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1. INTRODUCTION

Let Q2 be a bounded open set in R™, n 2 1, Q7 = Qx(0,T], St = 02 x(0,T), I'r =
St U[Q x (t = 0)]. Consider in Q7 equation
Flu] = Ou/0t — diva(u,7u) =0 (1.1)

where ¢ = (a!,... ,a"), Yu = (Ou/0zy,... ,0u/0z,) and functions a*(u,p),: =
1,...,n, are continuous in R x R™ and satisfy for all u € R, p € R" inequalities

a(u,p) - p = wolultlpl™, vo > 0; la(u,p)| < plullp™ ', m > 1,620, (12)

Equations (1.1), (1.2) are special (in particular homogeneous) case of the, so-called,

doubly nonlinear parabolic equations (DNPE). The prototype of these equations is
Ou/ot — div[|ul| T u|™ P yul=0,m>1,£>0. (1.3)

In the case (1.3) we have a(u,p) = |ul’|p|™ %p and for all u € R, p € R", ¢ € R™,

dal : m—
5— i€ 2 man (Lm — D[ p|™ 2 ¢ (14)
Pj
From (1.4) it follows that equation (1.3) is parabolic at any point (z,t) € QT where
u and Yu do not equal zero. Equation (1.3) looks like an unify equation, but really
it is an union of equations of three different types of PDE.

Definition 1.1. We say that equation (1.1), (1.2) is of the type of

slow diffusion, if m+£€> 2,
normal diffusion, if m4{=2,
fast diffusion, if m+ €< 2.

In this paper we study some qualitative properties of equations (1.1), (1.2). We
show that equations of the type of slow, normal, and fast diffusion possess different
properties.
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Definition 1.2. Any nonnegative bounded in @ function u is a weak solution of
equation (1.1), (1.2) if

a) u € C([0,T); Ly(R), Vu’*' € Lm(Q7), 0 = 755

b) for any ¢ € CY(Q1), ¢ = 0 on ST, and any t,,t, € [0, 7]

t2
updel? = [~uds + alu,uy) - FP|dzdt =0 (1.5)
Joei=l ]

where u; = (uz,,... yuz,) and uz,, 1 = 1,... ,n, are defined by

Ug; = (14 0) 'u™0u" 0z, on [Qr:u>0],uy, =0 on [Qr:u=0].
(1.6)
Consider Cauchy-Dirichlet problem

Flul=0 in Qr,u=y¥ on [rp (¥ >0, % € W(Qr)). (1.7)

Definition 1.8. Function u is a weak solution of Cauchy-Dirichlet problem (1.7) if
u us a weak solution of equation (1.1) and u =% on I'y.

Definition 1.4. We say that for equation (1.1), (1.2) there is a finite speed of prop-
agation if any weak solution u of this equation possess the following property: if
u(z,tg), to € [0,T), has a compact support then the support of u(z,t) is also com-
pact for any ¢ € (to,to + 7) with some 7 € (0,T — o).

Remark 1.1. In general 7 depends on suppu(z,to) and (.

Definition 1.5. We say that for equation (1.1), (1.2) there is a finite extinction
time (or simple extinction) if there is T, > 0 depending only on n,m, ¢, v, 4, |8,
and 1¥(z,0) such that any weak solution u of Cauchy-Dirichlet problem (1.7) with

¥ € WHQr) N Loo(T'r) satisfies condition

u=0 ae in Q forany te€[T.,T] (1.7)

This paper is dedicated to study some qualitative properties of equations (1.1),

(1.2). The main results of the paper are propositions 5.1, 7.1 and 8.1 which are
obtained as by-product of the proofs of Holder estimates given in [1]-[3].

From these and other propositions we derive in particular that equations (1.1), (1.2)
possess properties that can be reflected by the following table:

slow diffusion normal diffusion fast diffusion

finite speed of infinite speed of infinite speed of

propagation propagation propagation

non-extinction non-extinction extinction



References to papers dedicated to investigation of properties mentioned in this
table for the case of equation (1.3) can be found in [4].

This paper was written during the stay of the author at Bonn in April-September,
1994. We would like to thank the Max-Planck-Institut fiir Mathematik and espe-
cially Professor Hirzebruch for support, hospitality and fine conditions for scientific
work. We would like to thank Professor Hildebrandt and his colleagues for use-
ful mathematical contacts, hospitality, and possibility to discuss the results of this
paper in their seminar at the Bonn University.

2. EXISTENCE OF HOLDER CONTINUOUS WEAK SOLUTION

In this section we shall use also notion of strong solution of Cauchy-Dirichlet prob-
lem (1.6).

Definition 2.1. Let inf(¢,I'r) > 0. We say that function u is a strong solution of
Cauchy-Dirichlet problem (1.6) if u is a weak solution of this problem and moreover

inf(u,@Qr) >0 (and hence u € WL%(Q7)).

Consider Cauchy-Dirichlet problem with zero boundary condition

Flul=0 in Qr,u=0 on St,u=uo(z). (2.1)
From results of paper [5] it follows in particular the following theorem.

Theorem 2.1. Let the following conditions be fulfilled for equation (1.1):
0) functions u~™%a!(u,u"%p), o = é, m>1£2>0,1+1,...,n, are continu-
ous on R4 x R%;

1) for any v € R, p € R" inequalities (1.2) are satisfied;

2) there exists vq > 0 such that for any v € R and p,q € R"

(a(w.p) = alu, )] - (b = @) 2 walullp = gl*(ipl™ + 1a|™)' =%,
where k =m if m 22, k=2 ifm € (1,2);

3) for any u,v € [e, M], ¢ > 0, M > ¢, and any p € R"

la(u,p) — a(v,p)| < Alu—v|(1+{p|™71), A = Ae, M) 2 0;

4) g+l 5 L _ L 0=%,m>1,€20.

c+2 m n? m

Assume also that set Q and initial function ug satisfy correspondently conditions

(Q)3p0 > 03 € (0,1) Vo € INYp € (0, po0) : |B,(x0) N Q| < (1 — ao)|B,(z0)|
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and

(I)uo = uo(z) > 0,u0 € Cp(Q), B € (0,1).
Then Cauchy-Dirichlet problem (2.1) has a Holder continuous in Q weak solution
u; moreover the regularized problems

Flug =0 in Qr,uc=¢€¢ on Srt,u.=uo(z)+¢ € (0,1) (2.2)

have Holder continuous in QT strong solutions u, such that

inf(ue,Qr) 2 €, ue > u In Ca,a/m(QT) as €— 0 (2.3)
where o € (0, 1) Is independent of e.
Remark 2.1. Conditions 0)-3) are fulfilled for equation (1.3) for any m > 1, £ > 0.

Remark 2.2. Condition 4) defining admissible parameters m and £ can be rewritten
as

7 L S 'l_—l'_a g = e }
c+2 " m n m—1
(2.4)
This condition means that point (m,¢) does not belong to the “bad set w”. It is
easy to see that equation (1.1), (1.2) with (m, £) € w is equation of the type of fast
diffusion. We constructed a counterexample ([6]) showing that it is impossible to
establish local Lo, -estimates and hence local holderness for generalized solutions

of equation (1.3) with (m,?) € w.

(m,f) e D\w, D={m >1,£>0},w={(m,0) e D:

3. FINITE SPEED OF PROPAGATION FOR
EQUATIONS OF THE TYPE OF SLOW DIFFUSION

Proposition 8.1. For equations (1.1), (1.2) of the type of slow diffusion there is a
finite speed of propagation.

This property is well-known at least for equation (1.3) in the case m + ¢ > 2
(see survey [4] by A.S. Kalashnikov). Therefore we limit ourselves by illustration
of this phenomenon with the aid of a simple modification of the Barenblatt explicit
solution (such modification was given in [1]). Consider function

u(z,t) =7 [1 —¢ (li:l) T]J (3.1)

+
where
a_1=n(m+€—2)+m ﬁzn 7=_n_.1_._ :m—_l
’ ’ m—1’ m+E€—=2
It is easy to see that for appropriate constant ¢ > 0 function (3.1), (3.2) is a weak
solution of equation (1.3) in Q x (,T], QCR™ e>0, T >eif m>1, m+{>2
This function has a compact support for any ¢ > 0.

(3.2)

The finite speed of propagation is one of the main properties of equations of the
type of slow diffusion.



4. EXTINCTION FOR EQUATIONS OF THE TYPE OF FAST DIFFUSION

Proposition 4.1. For equation (1.1) (1.2) of the type of fast diffusion with pa-
rameters (m, £) satisfying condition (2.4) there is a finite extinction time.

Proof. Let n € WL%Qr)N La(Q71), n>0,0< h <t; <ty <T —h. Then for any
weak solution u of Cauchy-Dirichlet problem (2.1) we have (see also [7])

tz tg
/ /Q funen + (alw, wz)); - Tldedt = 0, / / e + (a(ty wp))n - Vryldadt = 0
t t Q

(4.1)
where gy, = %f:_h g(z,7)dr, dp = % :+h g(z,7)dr. Denote @ = u’t o = %.
In view of (1.2), (1.6) we have

la(u, ug)l < of 7 4™ (4.2)

and hence in view of (4.2) and Definition 1.3 integrals in (4.1) have sense. Set in
(4.1) n = @ (obviously such choice of test function 7 is admissble). Because function
u — u?t? is concave we have

2\ T o
ol S (u"t%)ht o1 < (u +2)ht.
- o422 - o+2

Then letting h — 0 in (4.1) (with n = 4) we obtain

UpeU > UhtlU (4.3)

1
g4 2

ta
/ u”+2d:c|:f + / f a(u,uy) -y dedt =0 (4.4)
Q t) Q
where a(u,uz) - V4 € L1(Q@r) in view of (4.2). Denote

| llpe=l vl @, p21.

Then from (4.4) it follows obviously that function t —| u ||gi§Q has a derivative

L u ||§i§fz a.e. on [0,T}]; moreover 4 || u ||gj;§‘ﬂe L:i([0,T]). In view of (1.6)
we have uz = (¢ + 1)"'u~7 7 @ and hence from (1.2} it follows that
alu,ug) - i > 0|7 o™, ¥ =v(o + 1)1, (4.5)
From (4.4), (4.5) we can derive obviously that for a.e. ¢ € [0, 7]
1 d
o+ 2dt

lullgiie +7 1 vu™ 7 a< 0. (4.6)

Remark now that from condition (2.4) (or condition 4) of sect. 2) it follows in

particular that Wl (Q) — La_i_?(Q) and hence

Fu* lezz o< | 7™ flmas 11 = 1(IRsmm)

or



lullfize<n I e [lma . (4.7)

Then we derive fron (4.6), (4.7) that for a.e. ¢t € [0, T

2 +1)
IIt 15550 +7 1 u Ilf,iz g <0 (4.8)

a-{-’)dt

where v = 0y; ™. In particular from (4.8) there follows that if || u |[s420= 0
for some t = to then || u ||p4+2,0= 0 for any t > t5. Denote 7 = sup{t € R :
| ¢ |lo4+2,2> 0}, assuming that || g {|s42,0> 0. Consider inequality (4.8) on (0, 7).
Then we have

d -
o 1 llosza +7 1w 50770 on (0,7) (4.9)

where (¢ + 1)(m — 1) = m + € — 1 and hence

— 1___ m
2 _m—0dt | ||§+2 a'<—y on (0,7). (4.10)
Integrating (4.10) over (0,7) and using that 2—m - >0 we obtain

[ % llo+22 [l %0 lo+o0

<
O‘Q—m—é_ 2-m-—¢ (4.11)
Obviously from (4.11) it follows that
r <, = ALt loseg (4.12)

v(2-m—£)
Proposition 4.1 is proved.

Remark 4.1. In the case £ = 0 Proposition 4.1 is proved in [8]. Extinction for
equation (1.3) in the case m + ¢ < 2 is well-known (see about this in survey {4]).

5. INFINITE SPEED OF PROPAGATION FOR EQUATION
OF THE TYPE OF NORMAL AND FAST DIFFUSION

From the proof of lemmas 4.3 and 4.4 of paper [2] it is easy to derive the following
result.

Lemma 5.1. Let u be a weak solution of equation (1.1), (1.2) in QT of the type
of fast or normal diffusion. Moreover assume that

(i) la(u,p) — a(u,q)] - (p —q) 2 0 for any u € R, p,q € R";
() la(u,p) — a{v,p)| £ Alu—v|(1+ |p{™"") for any u,v € R, p € R";
(k) ue WI’O(QT)

Let B ( X [to — dp™,to + 6p™] C Qr and

u(z,t) > uo/4 in Bsy(zo) X [to —p™,t0 + 5p™) (5.1)

for some § € (0,1) and ug > 0. Then for any hg € (0,1) there exists a number
v > 0 depending on o, p, 0,8, and ho, such that
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u(z,t) > 1/2Y in Bp(zo) X [to — (1 — ho)ép™, to + (1 — ho)dp™].

In particular v is independent of A and || u ||, (or) and

u(z,to) 2 1/2¥ in  Bp(zo). (5.2)

Remark that from results of [2] it follows that function v from Lemma 5.1 is
Holder continuous in Q7.

Proposition 5.1. Let conditions 0)-4) and (), (I) of Theorem 2.1 be fulfilled for
equation (1.1) (1.2) of the type of fast or normal diffusion. Let u be a (Hélder
continuous) weak solution of Cauchy-Dirichlet problem (2.1) Assume that for some

(zo,t0) € QT

u(zo,tp) > 0. (5.3)

Then for any ball B,(zo) such that B,(z¢) C Q we have

inf(u(z,to), By(zo)) > 0. (5.4)
Proof. From conditions B,(zo) C Q2 and (zo,t0) € @7 it follows that B,(zo) X [to —
Sp™, to +6p™] C QT and '

u(z,t) 2 uo/2 in Bsy(zo) X [to — 8p™, to +6p™] (5.5)

for some ¢ € (0,1) and up = u(zg,to) > 0. In view of Theorem 2.1 there exists
strong solutions u. of regularized problems (2.2) satisfying condition (2.3). Using
Hélder equicontinuity of u. (see the second condition in (2.3)) we derive from (5.5)
inequalities

ue(z,t) > ug/4 in Bsy(zo) X [to — 0p™, to + 8p™]. (5.6)

Because assumption (i) follows from 2), assumption j) follows from 3) and the first
condition in (2.3), while definition of strong solution implies assumption (k) we can
apply Lemma 5.1 to solutions u, of regularized problems (2.3). Then in view of
(5.2) we have

ue(z,t0) 2 1/2¥ in  By(zo) (5.7)

where number v > 0 is independent of e. Using again the second condition in (2.3)
we obatin (5.4). Proposition 5.1 is proved.

Corollary 5.1. Forequations (1.1), (1.2) of the type of fast or normal diffusion sat-
isfying conditions 0), 2)-4) (in particular for equation (1.3) with m+0 < 2, (m,¢) €
D \ w) there is an infinite speed of propagation.

Proof. Let u be a Hoélder continuous weak solution of Cauchy-Dirichlet problem
(2.1) for equation (1.1), (1.2) in the case m 4+ £ < 2, = Br(0), R > 0, with non-
negative Holder continuous in  function ug having a compact support containing
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the origin (so that «(0,0) = 0). In view of continuity of u(z,t) we have u(0,t) > 0
for all sufficient small ¢ > 0. Hence in view of Proposition 5.1

u(z,t) >0 in Qx(0,7)
for some 7 > 0. Corollary 5.1 is proved.

Corollary 5.2. Let all conditions of Theorem 2.1 are fulfilled for equation (1.1),
(1.2) of the type of fast diffusion in the case § = Bgr(0) and T > T, where T,
is defined by formulae (4.12). Let u be a (Hélder continuous) weak solution of
Cauchy-Dirichlet problem (2.1). Let uo(z) # 0 in Q. Then there exists 7 € (0, T}
such that

u(z,t) >0 in Qx(0,T), u(z,7)=0 in Q. (5.8)

Proof. The result of Corollary 5.2 follows directly from Proposition 4.1 and Propo-
sition 5.1.

6. SOME AUXILIARY PROPOSITIONS

In this sections we state auxiliary propositions that will be used in the next
solutions.

From the proofs of Theorem 4.3 of paper (1] and Lemma 2.1 of paper [2] we can
derive that in the case of (homogeneous) equations of the type (1.1), (1.2) the
following proposition holds.

Lemma 6.1. Let u be a weak solution of equation (1.1}, (1.2) with any m >
1,6 > 0in Qr and let @ = v, 0 = -mtTl Then for any Q@ = QR =
Ba(zo) x [t1,t2], G C Qr, we have

(B) If sup((u —x)~,Q) < H™, (u— &)™ = (k —u)*t = sup(k —u,0),x € Ry, then

function

g=g(H ,(u—r)",7) = bnu[H J(H™ — (u— )" +7)] (6.1)

satisfies inequality

sup / g2§2da:§ / g2E2d:1:|t=“+,u // ueg|g'12'm|v§|mda:dt (6.2)
te(ty,ta] Y Br(zo)

Br(zo) QRitq.tq

where y = const > 0, £ = £(x) be a piecewise smooth function defined in the ball
Bpr(xo) such that 0 < ¢ <1 and £ = 0 on the boundary of Br(zo).

(C) For any & € Ry function @ = %!, 0 = =L, satisfies inequality

sup f}‘ (a—R)7)X d:r—i—u/ | 7 (it — &)™ | (Mdzxdt <

el 12] Bpr(zo) QRritytg
f F((@ - #)7)¢™dz]=" + // JTIC™)e o+ pl (@ - &)™ 7 ¢ dedt
Br(zo) Qrir.ig (6.3)
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where v = const > 0, 0 = const > 0, ( = ((z,t), be a piecewise smooth function
defined in the cylinder Q g, .+, such that 0 < ( <1 and ( = 0 on the lateral surface
of QR;tl‘fz and

(a=#)~

F (e —R)T) = a'il / (k—{)?-iL-T_lffl{,crz m_—L—l (6.4)

The following important lemma is a slight generalization of Lemma 6.2 of paper
[1] (see also Lemma 2.2 in [2]).

Lemma 6.2. Letw € Loo((0,7); Lin(B1)NWL2(Q,), m > 1, where B; = B,(0), Q) =
By x [-1,0]. Let g > 0 and sup(w, @) < pu. Let § € (0,1). Assume that for all
k' k €[0,1], & <k, and all £ = {(z), € € C3(B,(0)), 0 < ¢ <1, and some xk > 0

sup /|( -x)T mf”‘dm+//|v w — &)™ EMdedt <

tG[—],O]B
]//1 Y dadt (6.5)

Qst

1

< ¢ ma:r:(l + |7 &™)

where Q1 ¢ = {Q1 : £(z) > 0}. Then there exists a constant g > 0 depending only
on n,m,é,co and k such that from inequality

J [t 1zt < calulum (6.6)
(2
it follows that
sup(w, By 2(0)) x [-1,0]) < dp. (6.7)

7. NON-EXTINCTION FOR EQUATIONS OF
THE TYPE OF SLOW AND NORMAL DIFFUSION

We proved in section 5 that weak solutions of equation (1.1), (1.2) of the type
of the fast diffusion satisfy conditions (5.8) with some 7 < T, < T (see (4.12)). In
this section we show that such property characterizes equation of the type of fast
diffusion because for equations of the type of slow or normal diffusion we have the
following

Proposition 7.1. Let u be a weak solution of equation (1.1), (1.2) in Qr of the
type of slow or normal diffusion. Assume that

u(z,t) >0 in Qx(to—¢€tg) forsome to€ (0,7} and e>0. (7.1)

Then



u(z,to) >0 in Qx [t =t (7.2)

Remark 7.1. From results of (1] and [3] it follows that any weak solution of equation
(1.1), (1.2) is Hélder continuous in Q7.

Because in the case of equations of the type of slow or normal diffusion with
m > 2, { > 0 we prove in the next section Proposition 8.1 from which Proposition
7.1 follows as a particular case, we shall assume in this section hat

me(1,2),>20,m+£€>2. (7.3)

We shall say that some constant ¢ depends only on the data if ¢ depends on
n,m, 68, vo, 11, and sup(u, Qr).

Without loss of generality we can and shall assume in the remainder of this paper
that

sup(u,Qr) < 1. (7.4)

In view of Remark 7.1 it is easy to see that Proposition 7.1 is a consequence of the
following

Proposition 7.2. Let u be a weak solution of equation (1.1), (1.2) in Qr with
parameters m, € satisfving conditions (7.3). There exists a number & > 0 depending
only on the data such that if

2—m

Bép(fﬂo) x [t() - pm,to] C QT7 é =2"m l}? p > 0, (75)
and
u>2"% on By,(z0) x [t =10 — p"] (7.6)
for some § > 0 then
u Z 2_(6+u+1) on ng/4($0) X [to — pm,to] (77)

where v = 797
For establishing Proposition 7.2 we prove two lemmas.

Lemma 7.1. Let u be a weak solution of equation (1.1), (1.2} in Q¢ with param-
eters m, £ satisfying conditions (7.3) and let @ = u’+', 0 = —t=. Assume that for

somer>0,&20,c1>0,520

'..‘—ml)

Q(r) = By, (z0) X [to — 1™, to], § = 277 7, Q(r) C Qr (7.8)

and

a>2"06+9 op B; (zo) x [t =to —cyr™]. (7.9)

Then there exists a number &y € (0,1) depending only on the data and ¢, such
that if

10



{Q(r) : & < 27G+9)Y| < 40|Q(r)] (7.10)
then

@2 27D iy By (20) X [t — 7™, o). (7.11)

Proof. Consider inequality (6.3) for & € [2'“""”’”,2'“‘*’”], R = 6rt
cr™, ty = to,{ = &(z) € Cg(Bj,(z0)). In view of (7.9) we have (¢ — &)~ =0 on
B;,(z0) x [t = tp — c;7™] and hence (see (6.4))

F((&—~&)")=0 on By (zo)x[t=1ty—cir™]. (7.12)
Using that for & = ;25 we have
K™Y S04
~({ii — &Y") > G- Y712 > 2(64‘1’)0 ~ _ ~\—|2 . .
F (@ -#7) 2 g 0 = R 2 c2600%(a = 7y (7.13)

we derive from (6.3) that

2600% sup [ (@ - Ry Perds+ [[19(0-#)7mendadt <
tE[ty,t2]
Bér(x()) Q(r)

< [[ia-w1m v gz (7.14)

Q(r)

Let &y, 4 € [27@+7+D) 2-(G+9)] % < & Obviously in view of (7.3)

f (& — &)"|2€Mdr > (k— AT / (Tt ~ &)~ |™ €M dx. (7.15)

B;. (zo) B;, (zo)

Denote

N>

v=204 k) =280k R =20 (R <R) (7.16)
and introduce new variables

t—1g

cyr’™

r — X9
or
Change (7.16) transforms By (o) and Q(r) into B;1(0) and @, = By(0) x [—1,0]

correspondently. Obviously also that

2—m -

(6=27"7). (7.16)

&= =

m=2

0/0x; =27 = r719/8z;, dt = c;r™ dt. (7.17)
Using (7.15)-(7.17) we can derive from (7.14) inequality

11



25(m+d—2)2652(m—2)b(;€ _ Rl)z-m sup f (v — &1) ™™ dz+

te[—1,0] B.(0)
+ 2("*-2)*"/ |7 (v — &1)7|mEmdidE <
< efey 2(’"‘2>”/f| 7)T|vé|™dzdi. (7.18)

Taking into account (7.3) we have m + & — 2 = ﬂ}_ﬁ—z > 0, @ > 0 and hence
23(m+ﬁ—2)2&9 2 1. (7,19)
Denote
w=1l—-v,k=1-F, s =1~k (7.20)
Obviously that from (7.16) and (7.20) we can derive that

&',k €[0,1/2), k' < &, sup(w,@y) <1 (7.21)

and

(v—R)" =(w=-r)", (v—FR) =(w=-r)", kR =Kk -~ (7.22)

Then from (7.18)-(7.22) it follows that

sup f l(w— r)¥|™E™ds + f/|{7(w —k)HmEmdE di <
tef{-1,0] 5.(0)

Sc (cl)g%(lﬂvfl"‘ )2~ ’“f l(w — &")F|™di df (7.23)
Qu.¢

where Q¢ = {Q1: {(z) > 0}. Using Lemma 6.2 in the case p =1, =1/2, k =
2 —m we derive that there exists a constant ¢g > 0 depending only on the data and
¢1 such that from inequality (6.6) it follows that inequality (6.7) holds. Using that
conditions (6.6) and (7.10) coincide for &p = €o and that inequalities (6.7) with
4 =1/2 and (7.11) are equivalent we can conclude that Lemma 7.1 is proved.

Remark 7.1. Tt is important that number &g from Lemma 7.1 is independent of &
and §.
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Lemma 7.2. Let u be a weak solution of equation (1.1), (1.2) in Qr with pa-

rameters m, { satisfying conditions (7.3) and let 1 = u°t! o = ;;t_-—l- Let &, €

(0,1), 7 > 0, ¢; >0, 6 > 0 are fixed. There exists a number # depending only on
the data, ¢y, and &, such that if conditions (7.8) and

@>27% on B; (wo) x[t=ty—cr™] (7.24)

hold then for every t € [tog — c17™,to] we have
{Bjyj2(w0) : &t < 274D} < 44| By, o (20)- (7.25)

Proof. Let conditions (7.8) and (7.24) hold for some # which will be fixed later.
Denote § = §1/(+1) From (7.24) it follows that

u>27% on By, (z0) x [t =tp — ;™). (7.26)

Consider inequality (6.2) in the case k =279, R = Or, t1 =to —c1r™, ta = to, £ €
. m—2 -

C&(Bér(zo))1 0<E<],E=11n Bérfg(-TO)': | V§| <c2™m yr-1> H™ = Sup((u -

£)7,Q(r)) =27 —inf(u,Q(r)), p = 2=+ where v > 2 will be chosen below.

Without loss of generality we can and shall assume that

H™ > 27+ (7.27)

because otherwise H~ = 27° — inf(u,Q(r)) < 2-00+Y) and hence inf(u,Q(r)) =
, Q(

é
2=+ But then inf(i, Q(r)) > 276+D(e+1) and (7.25) are trivially fulfilled with
v=o+1.

From (7.26) it follows that
g(H ,(u=k)",7)=0 on Bj(zo) x[t=to—c1r™} (7.28)
Taking into account that g = 2-+*) = < 279 we derive (see (6.1)) that
g(H,(u=-r)",y)<h(H /y)<vin2, (7.29)

lg'(H™, (u— k)™, 7))P7™ < 20F0E@=m) y({y < 27%}), (7.30)

Then from (6.2), (7.28)-(7.30) and estimate for | 7 €] it follows that for any t €
[to — c17™, 2o}

/ gQ(H_, (—rz)_,'y)da: < C(cl)U25(2—m—£)2ut2—-m)2(m—2):>|Bér/2($0)|. (7.31)

By, ja(zo0)
Taking into account that m 4+ ¢ — 2 > 0 and choosing

v=v(c+1) (7.32)
we obtain from (7.31), (7.32) that
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/ g (H ™, (u—K)~",v)dz < cy|Bér/2(a:o)|, Yt € [to — 1™, o], (7.33)
Bérfz(xO)

where ¢ = ¢(c;). Now we estimate the left-hand side of (7.33) from below. It is
obvious that on the set {B; (o) : u(z,t) < 2-(8+1)} we have

H™ —(u—k)" +< 2@t (7.34)

Then from (7.27) and (7.34) we derive that for any t € [to — ¢;7™, to]

g (H™,(u— )7, 7)dz 2 (v = 2)*n*2|{B;, ;,(w0) : u < 27CF}|. (7.35)

Bérfz('ro)

Taking into account that {Bérj,?(:cg) Ch < 2—(5+a)} - {Bér/z(a;o) Cu < 2—(6+v)}
we can derive from (7.33) and (7.35) that for any t € [to — ¢17™, to]

{Bj, o (o) : & < 276+9} < c(—y—_"WIBérﬁ(xo)L (7.36)

Choose v so large that cv/(v — 2)? < &;. Then (7.25) follows from (7.36). Lemma
7.2 is proved.

Proof of Proposition 7.2. Let & € (0,1) be defined by Lemma 7.1 corresponding to
the case ¢; = 2™. Let ©# > 0 be defined by Lemma 7.2 corresponding to the case
c1 = 1, & = &p with such &g. Applying Lemma 7.2 in the case ¢y, &; chosen and
for r = p we obtain for any t € [tg — p™, t0]

{Bs,a(@0) : & < 270+D}| < Go|By, (o) (7.37)

because (7.24)with r = p, ¢ = 1, § = 8(o+1) follows from (7.6). But from (7.37) it
follows that condition (7.10) with 7 = p/2, ¢; = 2™ is fulfilled. Then using Lemma
7.1 in the case r = p/2, ¢; = 2™, § = §(c + 1) and ¥ chosen we obtain (7.11) (with
r = p/2,¢; = 2™) and hence inequality (7.7) is established. Proposition 7.2 is
proved.

8. REMAINING OF POSITIVITY FOR WEAK SOLUTIONS
OF EQUATIONS (1.1), (1.2) WITH m > 2,£ > 0

In this section we assume that

m>2,02>0. (8.1)
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Proposition 8.1. Let u be a weak solution of equation (1.1), (1,2) in Qr with
parameters m, ¢ satisfying condition (8.1). Assume that

u(zo,t0) > 0 for some (zo,t0) €  x [0,T). (8.2)
Then

u(zo,t) >0 for any t€ (to,T). (8.3)

Remark 8.1. In view of results of [1] it follows that any weak solution of equa-
tion (1.1), (1.2) with m > 2, ¢ > 0 is Holder continuous in Q7. Obviously that
Proposition 7.1 follows from Proposition 8.1.

We prove Proposition 8.1 as a consequence of the forthcoming propositions 8.2
and 8.3.

Proposition 8.2. Let u be a weak solution of equation (1.1), (1.2) in Q1 with
parameters m, { satisfying conditions (8.1). Assume that

Bp(:Bo) X [to — pm,to] CQr,p>0, (84)

and

u>2"" on By(zo)Xx[t=1to—p"] : (8.5)

for some s > 0. Then there exists a number v > 0 depending only on the data such
that

u>2-Gtvtl) o B,4(zo) X [to — p™, t0]. (8.6)

For establishing Proposition 8.2 we prove two lemmas which are similar to lem-
mas 7.1 and 7.2.

Lemma 8.1. Let u be a weak solution of equation (1.1), (1.2), (8.1) in Q7 and let
4 =u"*', ¢ = =L=. Assume that for somer >0, ¢; > 0,8 >0

Q(r) = By(z0) X [to — ar™, o], Q(r) C Qr (8.7)

a>27% on Be(zo) X [t =tg —c17™]. (8.8)

Then there exists a number &y € (0,1) depending only on the data and ¢, such
that if

{Q(r) : & < 278} < GolQ(r)] (8.9)
then

U Z 2_(8+1) in B,./g(:lfo) X [to - C]’l‘m,to]. (810)
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Proof. The proof of Lemma 8.1 is similar to the one of Lemma 7.1 in the case & = 0.
In particular we have inequality (7.14) with & = 0. Instead of (7.15) we estimate

/ (@ — &)™ [26™dz > 26(m=2) / (G — &)~ |™Emde (8.11)
B (z0) Br(zo)

and introduce the new variables (7.16) with § = 1. Then instead of (7.18) we obtain

9b(m+&-2) sup / |(v {mdz+f/|v )T EM dEdE <
fe[-1,0) B.(0)

e(er fﬁ )M TE | di di (8.12)

where v = 2%, & = 2°x. Denotew = 1-v, k = 1—&. Thenx € [0,1/2], sup(w, @) <
1 and (v — &)~ = (w — k)*. Moreover using that m + & — 2 > 0 we derive from
(8.12) that

sup / (= r)F "™ dz + / (S (w — x)H|"dadf <

te[—1,0] B(0)
< cler) pax (141961 [ [ 1w = w1z (8.13)

QJ.E

where Q1 = {Q1 : {(z) > 0}. Obviously we can apply Lemma 6.2 in the case
p=1,6 =1/2, k = 0. The remainder of the proof is the same as in the case of
Lemma 7.1. Lemma 8.1 is proved.

Remark 8.2. It is important that number &g from Lemma 8.1 is independent of 4.
Lemma 8.2. Let u be a weak solution of equation (1.1), (1.2), (8.1) in Qt and let
o+l g = 71?!-_'1' Let &, € (0,1), 7 > 0,¢; > 0,3 > 0 are fixed. There exists a
number ¥ depending only on the data, ¢, and &1 such that if conditions (8.7) and

Uu=u

@ >27° on B.(zo) x [t =to —c1r™] (8.14)
hold then for every t € [to — ¢17™,10] we have
[{Brja(2o) : & > 27O} < & B, ja (o). (8.15)

Proof. The proof of Lemma 8.2 is similar to the one of Lemma 7.2 in the case
6 =1, § = 5. But because now |¢| < cor~! we have instead of (7.31) inequality

/ gz(H_,(u —K) ,y)dz £ c(cl)1/2(2'""”2”(2_"‘)|B,./2(.1:0)l. (8.16)

B, 2(x0)
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Using that m+£—2 > 0, m > 2 we derive from (8.16) that {7.33) with § = 1 holds.
The remainder of the proof is the same as in the case of Lemma 7.2. Lemma 8.2 is
proved.

Proof of Proposition 8.2. Let Gq € (0,1) is defined by Lemma 8.1 corresponding to
the case ¢; = 2™. Let & > 0 is defined by Lemma 8.2 corresponding to the case
¢y = 1, & = &g with &p chosen. Applying Lemma 8.2 in the case ¢;, &; chosen
and for r = p, § = s(0 + 1) we obtain for any t € [tg — p™, o]

[{Bpya(zo) : & < 27C+IY < Go|B, 2 (o). (8.17)

Obviously from (8.17) it follows that condition (8.8) with r = p/2, ¢y = 2™ and
§ = 3 + b is fulfilled. Then using Lemma 8.1 in the case 7 = p/2, ¢; = 2™, 8 =
3+0,5=s(c+1) and & chosen we obtain (8.9) (with r = p/2, ¢; =2™, § = §+ 1)
and hence inequality (8.6) is established. Proposition 8.2 is proved.

Proposition 8.3. Let u be a weak solution of equation (1.1), (1.2) in Qr with
parameters m, ¢ satisfying conditions (8.1). Assume that conditions (8.4) and (8.5)
are fulfilled with some s > 0. Let 8 € (0,1) be fixed. Then there exists a number
v > 0 depending only on the data and 8 € (0, 1) such that

uw> 20 on Bg,(zo) x [to — p™, to)- (8.18)
Proof. Proposition 8.3 can be proved absolutely in the same way as in the case
B = 1/4 (see the proof of Proposition 8.2).

Proof of Proposition 8.1. Without loss of generality we can and shall assume that
zg = 0. Assume that

u(0,t) >0 for some to € [0,7T). (8.19)
In view of continuity of function u (see Remark 8.1) we can assume that
u(z,t) >27% on B,x[t=1¢ (B, = B,(0))
for some p > 0 and dy > 0. Using Proposition 8.2 with some 3; € (0,1) we obtain
w(z,t) >27% on Bg,, X [to,t1], t1 =to +p™ (8.20)

for some §; > 0. In particular

u(z, 1) >27% on Bp, x [t =t

Repeating this argumentation we obtain for some f,,... ,8x and &a,... ,dx

'U.(I,t) > 2_62 on Bﬁlﬁgp X [tl,f'zl, fg = tl + (ﬁlp)m, (821)

........................
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We can choose sequence {f;} so that

1
(Br... Bec))"=—,k=2,3,...
~

Without loss of generality we can count that {4;} is increasing. Then from (8.20)
-(8.22) it follows that

1
—b N am
u(z,t) > 2 on Bmﬂlwx[to’to-l_(l_*_'“ﬁ)p -
In particular
1
w(0,t) > 279 for t€ [to,to+(1+...=)p™]. (8.23)
K

Obviously that result of Proposition 8.1, i.e., inequality (8.3) follows from (8.23).
Proposition 8.1 is proved.

Notes added in proof.

1) In view of the weak maximum principle for homogeneous equations (1.1),
(1.2) Theorem 2.1 remains to be true if instead of condition 4) we assume
only that m > 1, £ > 0.

2) Uniqueness of solution of Cauchy-Dirichlet problem (2.1) established by
Theorem 2.1 can be derived from paper [9).
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