algebraic subgroup of G.

Let ) and 0% be two finite subsets of G(K), the group of K-rational points

on G, with 0 € Q% .

Then for each irreducible subvariety V of G we define £(V) as the
number of different residue classes in O* modulo S(V) . Then for integers
r with 1SrSn we define the integer zr to be the minimum of £(V) taken

over all irteducible subvarieties V of codimension «r .
Next for integers r with 1SrSn we define

= n @-y (1Srsn)
YE(r=1)0®



where we denote by (r -~ 1) * the set of linear combinations Wite oo t® o4y

uriE 0 . Note that

Q=0 =20, =... 20

since the neutral element O is in Q* . Furthermore it is easily verified

that for 1 Sr Sn-1

Q = N @Q-y.
T+ YEQ*

Here the equality was pointed out to me by D.W. Masser. Then we have the

following result.

Main Theorem. There exists a positive constant ¢ depending only on G

with the following property. For real numbers D20 , T 21 let P(xo,...,)&)
be a homogenous polynomial of degree at most D that vanishes to order

at least T with respect to ¢ on { . Then if

(1) (/T 2 (D" (1sr<n)

(T/m" 19} 2 (D) °
and
(2) % 2 (cD) L (1$r<n)

the polynomial P vanishes on all of G .

In general the conditions (1) and (2) are not easy to verify since the com

putation of the numbers R.r(1 £rsSn) is for general % very delicate. But
in most applications in transcendence theory the sets  and Q* are very
simple. For example there are nice subsets of finitely generated groups. Then

the Main Theorem can be stated much more explicitely. This we want to do now.

For this let T be a finitely generated subgroup of G defined over K.



Let T be generated by the elements Yyreees¥y and let 2 be the rank
of T . Then we define for integers r with 1Sr<n the non-negative

integers qr as in [13] .

Accordingly q, is the minimal corank of subgroups I'' of T in T
such that there exists an algebraic subvariety V of G of codimension

r which is defined over K and satisfies
V+I'cv.

We remark that in contrast to the definition in [13] we consider only those
subvarieties V of‘ G vwhich are defined over some subfield K of € .
Similarily we define the number p,. of [13] to be the minimal coraﬁk of
subgroups T'' of T in T such that there exists an algebraic subgroup H
of G of codimension r which is defined over K and contains IV . If
there does not exist an algebraic subgroup H of G of codimenmsion «r

defined over K then we put P, " L.
Then we put

p, = u(r;G), = min p_/r
K K 18rs$n r

and

vy " v(I‘;G)x -1;2“ qr/r .
It is easy to see that the proof of Lemma 9 in [13] can be modified to
establish the equality u(!‘;c)‘ = \:(I‘;G)K. For real numbers S20 we
d?noté as usual by I'(S) the set of Y in I of the form c,y,-b...-‘-s_ym
with 055,,...,8 S5 .

Main Theorem®*. There exists a positive constant ¢ depending only omn C

with the following property. For real numbers S20 , V<0 and T2 1 1let



r(xo....,x“) be a homogeneous polynomial of degree at most D that

vanishes to order at least T with respect to ¢ on TI'(S). Then if

Tr
()= (T/n) (S/0)% 2 (D) ¥ (1Sr<n)
(T/0)™|T(s/n)| 2 D)®

and
@*  s% ; (eD) T F (1sr<n)
the polynomial P vanishes on all of G.

This theorem implies the Main Theorem in [13] as well as Theorem A in
section 9 of [13]. The second condition in (1)* is even slightly weaker

than the cortespohding condition in the Main Theorem in [13].

So we do not get any real improvement in that condition., But to state it
in this way becomes interesting when dealing with Baker's method where in
certain circumstances the group T is a torsion group. The last condition
(2)* in the Main Theorem* is the most troublesome one . But it is possible
to eliminate this condition by the use of new ideas developed in [20] .

But apart from this the Main Theorem* is essentially best possible, This
can be shown in the same way as done in section 7 of [13] with the Main

Theorem there.
The condition (1)* is certainly implied by the condition
(r/m)%(s/n)* 2 cp

since we shall show that g=T and since IP(S/n)I 2 (s/n)"iu . This condition

can be verified very easily in many cases appearing in transcendence.

Most of this paper is devoted to a proof of the Main Theorem togsther with an

explicit calculation of the constant ¢ . We shall make essential use of two



different tools. On the one hand we shall use the techniques developed in
[13]. On the other hand we make use of an estimate of the length of a
primary ideal in terms of the order with respect to an analytic subgroup.

In gsection 2 we give some prelimiaries about the derivations and differential
operators which we shall use. In particularb we introduce a third exponent

connected withthem which turns out to be very useful to simplify the proofs.

In section 3 we continue with estimating lengths of primary ideals in terms

of the order of vanishing with respect to certain differential operators.

This is one of the main tools for the proof of the Main Theorem. In section 4
we shall deduce the Main Theorem* from the Main Theorem. In section 5

we shall state and prove a proposition from which we shall deduce in section 6

the Main Theorem.

Section 7 is devoted to an analysis of the different exponents O OAR

and the exponents p r vhich are introduced in section 2. In particular

we shall prove that the numbers p - and q_ are equal. The main result

r

in this section will be the proof of the equality of o and T K This

K
makes it particularily simple to calculate the numbers T " appearing in
the Main Theorem. Normally they can't be calculated in a simple way. But
the numbers o, can be calculated very easily and since oy
the right estimates for the numbers T r via the numbers ¢ -

=Ty We get

In section 8 we shall give an application of the Main Theorem to Baker's
method and state and prove the multiplicity estimates used there in order

to obtain linear independence results for logarithms and elliptic logarithms.
In particular multiplicity estimates of this type can be used to obtain very
good effective bonds for linear forms in elliptic logarithms whose non-
vanishing was proved by Bertrand and Masser [4]. It is clear that the same

can be obtained now more generally for linear forms in abelian logarithms.
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In section 9 we shall discuss some of the applications which are con-
sequences of our Main Theorem. The first application asserts that an
analytic subgroup defined over Q does not possess a non-trivial
algebraic point in general. This has an interesting application to
trancendence properties of elliptic and more general abelian integrals

of arbitrary ' kind. Finally we shall give a lower bound for linear

forms in logarithms on an arbitrary commutative and quasi-projective group
variety. The proofs of these results will appear in forthcoming papers.

In this paper we shall often make explicitly or not use of the following
property of the field K . Suppose that for some integer k21 we have

an arbitrary set of non-zero polynomials P(ti""’tk) in the ring

L [tl”"’tk] for some field L c € that is finitely generated over the
rationals. Suppose that all the polynomials of this set have bounded de-
gree. Then there exists elements Tis ove 5Ty in K such that P(Ti,..,rk)ttl
for every polynomial P in this set. This follows easily from the fact

that the field K contains elements of arbitrary large degree over L.

Finally we should remark that this paper profits from many useful dis-

cusions of the author with D.W. Masser.
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2. Some preliminary remarks. We begin this section with introducing

two rings of differential operators DP(G) and D(A) that belong to G and
A . The ring D(A) will be a certain subring of D(G) which itself is

a commutative ring of dimension n .

In order to define these rings we consider an arbitrary affine part AN of

P N . We may assume without loss of generality that this part is given by

xo * 0 and we shall fix this part from now on. We denote the affine
coordinates of this part by XypeeesXy 80 that we may write X = X!'/x0

(1 s25 N). Let I(G) be thehomogeneous ideal of G . Then the dehomogenized

ideal lZ(G)aff is the affine ideal of G N A in the polynomial ring

K[xi,...,xul. Lét K[G] be the residue class ring K[x‘,...,xN] / I(G)nff
and K(G) be the quotient field. We denote by K[G)*™ and K(G)®® the
corresponding ring and field which we obtain after having replaced the re-

sidue classes x, + I(G)aff by the functions fi/fo for 1 SisN . If we

replace these residue classes x, + I(G)aff

in K[G] by the functions
gilgo for 1SiSN when we obtain the ring KI'.G]‘p and its quotient field

K(G)“. We put

P, - fi/fo (15isN)
and

G; - ‘i/‘o (1SisN)

As we have remarked already at the beginning, the ring K[G]an is mapped
into itself by the partial derivations -aa-;- for 1SisSn (seel18)).

i
Therefore the functions F!""’FN satisfy a system of partial differential

equations

9
(3) 's;;'i - ﬂij(F'.n.,l'u)
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for 1£iSn and 1Sj SN with polynomials Rij(x‘,....x"). The
corresponding system of partial differential equations for the functions

Gl""’GN is then given by

3 maly,
(4) -52'; Gj kz ‘—B-Ei"- HkJ (Gi’”"GN)

for 1SisSd and 1SjSN . It follows that the ring l([G]"p is also

mapped into itself by the parial derivations = for 1sSisd.

a,

This can be translated now to the ring K[G] and its quotient field.
For this we define the derivations ai for 18isSn by
N
aiP(x.l,...,xN) = j§1 H (x1,...,xN) P(x,,...,xn)

for polynomials P(x‘,...,xu). Since we have

aff

3 1)t < 1(6) (15isn)

these derivations induce derivations of the ring K[G] and its quotient
field K(G). There they are pairwise commutative and we denote them again

with ai(1 €isSn). Then we can write

N
- 9 .
(5) 3; jzl uij -&-J- (1Sisn) .

By this we have defined the algebraic counterpart of (3). The algebraic

counterpart of (4) is given on K[x,,...,xN] and then also on K[G] by

n
(6) o, = iz,' . 3% (1sisq) .
aLR
where we have put l.ki--a—;— €L for 1SkSn and 1$isd. Now we
i

define D(G) to be the polynomial ring generated by 3‘....,3n over the
field K . iIn the same way we define D(A) to be the subring generated
by A1""’Ad over K. Since G is commutative both rings are rings

of commutative differential operators. Next we recall some notations from
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[13) which we shall need later on. Let I be the group generated by the
elements of 0 and §* . Then this is a subgroup of G(L) for some
finitely generated subfield L of K . Then unless otherwise stated the
operator of contracted extension (see [13]) denoted as usual by a star
is defined with respect to the group I . Further the operators E(Y)
and E(y) for %Y in I are defined as in [13]. These operators can

be defined over K using the property of the field K stated at the end
of section 1 instead of the corresponding on in [13]). We remark that

E(Y) represents on a Zariski open set the morphism from G to G given
by the translation by an element Yy in I . This open set contains I .
We denote by b the degree of E(Y), i.e. the number a in Lemma 1 in
[13].

Finally let V be an irreducible subvariety of G and r its codimension.
Then we take a bagis P',...,Pz of the prime ideal I(V) in K[G])
consisting of the elements of K[G] that vanish on V . We define the
Jacobian matrix J(P‘,...,PL;D(A)) as the matrix

AP, (mod I(V)) ... AP, (mod I(V))

s 00

8By (mod I(V) ... AP, (mod I(V))

d

Its rank p(V) over the quatient field K(V) of the ring K[V] = K[G]/1(V)
is independent of the choice of the basis P‘,...,Pz as can easily be
verified. Then for integers r with 1SrSn we define the numbers Py

to be the mininun of the ranks of these Jacobian matrices taken over all
irreducible subvarieties V of G of codimension r. Since the vector
fields A!”"’Ad are translation invariant vector fields on G we deduce

that p(V) = p(V + g) for all g in G.
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3. Differential operators and length of ideals. In this section we

shall show how to estimate the length of a primary ideal by means
of the differential operators Ai""’Ad' In order to do this we ngcd
that prime ideals in K[G] have the property to be locally at every
simple point a complete intersection. This is the content of the

following auxiliary Lemma.

Lemma 1. Let P be a prime ideal in K[G] of rank r satisfying
1SrSn and % a maximal ideal containing P corresponding to a
simple point of the variety of P . Then there exist elements P1"”’Pr
in K[G] such that

-1

-1
PM " = (P1""’Pr) M

for M = K[G] ~ ® in K[G]M-1

Proof. Let p be the comonical homomorphism from K[x1,...,xN] onto
K{G]. Then we apply Theorem t.16 in [15] to p-i(P) and p-"(ﬂ). The

ideal p-'(P) has rank N-n + r and p-i(n)' is a multplicative set
in K[x1,...,xN] corresponding to p"(m) . It follows that there are

polynomials Ql’ ’QN-n and Pi' . ...,Pr' in p-l(P) such that

P ® T a7 = (QeeenQy By e B B 0D

and

p(Qi) =0 (1 SiS N-n) .

Since the formation of residue class rings and the localisation commute |

(see [21]) it follows that we have
Pl e (., N

for Pi - p(Pi') and ' 1 Si Sr. But this is that we wanted to show and
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therefore concludes the proof of the Lemma.

Before we come to the mainresalt of this section we need some further

technical lemma which we have to use in the subsequent Lemma.

Lemma 2. Let I be an ideal and M a multiplicative set in K[G].

Then for all non-negative integers traeeest qa ve have

t
1

toad@mDeC ] 8

T1St1,..,‘td$td*

1 Tq ~1
A ceo 84T ML

Proof. The proof ot this Lemma is dome by inductionon T = t1-1-...+td .

For T =1 and integers i with 1SisSd we obtain
2
8;(a/m) = (@ 8;(q) ~ qi;(m)/m

for elements q in I and m in M. This is an element of (I + AiI)M“1
and we have proved the required assertion. We may therefore assume that
the assertion is already proved for T . Applying to the corresponding
relation the derivation Ai for 18i Sd we obtain
-¢ ) _ _
B4 . A% i ea (T 2T . afd Mt
+ d I <" TSt ! d
1971277 a7 d

Now we recall that the derivations Ai and Aj commute for 18i,jsd

and therefore the right hand side lies in

( a3t ... Ay I) VL
rist‘,...,'tiSciﬂ,... ,rdStd

From this the assertion of the Lemma follows immediately and concludes

the proof of the Lemma.

Lemma 3. Let P be a prime ideal in K[G] of rank 1$rsn and

€ a primary idesl of lengfh £ with associated prime P . Suppose

pr >0 and let T be an integer with
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T+p )z +1
( oy r L .

Then there exist non-negative integers tisecesty with t'+...+td$ T

and

t t
1 d
M “.% QeP .

Proof. We shall prove the Lemma by contradiction.and assume that the
conclusion of the Lemma is false. Then it is an immediate consequence

of Lemma 2 that for any multiplicative set M in K[G] we have

£
4,

A;d en'cr !

for all non-negative integers t with t toott, S T . Therefore

pree ety 1
we are completely free in localizing with respect to suitable multiplicative

sets,

The set of simple points on the variety V in G belonging to P is
a non-empty Zariski open set. There we choose a generic point g. Then
let M be the multiplicative set in K[G] consisting of those functions
that do not vanish in g. By Lemma | we find elements Pl""’Pr in

K[G] such that

-1

PN !

- (Pi""’Pr) M.

Let Ql,...,Qz be a basis of the ideal P and p 2 Pe be the rank over

K(V) of the Jacobian matrix J(Q‘,...,QQ;D(A)) . Since we have
(Qs-02sQ )M ! = (P P M
1) ey z ‘,oo., r

the rank over K(V) of this matrix is the same as the rank over K(V)

of the matrix



-1 -1
A1P' .(ﬂd,u ) ... Ad’l (Ud?" )
y -1 o o1
A'Pr (mod PXM ') ... Adrr (mod P M ')
Bere we have used the fact that the rings K[V] and ke Ve 7!

have the same qﬁoti.ont field. It follows that p S r and we may assume

without loss of generality that the determinant

AP, ... AP

[’ 11 p1
det ' ]
A1 o °° A Pp

P

L -

does not vanish at g. let D = D(P‘,...,P p) be this determinant. Then

D is the multplicative set M . It follows that we may solve for all

integers k with 1Sk<p the system of linear equationes

%} 'V“‘x,t Az P' +...4 °'k,p A,‘ Pp

for 1 S L Sp in elements a\.j in K[G]H" for 1sSk,L Sp . Por
»

integers k with 15kSp we define elements Qk by
Qk-ak,l P’ tooot a'k,p Pp .
Then we have
pu! - (Q,....q,P pw!
‘....' p. p*"'... t

since the determinant of the matrix (a.j k) .is equal to D.' and this
»

1

is contained in M ' . It follows that

-1
A"Qh - 6!.,k (mod P M )

for 15k,250 . Therefore we may assume from nov on without loss of

generality that

) 6R, = & (mod P S~ V)
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for every multiplicative set S of K[G] that contains M and for
allm k,2 with 1Sk,2Sp . We use this in order to show that for all
non-negative integers li""”'p’tﬁ""tp with L = 2.1+...+£p s

t1+ eee + tp- T we have

%o (ot t ty toy pt1~21 t,-%
ces Ap (7 ... Ppp) = (21) ces (zp) P, ...Ppp p

(8) 1 "1

(mod(@ s~ Ty |

This is shown by induction on L . For L = 0 this is clear. Therefore we
may assume that this is true for L<eT. If we apply Ai for 1Sisp to

(8) we obtain

N R 4

L t1 t
T 1T & PP App (P1 ces Ppp) =

t t ty-2 t- 2 -1, T-L
(L:) .es (LP) A, (P‘1 1 ... Ppp P) (mod(P S ')

P

since Ai and Aj comnute for 1Si,jSd . Furthermore we have for

15i,jSp for non-negative integers k either Aink n ijAi (mod (P S-')k)
k k-1

. . -1,k
for i #j or AiPi -kPi (mod(P S ")) .

Now we may assume that 21 s ty seeey -1 tp , since otherwise the right

p
hand side of (8) is zero. Therefore it follows that

t, -2 ty~Lp t. -2 t.~%.~-1 t -2
1M P _ 1 i7i pp
AiP1 Pp = (ti R.i) P1 Pi ...Pp

_‘ T .
modulo (P S )T L . If we put this together we obtain (8) with L replaced

by L+ 1 and this concludes the inductive step.

We now choose the multiplicative set S as K[G]-P. By definition the
length of the primary ideal @ is equal to the length of the primary

ideal @ S-1 in l([G]S-1 . In order to compute this we define for non~negative
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i

integers i the ideals Qi-(Q,Pi) with P~ = K[G] for i=0.

Then Qo = K[G] and

-1 -1 -1 -1

is a descending chain of primary ideals in l([G]S"1 . The length of

1

Q S-'l is then at least equal to the length of Q'rﬂ S ' and this is

equal to the sum of the lengths of the modules
M, =Q5'/Q,5s" (i=0,...,T)
i i i+l pote

over the ring K[G]S—‘ (see [21]). For each i with 0SiST the
maximal prime ideal P S—‘ annilitates the module ui . Therefore we may
regard the modules Hi as vectorspaces over the residue class field

F= K[G]S-‘/ ?s”' . The length of M, is then equal to the dimension of
the vector space ni over the field F . We shall show that this dimension
is at least equal to (i;:‘). Then we obtain for the length £2(Q) of §

the estimate

T T .
LQ 2§ aim(i) 2 3 AT
izo 1 izo o=

and this gives 2(Q) 2 (TBD) . But the last inequalities contradict the
hypothesis. It remains to verify that the dimension of M, is at least
equal to the number (i;_p;‘). In order to verify this lower bound for
the dimension of the vector space Hi over F we shall show that the

monomials

iy i . o s . . . 5
P‘ cos Ppp (i i, +...+1p,11,...,1p 2 0)

-1 over the field

in P‘,...,Pp are linearly independent modulo Q. , S
F . Then the dimension over F of the vectorspace M, under consideration

is at least equal to the number of these monomials. The number of such
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monomials is equal to (i;g;l) and from this the desired estimates
-1

follow. In order to verify the linear independence modulo qi*‘s
of these monomials over the field F 1let Q(Yl""’Yp) be a
homogenous polynomial of degree i with coefficients in K[G]S.'

in the variables Y1,...,Yp . If we have

-1
QPy,ee e P) € Qg ST,

then we obtain for arbitrary non-negative integers il""’ ip with

i= i1+...+ i

i i i i -1
agt ... App Q(P,,...,Pp) € A11 - App Qi+' S

Since we have assumed at the beginning of the proof of this lemma that.

i

ot

ip
oo A P
NCE

for non-negative integers ji' eesyj with j‘«&-..ur'j‘p ST and since

P
for non—negative integers j',...,jp s 4 with j = 51 +...+jp SL we

have

ajt ... ale p* ¢ p*-i

we obtain by the use of Lemma 2 the relation

i1 i -1
9) A1 ...App Q(P,...., pp)-o (mod PS ') .

I3

i i
1f q; i denotes the coefficient of the monomial Y1‘...Ypp in
1’...’

Q then it follows from (8) and (9) that

q. .- =0 (mod P Sy .
b WP |
1 P

Since we have chosen i',...,ip arbitrarily with i = i'+...+ip we

obtain from this that
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QYy,ee,Y) ® 0 md PShH .

This means that the monomials under consideration are indeed linearly

independent modulo Qi 1 S-‘ over the field F. This proves Lemma 3.
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4. Proof of the }hin Theorem*. We shall show in this section how the

Main Theorem* is deduced from the Main Theorem. Essentially one has to
verify that the conditions (1)* and (2)* imply the conditions (1‘) and

(2).

For positive integers m let be Z® the usual additive group of elements
g = (81,...,8m) for integers 8isce08 ] » and for real non-negative $§ we
denote by Z™(S) the subset of Z" with 0% sl,..,sns S . Then the follow~

ing Lemma was proved in [11].

Lemma 4. Suppose for some real S 20 there is an equivalance relation on
z™(s) with B equivalence classes, where BS sm+1-q for some integer ¢
with 15qSm . Then there are elements o, ,01', cee s oq,oq' of Z™(S)

such that o, is equivalent to oi' for 15iSq and the differences

0" 01', ees 5 O = oq' are linearly independent.

q

We define now Q% = I'(S/n) and §N=T(S) . Then we want to apply the Main

Theorem. For this we need the following result.
Lemma 5. Por 1 Sr Sn we have lr(ﬂ*)> (s/m)9r

Proof. We assume that there is some r with 1SrSa such that !.rS (s/n)fr,
Let V be an irreducible subvariety of G of codimension r such that

R.r = 2(V). We have a corresponding disjoint union {* = R‘*'U...Uﬁl(v)

of @ as described in section 1. We recall that for 1SiS40¢) we have
Q.* = (5(V) + Yi) N Q* for some A in Q% . Next let ¢ :Z" —> T be

the homomorphism that maps the element (31, cee ,sm) of Z® inmto
lei*"'ﬂmYm' The homomorphism ¢ gives us a covering of l‘(sln) by the
sets Q-l (ﬂi*) NZ®(S/n) for 1Sis UV) . These sets are pairwige disjoint

since this is true for the sets ﬂi* for 18cSA4(V). They define ‘on
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z"(S/n) an equivalence relation with "r equivalence classes. Since we
have "’r s (s/n)nﬂ-q for q=m+ | - q, we obtain by Lemma 4 elements

01.0", cee ,o‘;,aq' in Z™(S/n) such that o is equivalent to oi'

for 15isSq and the difference o4 o,', ,cq—oq' generate a subgroup
Z of Z® of rank q . Let T' be its image in T under ¢ . Since the

rank of the kernel of ® is m - & we get for the rank of T' the lower
bound q - m + 4 =% -q_ + 1 and therefore the corank of I'' in T is at

most equal to q,. - 1 . Since T' c 5(V), this contradicts the definitiom of

q.- If follow that we have indeed the inequality R‘r > (s/m)Ir for 1Srsn.

From Lemma § it follows that the conditions (1) and (2) for r<n are im
plied by the conditions (1)* and (2)* . It remains to show that the same
holds for r = n. For this it is sufficient to show that Iﬂnl 2 | (s/)].
Since we have T(S/n) + (n - 1) T(8/n) € T(S) if follows that Qn 2 I'(s/n)
and the desired inequality follows immediately. This completes the proof that

the Main Theorem implies the Main Theorem*.
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5. The Proposition. In this section we shall state and prove a Projection.

We shall show in the next section that it impliés the Main The@r-l. Let

G, 2,0*,A and P € I(G) Dbe as in the Main Theorem. We recall'that b is

the degree of the operator E(Yy) and .a .-the maximum of the degrees of the poly~
nomials uij for 1SisSn and 1Sj SN which appear in the system of

partial differential equations (3). Furthermore we denote by deg(G) the

degree of G and remind that the intégers 9, for 1SrSn are defined

as in [13].

Then we put T' = min(T/n,cD),$' = S/n , D, = D, Drﬂ-(rﬂ)abr wax(D,T')

1
for 1 SrSn and Bl = D1"'Dr deg(G) for 1S rS n.In particular we have

the inequalities

[ T
BI_'._1 SW D max (D,T')

if the constant ¢ in the Main Theorem is chosen as
c = (n!)?'(abn)n deg(G) .

We shall prove the Main Theorem by contradiction and assume that the con-
clustion of the Main Theorem is false. We choose the embedding of the group
variety G in such a way that the homogenous coordinate Xo satisfies
Xo(y) #0 for all y in I . This implies that the differential operators

9y 5 «+s » 3 and the order are defined for all ¥y in T(S).

We shall show in section 7 that for all integers r with 1SrsSn we

have

(10) T =P (1srs$n)

9

and therefore we may replace the integers T By the integers Py

For a homogenous ideal I in K[X.,...,X.] we define the order of Iat the
Xo
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point g of G with xo(g)go to be the minimum of the orders of elements

of I in the point g. The *-operator in the subsequent proposition is de-

fined as in [13] with respect to I .

Proposition. For every integer r with 1 3Sr3n there exist homogenous
polynomials P,,...,Pr of degrees at most Dl""’nr respectively such

that the following holds. The ideal Ir -(I(G),P1,...,Pr) vanishes on Qr

n-r+1

to order at least equal to T . Furthermore

(i) the rank of Ir* is equal to N-n+r,

§¢i) the degree of Ir* is at wost equal to B_.

Proof. We shall prove the Proposition by induction on r and point out
again that the proof is carried out along the same lines as the proof of
the corresponding Proposition in section 6 of [13]. The only and esgsential
difference consists in the fact that we shall take also multiplicities into
account. This is also done in [14] but there we have only multiplicities in
one dﬁrgcr_{énand the methods of [6] are applicable in this situation. This
is no longer the case in the present situtation and our approach is based
on the results of section 3 accompanied by the results of section 7. In

the proof of the Proposition we shall therefore work out those details omly

in which it differs from the corresponding Proposition ia [13].

As it is shown in section 4 of [13] there exist homogenous polynomials
Q',...,Qh for h = N-n such that the ideal I(G) of G can be written
simultanously as a complete intersection locally in TI. In other words we

have
Qqs--.0Q* = 1(6) .

Since we did not care in [13] about the field of definition for Qqye--5Qy
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we should make a short remark about it at this place. Since the idesl

I1(G) and T are defined over a field L that is finitely generated

over the rationals the proof of Lemma 6 in [13] can be copied using the
remark at the end of section | instead of the remark at the end of section
1 of [13]. From this we deduce that indeed the polynomials Q» ...,Qh can

be defined over K .

We begin the proof of the Proposition with the case r = 1., The case h=0
is treated in the same way as in the Proposition of [13] in section 6 using
the polynowial P‘(xo,...,xu) = P(X ....,XN). The same is done in the case

h>0 vwhere we only have to note that we have (I(G),Pi)* = (Q'....,Qh,P')*.

Now we assume that the Proposition is proved for integers r with
1Sr<n and we proceed to do the inductive step from r to r + 1. For
this we start with the construction of anappropriate polynomial Pr+l .

First of all we remark that

I* = (QuueeesQuPosees,BO*

Since the rank of Ir* is equal to N+r-n the ideal If* has to be un~
mixed because of Lemma 7 of [13]. For a homogenous ideal I in KD(O,...,X“]
we denote by I' the corresponding dehomogenized ideal in K[x',...,xa].
We recall once more that we denoted by p the canonical projrction from

K [x‘,...,xN] onto K[G].

Let & be a primary component of Ir*’ Then we distinguish two different cases.
Either there exist non-negative integers Eyseessty with Eyteestty ST

such that

.4 t ' '
(11) ayte a8 Qge,

where P' denotes the radical of Q' . Or for all non-negative integers
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. . .
’t', coe oty with By et tds'r we have

(12) ajl.. ad @ cpr.

Since P is a component of Ir* it vanishes for some Y in I ., Since
furthermore Xo(y) #0 the dehomogenized prime ideal P' vanishes at Yy .
We continue to prove that the length of a primary ideal Q' that satisfies
(12) 1is at least equal to (T’ gp) where we have put pP=p, for the sake

of shortness.

In order to see this we note first that the length of § is equal to the
length of Q' . Furthermore it is clear that we may replace in (12) the
ideals P' and Q' by the ideals P(P') and p(Q') and we note that the
length.of p(Q') is the same as the lepgth of @' . It suffices therefore
to estimate the length of p(Q'). This is done by means of Lemma 3. Either
we have p > 0 and then all the hypotheses of Lemma 3 are satisfied and
the length of p(q'), and then also that of € is at least equal to
(T"";P) . Or we have p = 0 and we simply estimate the length of Q by
1= GH.

It is a well-known fact (see [7] or [21]) that the sum of the lengths of
the primary components of an unmixed ideal is at most equ#l to the degree
of this ideal. The degree of Ir* is at most equal to Br' Therefore the
number of those primary components that satisfy (12) is at most equal to’

-1
B_(T +ip)
op

We fix now an associated prime ideal P of Ir* and we proceed to show
that there exist non-negative integers tl" oty with Byt oeot t; ST

and an element Y in Q% such that

(13) a5t A3 (10 ¢ ECNIRY
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If this does not hold then for all y in Q* and all non-negative in-

s L}
tegers tl""’td with tl+"'+td S T' we have

(14) a1 ... 858 am < (B-np).

For y in 0% let “Y be the multiplicative set K[xi,...,xul'\ (E¢-v)P)!
and QY be the primary component of Ir* belonging to E(~y)P . The latter
is a component of Ir* as follows from (14). Then we localize the relation

(14) with respect to MY and obtain by use of Lemma 2 firstly

t t -1 -1
1 seon d ' - '
A' Ad QY HY c (E(-v)P) MY

and then a fortiori

t1'

t t !
(15) al ... ad QY c (E¢-v)P)'.

This is exactly the situation in (12) and the length of the primary ideal
QY is therefore at least equal to (Tgp) . We conclude that for each
Y in Q* the ideal Eg(-y)P isan associated prime ideal of L* since
both ideals have the same rank. Furthermore the corresponding primary component

has length at least equal to (T%4p)
p

We define now an equivalence relation on the set Q* in the following way.
Two elements Y and y' are equivalent if and only if E(-y)P = E(~y")P

or equivalently E(y-y')P=P. This again is equivalent to the comndition that
Yy-y' is in S(V) where V is the variety of P in G (see aiso [14]).
This last condition is furthermore equivalent to the condition that y is

in (S(WM+y') N 9% ., But this set is one of the sets a.;* for 1 sis2 (V).
Therefore this equivalenﬁe relation is the same as the equivalence relation
given by the sets Qi* for 1sis2(V) . By the definition of the numbers

lr we have (V) 2 zr . Hence the number of distinct prime ideals among the
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priqe idcnl;} E(-Y)P of I:* -is at least equal to zr. It follows that

the degree of 1:* is at least 'equal to 2 t('r'zp) . On the other hand it is

at most equal to Br . Hence we obtain the inquality (recall that p'ptSIT)
£ 1% < (eD)F .

This contradicts (2) if T' = ¢D and (1) if T' = T/n . We conclude that

(14) cunnot hold and this implies that (13) is true.

tNow we can construct the polynomial Pr+1 ..The idea for the contruction
of the polynomial Pr+1 is the following. First we construct for each
prime component of Irf a polynomial that does not lie in this component.
Then by taking a suitable linear combination of these polynomials we shall
obtain a honogenous polynomial Pr+1 that does not lie in any of the prime
components associated to Ir* . Then we shall verify that the so com-

structed polynomial has the required properties.

We have seen that we can find an element Yy in Q% and non-negativg in-
tegers Cioeeenty with t‘+...+td ST and that (13) holds. Then at least
one of the elements P!""’Pt vhich generate together with I(G) the

ideal Ir ,» 8ay Q , must satisfy
(16) 451 ... Al Q' g (EC-nR)’ .

Let Qh+r+1 be the homogenized left hand side of (16). If follows from

(16) together with Lemma 3 in [i3] that
(17) E(YQ g ¢rP.

Since the prime ideal P was an arbitrary associated prime ideal of
Ir* this can be adieved for every associated prime ideal of Ir* . In
the same way as in [6),f11)or [13] we construct the polynomial Py

as a linear combination with coefficients in K of these polynomials
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E(y)Qh+r+1 multiplied with a suitable power of a 1 inear form. This linear

form is chosen in such a way that its coefficients are in K and such

that it does not vanish at any point of T . The existence of such a linear
form follows from the remark at the end of section 1. We choose the powers

smallest possible to make all the resulting.polynomials homogenous of the

same degree.

It remains to verify that the polynomial Pr+ has all the properties which

1
are required in the propositionm.

First of all it is easily seen that the degree of the polynomials E(V)Qh+r+l
is at most equal to b(Dr-+ aT') s Dr+1 . Therefore we can take such a power

of the linear.form just mentioned that the degree of Pr+1 is at most equal

to Dr+l .

Secondly since the polynomials E(Y)Qh+r+1 are obtained from the polynomials
PI,}..,Pr by applying a differential operator of order at most T' and by

translating by an element in Q* and since Pi""Pr vanish Qr to order at

n~r+1 . . s .
least —— T it follows that the polynimials B(y)Qh+r+r vanish on ﬂr+1

to order at least E%E T. The same holds then for the polynomial Pr+1 .

Finally Lemma 3 of [6] tells us that the rank or the ideal I = (Ir*,P )

T+1

is equal to N+ r + 1 - n and its degree is at most equal to D_, B S Br+

r+i x 1

\ Lo, . , . = A ni .
Since it is contained in Ir+1 (Ir’Pr+1) since the latter ideal possess
a zero in G and is therefore not the whole ring KI[X ,...,XN] the rank

of Ir+1* is at least equal to N+ r + 1 - n and at most equal to
N+r+1-n because of Lemma 7 in [13]. Hence itsrank is equal to N+x+ 1-n.
Furthermore its degree is at most equal to the degree of 1 since it contains
this ideal and both have the same rank. It follows that the degree of Ir+l* is

at most equal to Br+l and this proves the last assertion of the Proposition.
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6. Proof of the Main Theorem. We are now prepared to deduce the Main

Theorem very easily from the Proposition. But we point out that we do
this under :hc hypothesis that we have P =T, for all integers r
with 1SrSn . We shall #hovwiin the next section that this hypothesis is
indeed true. Then the Main Theorem will be proved completely as it

stands.

For the proof of the Main Theorem we put r = n in the Proposition. We

obtain then the ideal In* whose degree can be estimated by

c n-1
(18) deg I * s B s o1 D max (r',D) .

=

This ideal vanishes on Q L to order at least equal to T/n . By Lemma
3 the sum of the lengths of all primary components of In* is strictly
greater than lﬂnl('f/n)p“/n! . On the other hand this sum is equal to the

degree of In* vwhich we have estimated in (18). Therefore we have the

lower bound
(19) deg I.* > |9 | (T/a)"n/n1

for this degree.

Since by the definition of the number T' we have T'ScD it follows
that the right hand side of (18) is at most equal to (cD)®/n! . Then to-

gether with (19) we obtain
la 1 (x/)Pn < (D)™ .

Since p a " T this inequality contradicts the hypothesis (1) for r = n
of the Main Theorem. This contradiction completes the proof of the Main

Theorem.
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7. Analytic subgroups and Jacobians. In this section we shall de

some calculations concerning the exponents T O and Py - In the
proof of the Main Theorem we had used the fact that for integers r

with 1SrSn we have pp =T, - This we shall verify now. The
exponents T, as well as their analogues q, camnot be calculated

in practice.directly from their definition. Therefore we have intro-
duced the exponents o - And these are very easily calculated in all
known applications. We shall further show in this section that we

have 0 =71 . This will give us the posibility of calculating the numbers
T, in most cases explicitly and in all other case we obtain lower

r

bounds,

In order to carry all this out we begin with recalling some basic facts
from the theory of Lie~groups. For further details we refer to the

books of Hochschild [8], Warner [19] and Narasimhan [16].

Let M be a complex manifold and T(M) ibe the tangent bundle of M .

As a set this is the disjoint union of all tangent spaces Tm(MD vhere

m rung through all points of M . For each_ m in M we define the
cotangent space at m to be the dual space Tm(u)* of the tang?nt space
Tm(M) at m , In the same way as the tangent bundle is constructed one
constructs the cotangent bundle T*(M). Let ZiseoesZ be local coordinates
for a neighbourhood of m in M where n is the dimension of M . Then a
basis of Tm(u) is given by the partial derivatives (sg;)- ,...,(5%;)-

in the point m . We further denote by (dz1)m""’(dzn)n the dual basis in

Tm(M)* . Then we have by definition
< (Wi) ,(dz.) > = G.j (1si,jsn)

where Gij is the Kronecker symbol.
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From now on let M be a group varisty G and @ be the algebra of
1e£t~iuvariant vectorfields on G . This is the Lie-algebra of G .
. s ) 9
This algebra possesses a basis given by oo . We denote by
oz, "55;
g* the space of left invariant 1-forms. This space is generated by the
1-forms dz‘,....d:n , the differentials of ZyseresZy It is well~knowm

that g is isomorphic to TO(G), the tangent space of G at the neutral

element of the group G.

Let now Y be an irreducible subvariety of the group G codimension.:

r . This means that its dimension is equal to n-r. Then we may assume
without loss of generality that V is not contained in the hyperplane
section of G defined by xo = 0. Then let P1""’P£ be a set of
generators for the ideal I(V) in K[G] of elements that vanish on V.
Let 0‘,..., Qz be the corresponding functions on the tangent space TO(G).

This means that
| ’i = Pi * exp, (1sis2).

Here exp. denotes the exponential map of G which was introduced at
the beginning of section 1. Then the functions Oi are functions of the
coordinates TiseoosZy of TO(G) and we can vrite them as

°i = i(21,...,zn) for 1sise.

We consider now the analytic subgroup A of G of dimension d. Then

with the notations of section 1 the subgroup A is defined in the

tangent space IO(G) by the vanishing of the linear forms “1(’1"""n)"'
Hh_d(z‘,:..,:n). These linear forms have rank n - d and therefore the
associated differential forms dn,,...,dun_d have rank n - d at every

point of ro(c).
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We denote by R the ring of functions on TO(G) of the form f,vexpc
where f 1is any element of K[G] . In other words it is just expc*(K[G]).

Then we define the R-modul M(V) as

MYV) = Rdd>1+ ... +Rd®, + RdM, + ... + RAM _

L d

and let M(V) be defined by
MIV) = MV) (mod exp *(1(V)))

Finally we let m(V) be the restriction of M(V) to expc—‘(V) . The
module m(V) is generated by the restrictions Weseoos g of d“l""’dun~d
to expc-‘(v) since the restrictions of d01,...,d¢2 all vanish on V .

Now we put

9 d 9 .
a;i 21i '5;7'0'...*2“1 3Tn (18is8d)

(see section 2). These are invariant vector fields belonging to the analytic

subgroup A and correspond to the derivations AI”"’Ad of section 2.

Without loss of generality we may assume that a basis of g is given

9 ) . 3 )
by 32: > coe s 32; together with 3‘¢+H""3;; .

Lemma 6. We have
rank(J(Pl,...,P!';D(A)) =d - n + rank M{V) .

Proof. The rank of M(V) is equal to the rank of the Jacobian matrix with

respect to an arbitrary basis of g of the functions °1""'¢z and

M "Mn-d where the entries are taken modulo expc*(I(V)) respectively.

12

By the definition of the linear forms Mj we have

3 . '
3, M, =0 (151i5d;058j Sn-d)
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(see section 1). Hence the Jacobian matrix in question has the form

- 9 9 9 ) -
¢ ... ¢ $., co0o =@

El 1 3Cd1 azdﬂ 1 azn 1
0 8. ... o2 2 4 ... @
5‘1 | X Ecdh §zd+1 L 5zn L
0 se e o a M "._—-M
. . 329” 1 an.i
. » .a a'

L 0 ceos 0 H ..——-H J

5zd+1 nd 3zn n—d

and every entry has to be taken modulo expc*(l(v)). The rank of this

matrix is obviously equal to

] 9 1
I’T;Toi e oo 'E;Ql
nt+d rank . .
20 2

Here again the matrix has to be taken modulo_ expc*(I(V)). Since the rings

R and K[G] -are isomorphic and since the derivations 32-— and Ai
i
correspond under this isomorphism for 1S5isSd the rank of this matrix is

equal to
rank (J(P‘,...,P";D(A))
such that we finally obtain
rank H(V) = n - d + rank J(P,,...,Py;P(A))

is claimed. This proves the Lemma.
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We use this Lemma to fill the last gap in the proof of the Main Theorenm.

This is the following Proposition.

Proposition 1. For every integer r with 1Srsn we have T, =P, -

In particular we have T(A;G)K = p(A;G)K .

Proof. Let V be an irreducible algebraic subvariety of G of codimension

r and defined over K such that ANV is non-empty. Then we have
cod ANV 2 rank M(V)
as can be easily verified. Furthermore we obviously have
rank M(V) 2rank M(V) ,
cod ANV =n=-4d + T(V)
and since by Lemma 6 we have
rank M(V) = n - d + p(V)
we obtain
n-d + T(V) = cod ANV 2 rank M(V) = n - d + p(V) .
From this we obtain
p (V) S 1(V) .

In order to show the opposite inequality let p' S n-d + r be the rank
of M(V) . Without loss of generality we may assume that d01,...,d0r are

linearly independent modulo expG*(I(V)) .

Then there exist linear forms
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Lj(x‘,uoo'xn-d"Y'..o-o’Yr) (1$jsn-d+r-p')

vith coefficients in R which are linearly independent modulo cxpc*(I(V))

such that

L (dM .y, d0

—d° ,...,er) =0 (modulo expc*(I(V)))

1

for 135j Sn~-d+r-p' . Consider the quotient field L of the ring

S§= CXPG*(K[G] ) /expc*(I(V)) . This is a K-module: and we denote by

Q:‘ /X its associated module of relative differentials. Then we look at
. 1 . .

the images Ej of I‘j ("“1‘&"""”:’ in QL/K . Since the images of

dé,,..., dd_ are zero we can write
1 r
- = 3 g - \J
Ej Aj(wl,.... wn—d) 0 (183 Sa~d+r-p')

n-d) in the polynomial ring L[x‘ peee ’xn-d]

which are linearly independent. The same arguments as in the proof of

for linear forms x,(x’,...,x
J

Theorem 1 in [1] show that the linear forms A‘,...,A have already

n-d+r-p'

coefficients in K and therefore

‘l‘(dui,...,dun_d),...,xn_d_'r_p.(du‘,...,dﬂn_d)

are linearly independent invariant holomorphic differential forms on

T(G) which are completely integrable (see again [1], loc. cit.). Therefore
there exists an unique maximal integral manifold B through the neutral
element O in G . This is an analytic subgroup of codimersion n-d+r-p'
that satisfies BDA and B>V .We choose an analytic subgroup C>A such

that A = BNC and the codimension of C is equal to p' - r. If follows that
cod ANV = cod CAV S p'.
On the other hand

cod Anv-codAAnV't cod A= T(V) + n - d.
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This gives
T(V)sSp'+d-n .

We use now that Lemma 6 asserts that o' =n - d ‘+ p(V) to deduce that
(V) sp(v) .

Hence we have proved that 7T(V) = p(V). If we take the minimum we obtain

=P, for 1 SrsSn and this finishes the proof of the Proposition.

We end this section with the proof of the already announced equality of

the exponents O(A;G)K and T(A;G)K.
Lemma 8. We have CJ(A;G)K - ‘r(A;G)K .

Proof. Since we trivially have T < o, we obtain T S o . Hence it re-
mains to prove the opposite inequality. For this we choose r in such a
way that T ==1’1_/t. Then we find analgebraic’gsubvariety V of G of
codimension r with coclA VNA = Tr . Let K bea component of VA A
in an open subset (in the complex topology) of G with codA!i =T and
W the Zariski-clasure of ¥ . We may assume without loss of generality
that W is equal to V . Then by [1],Theorem 1, there exists an analytic

subgroup B of G with the following properties: B contains A and

V and the codimgnsion satisfies
cod B2cod A+codV-cod¥.

Since codAY + cod A = cod ¥ we obtain the lower bound
cod B2r - 'rr

for the codimension of B. As in the proof of Proposition 1 we may further

assume without loss of generality that the neutral element 0 of G is



contained in. V. Let H be the algebraic subgroup of G generated
by V. Then H is contained in B (see [1] or [5], Chap. I, § 2).
We denote by r' the codimension of H . The subgroups A and B
are defined by linear equations in the tangent space. Hence we can
find an analytic subgroup C of G such that A =BNC and cod A=
cod B + cod C. Since B contains the algebraic subgroup H we obtain

HNA = HAC. It follows that
cod HNA = cod HNC S cod H + cod C.

If we express the codimension of C in terms of the codimensions of

A and B and notice that

cod HNA = cod, HIA + cod A
we obtain

cod HNA Scod H -~ cod B.

A

The left hand side of this inequality is at least equal to Ot and the

right hand side at most equal to r' - x + T ¢+ Hence we obtain
P - ’
or' +r-r'3$ T .
If r'+#0 we conclude that
oS cr./r' s -rr/r -T .

If r' =0 it follows directly that T 2 1. On the other hand we have
TSd/n and thus T = d/n . This implies that d = n and together with

02T and 0 & d/n we conclude that O=T=1. This proves Lemma 8 completely
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8. Baker's method. 1In this section we shall give an application of the

Main Theorem in the context of Baker's method. In his famous series of
paper g Baker proved among others the followirig result (for a survey of
these results we refer to [2]lon[3]). Let Oys oee 5@ be algebraic
numbers such that their logarithms in some determination are @ -linearly
independent. Then Baker's Theorem in its qualitative version says that

these logarithms are then also Q-linearly independent.

The elliptic analogue of this is the following problem. Let E be an
elliptic curve defined over the field @ and let End E be the ring of
endomorphisms of E and put K =(End E) 4@ . Then it is a well-known fact
that 'K is either the field Q or an imaginary quadratic extension of @
In the latter case we say that E possesses complex multiplication. The
exponential map of the complex Lie group E can be explicitly given by

use of the Weierstras elliptic function @@ (z).

Let wu,, ... Uy be complex numbers such that for all i with 1Sisn

the number @(ui) are defined and algebraic. Such numbers u, are often
called elliptic logarithms. Then we suppose that these numbers are linearly
independent over K . Then D.W. Masser proved in his thesis [10] that under

the hypothesis of complex multiplication these numbers are also -Q- =-linearly
independent. For the proof of this Masser used Baker's method. The extension

of Masser's result to the case when E does not possess complex multiplication
was a difficult open problem. It was solved recently by D. Bertrand and D.W.
Masser [4] in a very surprising way. They showed that this was a consequence
of an old criterion of Schneider generalized by Lang. D.W. Masser [12] has

recently used this method to give an alternative proof of Baker's Theorem

above.

The disadvantage of this method is that it does not provide reasonable lower

bounds for linear forms. So the only way to obtain good lower bounds seems to



be Baker's method.

This can now be done with the help of the Main Theorem of this paper. In
this section we want to give an example of our results in the connection

with this problem.

Let & be either the multiplicative group of complex numbers, also de-

noted by £, or an elliptic curve E defined over Q . Then let G be

the product £ and exp : T(G) — G the exponential map from the
tangent space T(G) at the neutral element of G into G. We identify from
now on the complex vector space T(G) with €% . Let u = (“1’ coe ,un) be

in T(G) such that :exp(u) is an algebraic point of G and hence lies in
G(Q) . We assume that the components u,, ... ,u, of u are linearly in-
dependent over K:= (End E) ®§ . Then it follows from the results of Baker,
Masser and Bertrand and Masser that the numbers Ugy ooo ,u are also linearly

independent over 193 . In order to prove this result by Baker's method one

needs the following zero estimate.

Let A be the analytic aubgroub of G of codimension 1 defined in the tangent

space T(G) by the linear form
L= B‘:‘ + ... * Bn-izn-l + z = 0.

We assume ‘thnt the coefficients l,B,,..,Sﬂ_1 are algebraic numbers which are
-linearly independent over K. In order to obtain the simplest version of a
classical zero estimate we suppose further that the point exp(u) has in-
finite order. We deonte by I' the subgroup of G generated by this point.
As usual we embed the algebraic group G into some projective space lPu .

Then one obtains the following result.

Theorem. There exists a positive constant ¢ depending only on G with

the following property. For real numbers 820, D20 and T21 with T2 S
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let P(X., ... ’XN) be a homogenous polynomial of degree at most equal
to D that vanishes on TI'(S) to order at least equal to T along A .

Then if
@/m)* Ns/m) 2 (¢ D"
the polynomial P vanishes on all of G.

This Theorem is an immediate consequence of the Main Theorem and the

following Proposition.

Propostion 1. We have T(A;G) =n - 1/n .

Proof of the Proposition. Since T(A;G) = 0(A;G) it suffices to prove the

Proposition with o instead of T . Suppose 0 < n - 1/n. Then there exists
an algebraic subgroup H of codimension r which is contained in A . In
T(G) this subgroup is defined by the vanishing of linear forms L‘(z',...,
zn)""’Lr(zl’ cos ,zn). These linear forms may be chosen in such a way that
they have coefficients in K. Since H is contained in A it follows that
the rank of the system of linear forms L,L1,...,Lr is equal to r . This
is less than n . If we regard the matrix of coefficients of this system of
linear forms it follows that all minors of type (r+1 , r+1) have vanishing
determinant. Since the rank of the system Ll""’Lr is equal to r we

deduce a non~trivial linear relation with coefficients in K between

1,8,5+-+5B8_ _, - This is a contradiction and proves that ¢ = n-i/n .
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9. Some further applications. Throughout this section we denote by C

either the field of complex numbers or its p-adic analogue for some prime
P . We shall discuss now some of the results that can be obtained as a

consequence of the Main Theorem of this paper.

The main application is the answer to the fallowing question: Let G be
a commutative group variety of dimension n defined over @ . Let A be
an analytic subgroup of G also defined over the field Q . By this we mean
that the tangent space T(A) is a subspace of T(G) which is defined over

qQ.

Alternatively, if one does not consider A as a subset of G but embedded
by some embedding ¢ , we mean by this that the differential dp of ¢ is
a linear map that is defined over Q . It is natural to ask now whether the
set A(Q) of q - rational points is nmon-trivial. We have the following

result.

Theorem X. Let @ : ¢n-1

~——3 G be an analytic subgroup of G of codimen~
sion 1 defined over Q . If then _q;""(c(i)) # {0} then there exists an alge-

braic subgroup H of G such that dim H>O0 and H E(p(ltn-1) .

One can verify that all the known qdalitative results on linear forms in
logarithms or abelian logarithms, such as the results of Baker, Masser, Coates-

Lang, Bertrand-Masser, are a consequences of Theorem X.

One of the applications of Theorem X is the following. Let C be an alge-
braic curve defined over @ which we msy assume to be smooth and £ a
meromorphic defferential form on C which is not exact, i.e. of the form

da for some rationmal function a on C. Let D be qual-to.thepolar divisor of
€ and Y be a closed path on C - D representing a homology class [y]

in H, (C - D,Z). Then we have the following result (here we put C = [).
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Theorem Y. Let £ be defined over @ . Then the integral fyﬁ is

either zero or transcendental.

We should remark that it is possible to determine when the inte-

gral in Theorem Y is zero. In the last section we have given as
an example for the Main Theorem the zero estimate for proving

the linear independence of logarithms and elliptic logarithms.

We shall now state a first general lower bound for linear forms in arbi-
trary logarithms. For this let as before C he either the field of com
plex numbers of its p-adic analogue and G be a commutative group variety
defined over Q< C . Let u be an element of the tangent space T(G) of
G at the neutral element of G such that expc(u) is in the set of alge—
braic points G(Q) of G , let the height of exp,(u) be bounded by

Q24 and let L -8121 + ... +ann be a linear form on T(G) with algebraic
coefficient not all zero and heights bounded by B24 . Then we have the

following result.

Theorem Z. If L(u) #0 then

n
[L(u)| 2 (B log 9)'(1°8 B * log )

for some effective computable positive constant c. Obviously this is not
the best possible result that one can obtain in special cases. For example
the dependence in B in Baker's result is much better. But the dependence

in Q is essential the best one can obtain till now even in special cases.
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