
Combinatorics of trivalent ribbon graphs with
two faces.

I.V.Artamkin

In this article we discuss combinatorics of trivalent ribbon graphs (dessigne
d’enfafnts) with two faces. All the necessary definitions may be found in [2].

Consider the set Dessg,2 of trivalent genus g ribbon graphs D having the
set of edges V , the set of vertices E, and the set of faces F = {X, Y }. Such
graphs have 4g vertices and 6g edges. Consider also the set F1,2 of (1, 2)-
flags, i.e. the set of pairs (e, C), where e ∈ E, C ∈ F , and the face C is
incident to the edge e.

There are natural projections F1,2 onto E and F :

π1 : F1,2 → E π2 : F1,2 → F (1)

The set of edges E of a graph may be split into two parts

E1 = {e ∈ E, such that |π−1
1 (e)| = 1} (2)

— the set of edges incident to only one face, and

E2 = {e ∈ E, such that |π−1
1 (e)| = 2} (3)

— the set of edges separating one face from another. We shall call the edges
from E1 as internal edges, and the edges from E2 — separating edges (See
fig. 2). The set of internal edges in its turn splits into two parts

EX = {e ∈ E1, π−1
1 (e) = X} and EY = {e ∈ E1, π−1

1 (e) = Y },
(4)

denote
k = |E2|, lX = |EX |, lY = |EY |, (5)

so that k + lX + lY = 6g. Denote

l = min(lX , lY ), q = |lX − lY |, 2M = 6g − 2l, (6)
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then evidently
q = 2M − k. (7)

Let us describe the set Ug of pairs of integers (l, k) corresponding to ribbon
graphs from Dessg,2.

Proposition 1 The set Ug of ribbon graphs is defined on the plane (l, k),
k ≥ 0, l ≥ 0 by the following inequalities:

(1) k ≤ 4g;

(2) k ≤ 6g − 2l;

(3) k ≥ κ(l);

where κ(l) is an integer function, periodic for l > 0 with period equal to 6,
defined by the values:

κ(0) = 1; κ(1) = 4; κ(l) = 7 − l, l = 2, 3, 4, 5; κ(6) = 5. (8)

Thus the domain corresponding to the ribbon graphs looks like a trapez-
ium bounded from top by the line k = 4g, from left and right sides by the
lines l = 0 and k = 6g − 2l, and from the bottom by the polygonal line
k = κ(l) (See fig. 1).

Let us proof the proposition 1. It is clear that in each vertex meets even
number of separating edges, namely zero or two. Therefore the separating
edges form a cycle (or several cycles). Hence the number of internal edges
can not exceed the number of vertices which equals 4g. This proves the
necessity of the first inequality from the proposition 1. Necessity of the
second inequality is also evident for in total there are k separating edges and
at most 2l internal edges.

Next let us describe ribbon graphs corresponding to the lower border of
the domain Ug i.e. to the points of the graph of the function κ. These ribbon
graphs will be constructed from ribbon graphs with half-edges. Half-edge is
an edge having one end incident to a vertex of the graph while the other
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k = 6g − 2l (for g = 5)
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Figure 1: Domains Ug for g = 2, 3, 4, 5. On the picture we mark all the
integral points of the domain U4.

is free for further clutching together with another free end of some other
half-edge (of the same or another ribbon graph with half-edges).1.

1For completeness let us give a formal definition. A ribbon graph with half-edges Γ is
defined by the following data (V,

−→
E , i,

−→
E−, s, σ), where:

(1) V — the set of vertices of Γ;

(2)
−→
E — the set of oriented edges of Γ;

(3) i :
−→
E → −→

E — the orientation change involution (which is supposed to be fixed-point
free);

(4)
−→
E− — the set of outgoing oriented edges of Γ; it is supposed that

−→
E =

−→
E−∪i(

−→
E−),

(i. e. each edge is outgoing for at least one of its two possible orientations);
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First let us consider two one-face trivalent ribbon graphs without half-
edges D1 and D2 having respectively genus hi > 0, 4hi − 2 vertices and
6hi − 3 edges, i = 1, 2. Let us also consider two-valent ribbon graph Bm

with m vertices and m edges, (which is simply a circle with m vertices on it).
Now let us transform all the vertices of Bm to trivalent by adding to each
vertex a half-edge, so that m1 half-edge would be directed to one face of Bm

and m2 = m − m1 half-edge would be directed to the other face of Bm. Let
us denote the constructed ribbon graph with half-edges by Bm1,m2 . We shall
perform the following operations on ribbon graphs D1 and D2:

(1) p1(Di) — choose an arbitrary edge of Di and insert a three-valent vertex
with one half-edge into the middle of this edge;

(2) p2(Di) — choose an arbitrary edge of Di and cut it into two half-edges;

(3) p3(Di) — remove an arbitrary vertex of Di so that the three incident
to this vertex edges become half-edges.

(4) p4(Di) — choose an arbitrary edge of Di and remove it so that the four
adjacent edges become half-edges.

We shall clutch the half-edges of the ribbon graph D1 with the half edges of
the ribbon graph Bm1,m2 directed to one of its faces and the half-edges of the
ribbon graph D1 with the half edges of the ribbon graph Bm1,m2 directed to
its other face; the result we shall denote by the sign ”+”.

Now we can describe the ribbon graphs from the lower border of the
domain Ug. The points (l, κ(l)) corresponding to the following ribbon graphs
( 0 < l ≤ lmax, h1 =

[
l
6

]
+ 1):

(1) p1(p1(D1))+(B1,1�B1,1)+p1(p1(D2)) corresponding to the value l = 6h1+1,
κ(l) = 4 (h2 = g − h1 − 1; for l = 1 instead of adding D1 we simply
clutch together the pair of half-edges of the two ribbon graphs B1,1);

(2) p4(D1)+B4,1 + p1(D2) corresponding to the value l = 6h1 −4, κ(l) = 5
(h2 = g − h1);

(5) s :
−→
E− → V — a surjective mapping attaching to every outgoing edge its source;

(6) σ — a cyclic order on the set s−1(v) of oriented edges directed from each vertex v.
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(3) p3(D1)+B3,1 + p1(D2) corresponding to the value l = 6h1 −3, κ(l) = 4
(h2 = g − h1);

(4) p2(D1)+B2,1 + p1(D2) corresponding to the value l = 6h1 −2, κ(l) = 3
(h2 = g − h1);

(5) p1(D1)+B1,1 + p1(D2) corresponding to the value l = 6h1 −1, κ(l) = 2
(h2 = g − h1);

(6) p2(p1(D1))+(B2,1�B1,1)+p1(p1(D2)) corresponding to the value l = 6h1,
κ(l) = 5 (h2 = g − h1 − 1).

The value l = 0 is special: for κ(0) = 1 we take B0,1 + p1(D2) with h2 = g.
Necessity of the condition k ≥ κ(l) is proved by ordinary enumeration

of possibilities. Cutting the corresponding Riemann surface along all the
separating edges provides two Riemann surfaces of genus h1 > 0 and h2 > 0
respectively each having s > 0 holes, so that h1 + h2 + s − 1 = g. But since
k ≥ 2s and κ(l) ≤ 5 it is sufficient to study the cases s = 1 and s = 2. It is
easy to see that all such cases are contained in our list (1)-(6).

It is left to verify that all the other points of the domain Ug also correspond
to some ribbon graphs. We shall construct these ribbon graphs applying flips
to the already constructed ribbon graphs. Recall that flip at the edge e of the
trivalent ribbon graph D is the following operation. We contract the edge e
and then insert a new edge e′ to divide the obtained four-valent vertex into
two tree-valent in a different way.

Let us call an internal edge of our ribbon graph m-internal, m = 0, 1, 2,
if m of its ends are in the border of the opposite face. (See fig. 2)

It is not hard to see that after a flip at a 1-internal edge e incident to the
face X the edge e′ becomes separating, therefore such a flip increases k by 1
and correspondingly decreases lX . To the contrary, after a flip at a 2-internal
edge e of the face X the new edge e′ becomes the 2-internal edge e of the
second face Y . Therefore such flip does not change k but increases lY by 1
and correspondingly decreases lX .

Pick some ribbon graph D corresponding to the point (l, κ(l)), assume
that lX = l. Performing consequently flips at 1-internal edges of the face
Y we shall each time obtain ribbon graphs with the same value of l and
consequently increasing by one value of k, at least until lX < lY . If at certain
step we achieve lX = lY the that would mean that k + 2l = 6g and therefore
we have reached the right slanting border of the domain Ug. If after a certain
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Figure 2: Separating edge and internal edges.

flip we shall still have lX < lY but no 1-internal edges of the face Y left this
would mean that all the internal edges of the face Y are 2-internal. (It is
not hard to see that if a face has 0-internal edges then it also has 1-internal
edges.) In the latter case we shall apply flips at 2-internal edges of the face
Y which as we have seen do not change the value of k. After lY − l such
flips the two faces would change their roles: now we would have lX > lY = l
and all the internal edges of the face Y would be 2-internal. In case we still
have some 1-internal edges of the face X we shall apply the discussed above
procedure of increasing k by flips at 1-internal edges of the face X until all
the internal edges of the face X would also become 2-internal. Thus we would
obtain a ribbon graph all whose internal edges are 2-internal, which means
that k = 4g and therefore the corresponding point is located on the upper
border of Ug. Proposition 1 is proved.

Using the described stratification of the set Dessg,2 it is not hard to see
that for ribbon graphs with two faces there exist many identities analogous
to the Kontsevich identity ([1]). To recall the Kontsevich identity let us fix
the followung notations. For a genus g ribbon graph D ∈ Dessg,γ we denote
by V the set of its vertices, by E the set of its edges and by F the set of its
faces, γ = |F |. Consider the rational function in variables λ1, λ2, . . . λγ

K(D) = S

(∏
e∈E

1

λi + λj

)
, (9)
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where the variables λi and λj correspond to the faces incident to the edge
e (i = j is possible), and S means symmetrization in variables λ1, λ2, . . . λγ .
Then the Kontsevich identity claims that the function

Kg,γ =
∑

D∈Dessg,γ

C(D) · K(D), (10)

(where C(D) = 1
|Aut D|) is a linear combination of monomials in 1

λi
i. e.

Kg,γ =
∑

An1,,nγ

1

λn1
1 . . . λ

nγ
γ

. (11)

In the discussed case γ = 2 it is not hard to verify that the same statement
holds for many choices of positive rational numbers C(D). More precisely,
such collections of C(D) is a convex rational cone.

Proposition 2 For trivalent ribbon graphs with two faces the set of collec-
tions of the coefficients C(D) satisfying (11) is a convex rational cone of
dimension at least g(4g − 7).

Let us use the new variables x = 1
λ1

and y = 1
λ2

, corresponding to the
faces X and Y . (9) In these notations the formula (9) looks as follows:

K(D) =
1

26g−k
· (xy)l · (xy)k

(x + y)k
· (x2M−k + y2M−k) =

1

26g−k
· Rl,k(x, y), (12)

where the numbers k, l, M are defined in (5) and (6), and

Rl,k(x, y) =
(xy)k+l

(x + y)k
· (x2M−k + y2M−k). (13)

It is not hard to verify the following properties of the functions Rl,k.

Proposition 3 (1) Rl,k + Rl+1,k + Rl,k−1 = Rl+1,k−2

(2) Rl,k = R6g−k−l,k

(3) Rl,k is polynomial for k ≤ 1

Iterating the equality (1) for successive pairs of values of k we obtain analo-
gous identities for arbitrary 2m successive values of k.
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Corollary 1

Rl+1,2m +
k=2m∑
k=1

Rl,k = Rl+1,0 (14)

To prove proposition 2 let us denote the identity (1) of the proposition 3
by Ilk and define the support of the identity Ilk by

supp Ilk = {(l, k), (l + 1, k), (l, k − 1), (l + 1, k − 2)}.
Thus any identity Ilk such that supp Ilk ⊂ Ug defines a linear variation

of the possible coefficients C(D). Next let us prove that any finite collection
of the identities Ilk are linearly independent. Suppose that we have some
non-trivial linear combination of such identities that is equal to zero. Let us
mark all the points (l, k) of the supports all the involved identities. Choose
any left bottom marked point (i. e. such a marked point (l, k) that any other
point (l′, k′) with l′ ≤ l and k′ ≤ k is not marked). Then such a point can
be involved in only one identity Ilk and therefore this identity ought to have
zero coefficient. Contradiction. The estimate in the proposition 2 is simply
the size of such a rectangle that it is contained in Ug and supp Ilk ⊂ Ug for
any point (l, k) of this rectangle.

For completeness let us give an independent proof of existence of the
discussed coefficients. Let us prove that there exist such natural numbers
Cl,k that the function ∑

(l,k)∈Ug

Cl,kRl,k (15)

is a polynomial.
First let us note that any function Rl,k, 0 ≤ l ≤ lmax, 1 ≤ k < κ(l),

can be linearly expressed by Rl,k for (l, k) ∈ Ug with non-negative integer
coefficients. The proof it by induction. This is of course true for l = 0. To
pass from l to l+1 we express the functions Rl+1,k one after another using the
formula (1) of the proposition 3 starting from k = κ(l) − 1 till k = 1. Note
that in the last row (l = lmax) to get Rlmax,κ(lmax)−1 we shall need the function
Rlmax,κ(lmax)+1 which does not correspond to a point of Ug but in this case the
identity (2) of the proposition 3 provides Rlmax,κ(lmax)+1 = Rlmax−1,κ(lmax)+1,
where (lmax − 1, κ(lmax) + 1) ∈ Ug.

Therefore it is sufficient to prove our statement for the domain Ūg, cir-
cumscribed by the lines k = 4g on the top, k = 1 at the bottom, l = 0 on
the left and l = lmax and k = 6g − 2l on the right.
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Now it is left for each l ≤ lmax to apply the formula (14) to the column
(l, k), k = 1, . . . , min(4g, 6g−2l). The only problem is that for l ≥ g (i. e. on
the slanting side of Ūg) the point (l+1, 6g−2l) is not in the domain Ūg, but for
this case the identity (2) of the proposition 3 provides Rl+1,6g−2l = Rl−1,6g−2l,
where (l − 1, 6g − 2l) ∈ Ūg.

Note that it is possible to trace the coefficients Cl,k for k > 6 (which
where not used to express the functions Rl,k corresponding to points which
are lower than the graph of the function κ): Cg−1,4g = 3 (for g > 2); Cl,4g = 2
for 1 < l < g − 1, l = g and Cl−1,6g−2l = 2 for g < l < lmax − 3; all the other
Cl,k = 1 (k > 6).
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