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Introduction

In this paper we discuss lagrangian geometry of certain symplectic manifolds.
More precise, we study lagrangian fibrations of certain symplectic manifolds.
Thus mostly we are doing with symplectic toric manifolds which are the phase
spaces of the corresponding completely integrable systems (called effective in
[2]) and certain submanifolds of these toric manifolds. But the toric manifolds
are not central in the story, providing just some appropriate framework where
certain examples can be presented and certain results can be derived. The
situation we are studing below is the following: let a symplectic manifold
(X,ω) of real dimension 2n admits two intrinsically different pieces of data:

(r) (real part) a set of smooth functions (f1, ..., fk) in involution,
(c) (complex part) a set of symplectic divisor pencils defined by fibrations

ψi : M −Bi → CP1, i = k + 1, ..., n ”in involution” with compact generically
smooth symplectic fibers, where Bi are the base set for the corresponding
pencils,

such that the real and the complex parts are compatible in the following
sense: for each fi the Hamiltonian vector field Xfi

preserves the elements
of each holomorphic pencil. For the pencils ”in involution” means that the
tangent spaces to the elements of pencils are symplectically orthogonal at
each intersection point. It’s not hard to see that for complex pencils it
means that the fibers intersect each other transversally almost everywhere.
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We will call such data pseudo toric structure on a symplectic manifold, see
Definition 3.1 below.

In the first part of this work we consider the case of toric Fano varieties,
and the first key point is that each toric Fano variety is automatically pseudo
toric. At the same time one can show that it admits many different pseudo
toric structures, but for our purposes we take the case when k = n− 1 so we
deal with a symplectic map ψ which means a fibration with symplectic fibers
of M without a (real) codimension 4 subset (the base set of the pencil) over
CP1 and a set of smooth Morse functions (f1, ..., fn−1) which are functionally
independent almost everywhere and are in involution so {fi, fj} = 0. Again,
the compatibility condition means that for each function fi the Hamiltonian
vector field Xfi

is parallel to every fiber

Dp = ψ−1(p), p ∈ CP1,

which is a generically smooth symplectic divisor in (M,ω).
One could understand this picture using an observation made in [9] : each

smooth fiber Dp together with restricted functions (f1|Dp , ..., fn−1|Dp) gives
a completely integrable system. Indeed, the commutation relation holds for
the restrictions and thus one has a set of integrals for (Dp, ω|Dp). But here we
have parameter p ∈ CP1 and totally it gives a complex family of integrable
systems. On the other hand, the situation is already non classical, and looks
like a theory of spin particles. Anyway, a sympectic manifold (X,ω) endowed
with the data (f1, ..., fn−1, ψ), which satisfy the compatibility condition, is
not a completely integrable system, but can be reduced to a ”completely
integrable system with singularities”, and different systems can be derived
in this way. As it was shown in [4], the nth special ”integral” can be added
to the set (f1, ..., fn−1) if a smooth real function h ∈ C∞(CP1,R) is chosen,
and hence a lagrangian fibration of our given (X,ω) is defined by the same
additional datum. Thus we get a map from the space C∞(CP1,R) to the set
of possible lagrangian fibrations of (X,ω) including singular, of course.

In all our examples toric geometry is basic, since even non toric Fano
varieties studied below are given by complete intersections in the basic toric
variety, the projective space. Recall, a toric symplectic manifold (X,ω) is
given by a set of moment map functions (f1, ..., fn) with values in a convex
polytop Pn ⊂ Rn, and as it has been proven by T. Delzant, [7], there exists
a complex toric manifold with an ample line bundle such that it is symplec-
tically isomorphic to (X,ω). It means that a Kahler structure can be fixed,
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and the functions fi are quantizable in the sense of Rawnsley – Berezin
quantization, see [10], so their Hamiltonian vector fields preserve the Kahler
structure. According to geometric formulation of Quantum Mechanics, [1],
these real smooth functions can be regarded as quantum observables (called
Berezin symbols). Their infinitesimal Hamiltonian actions on holomorphic
objects over X induces infinitesimal symmetries of these objects. Thus if one
takes the projectivized spaces of holomorphic sections of the anticanonical
bundle K−1

X in any degree then each function fi generates a Hamiltonian
vector field Θk

fi
on P(H0(X,K−k

X )), and a divisor D ∈ | − k.K| is invariant

with respect to Xfi
if and only if Θk

fi
vanishes at the corresponding point pD.

It follows that there exists a smooth function Fi,k on the projective space,
and an invariant pencil from the complete linear system |−k.K| exists if and
only if Fi,k admits a critical projective line. It can happen if the dimension
of the projective space is greater than dimX. And since we are working
with the anticanonical class and its degrees one can see that a toric Fano
variety admits pseudo toric structure which can be exploited in the studying
of displacability properties of standard fibers of the toric fibrations, which
are lagrangian tori.

To do this one can apply the following scheme: fix a set of moment maps
(f1, ..., fn), given by the standard toric structure, cancel one of them, say fn,
and then find a pencil of divisors which are invariant under the Hamiltonian
action of f1, ..., fn−1. The Fano condition shows that it can be done, thus
the given data (f1, ..., fn) are replaced by certain data (f1, ..., fn−1, ψ) of the
mixed type. At the same time these new data contain the given one: it can
be shown that there exists a smooth function h0 ∈ C∞(CP1,R) such that the
induced lagrangian fibration of X is the same as given by (f1, ..., fn). This
remark shows that any standard lagrangian torus from the toric fibration can
be reduced step by step to a chain of smooth loops on projective lines, and the
Hamiltonian invariants of this torus can be estimated in terms of symplectic
areas of the loops. Any smooth loop divides the projective line into two parts,
and one calls a loop meridional if these parts have the same symplectic area.
Then it is well known fact that a smooth loop is undisplacable if and only
if it is meridional. Using this, one can see that a lagrangian fiber of a toric
fibration of a toric Fano variety is undisplacable only if all the loops given
by the reduction are meridional. It remains to compute the Hamiltonian
invariants of the fiber in terms of the loops to establish the following fact

Theorem 0.1 Let S be a smooth lagrangian torus given as a fiber of a toric
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lagrangian fibration of a toric Fano variety X. Then S is undisplacable only
if S is Bohr – Sommerfeld with respect to the anticanonical class.

Below we prove this theorem for the Clifford tori in the projective spaces
(Proprosition 2.1 and Proposition 2.2). Thus a small part of a conjecture,
presented in [12] is proven. In full generality the theorem can be proven using
the same method, and we will complete it in a subsequent paper. The reason
to postpone the discussion is the following: we will concentrate on the case
of general pseudo toric Fano variety and try to prove the same statement for
it, then Theorem 0.1 would follow from this general statement as a corollary.

The second part of this paper is devoted to the case of non toric Fano
varieties which admit pseudo toric structure. First we prove (Theorem 3.1)
that a pseudo toric Fano variety can be fibered on isotropical submanifold
such that a generic fiber is a smooth lagrangian torus. Thus pseudo toric
structure looks like toric in the sense that it gives lagrangian fibrations. Then
we prove (Theorem 3.2) that any smooth irreducible quadric admits pseudo
toric structure. Recall that any quadric is a Fano variety but it is toric only
in dimensions 1 and 2. At the end we discuss how pseudo toric structures
can help in constructions of special lagrangian fibrations of Fano variety,
introduced recently by D. Auroux, see [3].

The text below is organized as follows. Section 1 contains the story
how the construction was found. It is not necessary for the resting part
but it explains why we understand moment maps as Berezin symbols and
lagrangian tori as quantum states. Section 2 starts with the construction
and the computation for the ”toy example” — the case of the projective
plane, and we deduce there that if a Clifford torus in CP2 is not Bohr –
Sommerfeld with respect to the anticanonical class then it is displacable.
After that in the same strategy is used for the case of the projective space
of any dimension. The case of non toric but pseudo toric Fano varieties is
studied in Section 3, where we first study certain examples and than give the
definition of pseudo toric structure and show that any non singular quadric
is pseudo toric. As an application we present a lagrangian fibration which
suppose to be special in the sense of D. Auroux .

Acknolegements. This work was done during my stay at the Max -
Planck - Institute for Mathematics (Bonn), and I would like to express my
thanks for hospitality and support, which go to everybody there. I would
like to thank D. Orlov, P. Bressler, D. Auroux for valuable discussions and
remarks.
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1 Berezin symbols on the projective space

Quantum Mechanics can be formulated in pure geometric terms, [1], more
precisely — in terms of algebraic geometry. As it has been discussed sev-
eral times, f.e. in [10], the phase space of a quantum mechanical system
is presented by an algebraic variety endowed with a Kahler metric of the
Hodge type, and for this one quantum observables are given by real smooth
functions whose Hamiltonian vector fields preserve both the complex and
the symplectic structures. Thus they present infinitesimal symmetries of the
Kahler structure. They are called symbols in [1]. The basic example is the
projective space with the standard Fubini – Study metric; in this case each
symbol is given by a self adjoint operator on the Hilbert space whose projec-
tivization is our given projective space. To reconstruct a self adjoint operator
on a Hilbert space from the data (CPn, ω, gFS) and a symbol f one can ap-
ply a method of geometric quantization, namely — the Rawnsley – Berezin
method. Since f preserves by its Hamiltonian action the Kahler structure
one can extend it to the section space of the line bundle O(1) choosing a
hermitian connection with the curvature form proportional to the symplectic
form. Then the corresponding Souriou – Konstant operator Af preserves the
subspace of holomorphic sections of O(1) and this is the space and the self
adjoint operator (see, f.e. [10]). Therefore for a given projective space CPn
the space of symbols is completely described; it’s not hard to see that it is
a Poisson subalgebra in C∞(CPn,R) with respect to the Poisson brackets,
defined by the symplectic form ω. Every (nondegenerated) symbol f can
be included in a commutative subalgebra of the Poisson algebra spanned by
(f = f1, ...fn) — a set of symbols. Note that this set comes from a set of
commuting self adjoint operators; the maximal number of these operators is
n+1 but since the identical operator goes to the constant function under the
projectivization the rank of the set of commuting algebraically independent
almost everywhere symbols is n. For the projective spaces these symbols are
the moment maps in the language of toric geometry.

But it is natural to extend this geometric approach to a wider class of
algebraic varieties. Let X be such a variety and ω is the Kahler form of a
metric of the Hodge type onX. Then it is not hard to see that a symbol exists
on X if and only if the following holds: take the corresponding ample line
bundle L→ X, consider the embedding φ : X → P(H0(X,Lk)∗), then there
exists a symbol f on P(H0(X,Lk)∗) such that the Hamiltonian vector fieldXf

is tangent to the image φ(X) at each point of it. This observation simplifies
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the problem if one would like to find all algebraic varieties with symbols, so
all possible quantum phase space of the generalized quantum mechanics. It
follows that these algebraic varieties are submanifolds of CPn parallel to the
Hamiltonian vector fields of certain symbols. In this formulation the problem
was studied by S. Belyov in his Master diploma [5]. For example, in the case
of CP2 he found that a smooth curve C ⊂ CP2 admits symbols if and only
if it is rational. And at the same time an interesting effect appears — if
a non degenerated conic is preserved by the Hamiltonian action of certain
symbol f then there exists a pencil of conics, including the given one, which
are invariant under the Hamiltonian action of the same symbol. And it is
a common principle for irreducible divisors in the projective space as it was
shown in [5]. Indeed, let D be an irreducible divisor in CPn and f be a
symbol, which preserves D. Since each symbol corresponds to a self adjoint
operator on Cn+1 there exists a homogenous coordinate system [z0 : .... : zn]
such that f has the ”diagonal” form

f =

∑n
i=0 λi|zi|2∑n
i=0 |zi|2

where λi are the critical values of f . Since D is irreducible, in these co-
ordinates it is defined by a polynomial P (z) which consists of at least two
summands, and since D is invariant the sum of weights λi for each summands
is constant. This means that if we take any linear combination of these sum-
mands and consider the zero set of the corresponding polynomial it must be
again an invariant divisor. It follows that if an invariant irreducible divisor
exists then an invariant pencil exists as well. Note that in these arguments
we’ve exploited the toric structure on CPn, and it is crucial since a symbol a
priori doesn’t generate U(1) action on a given algebraic variety, thus doesn’t
give closed orbits etc. while a moment map does by the definition. But it
hints that a generalization of lagrangian torus fibration construction to the
case of non toric Fano varieties should follow almost the same scheme: if
an X admits a set of symbols f1, ..., fn−1 and doesn’t admit a complete set
being non toric but there is an invariant pencil then it would give a set of
examples. One could try to exploit this scheme for del Pezzo surface CP2

4

which is not toric, [6].
Now come back to the case of the projective plane. In [4] we present

as the first example the following one: the pencil on CP2 is given by the
equation

αz2
0 + βz1.z2 = 0 (1)
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and the corresponding symbol is given in the coordinates Z0, Z1, Z2 of the
associated C3 as the diagonal operator with eigenvalues (1, 0,−2). In the
homogenous coordinates [z0 : z1 : z2] the function reads as

f =
|z0|2 − 2|z2|2

|z|2
, (2)

where

|z|2 =
2∑
i=0

|zi|2

as usual.
The base set of the pencil CP1

α,β is contained by the singular set of f ,
and the singular fibers of the pencil contains all the critical points of f ; we
will see below that it is a general principle for invariant symplectic pencils.
The pencil CP1

α,β contains two singular conics: D1:0 — double line, D0:1 —
two lines, thus we have two distinguished points on CP1

α,β with coordinates
[1 : 0] and [0 : 1]. Consider first a smooth function h on CP1

α,β defined by
the following equation

h =
|α|2 − |β|2

|α|2 + |β|2
, (3)

and which is a symbol on CP1
α,β. It has exactly two critical points which

correspond to degenerated elements of the pencil. It was shown in [4] that
this function h gives us the standard Clifford fibration on CP2. Indeed, a
smooth level set

γc = {h = c} ⊂ CP1
α,β,−1 < c < 1,

is defined by the conditions |α| = const, |β| = const, and it follows from the
pencil equation that the corresponding sets in CP2 are defined by the Clifford
conditions |zi| = const. Thus for this h we just restore the toric lagrangian
fibration.

Now consider another function h defined by the equation

h =
|α|2

|α|2 + |aβ − α|2
, (4)

where a is a positive real parameter. This function has two critical points,
which correspond to the following element of the pencil: again double line
2l = {z2

0 = 0} and a non degenerated conic Q = {z2
0 = −az1.z2}. Thus the

resulting fibration of CP2 has degeneration on a reducible cubic line l∪D and
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contains one singular torus. The point is that this fibration is exactly the
non toric fibration constructed by D. Auroux in [3]. And the construction
above can be understood as a generalization of the Auroux method. This
construction gives us a set of non toric lagrangian fibrations of CP2. It can
be easily generalized to the case of any toric Fano variety, and it is the main
result of [4].

But our initial aim for the present paper is to study certain Hamiltonian
invariants of fibers of toric fibrations and their relation to the displacability
property. And at the next section we take the Clifford fibration of CP2 as
a toy example and prove that for a Clifford torus the following holds: it is
undisplacable only if it is Bohr – Sommerfeld with respect to the anticanon-
ical class.

2 Clifford tori in CP2 and CPn

Consider CP2 with the standard Fubini – Study metric and the correspond-
ing symplectic form ω. Thus CP2 is equipped with the hermitian triple and
the same is for its holomorphic tangent bundle. It follows that its deter-
minant −K is equipped with the corresponding hermitian structure, and
one can consider the space of hermitian connections Ah(−K). Since the
canonical class is proportional to the class of [ω], an orbit is distinguished in
Ah(−K) defined by the condition that the curvature form is proportional to
the symplectic form. Take any connection a from this orbit and consider the
restriction of the pair (−K, a) to a lagrangian torus S ⊂ CP2. Then one says
that the torus is Bohr – Sommerfeld with respect to the anticanonical class if
the restriction admits covariantly constant sections. This definition appears
for any monotone symplectic manifold, for example for any Fano variety, see
[11].

Recall that a lagrangian submanifold S is displacable if there exists a
Hamiltonian isotopy φt such that

S ∩ φt(S) = ∅

for certain t. Otherwise it is called undisplacable.
A conjecture, presented [12], says that a regular fiber of a toric fibration

of a toric Fano variety is undisplacable if and only if it is Bohr – Sommerfeld
with respect to the anticanonical bundle. In particular, it states that a
Clifford torus in CP2 is undisplacable if and only if it is Bohr – Sommerfeld
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with respect to −K. In this section we prove a part of the last sentence using
the construction with invariant pencils from above.

Proposition 2.1 Every undisplacable Clifford torus in CP2 is Bohr – Som-
merfeld with respect to the anticanonical class.

The proof is as follows. Come back to the picture from section 1. A
regular Clifford torus S ⊂ CP2 is realized by the conditions f = c1, h = c2
such that c1 is not critical for f so c1 6= −2, 1 and c2 is not critical for
h so c2 6= −1, 1 for the functions f (2) and h (3). Note that the Bohr -
Sommerfeld with respect to the anticanonical bundle fiber corresponds to
the values c1 = 0, c2 = 0. Suppose that a fiber is not Bohr – Sommerfeld
with respect to the anticanonical class and denote it as Sc1,c2 . Then we claim
that if c2 is not equal to 0, so the level loop γc2 = {h = c2} ⊂ CP1

α,β is not
meridional, then there exists a Hamiltonian transformation φt of CP2 which
moves Sc1,c2 to certain φt(Sc1,c2) such that

Sc1,c2 ∩ φt(Sc1,c2) = ∅.

To prove this implication we construct explicitly a real smooth function F
on CP2 whose Hamiltonian vector field generates desired transformation.

The base set of the pencil (4) consists of two critical points of f namely
[0 : 1 : 0] and [0 : 0 : 1] and the pencil contains a singular quadric with
singularity at [1 : 0 : 0]. Choose a small real number ε such that

ε << min(|c1 − 1|, |c1|, |c1 − 2|).

Then the balls with radius ε centred in [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] don’t
intersect our torus Sc1,c2 . Denote these balls as B1, B2 and B3. Consider the
holomorphic map

ψ : CP2 −B → CP1
α,β, (5)

defined by our pencil (1), where B is the base set,

B = [0 : 1 : 0] ∪ [0 : 0 : 1].

Then any smooth real function hc : CP1
α,β → R can be lifted to CP2−(B1∪B2)

and then can be continued to a smooth function Fhc on whole CP2. Indeed,
let’s take smaller balls B′

1, B
′
2, B

′
3 with the same centers but of radius 1

2
ε and

define F = Fhc on five different pieces of CP2 as follows
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— F = ψ∗hc on CP2 − (B1 ∪B2 ∪B3);
— F = 0 on B′

i, i = 1, 2, 3;
— and on Bi − B′

i our function linearly descends from the big boundary
∂Bi to the small boundary B′

i such that F is smooth on CP2.
The Hamiltonian vector field induced by this function F is symplectically

orthogonal to ”the central non singular parts” of the fibers, if one uderstands
that this central part for a fiber Dp is given by

Dc
p = Dp − (Dp ∩ (B1 ∪B2∪)).

Note that we must exclude B1 since the Hamiltonian vector field of ψ∗hc
has singularity at point [1 : 0 : 0].

Thus the Hamiltonian action φt(F ) moves ”central non singular parts” of
smooth fibers to ”central non singular parts” of smooth fibers and twists the
neighborhoods B1 and B2 of the base set. Thus the circle action from below,
generated by a Morse function hc with only two critical points on CP1

α,β, is
lifted to a ”quasi circle” action which twists the neighborhood of the base
set and the singular point, leaving them unmoved, and interchanges ”central
non singular parts” Dc

p of the smooth fibers.
Now we define the function hc on CP1

α,β which will generate the transfor-
mation we need. This function has the form

hc =
2 Reαβ

|α|2 + |β|2
; (6)

it has two critical points on CP1
α,β with coordinates [1 : 1] and [1 : −1], and

the corresponding Hamiltonian motion induced by Xhc on CP1
α,β is rotation

with fixed poles [1 : 1] and [1 : −1]. Under this rotation for the time t = π
the loop γc2 = {h = c2} moves to the ”mirror” loop γ−c2 = {h = −c2} which
doesn’t intersect γc2 if it is not meridional.

The argument can be extended to the function F ; the Hamiltonian motion
φt generated by XF on CP2 transports fibers to fibers except the parts which
are close either to the base set or to the singular point. This means that
our lagrangian torus Sc1,c2 is transported by φπ to the torus Sc1,−c2 and the
last one doesn’t intersect the given one unless c2 is equal to zero. Note, that
c2 = 0 is equivalent to |α| = |β|.

On the other hand, we can consider any permutation in (z0, z1, z2) and
substitute in the picture another symbol and another pencil, say,

α′z2
1 + β′z0.z2 = 0
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and repeat the story for these data. Then the fiber would be displacable if it
corresponds to the level loop of the corresponding function with |α′| 6= |β′|.
Every Clifford torus is defined uniquely by two level loops in CP1

α,β and
CP1

α′,β′ , thus the arguments above ensure that if a Clifford torus is undispla-
cable then it can be described by the system

z2
0 = eiφ1z1z2 z2

1 = eiφ2z0z2,

where φi are real parameters. And as it was shown in [12] it is exactly the
Bohr – Sommerfeld with respect to the anticanonical class fiber of the Clifford
fibration.

On the other hand, we prove in the same papers that this Bohr – Som-
merfeld fiber is monotone, thus one has

Corollary 2.1 If a Clifford torus is undisplacable it must be monotone.

One expects that the converse is also true.
Consider now the case of CPn where n > 2. In this case we can reproduce

the same scheme to prove that

Proposition 2.2 Let S be a Clifford torus in CPn. Then it is undisplacable
only if it is Bohr – Sommerfeld with respect to the anticanonical class.

Take CPn and consider a set of integrals (f1, ..., fn) which define the action
variables for the corresponding Clifford fibration (according to the famous
Arnold – Liouville theorem such a set exists). Under the action map

(f1, ..., fn) : CPn → Pn ⊂ Rn

the image Pn is given by the conditions

x1 + ...xn = 1, xi ≥ 0,

and for the corresponding universal basis of H1(T
n,Z) the values of x1, ..., xn

are the periods of the corresponding loops with respect to the symplectic
form. A Clifford torus is Bohr – Sommerfeld with respect to the anticanonical
class if and only if its periods are represented by integer numbers multiplied
by 1

n+1
. It shows that there is unique such a torus of dimension n (but there

are many isotropical Clifford tori which are Bohr – Sommerfeld with respect
to the anticanonical class). Note that fi are degenerated as symbols in our
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terminology since each fi has non isolated critical points, which form the
corresponding divisors.

Fix a set of homogenous coordinates [z0 : ... : zn] such that each fi
degenerates at the hyperplane {zi = 0}. Remove a symbol from the set
(f1, ..., fn), say, fn. The cases when n is even and odd are different since one
takes different pencils and symbols for the cases.

If n is odd, then one takes a homogenous coordinate system [z0 : ... : zn]
and consider the pencil

{Du} = {u0z0...z(n−1)/2 + u1z(n+1)/2...zn = 0} (7o)

which defines a holomorphic map

ψ : CPn −B → CP1
u,

where B is the base set formed by (n/2)2 hyperplanes of dimension n − 2.
The set of symbols (moment maps) which preserve the pencil {Du} is defined
by the condition

λ0 + ...+ λ(n−1)/2 = λ(n+1)/2 + ...+ λn (8o)

for the critical values λi.
If n is even we take the pencil

{Du} = {u0z
2
0z1...zn/2−1 + u1zn/2...zn}, (7e)

and the symbols must satisfy

2λ0 + λ1 + ...+ λn/2−1 = λn/2 + ...+ λn. (8e)

Both the cases can be treated further simultaneously.
It’s clear that our f1, ..., fn−1 can be changed by certain linear transfor-

mation to the set of non degenerated f ′1, ..., f
′
n−1 such that each f ′i satisfies

the condition (8o) or (8e) above and therefore each f ′i preserves each Du. The

degeneration simplex ∆n−1 ⊂ CPn of the set {f1,
′ ...f ′n−1} consists of (n+1)n

2

hyperplanes of dimension n− 2. The fibers of ψ are generically smooth, and
there are exactly two singular fibers which go to the points [0 : 1] and [1 : 0]
in CP1

u. Consider the singular sets of fibers D[1:0] and D[0:1] and denote these
ones as Sing0 and Sing1. Then it’s not hard to see that

∆n−1 = B ∪ Sing0 ∪Sing1.
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Take a function h on CP1
u of the form (3). We claim that the fibration of

CPn −B defined by (f ′1, ..., f
′
n−1, ψ

∗h) is the same Clifford fibration. Indeed,
let’s take a Clifford torus T(c1,...cn) which is defined by the conditions

|zi|2 = ci,

so the ci’s are regular values of the action moment maps f1, ..., fn ( therefore
they must be positive). Since f ′j’s are given by the linear transformation
of fi’s it means that the same transformation maps the set (c1, ..., cn−1) to
the corresponding values of f ′j’s which we denote as (c′1, ..., c

′
n−1). The corre-

sponding value of h is given by

c =
c(n+1)/2...cn
c1...c(n−1)/2

− 1

for the odd case or by

c =
cn/2...cn
c1...cn/2−1

for the even one. Then it’s obvious that

S(c′1,...,c
′
n−1,c)

= {f ′j = c′j, ψ
∗h = c} = T(c1,...,cn).

Thus without the loss of generality we can label the Clifford tori by numbers
(c′j, c) instead of (ci).

Our next step is to construct a smooth function F on whole CPn whose
Hamiltonian vector field will move a Clifford torus T(c′1,...,c

′
n−1,c)

to the Clifford
torus T(c′1,...,c

′
n−1,−c). It would imply that a Clifford torus is undisplacable only

if it is projected by ψ to the meridional circle in CP1
u.

Such an F is constructed in the same way as in the proof of Proposition
2.1. Consider small neighborhood O1(∆n−1) of the degeneration simplex
∆n−1 of radius ε such that T(c′1,...,c

′
n−1,c)

doesn’t intersect O1(∆n−1) and a

smaller neighborhood O2(∆n−1) with the same center of radius 1
2
ε. Take the

function hc of the form (6) on CP1
u and construct a global function F on CPn

by the same rules:
— F vanishes inside of O2(∆n−1);
— F equals to ψ∗hc outside of O1(∆n−1);
— it linearly descends from the boundary of O1(∆n−1) to the boundary

of O2(∆n−1).
The property of this function F is the same as of the function from the

proof of Proposition 2.1 above: it Hamiltonian action moves the ”central
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parts” of the fibers to the ”central parts” of the fibers, and therefore it
generates Hamiltonian isotopy of T(c′1,...,c

′
n−1,c)

to T(c′1,...,c
′
n−1,−c) which means

what we claimed above.
Thus a Clifford torus is undisplacable only if c = 0 and consequently

either
c1...c(n−1)/2 = c(n+ 1)/2...cn

if n is odd or
c1...cn/2−1 = cn/2+1...cn

for the even case. But we can remove another fi and repeat all the construc-
tion for this case. At the end one gets that all ci must be the same which
means that an undisplacable Clifford torus must be Bohr – Sommerfeld with
respect to the anticanonical class. This complete the proof.

We can summarize the discussion on the Clifford tori in CPn by the
following

Corollary 2.2 Every undisplacable Clifford torus in CPn is monotone.

Remark (on the Chekanov and the Clifford tori in CP2). In [3]
one presents two types of lagrangian tori in CP2, namely the Clifford type
and the Chekanov type, and these two types are separated by a singular torus
in the Auroux fibration. After [4] we can say that tori of the Chekanov type
appear if the function h on CP1

α,β has two critical points pmax, pmin ∈ CP1
α,β

such that only one of them corresponds to a singular element from the pencil,
namely to the double line {z2

0 = 0}. In this case one has not two, but three
distinguished points in CP1

α,β,

pmax, pmin, psing,

where the last one corresponds to the singular fiber {z1z2 = 0} as it happens
for h given by (4). As one claims in [4] any real Morse function on CP1

α,β gives
a lagrangian fibration, and the fibers of the fibration are projected by the
map (5) to the level lines of this function. The set of level lines of our h are
separated by point psing, and the tori from the different chambers are called
of the Clifford and of the Chekanov types. The previous construction with
the invariant pencil on CP2 shows that in this situation the Clifford and the
Chekanov tori can be moved each to the other by a symplectomorphism but
not by a Hamiltonian isotopy. Indeed, for any rotation of the projective line
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CP1
α,β one has a corresponding twisting of the fibers of ψL which gives a sym-

plectomorphism of CP2. But the singular point [1 : 0 : 0] is a singular point
of the lifted Hamiltonian vector field and then this twist symplectomorphism
is not a Hamiltonian isotopy. Resuming, we see that the Clifford tori and the
Chekanov tori with the same Hamiltonian invariants are symplectomorphic
but not Hamiltonian isotopic.

3 Non toric manifolds

In this section we show that the construction with invariant pencils can be
performed in certain cases for non toric Fano varieties. The result given in
this way however is rather similar to the toric case. At the same time below
we present the situation when one has several invariant pencils combined
with real integrals.

As it was shown in [4] a non degenerated 2 - dimensional quadric admits
invariant pencils and can be fibered by lagrangian tori in different ways. But
it is toric, and if we increase the dimension and consider a 3 - dimensional
non degenerated quadric Q in CP4 it is already non toric. Let us show that
nevertheless Q can be sliced by lagrangian tori (the symplectic structure in
what follows is induced by the restriction from the projective space).

Example 1. Take a quadric Q ⊂ CP4 defined by the equation

z2
0 + z1z2 + z3z4 = 0

in a homogeneous coordinate system [z0 : ... : z4]. Then one has a subspace in
the moment map space (or C∞

q (CP4,R)) consists of functions whose Hamil-
tonian vector fields preserve Q. If a symbol f has critical values (λ0, ..., λ4)
then it preserves the quadric if and only if

2λ0 = λ1 + λ2 = λ3 + λ4.

It’s clear that there are only two functionally independent symbols which
preserve Q thus Q is non toric. To proceed with our construction one needs
to find a pencil of divisors on Q which are invariant with respect to these two
symbols. A pencil can be derived as follows: note that the last condition on
λi’s is satisfied by a family of quadric, not by only the given one. Then if we
fix a pair of moment maps f1, f2 say of the form

f1 7→ (0, 1,−1, 2,−2), f2 7→ (0, 2,−2, 1,−1)
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which preserve Q then the same function must preserve any quadric

Qw = {w0z
2
0 + w1z1z2 + w2z3z4 = 0}.

Thus the family of invariant quadrics is CP2 with coordinates [w0 : w1 : w2].
Choose in this CP2 a line which doesn’t pass through the point [1 : 1 : 1] and
which consists of generically non degenerated quadrics (so its equation is not
of the form wi = 0). Denote this line as CP1

u and the quadrics presented by
its points as Qu. Then the intersections Du = Q ∩ Qu ⊂ Q are generically
smooth divisors which form an invariant pencil with respect to f1|Q, f2|Q
without base components. The proof of this fact is a simple exercise in basic
algebraic geometry. The base set B of the pencil Du is given by the equations

z0 = z1z2 = z3z4 = 0,

and is presented by 4 projective lines contained by Q. The pencil contains
three singular elements, and it means that the map

ψ : Q−B → CP1
u

marks three points on CP1
u which correspond to these singular fibers. If it

were two singular fibers the source space should be toric. But now for any
Morse function h : CP1

u → R the induced fibration must have singular fibers.
Let’s treat the example more carefully and consider the following pencil of
quadrics Qw:

CP1
u = {w0 − w1 + w2 = 0}.

Then we have three quadrics which give singular divisorsDu being intersected
with Q :

(1) Q1 = {z1z2 + z3z4 = 0};
(2) Q2 = {z2

0 + z1z2 = 0};
(3) Q3 = {z2

0 − z3z4 = 0}.
The corresponding divisors are
(1) D1 — double 2 -dimensional quadric (with smooth support);
(2) D2 — two cones over the same conic q1 = {z2

0 +z1z2 = 0, z3 = z4 = 0}
which is the singular set of this fiber;

(2) D3 — two cones over the same conic q2 = {z2
0 − z3z4 = 0, z1 = 0, z2 =

0} which is the singular set of this fiber.
The degeneration simplex of f1|Q, f2|Q consists of 4 lines which form the

base set and these two conics qi.
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Consider now a Morse function h on CP1
u given by the equation

h =
|w1 − w2|2 − |w1|2

|w0 − w1 + w2|2 + |w1|2 + |w1 − w2|2

on the line CP1
u. This function has two critical points

— the maximal p1 = [0 : 1 : 1] and the minimal p2 = [1 : 0 : −1],
corresponding to D1 and D3. Thus the choice of h defines a lagrangian
fibration of Q − (D1 ∪ D3). Since we have a singular fiber D2 which is
projected to a point on the level set

γ0 = {h = 0},

there is a one - dimensional subfamily of singular tori modeled by a three -
dimensional torus with shrinked two - subtorus to a loop. The singular loops
lie on the conic q1 and slice it outside of two points which are the intersection
with the base set.

Digression: the monodromy. Here we would like to mention an impor-
tant advantage of our construction: it is possible to calculate the monodromy
of the lagrangian fibration around the singular tori. The monodromy is the
obstruction to the existence of the global action — angle coordinates so it
measures how far is our system to be completely integrable in usual sense.

Choose an open part of Q−B consisting of the preimage under the map

ψ : Q−B → CP1
u

of an annulus
CP1

u ⊃ Aδ = {−δ < h < δ}
where 0 < δ < 1 is a real parameter. Then the lagrangian fibration on Q
given by the triple (f1|Q, f2|Q, ψ∗Lh) of commuting functions can be projected
by the ”action map”

Fact = (f1|Q, f2|Q,ψ∗h) : ψ−1(Aδ) → R3 = R < x, y, z >,

and there one has a one dimensional set I in

ImFact ⊂ R3 < x, y, z >,

which is given by the segment

I = {2x = y, z = 0, −1 < x < 1}.
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Thus the three dimensional space of lagrangian fibers ImFact contains a
one dimensional subfamily of singular lagrangian tori. Consider a loop γ ⊂
ImFact which passes around the singular string. The natural question arises
— what is the monodromy along this loop which is an element of EndH1(T

3,Z).
The answer is given in the following

Proposition 3.1 The monodromy operator Monγ ∈ EndH1(T 3,Z) can be
presented in terms of ”vanishing cycle” of the singular fiber D0

2 = D2 −B.

For a smooth generic fiber in Q− B which is a smooth two dimensional
quadric without 4 lines so it is homeomorphic to C∗ × C∗ the homology
group is the direct sum Z[h1]⊕ Z[h2]; and for the singular fiber D2 without
the intersection with the same lines the group is reduced to Z[h] as for one
dimensional quadric without two points. So our ”vanishing cycle” is a gen-
erator in H1(D

0
u,Z) which vanishes when one passes to the singular fiber. In

our situation the vanishing cycle defines the monodromy operator Monvan
from EndH1(D

0
u,Z), and since we have the inclusion

H1(D
0
u,Z) ⊂ H1(T

3,Z)

where T 3 is a smooth fiber of ImFact, the monodromy Monγ is just the direct
sum

Monγ = Id1⊕Monvan .

Note that this monodromic relationship always takes place if we consider
a lagrangian fibration given by invariant holomorphic pencils.

Now we extend the last example and consider the case when a number of
invariant pencils must be taken to define a lagrangian fibration.

Example 2. Take a smooth non degenerated 5 - dimensional quadric
Q ⊂ CP6 with the equation

Q = {z2
0 + z1z2 + z3z4 + z5z6 = 0}

If a symbol preserves this one by its Hamiltonian action this implies that its
critical values satisfy

2λ0 = λ1 + λ2 = λ3 + λ4 = λ5 + λ6,

and there exists exactly 3 functionally independent symbols which do pre-
serve it. Denote them as f1, f2, f3. Thus to approach the situation when our
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construction can be applied we need to find two invariant pencils. And the
point is it can be done. Indeed, the quadric Q is contained by a big family
of quadrics which are invariant with respect to Xfi

for each i. Thus we have

CP3
w = {Qw|Qw = {w0z

2
0 + w1z1z2 + w2z3z4 + w3z5z6 = 0} ⊂ CP6}.

Take in this CP3
w two skew projective lines CP1

u,CP1
v such that none is passing

through the point [1 : 1 : 1 : 1]. The quadrics parameterized by CP1
u,CP1

v

are denoted as Qu and Qv. Each pencil defines the corresponding pencil of
intersections

Du = Qu ∩Q, Dv = Qv ∩Q,

and we denote as B1 and B2 the base set of Du and Dv, the mutual base set
is denoted by B = B1 ∩B2 and

B0 = B1 ∪B2.

Outside of B0 we have two holomorphic maps ψi : Q − B0 → CP1
i , i = 1, 2,

and the compatibility condition shows that the fibers of ψ1 and ψ2 intersect
each other transversally outside of the degeneration set of f1, f2, f3. Indeed,
at any intersection point the tangent space is the complex span of three
real linearly independent vectors Xf1 , Xf2 , Xf3 , and since these three vectors
form an isotropic subspace the intersection must be transversal. Each map
ψi admits singular fibers and it is not hard to see that the singular sets must
be contained by the degeneration set of f1, f2, f3.

One has the following

Proposition 3.2 The choice of two Morse functions h1 and h2 on CP1
1 and

CP1
2 defines a fibration on Q−B0 whose generic fiber is a lagrangian torus.

Indeed, for the open part Q − B0 we have a collection of functions
(f1, f2, f3, ψ

∗
1h1, ψ

∗
2h2) and the point is that they commute. The commu-

tation relation {fi, fj}ω = 0 is obvious, the commutation relation for fi and
ψ∗jhj follows from the same argument as in Theorem 1 from [4], and finally
the commutation relation for ψ∗1h1 and ψ∗2h2 follows from the fact that the
fibers of p1 and p2 are symplectically orthogonal being complex and transver-
sal. Thus the open part of Q carries a complete set of first integrals which
doesn’t mean in general that a general fiber must be compact. But here in
our situation a generic fiber can be constructed just by hands. To do this
first choose two loops γi ⊂ CP1

i which are the level sets for certain values of
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h1 and h2 such that γi avoids the points which correspond to singular fibers.
Since the number of singular fibers is finite for both ψi we do not leave the
general case having such suggestions. Fix a pair of points p1 ∈ CP1

1, p2 ∈ CP1
1

and consider the intersection

N0(p1, p2) = ψ∗1(p1) ∩ ψ∗2(p2) ⊂ Q−B0

which is a part of a smooth complex submanifold N(p1, p2) ⊂ Q which is
already toric with the integrals fi|N(p1,p2). Choose certain regular values of
f1, f2, f3 and consider the mutual level set

N(p1, p2) ⊃ T(p1,p2) = {fi|N(p1,p2) = ci}.

Note that for general values ci this subset lies in N0(p1, p2).
Now let pi moves along γi ⊂ CP1

i . Collect

T = ∪p1⊂CP1
1,p2⊂CP1

2
T(p1,p2)

to a smooth compact 5 - dimensional torus. And this torus is lagrangian
since the tangent space TsT at each point is spanned by the Hamiltonian
vector fields Xfi

, Xψ∗j hj
of commuting functions. It completes the proof.

Remark. The hamiltonian vector field Xψ∗j hj
is ill defined at the singular

points of the fibers. The point is that the symplectic connection defined in
the fibers of ψi is not defined at that points. But at the same time the
singular sets of singular fibers are contained by the degeneration sets of the
integrals f1, ..., fk, restricted to singular fibers. Thus the dimension of the
singular sets is less that k − 1.

Note that now we can apply for this situation all we did do above to
establish

— displacability of the fibers in connection with the Bohr – Sommerfeld
condition;

— the monodromy computation in terms of vanishing generators.
To formalize the story we need the following

Definition 3.1 Let X be a Fano variety of complex dimension n endowed
with a compatible symplectic structure coming from the pluri anticanonical
embedding. Let (f1, ..., fk, {D1

u1
}, ..., {Dn−k

un−k
}) be a set of data combined from

(r) functionally independent real Morse functions fi whose Hamiltonian
vector fields preserve the Kahler structure, which commute to each other;
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(c) pencils {Dj
uj
} without base component of generically smooth divisors

in involution with the associated holomorphic maps ψj : X − Bj → CP1
uj

(here Bj is the corresponding base set), where ”in involution” means that
the elements of pencils are transversal outside of singular and base sets;

such that the compatibility condition holds: every fi preserves every ele-
ment of each pencil. Then we will call the data (f1, ..., fk, {D1

u1
}, ..., {Dn−k

un−k
})

a pseudo toric structure on X.

A Fano variety X is called pseudo toric if it admits such a structure.
One can attach to a pseudo toric structure certain integer valued invari-

ants. Here we introduce

Definition 3.2 The number of invariant pencils ψj is called the rank of the
pseudo toric structure.

Note that the intersection of generic elements of the invariant pencils

Dk+1
u1

∩ ... ∩Dn
un

is a smooth toric variety, so the meaning of the definition is that we slice our
non toric X by toric varieties and then we exploit some toric geometry to
get lagrangian submanifolds inside of X or to get lagrangian fibrations on it.

Then we have the following reminiscence of Proposition 3.3 above

Theorem 3.1 Let X be a pseudo toric Fano variety with a fixed pseudo toric
structure (f1, ..., fk, {D1

u1
}, ..., {Dn−k

un−k
}) and the projective line CP1

uj
param-

eterizes the corresponding pencil {Dj
uj
}. Then the choice of a set of Morse

functions hj ∈ C∞(CP1
uj
,R) on each CP1

uj
induces an isotropic fibration of

X whose generic fiber is a smooth lagrangian torus.

The proof repeats the arguments we used in Theorem 1 in [4] and Proposi-
tion 3.3 above. Let (h1, ..., hn−k) is a set of Morse functions on CP1

u1
, ...,CP1

un−k
.

For the associated to the pencils {Dj
uj
} holomorphic maps ψj consider the

liftings ψ∗jhj which are functions on X −B0 where

B0 = B1 ∪ ... ∪Bn−k

is the union of the base sets. Note that the functions ψ∗jhj are not smooth on
X−B0 — the singular set of a singular fiber from {Dj

uj
} automatically is the

singular set of the function. But we suppose that the fibers are generically
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smooth (so the set of singular fibers is finite since the parameterizing space
is the projective line). Denote the union of singular sets of all singular fibers
as Sing, so Sing ⊂ X. Thus the complement X − (B0 ∪ Sing) carries the set
(f1, ..., fk, ψ

∗
1h1, ..., ψ

∗
n−khn−k) of smooth functions. Moreover, it is not hard to

see that the functions commute. Indeed, fj and fj commute by the definition
of pseudo toric structure. The Hamiltonian vector fileds Xψ∗j hj

can be derived
by the following observation: since the fibers of a map ψj are holomorphic
and therefore symplectic there exists a natural symplectic connection ∇j

which is defined outside of Sing. Then the Hamiltonian vector field Xψ∗j hj

on X − (B0 ∪ Sing) coincides with the lifting of the Hamiltonian vector field
Xhj

from CP1
uj

defined by the symplectic connection ∇j. Consequently, the
Hamiltonian vector field Xψ∗j hj

is symplectically orthogonal to the fibers of ψj
while the Hamiltonian vector fields Xfi

’s are parallel to the fibers. It implies
that

ω(Xfi
, Xψ∗j hj

) = 0 = {fi, ψ∗jhj}ω
on X−(B0∪Sing). Furthermore, the fibers of ψi and ψj are holomorphic and
transversal by the definition and therefore they are symplectically orthogonal
which implies that

ω(Xψ∗i hi
, Xψ∗j hj

) = 0 = {ψ∗i hi, ψ∗jhj}ω

on X − (B0 ∪ Sing).
Note, that the Hamiltonian vector fields Xf1 , ..., Xfk

, Xψ∗1h1 , ..., Xψ∗n−khn−k

are linear independent almost everywhere; the last fields degenerate at the
fibers over critical points of hj. These critical fibers can be jointed in own
big reducible divisor

D = D1
p1
∪ ...D1

pl1
∪ ... ∪Dn−k

p1
∪ ... ∪Dn−k

pln−k

where p1, ..., plj are the critical points of hj on CP1
uj

. If we denote as ∆k the
”degeneration simplex” of the set (f1, ..., fk) so

∆k = {Xf1 ∧ ... ∧Xfk
= 0},

then the complement X − (B0 ∪D0 ∪∆k) carries a real polarization so a la-
grangian distribution spanned by the Hamiltonian vector fields. However one
needs certain additional arguments since not every lagrangian distribution is
integrable.
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First observation concerns the base sets of the pencils {Dj
uj
} whose ele-

ments are preserved by the functions f1, ..., fk. The compatibility condition
implies that each base set Bj is invariant under the Hamiltonian action of
each fi. Moreover, the same condition implies that the singular set Sing0

is invariant under each fi. The real codimension of each Bj is 4. The real
codimension of each Singj is less or equal to 4. Consider the ”action map”

Fa = (f1, ..., fk) : X → Rk

and denote the image Fa(X) as Pk. It is a connected bounded k - dimensional
domain in Rk; the image of B0 is the union of Fa(Bj) and the invariance of
Bj with respect to each Xfi

means that each Fa(Bj) has real codimension
2 in Pk. The same reason gives the real codimension of Fa(Singj) is less or
equal to 2. Consequently for each generic inner point of Pk representing by
a set of non critical values (c1, ..., ck) the mutual level set

S(c1,...,ck) = {fi = ci}

is a smooth compact coisotropical manifold which intersects neither B0 nor
Sing0. Indeed, the images of B0 and Sing0 have codimensions greater than
one, and this means that a generic point lies neither in Fa(B0) nor in Fa(Sing0).
At the same time since the boundary ∂Pk is the image of ∆k, every Xfi

is
non vanishing on S(c1,...,ck).

Further, since S(c1,...,ck) doesn’t touchB0 and Sing0 the functions (fk+1, ..., fn)
such that

fk+j = ψ∗jhj|S(c1,...,ck)

are correctly defined and smooth; the commutation relations for these re-
stricted functions still hold with respect to the Poisson brackets. Now choose
a set of non critical values (ck+1, ..., cn) of h1, ..., hn−k which possess the fol-
lowing property: no level loop

CP1
uj
⊃ γj = {hj = ck+j}

passes through a point corresponding to the singular fiber (and obviously
this choice is generic). Consider the mutual level set

S(c1,...,ck) ⊃ T(c1,...,ck,ck+1,...,cn) = {fk+i = ck+i, i = 1, ..., n− k}.

The set is smooth compact submanifold of X of real dimension n. The
smoothness follows from the fact that non critical level sets of commuting al-
gebraically independent Morse functions must intersect each other transver-
sally. On the other hand there are n linearly independent non vanishing
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Hamiltonian vector field, parallel to T(c1,...,cn), and this shows that it is a
lagrangian torus.

What remains in X outside of smooth lagrangian tori? Either singular
tori which corresponds to saddle critical points of hj and to level loops which
pass through the points which correspond to singular fibers or isotropical
submanifolds which slice the divisors which lie over focal critical points of
hj. Anyway the fibration of whole X is rather complicated and singular, but
it is defined. This complete the proof.

We will call a smooth lagrangian torus T ⊂ X pseudo toric fiber if it is
given by the construction for a set of compatible data (f1, ..., fk, {Dk+1

u1
}, {Dn

un−k
})

for certain Morse functions h1, ..., hn−k on CP1
u1
, ...CP1

un−k
. We will call the

corresponding pseudo toric fibration simple if it is defined by Morse functions
h1, ..., hn−k such that each hj has exactly two critical points. The simplicity
implies that the singularities of lagrangian tori come only from the singu-
larities of the pencils. The functions f1, ..., fk in the definition can be taken
of more general type namely with non isolated critical points but this case
requires more delicate analysis.

It is natural to extend the statement of Theorem 0.1 to the following
Conjecture. A pseudo toric fiber T ⊂ X in a pseudo toric Fano va-

riety is undisplacable only if it is Bohr – Sommerfeld with respect to the
anticanonical class.

But let’s come back to our examples. Examples 1 and 2 can be easily
summarized by the following

Theorem 3.2 Any smooth quadric Q admits pseudo toric structure.

The example with 5 - dimensional quadric in CP6 was detailed above and
the proof of the theorem just follows the pattern. Dependent on the parity
of n the equation of the quadric is either

z2
0 + z1z2 + ...+ zn−1zn = 0

if n is even, or
z0z1 + ...+ zn−1zn = 0

if it is odd. In the first case the space of symbols which preserve Q is n
2

-
dimensional; in the second it is n+1

2
- dimensional. Putting the coefficients

w0z
2
0 + w1z1z2 + ...+ wn

2
zn−1zn = 0
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in the first case and

w0z0z1 + ...+ wn−1
2
zn−1zn = 0

in the second we get a CP
n
2
w of quadrics which are invariant with respect to

the hamiltonian action of the same symbols in the first case and a CP
n−1

2
w in

the second. For the first case one can take in this CP
n
2
w a set of n

2
− 1 skew

projective lines which do not pass through the point [1 : ... : 1]. These lines

will be our invariant pencils. For the second case one can take in this CPn−1
2

a set of n−3
2

skew projective lines which do not pass the point with the same
coordinates, and for this case these lines will be our invariant pencils. The
transversality of the corresponding divisors follows from the same arguments
as were placed for the dimension 5.

Now a natural question arises:
Problem: Which Fano varieties admits pseudo toric structure?
It’s not hard to see that any toric Fano variety is automatically pseudo

toric. The case of non degenerated quadric considered in Theorem 3.2 can be
extended to complete intersections, projectivizations of certain vector bun-
dles. At the same time another natural question arises:

Problem: How many different pseudo toric structures a Fano variety
can admit?

Example 3. Consider 4 - dimensional non singular quadric Q ⊂ CP5

and choose homogenous coordinates [z0 : ... : z5] such that Q is given by the
equation

z2
0 + z2

1 + z2
2 + z2

3 + z4z5 = 0.

There is only one diagonal symbol f which preserve Q given by

f =
|z4|2 − |z5|2

|z|2
,

and it is degenerated — it has one dimensional critical subset qcr ⊂ Q.
However there are several invariant pencils defined by the intersections

Du1 = Q ∩ {αz0 + βz1 = 0},

Du2 = Q ∩ {αz1 + βz2 = 0}
and

Du3 = Q ∩ {αz2 + βz3}.
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It’s not hard to see that the set (f, ψ1, ψ2, ψ3) where ψi is given by the
pencil {Dui

} defines a pseudo toric structure on Q. And this structure ob-
viously is different from the one given by Theorem 3.2: they have different
ranks (and of course moreover they have different singular fibers, different
monodromy etc.).

Final remarks

Recall that all the story started at the Auroux example where the projective
plane was fibered by special lagrangian tori, see [3]. The specialty condition
for a lagrangian tori is famous in the Mirror Symmetry setup, see f.e. [8], but
it arises for lagrangian tori in Calabi – Yau manifolds. D. Auroux proposes
a way how to generalize the notion of special lagrangian tori for the case
of Fano variety (or, more precisely, for an open Calabi – Yau manifold). If
a Fano variety X is endowed with an element of the anticanonical system
D ⊂ |−KX |, then the complement X−D is endowed with a top holomorphic
form θD, defined up to scaling. This form can be extended to a meromorphic
top form with pole at D. Then if the complement X − D is fibered by
lagrangian tori then one can impose on the fibers the specialty condition with
respect to θD. The main conjecture, presented in [3], states that for a Fano
variety X and an element D there exists a fibration on special lagrangian tori
(with possible singular fibers, of course). Therefore our main interest in the
pseudo toric setup is in the examples of pseudo toric lagrangian fibrations of
Fano varieties without elements from the anticanonical systems.

If a Fano varietyX admits a pseudo toric structure (f1, ..., fk, {D1
u1
}, ...{Dn−k

un−k
})

then one can ask is it possible to realize a special lagrangian fibration in the
way presented by the choice of certain hj’s. The first example is given in [3]
by D. Auroux, and here we present another

Example 5. Consider a non degenerated 4 - dimensional quadric Q ⊂
CP5 and a homogenous coordinate system [z0 : ... : z5] where Q is given by
the equation

z0z1 + z2z3 + z4z5 = 0.

Take three non degenerated symbols (moment maps) which preserve the
quadric f1, f2, f3 as in the proof of Theorem 3.2; the degeneration simplex
∆3 ⊂ Q is formed by 8 two dimensional planes which lie on Q plus 3 two
dimensional quadrics. We distinguish these two parts of ∆3 denoting as B
the union of these planes and as Sing the union of these 3 quadrics. Removing
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B from Q, we can consider holomorphic map

ψ : Q−B → CP1
u,

where CP1
u is a projective line in CP2

w with homogenous coordinates [w0 : ... :
w2] defined by the equation

CP1
u = {w0 + w1 + w2 = 0} ⊂ CP2

w.

The map ψ is given by

w0 = z0z1, w1 = z2z3, w2 = z4z5

and is ill defined exactly on B. It’s not hard to see that the fibers of ψ are
invariant with respect to the Hamiltonian action of each fi and that each
fiber can be compactified to the zero set of a section of the line bundle 2H
over Q and our 8 projective planes are the base set of the corresponding
pencil of invariant divisors {Du} (therefore we denoted it as B) . This pencil
has exactly three distingushed elements:

— ψ−1([0 : 1 : −1]), ψ−1([1 : 0 : −1]), ψ−1([−1 : 1 : 0]),
each of them is presented by two cones over a non degenerated two dimen-

sional quadric which is the singular set of the fiber, and it is the reason why
we denoted this part of ∆3 as Sing. The smooth fibers of ψ have H1(D

0
u,Z) of

rank three, and passing to a singular fiber one kills a generator of H1(D
0
u,Z)

which is the corresponding vanishing generator of the sigular fiber.
Now we claim that the choice of any symbol (moment map) h on CP1

u

induces a special lagrangian fibration on Q. To see this note first that a
symbol h has exactly two critical points pmax, pmin on CP1

u and this critical
points give two elements Dmax, Dmin in our pencil {Du}. Therefore according
to Theorem 3.1 the choice of h defines a lagrangian fibration of Q− (Dmax ∪
Dmin). The union

D = Dmax ∪Dmin

is a reducible divisor from the anticanonical system | −KQ|. Indeed, by the
adjunction formula

−KQ = 4H,

and each D∗ presents a section of 2H.
To prove the statement we take the corresponding holomorphic form θD

and observe that it is invariant under the action of the moment maps f1, f2, f3
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(since the divisor D is moved to itself under the action). At the same time
we have a family of holomorphic automorphisms of Q − B defined by the
rotations generated by our h, and the point is that θD is invariant as well
with respect to these automorphisms. Thus the restriction of θD to a torus
is a constant multiple of the volume form, but the norm of this constant is
different for different level loops of h on CP1

u since the Fubini - Study matric
on CP1

u and the Kahler metric on Q − B are related by the scaling on a
multiple of the norm of the Hamiltonian vector field Xh on CP1

u. However
the phase is the same for all smooth lagrangian torus in the pseudo toric
fibration, and this means that the fibration is special.

Note that the construction of Theorem 3.2 doesn’t lead to the same ob-
servation for any quadric Q due to the cohomological reason, but it can be
exploited in the studies of special lagrangian fibrations of n - dimensional
quadric. At the same time recall that Q ⊂ CP5 is the Grassman variety
Gr(2, 4), and the same technique can be applied in the case of Gr(2, k).

The introduction of pseudo toric structures makes it possible to extend a
number of approaches to several problems and conjectures adopted for toric
Fano varieties.

For Geometric Quantization programme applied to a given Fano varietyX
which admits pseudo toric structures one can take sufficiently generic pseudo
toric fibrations and consider as usual the fibers which are Bohr – Sommerfeld
with respect to certain appropriate polarization (f.e. with respect to the
anticanonical bundle and its powers). Then a natural and very interesting
question arises on the number of Bohr – Sommerfeld fibers which must be
the same for different pseudo toric fibrations.

For Mirror Symmetry programme applied to a non toric Fano variety X
which admits pseudo toric structures one can extend a standard approach
taking the fibers of a pseudo toric fibrations which have non trivial Floer
cohomology to itself and then construct certain A∞ category based on these
distinguished fibers.

For the integrable systems as well pseudo toric structures can help in solv-
ing real dynamical systems on homogenous spaces, grassmanian or certain
spherical varieties. But for us the main interest comes with the following
speculations. Having a pseudo toric structure (f1, ..., fk, {D1

u1
}, ...{Dn−k

un−k
})

one can try to find a characteristic classes c1, ..., cn−k such that

ci ∈ H2i(X,Z).

Indeed, for a pseudo toric structure one has a distingushed set in H2(X,Z)
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which contains n − k classes Poincare dual to the homology classes of Duj
.

We will call these classes the Chern roots of the corresponding pseudo toric
structure. Twisting these data by certain relations coming from the topology
of the base sets intersections one can derive classes ci which are analogies of
the Chern classes of a vector bundle. These data can be combined together
in the form of a vector

(r, c1, ..., cr) ∈ H2∗(X,Z).

Such a vector can be realized by pseudo toric lagrangian fibrations with the
fixed topological data, and one can consider an equivalence relation on the
space of all such fibrations, given by the Hamiltonian isotopies. Then certain
moduli spaces appear which can be studied...

Why this idea comes? Sometimes ago one understood Mirror Symmetry
as certain duality between vector bundles and lagrangian cycles. But as
far as we know from Geometric Quantization vector bundle is not equal to
lagrangian cycle since a quantum state is represented either by a section
(up to scaling) of a vector bundle or by a lagrangian cycle. This means
that a vector bundle can be compared with a lagrangian fibration. And as
we guess above certain lagrangian fibrations — namely pseudo toric ones
— admit some topological characteristics rather familiar for the theory of
moduli spaces of vector bundles.

All the arguments are rather speculative, but we hope to continue this
work.
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