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1. Introduction.

Let A', A" be abelian varieties defined over the field Q of algebraic numbers. If they
are isogenous, we showed in our paper [MW4] how to estimate the smallest degree of any
isogeny between them. For some purposes it may be necessary to estimate all isogenies, not
just a single one, and a subsidiary aim of the present article to indicate how this may be done.

In fact we will show how to find all homomorphisms from A' to A" , whether A', A"

are isogenous or not, and even if they have different dimensions. This will be achieved by the
familiar device of embedding Hom(A', A") into End(A' x A"). Indeed our main Theorem
below will enable us more generally to find all elements of the endomorphism ring End A
of an arbitrary abelian variety A defined over Q .

.We shall measure such endomorphism rings in a basis-free manner by taking suitable
discriminants. But for the present paper such discriminants will depend on a choice of
polarization for A. Thus let r be a positive definite element of the Neron-Severi group
N S(A). This gives rise to a Rosati involution on Q ® EndA, which may be used to define
the discriminant V r (f) of any additive subgroup f of End A (for precise definitions see
seetion 2). This turns out to be a positive rational number with denominator dividing 81 ,

where 8 is the degree of rand 1 is the rank of f over 7L. If A is in fact defined over a
number field k, we shall take f as the set EndkA of all endomorphisms defined over k.

The following is our main result on endomorphisms, in which h(A) denotes the (absolute
logarithmic semistable) Faltings height of A.

Theorem Given positive integers n, d and 8, there is a constant C, depending only on n, d
and 8 , and there is a constant K" depending only on n, with the /ollowing property. Let
A be an abelian variety 0/ dimension n defined over a number field k 0/ degree d, and
let r be a positive definite element 0/ NS(A) 0/ degree 8 . Then Vr(EndkA) is at most
C(max {I, h(A)})1I: .

A similar estimate for Vr(EndcA) follows almost immediately. For by Lemma 3.1 of
[MW3] there is a finite extension !{ of k, of relative degree bounded only in terms of n,

such that EndcA = EndK A; and we simply apply the above Theorem to A defined over !{.

We postpone until section 6 a more. detailed discussion of the consequences mentioned
above for homomorphisms. For the moment we state only a Corollary about isogenies.

Our paper [MW4] quoted abovein fact treats only isogenies defined over C (or equiv
alently over the algebraic closure k of k), rather than over the ground field k. While this
distinetion seems to be unimportant for most applications (for exampie the finiteness theorems
proved in [MW4]), it is worth noting that our Theorem does indeed enable isogenies over k
to be estimated, in the following sense.

Corollary. Given positive integers m, d, 8' and 8" , there is a constant C, depending only
on m, d, 8' and 8" , and there is a constant A , depending only on m, with the /ollowing
property. Let A', A" be abelian varieties 0/ dimension m defined over a number field k 0/
degree d, with polarizations 0/degrees 8', 8" respectively. Then if A', A" are isogenous over
k, there is an isogeny /rom A' to A", defined over k, 0/degree at most C(max {I, h(A,)})A.

Some special cases ofthe above Theorem and its Corollary were previously known. For an
elliptic curve (n = 1) the Theorem was proved some time aga by Paula Cohen (unpublished)
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using transcendence techniques. Surprisingly, this case is also an easy consequence (with
K, = 2) of Lemme 3 (i) (p. 187) of the work of Faisant and Philibert [FP], whose proof uses
nothing more than elementary class field theory. But the class field theory does not seem
to extend to higher dimensions..

Also the Corollary for a pair of elliptic curves (m = 1) was proved in [MW1] and
[MW2], again by transcendence techniques but this time using Baker's method.

Our proofs of the Theorem and its Corollary use heavily the main result of our paper
[MW3], itself also proved by Baker's method. The arguments are arranged as follows. In
sections 2 and 3 we collect together a number of preliminary lemmas about Rosati forms and
algebraic subgroups. In section 4 we prove a basic technical result about decompositions of
endomorphisms. The deduction of the Theorem in section 5 is then a relatively easy matter,
and finally in section 6 we deduce the Corollary and we make some further remarks about
homomorphisms between abelian varieties.

The first author was supported in part by grants from the National Science Foundation.
He would also like to thank the Forschungsinstitut für Mathematik (E.T.H. Zürich) for support
on a number of occasions, as weIl as I.H.E.S. for hospitality and also M.R.T. (France) for
support and the opportunity to deliver aseries of lectures on the subject during Winter 1989.

2. The Rosati form.

Let r be a torsion-free finitely generated additiveabelian group of rank Z~ 1 , and let
t be ä real bilinear form on r x r .We can then define a discriminant V(r; t) by

for any basis elements f1, ... , !I of r. We write t(f) = t(f, f) for the associated quadratic
form, and we say that t is positive semidefinite if t(f) ~ 0 for all f in r. The following
simple observation provides our basic method for estimating discriminants.

Lemma 2.1 Suppose t is positive semidefinite, and that there exists real T ~ 0 such that every

element 0/ r can be decomposed in Q0 r as a rational linear combination 0/elements 10/
r with t (1) ::; T. Then v(r; t) ::; Tl ; further r has basis elements f1, ... ,fl satisfying

t(Ji) ::; Z2T (1::; i ::; Z) .

Proof: Select basis elements of r, and use the hypothesis of the lemma to decompose each
one into a rational linear combination of 1 with t (1) ::; T. The resulting 1 have rank

Z over 1.., so we can pick 11, ... ,11 from them generating a subgroup :f of r of finite
index. Then the Hadamard inequality giv~s

Finally we produce the basis elements f1, ... , fl from 11, ... ,11 using standard arguments,
for example Lemma 8 (p. 135) of [Cl. This completes the proof.

In our context, r is an additive subgroup of the ring EndA = EndcA of endomorphisms .
of an abelian variety A of dimension n defined over C. To specify t we fix a positive
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definite r in NS(A) of degree 8, say. This leads to an involution on Q 0 EndA as
folIows. As usual we identify r with aRiemann form on T(A) x T(A) , where T(A) is the
tangent space of A at the origin. Now given a positive integer q, an element f in q-1 EndA
induces a map f* on T(A). Define f; as the adjoint of this with respect to r, so that

(2.1)

for all z, w in T(A) . It will follow from the calculations below that 8qf; maps the period

lattice n(A) in T(A) into itself; and consequently has the form (8qf') * for some f' in

(8q)-l EndA . The association of f' with f is called the Rosati involution corresponding
to r.

Next, any element f of q-1EndA has a trace Tr f (see for example [Mu] p. 182).
Normalizing so that the identity endomorphism has trace 2n, we find that Tr f is in

q-171.. We define the Rosati form t = t r by

clearly its values on r x r lie in 8-171.. Finally we write

which lies in 8-171..

The associated quadratic form t(f) is most readily computed using rational repre

sentations. Pick basis elements W1,'" ,W2n of n(A) and write f* W = MW for
W = (W1,'" ,W2n)t and a rational matrix M (the exponent t denotes transpose). If f
is in q-1 EndA, then qM is integral. Writing also f; W = M'W for some real matrix M' ,
and taking real and imaginary parts of (2.1) evaluated at the periods, we find that

M' = SMtS-1 = EMtE-1 ,

where S, E are the matrices with entries Re r(wi, Wj), Im r(wi, Wj) (1 ~ i, j ~ 2n)

respectively. Since E is integral with det E = 8, we see that 8qM' is integral; so, as stated
/

above, 8qf* lifts to an endomorphism. We also see that

(2.2)

for the usual matrix trace.

Next, S is positive definite, so we may write S = QQt for some real Q. We then
find that

2n 2n
t(f) = Tr(XX t

) = L L (x(i,j))2 ,
i=l j=l

(2.3)

~here X = Q-1MQ has entries x(i,j) (1 ~ i, j ~ 2n) . This makes it clear that t is
positive definite. The following further properties of twill be needed in section 6.

Lemma 2.2 For f1, f2 in EndA we have t(f1f2) ~ t(f1)t(f2) .
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Proof: By (2.3) it suffices to verify that

for any real Xl, X2 with entries xl(i,j), x2(i,j) (1:::; i, j :::; 2n) and X = XlX2. But
the left-hand side is

where

Yl = xl(i, kl)X2(k2,j) , Y2 = xl(i, k2)X2(kl,j) .

By the arithmetic-geometric mean inequality YlY2 :::; ! (Yf + yi) , and summing gives
!Tr(XlXf)Tr(X2Xi) twice. This proves the lemma.

Lemma 2.3 Suppose 1 in EndA isan isogeny. Then it has degree at most (2n)-n(t(/))n .

Proof: Since in this case 1 has degree Idet MI = Idet XI in (2.3), it suffices to verify that

for any real X of order 2n. But this is just the arithmetic-geometric mean inequality again,
applied to the non-negative real eigenvalues of X X t ; The lemma is therefore proved.

3. Subgroups and endomorphisms.

Let A be an abelian variety of dimension n defined over C, with endomorphism ring
EndA = EndcA. Choose a positive definite element r of NS(A) , and denote by t the
associated Rosati form. Recall from seetion 2 of [MW3] that every algebraic subgroup B
of A has a normalized degree ~(B) with respect to r. More generally, if k is a positive
integer, then r induces a natural positive definite element of N S (Ak) , and we may use this
to define normalized degrees of algebraic subgroups of A k .

Lemma 3.1 Suppose tor some positive integer q that H is a connected abelian subvariety
0/ A x Aq , 0/ dimension n, which projects surjectively onto the first /actor. Then there are
11, ... ,Iq in EndA, and non-zero integers SI, ... , Sq, such that H is the maximal connected
subgroup 0/ the set 0/ all (ao, al," ., aq) in A x Aq satisfying

(3.1)

Further, we can take

(3.2)

Proof: We start with the case q = 1. Select basis elements (Xl, 7/;1),' .. , (X2n, 7/;2n) for the
period lattice of H in T(A) x T(A). By Lemma 2.1 of [MW3] we have

(3.3)
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where SO, Sl have entries Re r(Xi, Xj), Re r( 'l/Ji, 'l/Jj) (1::; i, j ::; 2n) respectively. And
if W1, ... , W2n are basis elements of O(A) we can write

(3.4)

for W = (W1, ... , W2n) t and integer matrices Mo, M 1 . Since H projects surjectively onto
the first factor, we know that Mo is non-singular. Also

(3.5)

(3.6)

where S has entries Re r(wi, Wj) (1 ::;i, j ::; 2n) .

Now the existence of I = 11, S = Sl satisfying (3.1) is easy to establish using the
inverse of the projection isogeny from H to A. We put s = det Mo =f:. 0 and 1= s-l si in
Q®EndA; then (3.1) holds on the tangent space with 11, Sl replaced by I, s. We will show
that 1 is actually in EndA and satisfies (3.2); this will prove the present lemma for q = 1.

Since I is in EndA , we have 1* W = MW for integral M, so 1*W = MW for
NI = s-l sM. But also I*Xi = s'l/Ji (1::; i ::; 2n), which leads using (3.4) to MoM = sM,
so that NI = s MOl M1 . Thus M is integral, and 1 is indeed an endomorphism.

It remains to estimate t (1) . Hut by (2.2) and (3.5) we get

t(1) = Tr(MSMt S- 1
) = s2Tr(Sü1S1) .

Applying Lemma 2.1 of [MW4] to I(x) = det (xSo + SI), we see that 1(1) is at least the
coefficient of. x 2n - 1 . That is,

and since det So = s2~(A) by (3.5) this gives the desired inequality (3.2) on recalling (3.3).

So the present lemma is proved for q = 1.

The general case follows easily by labelling the factors of Aq as Ab ... , A q , projecting
H down to each A x Ai (1::; i ::; q), and using Lemma 2.2 of [MW4] to estimate the
degrees of the images. This completes the proof.

Lemma 3.2 Let B be a connected abelian subvariety 01 A, and lor a positive integer q let
H be an algebraic subgroup 01 A x Bq in A x A q which projects surjectively onto the first

lactor. Then either

( a ) there is a positive integer q ::; q and a subproduct Bq 01 Bq such that the intersection iI
01 H with A x Bq also projects surjectively onto the first lactor; further fI has dimension

n and ß(fI) ::; ~(H) , or

(ß) there is a connected abelian subvariety B' 01 B with 0 =f:. B' =f:. B and ~(B') ::; ~(H).

Proof: We use induction on q. The case q = 1 is trivial, since (a) always holds with
q= 1 . Suppose the result has been proved with q replaced by q - 1 for some q ~ 2. We
will deduce the lemma as it stands.

For this we look at the algebraic subgroup !{ of Bq such that 0 x K is the maximal
connected subgroup of the intersection of H with 0 x Aq . In the terminology of section 2
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of [MW4], I< is the maximal connected subgroup of the kernel of H in Aq . If I< = 0
then (a) holds with q= q, since the projection from H to A is an isogeny.

So we can assurne I< #- O. Rearranging the factors of Bq if necessary, we can also
assumeB' #- 0, where B' is the projection of K to the last factor. If B' #- B then (ß)

holds. For then two applications of Lemma 2.2 of [MW4] show that

ß(B') ~ ß(I<) ~ ß(H)

as required.

So we can assurne B' = B. In that case define H 1 in A x Bq-l such that H1 x 0
is the intersection of H with A x Aq-l X O. We will verify that the induction hypothesis
applies to H 1 . To see that H1 projects surjectively onto A, take arbitrary a in A. Since
H projects surjectively, there exists ß in Bq-l and b in B such that (a, ß, b) is in H. But
also there exists ß' in Bq-l such that (ß', b) is in I<; so (0, ß' ,b) is in H. Subtracting,
we find that (a, ß - ß', 0) is in H, and thus (a, ß - ß') is in H1 • Since a was arbitrary,
this does what we want.

We can therefore apply our induction hypothesis to H1 . Since ß(H1 ) ~ ß(H) again
by Lemma 2.2 of [MW4], each of the conditions (a) and (ß) for H 1 evidently implies the
same condition for H. This completes the proof of the present lemma.

4. The decomposition

In this section we prove the main technical result on decompositions which, combined with
Lemma 2.1, enables us to prove the Theorem. We shall make essential use of the main result
of [MW3] (see especially section 11), which we therefore state here as follows. Let G be a
principally polarized abelian variety of dimension 9 defined over a number field of degree
d, and let r be a positive definite element of N S(G) of degree 1. Then for any period w

in O(G) the minimal abelian subvariety Gw whose tangent space contains w satisfies

ß(Gw ) ~ c(max {d, h(G), r(w)} )KO • (4.1)

Here KO and c depend only on g; and in fact we can take KO = (g - 1).4gg!

Throughout this section A will be an abelian variety of dimension n, and EndA will as
usual denote its ring of endomorphisms over C. Let I{ be the maximum of the exponents
KO(g) in (4.1) for all positive integers 9 ~ n(2n + 1). We define non-negative integers
8(0), 8(1), ... by

8(0) = 0, 8(m) = 2n(2n - 1)1< + (2nI< + 1)8(m - 1)

and we define similarly

T(O) = 0, T(m) = 4n(2n - 1)1< +4nI<8(m - 1)

(m ~ 1) ,

(m ~ 1) .

These numbers of course depend on n as weIl as m.

Proposition Given integers m, n with n ~ 1 and 0 ~ m ~ n, there is a constant c = c(m, n)
with the lollowing property. Let A be a principally polarized abelian variety 01 dimension n
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defined over a number field 0/ degree d, and let r be a positive definite element 0/ N S(A)

0/ degree 1. Then every element 0/ EndA can be decomposed in Q Q9 EndA as a rational

linear combination 0/ elements f in EndA such that either

( om) t(f) < cMT(m)

or

( ßm) f(A) is contained in an abelian subvariety B = B(f) in A, 0/ dimension at most
n - m, with ß(B) :::; cMo(m) . Here

M = max{d,h(A)}.

Proof: This is by induction on m. The case m = 0 is trivial, since we can take a single
element of the class (ßo) with B = A.

Assume therefore that we have proved the Proposition with m replaced by m - 1 for

some m with 1 :::; m < n. We proceed to deduce the Proposition as it stands. Now any
f in the class (am-I) is already in the class (om). We will show that any f in the class
(ßm-l) either splits into elements of the class (om) or splits into elements of the class (ßm),
for suitably adjusted constants c. This will establish the Proposition.

We use cl, c2, ... for positive constants depending only on m and n. Let f be any
endomorphism of class (ßm-l); thus f(~) is contained in an abelian subvariety B in A
of dimension p. :::; n - m + 1 with

(4.2)

We proceed to decompose f.
By Lemma 4.2 of [MW4] there are basis elements Xl, ... , X2p of the period lattice

!1(B) of B such that

Similarly there are basis elements Wl, ... W2n of !1(A) such that

r(wi) :::; c3M2(2n-l) (1:::; i :::; 2n) ,

(4.3)

(4.4)

since ß(A) = 1. We may arrange these so that Wl, ... , W n are linearly independent over C .

Since f maps A into B , we have equations on the tangent space

2p

f*Wi = L SijXj (1:::; i :::; 2n)
j=l

(4.5)

for integers Sij (1:::; i :::; 2n, 1 :::; j :::; 2p). We apply (4.1) to G = A X A 2p with the period
(Wi, Xl, ... , X2p) for each i with 1 :::; i :::; n. We obtain minimal algebraic subgroups Hi

of G with tangent spaces containing (Wi, Xl, ... ,X2p). Also Hi lies inside the algebraic
subgroup fi of G defined as the set of (ao, al, . .. a2p) in A x B 2p satisfying

2p

f(ao) = L Sijaj .
j=l

7
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Noting that h(G) = (2p+ l)h(A) , we get using (4.3) and (4.4)

~(H·) < c M 2(2n-l)K~2Kz _ 4 (l~i~n). (4.7)

Let Ei be the embedding ofAx A2p inside A x A2pn defined by

Ei(a, a) = (a, 0, ... ,0, a, 0, ... ,0)

for a in A, a in AP, where the a is in the i- th place out of n places (1 ~ i ~ n) .
n

We define H = L: Ei(Hi) as a subgroup ofAx B 2pn in A X A2pn. By Lemma 2.2 of
i=l

[MW3] and (4.7) above we have

n n

~(H) ~ II ~(Ei(Hd) = II ~(Hi) ~ csM2n(2n-l)K~2nK .

i=l i=l

(4.8)

Now the tangent space of the projection of H to the first factor contains Wl, ... , W n ;

so by our choice of these periods this tangent space must be all of T(A). In other words,
H projects surjectively onto the first factor. We may therefore apply Lemma 3.2, and we
consider each of the alternative conclusions (a), (ß) in turn.

Suppose first (ß) holds, so that B has a connected abelian subvariety B' with 0 =I
B' =I- B and

~(B') ~ ~(H) .

Let B" be the abelian variety orthogonal to B' in B. Then

~(B") ~ ~(B)~(B') ~ ~(B)~(H)

(4.9)

(4.10)

by Lemma 2.3 in [MW3]. Since B' +B" = B the map / from A to B may now be written
as a rational linear combination of maps /' from A to B' and /" from A to B". Both B'
and B" have dimensions at most p - 1 ~ n - m, and their normalized degrees are at most

by (4.2), (4.8), (4.9), (4.10) and the definition of 8(m) .

Thus we find that in case (ß) of Lemma 3.2 the / in class (ßm-l) of the Proposition
decomposes into (two) endomorphisms of the dass (ßm).

Now we consider case (a) of Lemma 3.2. We denote the variables of Ei(O x A2p) in
ox A2pn by (aii, ... , ai,2p) , so that the factors of A2pn are indexed by the set Q of pairs
(i, j) with 1 ~ i ~ n, 1 ~ j ~ 2p. Now the subproduct in Lemma 3.2 corresponds to a

non-empty subset Q of Q, and we get iJ with ~(iJ) ~ ~(H) . We can apply Lemma

3.1 to iJ , or rather its maximal connected subgroup iJo . We find for each (i,j) in Q
an endomorphism hj and a non-zero integer Sij such that HO is the maximal connected
subgroup of the set defined by

(4.11)
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Further, we can take

t(lij) ~ ß2 (iI) ~ ß2(H) ~ c7Mr (m) (4.12)

by (4.2), (4.8) and the definition of T( m) .

On the other hand recall that each .Hi is contained in the subgroup ri ofAx A2p •
n n

So H = L: Ei(Hd is contained in r = L: Ei(fi). From (4.6) we see that f is defined in
i=l i=l

A X B 2pn by f( ao) = L: Sijaij where the sum is over Q. Therefore i! , and so also i!0 ,
are contained in the set f' defined by

(4.13)

where now the sum is over all (i, j) in Q.
Finally substituting (4.11) into (4.13) we obtain f as a rational linear combination of the

lij satisfying (4.12). Thus we find that in case (a) of Lemma 3.2 the f in class (ßm-1)
of the Proposition decomposes into endomorphisms of the class (am).

As noted above, this suffices to prove the Proposition by induction on m.

5. Proof of Theorem

Let A and r be as in the Theorem. Again the positive constants cl, C2, . .. will depend
only on n. By Lemma 5.3 of [MW3], there is a principally polarized abelian variety Al ,
a positive definite r1 in NS(AI) ofdegree 1, and an isogeny 9 from A to Al of degree
V8 with g*r1 = r. Further Al is defined over a number field of degree d1 ~ c1d8n. From
the decomposition of EndA1 = EndcA1 over C in the Proposition for m = n, we shall
deduce an analögous decomposition of EndkA over k.

We use the group homomorphism Al from EndcA to EndcA1 given by A1(f) = gfg,
where 9 denotes the isogeny from Al to A such that gg, gg are multiplication by V8.
We also have a map A in the opposite direction given by A(f1) = 9f1g .

Pick any f in EndkA. Then f1 = Al (f) is in EndcAl, so by the Proposition with
m = n it can be written as a rational linear combination of elements 11 of EndcA1 with

t1 (11) ~ C2 (max {d1, h(Al)})r ,

where T = T(n) and t1 corresponds to r1 . Applying A, we see that A(f1) = 8f can

be written as a rational linear combination ofelements l' = A(11) of EndcA. Also it

is not difficult using (2.1) to check that t (1') = 8t1 (11) . Thus fitself has a rational

decomposition into elements l' of.EndcA with

t (1') ~ C2 8(max {d1, h(Al)})r .

1
h(AI) ~ h(A) + 4" log 8
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by equation (8.2) of [MW3]. So we end ·up with

t (1') ~ C3 8(max {d8n
, h(A)})T . (5.1)

But even though 1 is in EndkA, the !' .are not necessarily in EndkA. To get around this
we take conjugates. By Lemma 3.1 of [MW3] all elements of EndcA are in fact defined
over some extension ko of k of relative degree e ~ C4. For each complex embedding
a of ko fixing k, apply a to the above decomposition of I, and average over a. We
obtain a new decomposition of 1 into elements! of EndcA, each of which is the sum
of e conjugates of a fixed !' , and therefore in EndkA. Since t is Galois-invariant, the
Cauchy-Schwarz inequality gives

t (!) ~ e
2t (1') .

We may now apply Lemma 2.1 to EndkA, and (5.1), (5.2) yield

Vr(EndkAr~ cs81(max{d8n ,h(A)}/T,

where Z is the rank of EndkA. This implies the Theorem, with exponent

I', = Zr

arid

(5.2)

(5.3)

As for the exponent, one verifies easily that r(n) = 4n(2n - 1)I«2nK + 1)n-1 . Since
Z ~ 4n2 , we have

I', ~ 16n3(2n - 1)I«2nI( + 1)n-1 .

BY section 4 we can also take

I( = (N -1)4N N1, N = n(2n + 1),

and so the upper bound for I', is enormous, of order n 4n
3

for n large.

Perhaps one might expect the Theorem to hold with I', = 0, but this probably lies
much deeper; for example, the result for n = 1 and I', < 2 would already imply the
Baker-Stark Theorem. For if 0 is the ring of integers of a complex quadratic field k of
discriminant - D < 0 and class number 1, the elliptic curve E = C/0 is defined overQ
and Vr(EndkE) = D for the unique principal polarization; whereas h(E) has order at most
VJ5 by the Fourier expansion of the elliptic modular function. Also, as already pointed out
in section 6 of [MW4], the crucial estimate (4.1) is false for 1',0 = 0, so there seems very
little chance of obtaining I', = 0 by the present methods.

In preparation for the next section, we record the following additional consequence of
OUf arguments.

Lemma 5.1 The additive group EndkA has basis elements 11, ... ,11 satisfying

Proof: We simply apply the other part of Lemma 2.1 to find these basis elements, again
using the inequalities (5.1), (5.2).
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6. Proof of Corollary

Let A', A"· be abelian varieties, possibly of different dimensions, defined over a number
field k. We start by indicating a general method of finding all elements of Homk (A' , A") ,

and we then carry out the estimates needed to establish the Corollary for isogenies.

Write A = A' x A"; then the elements 1 of EndkA may be represented as matrices

( I' g") for· I' in End A' g" in Horn (A' A") g' in Horn (A" A') and I" ing' I" k , k " k"
EndkA" . If we have polarizations of degrees E/, 8" on A', A" respectively, then we have
a natural polarization of degree 8 = 8'8" on A, and we can accordingly use Lemma 5.1

. . " "to find basIs elements 11, ... , Iz of EndkA. Clearly the cOITeSpOndIng gl"'" gl generate
Homk (A', A") .

So in this sense we can find all elements of Homk (A' , A"), but it is difficult to be more
precise until we provide a suitable way of measuring such elements. One general way, though
not very canonical, is to use rational representations as in section 2.For isogenies, however,
there is no problem, and we proceed to· illustrate this by proving the Corollary.

Now A has dimension n = 2m, and Lemma 5.1 gives

(6.1)

Here d is the degree of k, and t is the Rosati form corresponding to the product polarization
on A. For this section Cl, C2, ... will denote positive constants depending only on m.

To recover estimates for the g" we use the matrix identity

(1' 0) (I' ")(0 0) (0 0) (I' g" ) (1' 0) = (0 g")o 0 g' ~/1 0 1/1 + 0 1/1 g' f/l 0 0 g' 0 (6.2)

where 1', 1" are the identity endomorphisms of A', A" respectively. With the obvious
abbreviations L', L" , we define a corresponding group homomorphism 11 from EndkA to
EndkA by

(I) 'I "+ "1'11 =L L L L.

It is well-known (see for example [Mu] .p. 174) that the degree function is a homo

geneous polynomial of degree 2n on EndkA. In particular there exists a polynomial
P = P(Xl, ... , XI), homogeneous of degree 2n, such that whenever ml, ... , ml are inte
gers, the value P(m1, ... ,mi) is the degree of the endomorphism

j = m11l(/1) + ... + mlll(lz) = ll(m1/1 + ... + milz)

(interpreted as 0 if j is not an isogeny).

We claim that P is not identically zero. For by hypothesis there exists an isogeny g"
from A' to A" over k, and so there also exists an isogeny g' from A" to A' over k.

Putting f' = 0 = f" in (6.2), we see that i = (~, g~') satisfies i = fl. (i) ; and since i
is also an isogeny we see that P takes a non-zero value. So indeed P is not identically zero.

A standard argument using the Lagrange Interpolation Formula now shows that we can
find integers ml, ... , ml with

(6.3)
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such that P = P(mI, ... , mz) =I- O. Thus for f = mIfI +... +mIlz we see that p,(f) is an

isogeny of degree p. 1t follows that p.U) = (~, g~') for isogenies g", g' both of degrees

at most p. From Lemma 2.3 we have p ::; (2n)-n(t(p,(f)))n. Also t(L/) = t(L") = 2m
using (2.2), and Lemma 2.2 shows that t(L/fL"), t(L"fL/) are both at most 4m2t(f). So
by Cauchy-Schwarz we get t(p,(f)) ::; 16m2t(f). A second application of Cauchy-Schwarz
using (6.1) and (6.3) gives t(f) ::; 4n2 Z2T, and combining all these we end up with

(6.4)

However, h(A) = h(A') + h(A") , and so (6.4) depends on the forbidden term h(A").
We eliminate this exactly as in section 6 of [MW4]. Let Po be the smallest degree of any
isogeny over k from A' to A" . By (8.2) of [MW3] we have

h(A") ::::: h(A') + ~ log PO .

Also Po ::; p, so (6.4) now gives

PO ::::: C20n ( max { don, 2h(A') + ~ log PO } ) nT

From this we obtain" the estimate of the Corollary, with the. exponent

A = nT

and

This completes the proof.

Finally, we note that in the situation of the Corollary, a set of generators of HOffik(A/, A")

can be found, at least up to finite index, simply by composing the isogeny just constructed
with basis elements of EndkA' chosen according to Lemma 5.1. This provides an alternative
to the procedure outlined at the beginning of the present section.
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