Max-Planck-Institut für Mathematik Bonn

Poisson-commutative subalgebras of $S(\mathfrak{g})$ associated with involutions

by

Dmitri I. Panyushev
Oksana S. Yakimova

Poisson-commutative subalgebras of $S(\mathfrak{g})$ associated with involutions

Dmitri I. Panyushev
Oksana S. Yakimova

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Institute for Information Transmission Problems of the R.A.S.
Bolshoi Karetnyi per. 19
Moscow 127051
Russia
Universität zu Köln
Mathematisches Institut
Weyertal 86-90
50931 Köln
Germany

POISSON-COMMUTATIVE SUBALGEBRAS OF $\mathcal{S}(\mathfrak{g})$ ASSOCIATED WITH INVOLUTIONS

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

Abstract

The symmetric algebra $\mathcal{S}(\mathfrak{g})$ of a reductive Lie algebra \mathfrak{g} is equipped with the standard Poisson structure, i.e., the Lie-Poisson bracket. Poisson-commutative subalgebras of $\mathcal{S}(\mathfrak{g})$ attract a great deal of attention, because of their relationship to integrable systems and, more recently, to geometric representation theory. The transcendence degree of a Poisson-commutative subalgebra $\mathcal{C} \subset \mathcal{S}(\mathfrak{g})$ is bounded by the "magic number" $\boldsymbol{b}(\mathfrak{g})$ of \mathfrak{g}. The "argument shift method" of Mishchenko-Fomenko was basically the only known source of \mathcal{C} with $\operatorname{tr} . \operatorname{deg} \mathcal{C}=\boldsymbol{b}(\mathfrak{g})$. We introduce an essentially different construction related to symmetric decompositions $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$. Poisson-commutative subalgebras $\mathcal{Z}, \tilde{\mathcal{Z}} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ of the maximal possible transcendence degree are presented. If the \mathbb{Z}_{2}-contraction $\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}$ has a polynomial ring of symmetric invariants, then $\tilde{\mathcal{Z}}$ is a polynomial maximal Poissoncommutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$, and its free generators are explicitly described.

Contents

Introduction 2

1. Preliminaries on the coadjoint representation 4
1.1. The Poisson tensor 5
1.2. Contractions and compatibility 6
2. Constructing a Poisson-commutative subalgebra z 6
3. The algebra z is polynomial whenever σ is good 10
4. The extended algebra \tilde{z} is polynomial and maximal Poisson-commutative 14
5. Fancy identities for Poisson tensors 22
6. Further developments and possible applications 26
6.1. Quantum perspectives 26
6.2. Classical applications 27
Appendix A. On pencils of skew-symmetric forms 30
References 32
[^0]Key words and phrases. Poisson-commutative subalgebras, coadjoint representation, symmetric pairs.
The research of the first author is partially supported by the R.F.B.R. grant № 16-01-00818. The second author is supported by the DFG (Heisenberg-Stipendium).

Introduction

The ground field \mathbb{k} is algebraically closed and of characteristic 0 . A commutative associative \mathbb{k}-algebra \mathcal{A} is a Poisson algebra if there is an additional anticommutative bilinear operation $\{\}:, \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ called a Poisson bracket such that

$$
\begin{array}{cl}
\{a, b c\}=\{a, b\} c+b\{a, c\}, & \text { (the Leibniz rule) } \\
\{a,\{b, c\}\}+\{b,\{c, a\}\}+\{c,\{a, b\}\}=0 & \text { (the Jacobi identity) }
\end{array}
$$

for all $a, b, c \in \mathcal{A}$. A subalgebra $\mathcal{C} \subset \mathcal{A}$ is Poisson-commutative if $\{\mathcal{C}, \mathcal{C}\}=0$. The Poisson centre $\mathcal{Z A}$ of \mathcal{A} is defined by the condition $\mathcal{Z A}=\{z \in \mathcal{A} \mid\{z, a\}=0 \forall a \in \mathcal{A}\}$.

Usually, Poisson algebras occur as algebras of functions on varieties (manifolds), and we are only interested in the case, where such a variety is an affine n-space \mathbb{A}^{n} and hence $\mathcal{A}=\mathbb{k}\left[\mathbb{A}^{n}\right]$ is a polynomial ring in n variables. Two Poisson brackets on \mathbb{A}^{n} are said to be compatible, if all their linear combinations are again Poisson brackets.

There is a general method for constructing a "large" Poisson-commutative subalgebra of \mathcal{A} associated with a pair of compatible brackets, see e.g. [BB02]. Let $\{,\}^{\prime}$ and $\{,\}^{\prime \prime}$ be compatible Poisson brackets on \mathbb{A}^{n}. This yields a two parameter family of Poisson brackets $a\{,\}^{\prime}+b\{,\}^{\prime \prime}, a, b \in \mathbb{k}$. As we are only interested in the corresponding Poisson centres, it is convenient to organise this, up to scaling, in a 1-parameter family $\{,\}_{t}=$ $\{,\}^{\prime}+t\{,\}^{\prime \prime}, t \in \mathbb{P}=\mathbb{k} \cup\{\infty\}$, where $t=\infty$ corresponds to the bracket $\{,\}^{\prime \prime}$. The central rank rkc $\{$,$\} of a Poisson bracket \{$,$\} is defined as the codimension of a symplectic leaf$ in general position, see Definition 1. For almost all $t \in \mathbb{P}, \operatorname{rkc}\{,\}_{t}$ has one and the same (minimal) value, and we set $\mathbb{P}_{\text {reg }}=\left\{t \in \mathbb{P} \mid \operatorname{rkc}\{,\}_{t}\right.$ is minimal $\}, \mathbb{P}_{\text {sing }}=\mathbb{P} \backslash \mathbb{P}_{\text {reg }}$. Let \mathcal{Z}_{t} denote the centre of $\left(\mathcal{A},\{,\}_{t}\right)$. The key fact is that the algebra Z generated by $\left\{\mathcal{Z}_{t} \mid\right.$ $\left.t \in \mathbb{P}_{\text {reg }}\right\}$ is Poisson-commutative w.r.t. to any bracket in the family. In many cases, this construction provides a Poisson-commutative subalgebra of \mathcal{A} of maximal transcendence degree. We demonstrate this with a well-known important example.

Example 0.1. For any finite-dimensional Lie algebra \mathfrak{q}, the dual space \mathfrak{q}^{*} has a Poisson structure. Here $\mathbb{k}\left[\mathfrak{q}^{*}\right] \cong \mathcal{S}(\mathfrak{q})$ and the Lie-Poisson bracket $\{,\}_{\mathrm{LP}}$ is defined by $\{\xi, \eta\}_{\mathrm{LP}}=$ $[\xi, \eta]$ for $\xi, \eta \in \mathfrak{q}$. The Poisson centre of $\left(\mathcal{S}(\mathfrak{q}),\{,\}_{\llcorner P}\right)$ coincides with the ring $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ of symmetric \mathfrak{q}-invariants. The celebrated "argument shift method", which goes back to Mishchenko-Fomenko [MF78], provides large Poisson-commutative subalgebras of $\mathcal{S}(\mathfrak{q})$ starting from the Poisson centre $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Given $\gamma \in \mathfrak{q}^{*}$, the γ-shift of argument produces the Mishchenko-Fomenko subalgebra \mathcal{A}_{γ}. Namely, for $F \in \mathcal{S}(\mathfrak{q})=\mathbb{k}\left[\mathfrak{q}^{*}\right]$, let $\partial_{\gamma} F$ be the directional derivative of F with respect to γ, i.e.,

$$
\partial_{\gamma} F(x)=\left.\frac{d}{d t} F(x+t \gamma)\right|_{t=0}
$$

Then \mathcal{A}_{γ} is generated by all $\partial_{\gamma}^{k} F$ with $k \geqslant 0$ for all $F \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. The core of this method is that for any $\gamma \in \mathfrak{q}^{*}$ there is the Poisson bracket $\{,\}_{\gamma}$ on \mathfrak{q}^{*} such that $\{\xi, \eta\}_{\gamma}=\gamma([\xi, \eta])$ for $\xi, \eta \in \mathfrak{q}$, and that this new bracket is compatible with $\{,\}_{\mathrm{LP}}$. One can prove that rkc $\{,\}_{t}$ takes one and the same value for all $\{,\}_{t}=\{,\}_{\mathrm{LP}}+t\{,\}_{\gamma}$ with $t \in \mathbb{k}$, i.e., $\mathbb{k} \subset \mathbb{P}_{\text {reg }}$, and \mathcal{A}_{γ} is generated by all the corresponding centres $\mathcal{Z}_{t}, t \in \mathbb{k}$. (Actually, $\mathbb{P}_{\text {reg }}=\mathbb{P}$ if and only if γ is regular in \mathfrak{q}^{*}.) The importance of these subalgebras and their quantum counterparts is explained e.g. in [FFR, Vi91]. If \mathfrak{q} is reductive and γ is regular, then \mathcal{A}_{γ} is a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{q})$ [PY08].

Our main object is a certain 1-parameter family of Poisson brackets on the dual of a semisimple Lie algebra \mathfrak{g}. Let σ be an involution of \mathfrak{g} and $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ the corresponding \mathbb{Z}_{2}-grading (or symmetric decomposition). We also say that $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is a symmetric pair. Without loss of generality, we may assume that the pair (\mathfrak{g}, σ) is indecomposable, i.e., \mathfrak{g} has no proper σ-stable ideals. Then either \mathfrak{g} is simple or $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{h}$, where \mathfrak{h} is simple and σ is a permutation. Our family of Poisson brackets is related to the decomposition:

$$
\{,\}_{\mathrm{LP}}=\{,\}_{0,0}+\{,\}_{0,1}+\{,\}_{1,1},
$$

where $\{,\}_{i, j}=[,]_{i, j}: \mathfrak{g}_{i} \times \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{i+j}$ for $i, j \in \mathbb{Z}_{2} \simeq\{0,1\}$, see Section 2 for details. Using this, we consider the 1-parameter family of Poisson brackets on \mathfrak{g}^{*} :

$$
\{,\}_{t}=\{,\}_{0,0}+\{,\}_{0,1}+t\{,\}_{1,1},
$$

where $t \in \mathbb{P}$ and $\{,\}_{\infty}=\{,\}_{1,1}$. Each element of this family is a Poisson bracket and here $\mathbb{P}_{\text {reg }}=\mathbb{k}$ unless $\mathfrak{g}=\mathfrak{s l}_{2}$. For $\mathfrak{s l}_{2}$, one has $\mathbb{P}_{\text {reg }}=\mathbb{P}$, and this case has to be considered separately. Nevertheless, the final result can be stated uniformly, for all simple \mathfrak{g}, see below.

Let $\mathcal{Z}_{t}(t \in \mathbb{P})$ denote the centre of $\left(\mathcal{S}(\mathfrak{g}),\{,\}_{t}\right)$ and \mathcal{Z} the subalgebra of $\mathcal{S}(\mathfrak{g})$ generated by all \mathcal{Z}_{t} with $t \in \mathbb{P}_{\text {reg. }}$. Then $\{\mathcal{Z}, \mathcal{Z}\}_{\mathrm{LP}}=0$. Moreover, $\left\{\mathfrak{g}_{0}, \mathcal{Z}\right\}_{\mathrm{LP}}=0$, i.e., \mathcal{Z} is a Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$. By [MY, Prop. 1.1], we have

$$
\operatorname{tr} . \operatorname{deg} \mathcal{C} \leqslant \frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right)
$$

for any Poisson-commutative subalgebra $\mathcal{C} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$. We prove that this upper bound is attained for Z, see Theorem 2.7.

The computation of $\operatorname{tr} . \operatorname{deg} Z$ is completely general and is valid for any σ. However, this is not the case with more subtle properties. Our goal is to realise whether Z is polynomial and is maximal Poisson commutative in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$. For $t=0$ in Eq. ($0 \cdot 1$), one obtains the Lie-Poisson bracket of the Lie algebra $\mathfrak{g}_{(0)}:=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab. }}$. The symmetric invariants of $\mathfrak{g}_{(0)}$ have intensively been studied in [P07', Y14, Y17]. The output is that there are four "bad" involutions of a simple \mathfrak{g} in which $\mathcal{S}\left(\mathfrak{g}_{(0)}\right)^{\mathfrak{g}_{(0)}}$ is not polynomial. These cases are related to \mathfrak{g} of type \mathcal{E}_{n}. In all other cases, $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ has a good generating system (= g.g.s.) for ($\mathfrak{g}, \mathfrak{g}_{0}$), say
$H_{1}, \ldots, H_{l}(l=\mathrm{rk} \mathfrak{g})$, and a set of free generators of $\mathcal{S}\left(\mathfrak{g}_{(0)}\right)^{\mathfrak{g}_{(0)}}$ is then obtained from the H_{i} 's via a simple procedure, see Section 3 for details.

In the rest of the introduction, we assume that σ is "good" and $\mathfrak{g} \neq \mathfrak{s l}_{2}$. In particular, there is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$. This is of vital importance for us, because we then prove that Z is freely generated by the nonzero bi-homogeneous components of all H_{i} 's and is therefore polynomial, see Theorems 3.3 and 3.6. Let $r_{0}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ be the restriction homomorphism related to the embedding $\mathfrak{g}_{0}^{*} \hookrightarrow \mathfrak{g}^{*}=\mathfrak{g}_{0}^{*} \oplus \mathfrak{g}_{1}^{*}$. Furthermore,

- Z is a maximal Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ if and only if r_{0} is onto, see Theorem 4.5.
- In general, let \tilde{z} be the subalgebra of $\mathcal{S}(\mathfrak{g})$ generated by \mathcal{Z} and $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. (Hence $\tilde{z}=\mathcal{Z}$ if and only if r_{0} is onto.) We prove that \tilde{z} is still polynomial and that it is a maximal Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$, see Theorem 4.12. This statement also embraces the $\mathfrak{s l}_{2}$-case, because then $\mathcal{Z}=\tilde{\mathcal{Z}}$ is polynomial, etc.

In Section 5, we present a Poisson interpretation of the Kostant regularity criterion for \mathfrak{g} [K63, Theorem 9] and give new related formulas arising from \mathbb{Z}_{2}-gradings and compatible Poisson structures. As a by-product, we describe \mathcal{Z}_{∞} for all σ.

Section 6.1 contains a discussion of possible quantisations of z and \tilde{z}, i.e., their lifting to the enveloping algebra $\mathcal{U}(\mathfrak{g})$. We conjecture that quantum analogues of these algebras may have applications in representation theory, and more explicitly, in the branching problem $\mathfrak{g} \downarrow \mathfrak{g}_{0}$. In Section 6.2, it is explained how to construct a polynomial maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})$ related to a chain of symmetric subalgebras

$$
\mathfrak{g}=\mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \ldots \supset \mathfrak{g}^{(m)}
$$

with $\left[\mathfrak{g}^{(m)}, \mathfrak{g}^{(m)}\right]=0$.
In the Appendix, we gather auxiliary results on the kernels of a 1-parameter family of skew-symmetric bilinear forms on a vector space.

We refer to [DZ05] for generalities on Poisson varieties, Poisson tensors, symplectic leaves, etc.

1. Preliminaries on the coadjoint representation

Let Q be a connected affine algebraic group with Lie algebra \mathfrak{q}. The symmetric algebra $\mathcal{S}(\mathfrak{q})$ over \mathbb{k} is identified with the graded algebra of polynomial functions on \mathfrak{q}^{*}, and we also write $\mathbb{k}\left[\mathfrak{q}^{*}\right]$ for it.

Let \mathfrak{q}^{ξ} denote the stabiliser in \mathfrak{q} of $\xi \in \mathfrak{q}^{*}$. The index of \mathfrak{q}, ind \mathfrak{q}, is the minimal codimension of Q-orbits in \mathfrak{q}^{*}. Equivalently, ind $\mathfrak{q}=\min _{\xi \in \mathfrak{q}^{*}} \operatorname{dim} \mathfrak{q}^{\xi}$. By Rosenlicht's theorem [VP89, 2.3], one also has ind $\mathfrak{q}=\operatorname{tr} . \operatorname{deg} \mathbb{k}\left(\mathfrak{q}^{*}\right)^{Q}$. The "magic number" associated with \mathfrak{q} is $\boldsymbol{b}(\mathfrak{q})=(\operatorname{dim} \mathfrak{q}+\operatorname{ind} \mathfrak{q}) / 2$. Since the coadjoint orbits are even-dimensional, the magic
number is an integer. If \mathfrak{q} is reductive, then ind $\mathfrak{q}=r k \mathfrak{q}$ and $\boldsymbol{b}(\mathfrak{q})$ equals the dimension of a Borel subalgebra. The Lie-Poisson bracket on $\mathbb{k}\left[\mathfrak{q}^{*}\right]$ is defined on the elements of degree 1 (i.e., on \mathfrak{q}) by $\{x, y\}_{\llcorner P}:=[x, y]$. The Poisson centre of $\mathcal{S}(\mathfrak{q})$ is

$$
\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\left\{H \in \mathcal{S}(\mathfrak{q}) \mid\{H, x\}_{\mathrm{LP}}=0 \quad \forall x \in \mathfrak{q}\right\}
$$

As Q is connected, we have $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\mathcal{S}(\mathfrak{q})^{Q}=\mathbb{k}\left[\mathfrak{q}^{*}\right]^{Q}$. The set of Q-regular elements of \mathfrak{q}^{*} is

$$
\mathfrak{q}_{\mathrm{reg}}^{*}=\left\{\eta \in \mathfrak{q}^{*} \mid \operatorname{dim} \mathfrak{q}^{\eta}=\operatorname{ind} \mathfrak{q}\right\}
$$

Set $\mathfrak{q}_{\text {sing }}^{*}=\mathfrak{q}^{*} \backslash \mathfrak{q}_{\text {reg }}^{*}$. We say that \mathfrak{q} has the codim-n property if codim $\mathfrak{q}_{\text {sing }}^{*} \geqslant n$. By [K63], the semisimple algebras \mathfrak{g} have the codim-3 property.
1.1. The Poisson tensor. Let Ω^{i} be the \mathcal{A}-module of differential i-forms on \mathbb{A}^{n}. Then $\Omega=\bigoplus_{i=0}^{n} \Omega^{i}$ is the \mathcal{A}-algebra of regular differential forms on \mathbb{A}^{n}. Likewise, $\mathcal{W}=\bigoplus_{i=0}^{n} \mathcal{W}^{i}$ is the graded skew-symmetric algebra of polyvector fields generated by the \mathcal{A}-module \mathcal{W}^{1} of polynomial vector fields on \mathbb{A}^{n}. Both algebras are free \mathcal{A}-modules. If \mathbb{A}^{n} has a Poisson structure $\{$,$\} , then \pi$ is the corresponding Poisson tensor (bivector). That is, $\pi \in$ $\operatorname{Hom}_{\mathcal{A}}\left(\Omega^{2}, \mathcal{A}\right)$ is defined by the equality $\pi(d f \wedge d g)=\{f, g\}$ for $f, g \in \mathcal{A}$. Then $\pi(x)$, $x \in \mathbb{A}^{n}$, defines a skew-symmetric bilinear form on $T_{x}^{*}\left(\mathbb{A}^{n}\right) \simeq\left(\mathbb{A}^{n}\right)^{*}$. Formally, if $v=d_{x} f$ and $u=d_{x} g$ for $f, g \in \mathcal{A}$, then $\pi(x)(v, u)=\pi(d f \wedge d g)(x)=\{f, g\}(x)$.

Definition 1. The central rank of a Poisson bracket $\{$,$\} on \mathbb{A}^{n}$, denoted $\mathrm{rkc}\{$,$\} , is the$ minimal codimension of the symplectic leaves in \mathbb{A}^{n}.

It is easily seen that if π is the corresponding Poisson tensor, then

$$
\operatorname{rkc}\{,\}=\min _{x \in \mathbb{A}^{n}} \operatorname{dim} \operatorname{ker} \pi(x)=n-\max _{x \in \mathbb{A}^{n}} \mathrm{rk} \pi(x) .
$$

Example. For a Lie algebra \mathfrak{q} and the dual space \mathfrak{q}^{*} equipped with the Lie-Poisson bracket $\{,\}_{\text {LP }}$, the symplectic leaves are the coadjoint Q-orbits. Hence $\mathrm{rkc}\{,\}_{\mathrm{LP}}=$ ind \mathfrak{q}.

In view of the duality between differential 1-forms and vector fields, we may regard π as an element of \mathcal{W}^{2}. Let $[[]]:, \mathcal{W}^{i} \times \mathcal{W}^{j} \rightarrow \mathcal{W}^{i+j-1}$ be the Schouten bracket. The Jacobi identity for π is equivalent to that $[[\pi, \pi]]=0$, see e.g. [DZ05, Chapter 1.8].

Lemma 1.1. Two Poisson brackets $\{,\}^{\prime}$ and $\{,\}^{\prime \prime}$ are compatible if and only if a sole linear combination, non-proportional to either of the initial brackets, is a Poisson bracket.

Proof. In place of Poisson brackets, we may consider the corresponding Poisson tensors. Given two tensors π^{\prime} and $\pi^{\prime \prime}$, consider $R=a \pi^{\prime}+b \pi^{\prime \prime}$ with $a, b \in \mathbb{k}^{\times}$. Then R is a Poisson tensor if and only if $[[R, R]]=0$. In view of the fact that $\left[\left[\pi^{\prime}, \pi^{\prime \prime}\right]\right]=\left[\left[\pi^{\prime \prime}, \pi^{\prime}\right]\right]$, this reduces to the condition $\left[\left[\pi^{\prime}, \pi^{\prime \prime}\right]\right]=0$ regardless of nonzero a, b.
1.2. Contractions and compatibility. Let $\mathfrak{q}=\mathfrak{h} \oplus V$ be a vector space decomposition, where \mathfrak{h} is a subalgebra. For any $s \in \mathbb{k}^{\times}$, define a linear map $\varphi_{s}: \mathfrak{q} \rightarrow \mathfrak{q}$ by setting $\left.\varphi_{s}\right|_{\mathfrak{h}}=\mathrm{id},\left.\varphi_{s}\right|_{V}=s$.id. Then $\varphi_{s} \varphi_{s^{\prime}}=\varphi_{s s^{\prime}}$ and $\varphi_{s}^{-1}=\varphi_{s^{-1}}$, i.e., this yields a one-parameter subgroup of $\mathrm{GL}(\mathfrak{q})$. The invertible map φ_{s} defines a new (isomorphic to the initial) Lie algebra structure $[,]_{(s)}$ on the same vector space \mathfrak{q} by the formula

$$
[x, y]_{(s)}=\varphi_{s}^{-1}\left(\left[\varphi_{s}(x), \varphi_{s}(y)\right]\right)
$$

The corresponding Poisson bracket is $\{,\}_{s}$. We naturally extend φ_{s} to an automorphism of $\mathcal{S}(\mathfrak{q})$. Then the centre of the Poisson algebra $\left(\mathcal{S}(\mathfrak{q}),\{,\}_{s}\right)$ equals $\varphi_{s}^{-1}\left(\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}\right)$.

The condition $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}$ implies that there is the limit of the brackets $[,]_{(s)}$ as s tends to zero. The limit bracket is denoted by $[,]_{(0)}$ and the corresponding Lie algebra is the semi-direct product $\mathfrak{h} \ltimes V^{\mathrm{ab}}$, where $\left[V^{\mathrm{ab}}, V^{\mathrm{ab}}\right]_{(0)}=0$. The algebra $\mathfrak{h} \ltimes V^{\mathrm{ab}}$ is called an InönüWigner or one-parameter contraction of \mathfrak{q}, see e.g. [PY12, Y14].

Having a family of Poisson brackets $\{,\}_{s}$ on \mathfrak{q}^{*} associated with the maps φ_{s}, it is natural to ask whether these brackets are compatible.

Lemma 1.2. As above, let $\mathfrak{q}=\mathfrak{h} \oplus V$, where $\mathfrak{h} \subset \mathfrak{q}$ is a subalgebra. Let $s, s^{\prime} \in \mathbb{k}$.
(i) If $(\mathfrak{q}, \mathfrak{h})$ is a symmetric pair, i.e., $[\mathfrak{h}, V] \subset V$ and $[V, V] \subset \mathfrak{h}$, then $\{,\}_{s}=\{,\}_{-s}$ and $\{,\}_{s}+\{,\}_{s^{\prime}}=2\{,\}_{\tilde{s}}$ with $2 \tilde{s}^{2}=s^{2}+\left(s^{\prime}\right)^{2}$.
(ii) If $[V, V] \subset V$, i.e., V is a subalgebra, too, then $\{,\}_{s}+\{,\}_{s^{\prime}}=2\{,\}_{\tilde{s}}$ with $2 \tilde{s}=s+s^{\prime}$.

Proof. All statements are verified by an easy direct computation.
In this article, we are interested in case (i) of Lemma 1.2 under the assumption that \mathfrak{q} is semisimple.

2. CONSTRUCTING A POISSON-COMMUTATIVE SUBALGEBRA Z

Let \mathfrak{g} be a \mathbb{Z}_{2}-graded semisimple Lie algebra and σ the corresponding involution of \mathfrak{g}, i.e., $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ and $\sigma(x)=(-1)^{j} x$ for $x \in \mathfrak{g}_{j}$. Occasionally, we will need the related connected algebraic groups G and G_{0}, i.e., $\mathfrak{g}=\operatorname{Lie}(G)$ and $\mathfrak{g}_{0}=\operatorname{Lie}\left(G_{0}\right)$. We may assume that $G_{0} \subset G$. Under the presence of σ, the Lie-Poisson bracket is being decomposed as follows:

$$
\{,\}_{\mathrm{LP}}=\{,\}_{0,0}+\{,\}_{0,1}+\{,\}_{1,1} .
$$

More precisely, if $x=x_{0}+x_{1} \in \mathfrak{g}$, then $\{x, y\}_{0,0}=\left[x_{0}, y_{0}\right],\{x, y\}_{0,1}=\left[x_{0}, y_{1}\right]+\left[x_{1}, y_{0}\right]$, and $\{x, y\}_{1,1}=\left[x_{1}, y_{1}\right]$. Using this decomposition, we introduce a 1-parameter family of Poisson brackets on \mathfrak{g}^{*} :

$$
\{,\}_{t}=\{,\}_{0,0}+\{,\}_{0,1}+t\{,\}_{1,1}
$$

where $t \in \mathbb{P}=\mathbb{k} \cup\{\infty\}$ and $\{,\}_{\infty}=\{,\}_{1,1}$. It is easily seen that $\{,\}_{t}$ with $t \in \mathbb{K}^{\times}$is given by the map φ_{s}, where $s^{2}=t$ (see Section 1.2), and it follows from Lemmas 1.1 and 1.2 that all these brackets are compatible. Hence

$$
\{,\}_{t}=\{,\}_{0}+t\{,\}_{\infty}, \quad t \in \mathbb{P},
$$

in accordance with the general method outlined in the introduction, Note that $\{,\}_{\mathrm{LP}}=$ $\{,\}_{0}+\{,\}_{\infty}$. Write $\mathfrak{g}_{(t)}$ for the Lie algebra corresponding to $\{,\}_{t}$. Of course, we merely write \mathfrak{g} in place of $\mathfrak{g}_{(1)}$. All Lie algebras $\mathfrak{g}_{(t)}$ have the same underlying vector space \mathfrak{g}.

Convention. We identify $\mathfrak{g}, \mathfrak{g}_{0}$, and \mathfrak{g}_{1} with their duals via the Killing form on \mathfrak{g}. Hence $\mathfrak{g}_{0}^{*} \oplus \mathfrak{g}_{1}^{*} \simeq \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$. We regard \mathfrak{g}^{*} as the dual of any algebra $\mathfrak{g}_{(t)}$ and sometimes omit the subscript ' $(t)^{\prime}$ in $\mathfrak{g}_{(t)}^{*}$. However, if $\xi \in \mathfrak{g}^{*}$, then the stabiliser of ξ in the Lie algebra $\mathfrak{g}_{(t)}$ (i.e., with respect to the coadjoint representation of $\left.\mathfrak{g}_{(t)}\right)$ is denoted by $\mathfrak{g}_{(t)}^{\xi}$.

Let π_{t} be the Poisson tensor for $\{,\}_{t}$ and $\pi_{t}(\xi)$ the skew-symmetric bilinear form on $\mathfrak{g} \simeq T_{\xi}^{*}\left(\mathfrak{g}^{*}\right)$ corresponding to $\xi \in \mathfrak{g}^{*}$, cf. Section 1.1. A down-to-earth description is that $\pi_{t}(\xi)\left(x_{1}, x_{2}\right)=\left\{x_{1}, x_{2}\right\}_{(t)}(\xi)$. Set rk $\pi_{t}=\max _{\xi \in \mathfrak{g}^{*}} \mathrm{rk} \pi_{t}(\xi)$.

Lemma 2.1. We have ind $\mathfrak{g}_{(t)}=\mathrm{rkc}\{,\}_{t}= \begin{cases}\mathrm{rk} \mathfrak{g}, & t \neq \infty ; \\ \operatorname{dim} \mathfrak{g}_{0}+\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}, & t=\infty .\end{cases}$
Proof. We know that $\mathrm{rkc}\{,\}_{\mathrm{LP}}=\mathrm{rkc}\{,\}_{1}=\mathrm{rk} \mathfrak{g}$, if \mathfrak{g} is semisimple.

1) If $t \neq 0, \infty$, then the existence of φ_{s} with $s^{2}=t$ implies that $\{,\}_{t}$ is isomorphic to $\{,\}_{1}$. For $t=0$, one obtains the Poisson bracket of the semi-direct product ($\mathbb{Z}_{2}-$ contraction) $\mathfrak{g}_{(0)}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}$, and it is proved in [P07, Cor. 9.4] that ind $\left(\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}\right)=$ rk \mathfrak{g}.
2) By definition, $\operatorname{rkc}\{,\}_{\infty}=\operatorname{ind} \mathfrak{g}_{(\infty)}=\min _{\xi \in \mathfrak{g}^{*}} \operatorname{dim} \mathfrak{g}_{(\infty)}^{\xi}$. Here $\{,\}_{\infty}$ represents the degenerated Lie algebra structure on the vector space \mathfrak{g} such that $\left[x_{0}+x_{1}, y_{0}+y_{1}\right]_{\infty}=$ $\left[x_{1}, y_{1}\right] \in \mathfrak{g}_{0}$. One easily verifies that if $\xi=\xi_{0}+\xi_{1} \in \mathfrak{g}^{*}$, then $\mathfrak{g}_{(\infty)}^{\xi}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{\xi_{0}}$. Therefore,

$$
\text { ind } \mathfrak{g}_{(\infty)}=\operatorname{dim} \mathfrak{g}_{0}+\min _{\xi_{0} \in \mathfrak{g}_{0}^{*}} \operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}=\operatorname{dim} \mathfrak{g}-\max _{\xi_{0} \in \mathfrak{g}_{0}} \operatorname{dim}\left[\mathfrak{g}_{1}, \xi_{0}\right] .
$$

In the last step, we use the fact that upon the identification of \mathfrak{g}_{0}^{*} and \mathfrak{g}_{0}, the coadjoint action of $\mathfrak{g}_{1} \subset \mathfrak{g}_{(\infty)}$ on $\mathfrak{g}_{0}^{*} \subset \mathfrak{g}_{(\infty)}^{*}$ becomes the usual bracket in \mathfrak{g}.

By a well-known property of \mathbb{Z}_{2}-gradings, \mathfrak{g}_{0} always contains a regular semisimple element of \mathfrak{g}. If $\xi_{0} \in \mathfrak{g}_{0}$ is regular semisimple in \mathfrak{g} and hence in \mathfrak{g}_{0}, then $\left[\mathfrak{g}, \xi_{0}\right]=\left[\mathfrak{g}_{0}, \xi_{0}\right] \oplus$ $\left[\mathfrak{g}_{1}, \xi_{0}\right], \operatorname{dim}\left[\mathfrak{g}, \xi_{0}\right]=\operatorname{dim} \mathfrak{g}-\mathrm{rk} \mathfrak{g}$, and $\operatorname{dim}\left[\mathfrak{g}_{0}, \xi_{0}\right]=\operatorname{dim} \mathfrak{g}_{0}-\mathrm{rk} \mathfrak{g}_{0}$. Hence

$$
\max _{\xi_{0} \in \mathfrak{g}_{0}} \operatorname{dim}\left[\mathfrak{g}_{1}, \xi_{0}\right]=\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}_{0}-\mathrm{rk} \mathfrak{g}
$$

and we are done.

It follows from Lemma 2.1 that $t=\infty$ is regular in \mathbb{P} if and only if $\operatorname{dim} \mathfrak{g}_{0}=r k \mathfrak{g}_{0}$, i.e., \mathfrak{g}_{0} is Abelian. For the indecomposable pairs, this happens if and only if $\mathfrak{g}=\mathfrak{s l}_{2}$. For this reason, it is necessary to handle the $\mathfrak{s l}_{2}$-case separately.

Example 2.2. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with a standard basis $\{e, h, f\}$ such that $[h, e]=2 e,[h, f]=$ $-2 f,[e, f]=h$. Then $\mathcal{S}\left(\mathfrak{s l}_{2}\right)^{\mathfrak{s l}_{2}}=\mathbb{k}\left[h^{2}+4 e f\right]$. For the unique (up to conjugation) non-trivial σ, one has $\mathfrak{g}_{0}=\mathbb{k} h$ and $e, f \in \mathfrak{g}_{1}$. Then $\mathcal{Z}_{t}(t \neq 0, \infty)$ is generated by $h^{2}+t^{-1} e f$. An easy calculation shows that $\mathcal{Z}_{0}=\mathbb{k}[e f]$ and $\mathcal{Z}_{\infty}=\mathbb{k}[h]$. Here $\mathbb{P}_{\text {reg }}=\mathbb{P}$, hence z is generated by all \mathcal{Z}_{t} with $t \in \mathbb{P}$ and $\mathcal{Z}=\mathbb{k}[h, e f]$. This is a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})$ and it lies in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$.

Unless otherwise explicitly stated, we assume below that $\mathfrak{g} \neq \mathfrak{s l}_{2}$. We then obtain a 1-parameter family of compatible Poisson brackets on \mathfrak{g}^{*}, with generic central rank being equal to rk \mathfrak{g} and $\mathbb{P}_{\text {sing }}=\{\infty\}$, where the central rank jumps up to $\operatorname{dim} \mathfrak{g}_{0}+r k \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}$. Hence $\mathbb{P}_{\text {reg }}=\mathbb{P} \backslash\{\infty\}=\mathbb{k}$. For each Lie algebra $\mathfrak{g}_{(t)}$, there is the related singular set $\mathfrak{g}_{(t), \text { sing }}^{*}=\mathfrak{g}^{*} \backslash \mathfrak{g}_{(t), \text { reg }}^{*}$, cf. Eq. (1-1). Then, clearly,

$$
\mathfrak{g}_{(t), \text { sing }}^{*}=\left\{\xi \in \mathfrak{g}^{*} \mid \operatorname{rk} \pi_{t}(\xi)<\operatorname{rk} \pi_{t}\right\},
$$

which is the union of the symplectic $\mathfrak{g}_{(t)}$-leaves in \mathfrak{g}^{*} having a non-maximal dimension. For aesthetic reasons, we write $\mathfrak{g}_{\infty, \text { sing }}^{*}$ instead of $\mathfrak{g}_{(\infty) \text {,sing }}^{*}$.

Let \mathcal{Z}_{t} denote the centre of the Poisson algebra $\left(\mathcal{S}(\mathfrak{g}),\{,\}_{t}\right)$. Then $\mathcal{Z}_{1}=\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. For $\xi \in \mathfrak{g}^{*}$, let $d_{\xi} F$ denote the differential of $F \in \mathcal{S}(\mathfrak{g})$ at ξ. It is standard that for any $H \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$, $d_{\xi} H \in \mathfrak{z}\left(\mathfrak{g}^{\xi}\right)$, where $\mathfrak{z}\left(\mathfrak{g}^{\xi}\right)$ is the centre of \mathfrak{g}^{ξ}.

Let $\left\{H_{1}, \ldots, H_{l}\right\}$ be a set of homogeneous algebraically independent generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. By the Kostant regularity criterion for \mathfrak{g} [K63, Theorem 9],

$$
\left\langle d_{\xi} H_{j} \mid 1 \leqslant j \leqslant l\right\rangle_{\mathfrak{k}}=\mathfrak{g}^{\xi} \text { if and only if } \xi \in \mathfrak{g}_{\mathrm{reg}}^{*}
$$

(Recall that $\mathfrak{g}^{\xi}=\mathfrak{z}\left(\mathfrak{g}^{\xi}\right)$ if and only if $\xi \in \mathfrak{g}_{\text {reg }}^{*}$ [P03, Thm.3.3].) Set $d_{\xi} \mathcal{Z}_{t}=\left\langle d_{\xi} F \mid F \in \mathcal{Z}_{t}\right\rangle_{\mathfrak{k}}$. Then $d_{\xi} \mathcal{Z}_{t} \subset \operatorname{ker} \pi_{t}(\xi)$ for each t. The regularity criterion obviously holds for any $t \neq 0, \infty$. That is,

$$
\text { if } t \neq 0, \infty \text {, then } \xi \notin \mathfrak{g}_{(t), \text { sing }}^{*} \Leftrightarrow \boldsymbol{d}_{\xi} \mathcal{Z}_{t}=\operatorname{ker} \pi_{t}(\xi) \Leftrightarrow \operatorname{dim} \operatorname{ker} \pi_{t}(\xi)=\mathrm{rk} \mathfrak{g}
$$

A certain analogue of this statement holds for $t=0$, i.e., for $\mathfrak{g}_{(0)}$ and $d_{x} \mathcal{Z}_{0}$, but only for involutions σ such that $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ has a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$, see [Y14].

The centres $\mathcal{Z}_{t}(t \in \mathbb{k})$ generate a Poisson-commutative subalgebra with respect to any bracket $\{,\}_{t}, t \in \mathbb{P}$, cf. Corollary A.2. Write $\mathbb{Z}=\operatorname{alg}\left\langle\mathcal{Z}_{t}\right\rangle_{t \in \mathbb{k}}$ for this subalgebra. Note that $d_{\xi} \mathcal{Z}$ is the linear span of $d_{\xi} \mathcal{Z}_{t}$ with $t \neq \infty$. There is a method for estimating the dimension of such subspaces, see Appendix A.

Lemma 2.3. Suppose that $\xi \in \mathfrak{g}^{*}$ satisfy the properties:
(1) $\operatorname{dim} \operatorname{ker} \pi_{t}(\xi)=\mathrm{rk} \mathfrak{g}$ for all $t \neq \infty$;
(2) the rank of the skew-symmetric form $\left.\pi_{0}(\xi)\right|_{\operatorname{ker} \pi_{\infty}(\xi)}$ equals dim $\operatorname{ker} \pi_{\infty}(\xi)-\mathrm{rk} \mathfrak{g}$.

Then $\operatorname{dim} d_{\xi} \mathcal{Z}=\mathrm{rk} \mathfrak{g}+\frac{1}{2} \mathrm{rk} \pi_{\infty}(\xi)$ and $\operatorname{dim}\left(d_{\xi} \mathcal{Z} \cap \operatorname{ker} \pi_{\infty}(\xi)\right)=\mathrm{rk} \mathfrak{g}$.
Proof. By definition, $d_{\xi} Z \subset \sum_{t \neq \infty}$ ker $\pi_{t}(\xi)$. Then Eq. (2•2) and hypothesis (1) on ξ imply that $d_{\xi} Z \supset \sum_{t \neq 0, \infty} \operatorname{ker} \pi_{t}(\xi)$. Observe that we have a 2-dimensional vector space of skewsymmetric bilinear forms $a \cdot \pi_{t}(\xi)$ on $\mathfrak{g} \simeq T_{\xi}^{*} \mathfrak{g}^{*}$, where $a \in \mathbb{k}, t \in \mathbb{P}$. Moreover, $\mathrm{rk} \pi_{t}(\xi)=$ $\operatorname{dim} \mathfrak{g}-\mathrm{rk} \mathfrak{g}$ for each $t \neq \infty$. By Lemma A.1, we have $\sum_{t \neq 0, \infty} \operatorname{ker} \pi_{t}(\xi)=\sum_{t \neq \infty} \operatorname{ker} \pi_{t}(\xi)$. Now the desired equalities follow from Theorem A.4.

It is not clear yet whether such elements $\xi \in \mathfrak{g}^{*}$ actually exist! However, we will immediately see that there are plenty of them.

Proposition 2.4. The hypotheses of Lemma 2.3 hold for generic $\xi \in \mathfrak{g}^{*}$ and therefore

$$
\operatorname{tr} \cdot \operatorname{deg} \mathcal{Z}=\frac{1}{2} \mathrm{rk} \pi_{\infty}+\mathrm{rk} \mathfrak{g}=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\mathrm{rkc}\{,\}_{\infty}\right)+\mathrm{rk} \mathfrak{g} .
$$

Proof. The first task is to prove that a generic point $\xi=\xi_{0}+\xi_{1} \in \mathfrak{g}^{*}$ satisfies condition (1) in Lemma 2.3.

One can safely assume that ξ is regular for $\{,\}_{0}$ and $\{,\}_{\infty}$. Next, we are lucky that $\xi_{0}+\xi_{1} \in \mathfrak{g}_{\text {sing }}^{*}=\mathfrak{g}_{(1), \text { sing }}^{*}$ if and only if $\xi_{0}+s^{-1} \xi_{1} \in \mathfrak{g}_{\left(s^{2}\right), \text { sing }}^{*}$. Therefore,

$$
\bigcup_{t \neq 0, \infty} \mathfrak{g}_{(t), \text { sing }}^{*}=\left\{\xi_{0}+t \xi_{1} \mid \xi_{0}+\xi_{1} \in \mathfrak{g}_{\text {sing }}^{*}, t \neq 0, \infty\right\}
$$

Since codim $\mathfrak{g}_{(t) \text {,sing }}^{*}=3$ for each $t \in \mathbb{k}^{\times}$, the closure of $\bigcup_{t \neq 0, \infty} \mathfrak{g}_{(t) \text {,sing }}^{*}$ is a proper subset of \mathfrak{g}^{*}. Hence the condition $\operatorname{dim} \operatorname{ker} \pi_{t}(\xi)=\mathrm{rk} \mathfrak{g}(t \neq \infty)$ holds for ξ in a dense open subset.

The next step is to check condition (2), i.e., compute the rank of the restriction of $\pi_{0}(\xi)$ to ker $\pi_{\infty}(\xi)$. Write $\xi=\xi_{0}+\xi_{1}$, where $\xi_{i} \in \mathfrak{g}_{i}^{*}$. We can safely assume that ξ_{0} is regular in \mathfrak{g} and hence also in \mathfrak{g}_{0}.

- For the inner involutions, one has $\mathbf{r k} \mathfrak{g}=\mathrm{rk} \mathfrak{g}_{0}$. Here $\operatorname{ker} \pi_{\infty}(\xi)=\mathfrak{g}_{0}$ and the rank in question is $\operatorname{dim} \mathfrak{g}_{0}-\mathrm{rk} \mathfrak{g}$, as required in Lemma 2.3(2).
- Suppose that σ is outer. Then $\operatorname{ker} \pi_{\infty}(\xi)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{\xi_{0}}$ with $\operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}=\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}$. The rank of the form $\pi_{0}\left(\xi_{0}\right)$ on this kernel is equal to

$$
\operatorname{dim} \operatorname{ker} \pi_{\infty}\left(\xi_{0}\right)-\text { rk } \mathfrak{g}_{0}-\operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}=\operatorname{dim} \operatorname{ker} \pi_{\infty}\left(\xi_{0}\right)-\text { rk } \mathfrak{g} .
$$

For a generic ξ, where ξ_{1} is generic as well, the value in question cannot be smaller than $\operatorname{dim} \operatorname{ker} \pi_{\infty}\left(\xi_{0}\right)-\mathrm{rkg}$. On the other hand, it cannot be larger by Lemma A.3. That is, we have obtained the required value again!

Now, it follows from Lemma 2.3 that

$$
\operatorname{tr} \cdot \operatorname{deg} z=\max _{\xi \in \mathfrak{g}^{*}} \operatorname{dim} d_{\xi} z=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{rkc}\{,\}_{\infty}\right)+\mathrm{rk} \mathfrak{g} .
$$

Combining Lemma 2.1 and Proposition 2.4, we obtain

$$
\operatorname{tr} \cdot \operatorname{deg} Z=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right)
$$

Lemma 2.5 ([MY, Prop. 1.1]). If $\mathcal{A} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ and $\{\mathcal{A}, \mathcal{A}\}_{\mathrm{LP}}=0$, then

$$
\operatorname{tr} . \operatorname{deg} \mathcal{A} \leqslant \boldsymbol{b}(\mathfrak{g})-\boldsymbol{b}\left(\mathfrak{g}_{0}\right)+\operatorname{ind} \mathfrak{g}_{0}
$$

Note that in our situation, $\boldsymbol{b}(\mathfrak{g})-\boldsymbol{b}\left(\mathfrak{g}_{0}\right)+\operatorname{ind} \mathfrak{g}_{0}=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+r k \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right)$.
Lemma 2.6. We have $\mathcal{Z} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$.
Proof. For all Poisson brackets $\{,\}_{t}$ with $t \neq \infty$, the commutators $\left[x_{0}, y\right]$ are the same as in \mathfrak{g}. Hence $\mathcal{Z}_{t} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ for each $t \neq \infty$.

A posteriori, this lemma is true for $\mathfrak{g}=\mathfrak{s l}_{2}$ as well, cf. Example 2.2. Combining previous formulae, together with computations for $\mathfrak{s l}_{2}$, we obtain the next general assertion.

Theorem 2.7. For any \mathfrak{g} and any σ, the algebra $z=\operatorname{alg}\left\langle\mathcal{Z}_{t}\right\rangle_{t \in \mathbb{P}_{\text {reg }}}$ is a Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ of the maximal possible transcendence degree, which is given by Eq. (2•4).

In Section 3, we provide an explicit set of generators of z, if $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ has a good generating system for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$. From this, we deduce that Z is a polynomial algebra. Although Z has the maximal transcendence degree among the Poisson-commutative subalgebras of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$, it is not always maximal. In Section 4, we construct the extended algebra \tilde{z} such that $z \subset \tilde{\mathcal{Z}} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ and show that \tilde{z} is maximal and still polynomial.

3. THE ALGEBRA Z IS POLYNOMIAL WHENEVER σ IS GOOD

Let $\left\{H_{1}, \ldots, H_{l}\right\}, l=\mathrm{rk} \mathfrak{g}$, be a set of homogeneous algebraically independent generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. Set $d_{i}=\operatorname{deg} H_{i}$. Then $\sum_{i=1}^{l} d_{i}=\boldsymbol{b}(\mathfrak{g})$. Associated with the vector space decomposition $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$, one has the bi-homogeneous decomposition of each H_{j} :

$$
H_{j}=\sum_{i=0}^{d_{j}}\left(H_{j}\right)_{\left(i, d_{j}-i\right)}
$$

where $\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \in \mathcal{S}^{i}\left(\mathfrak{g}_{0}\right) \otimes \mathcal{S}^{d_{j}-i}\left(\mathfrak{g}_{1}\right) \subset \mathcal{S}^{d_{j}}(\mathfrak{g})$. Let H_{j}^{\bullet} be the nonzero bi-homogeneous component of H_{j} with maximal \mathfrak{g}_{1}-degree. Then $\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}=\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}^{\bullet}$ and we set $d_{j}^{\bullet}=$ $\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}^{\bullet}$.

Definition 2. Let us say that H_{1}, \ldots, H_{l} is a good generating system in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ (g.g.s. for short) for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ or for σ, if $H_{1}^{\bullet}, \ldots, H_{l}^{\bullet}$ are algebraically independent.

If the pair $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is indecomposable, which we always tacitly assume, then there is no g.g.s. for four involutions related to \mathfrak{g} of type \mathcal{E}_{n} [P07', Remark 4.3] and a g.g.s. exists in all other cases, see [Y14]. The importance of g.g.s. is clearly seen in the following fundamental result.

Theorem 3.1 ([Y14, Theorem 3.8]). Let H_{1}, \ldots, H_{l} be an arbitrary set of homogeneous algebraically independent generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. Then
(i) $\sum_{j=1}^{l} \operatorname{deg}_{\mathfrak{g}_{1}} H_{j} \geqslant \operatorname{dim} \mathfrak{g}_{1}$;
(ii) H_{1}, \ldots, H_{l} is a g.g.s. if and only if $\sum_{j=1}^{l} \operatorname{deg}_{\mathfrak{g}_{1}} H_{j}=\operatorname{dim} \mathfrak{g}_{1}$;
(iii) if H_{1}, \ldots, H_{l} is a g.g.s., then $\mathcal{S}\left(\mathfrak{g}_{(0)}\right)^{\mathfrak{g}_{(0)}}=\mathbb{k}\left[H_{1}^{\bullet}, \ldots, H_{l}^{\bullet}\right]$ is a polynomial algebra.

Recall that $\mathfrak{g}_{(0)}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}$ is a \mathbb{Z}_{2}-contraction of \mathfrak{g} and ind $\mathfrak{g}_{(0)}=$ ind \mathfrak{g}. We continue to assume that $\mathfrak{g} \neq \mathfrak{s l}_{2}$, hence $\mathbb{P}_{\text {reg }}=\mathbb{k}$ and $Z=\operatorname{alg}\left\langle\mathcal{Z}_{t}\right\rangle_{t \in \mathfrak{k}}$.

Theorem 3.2. Suppose that $\left\{H_{i}\right\}$ is a g.g.s. for σ. Then the algebra z is generated by

$$
\left\{\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \mid j=1, \ldots, l \& i=0,1, \ldots, d_{j}\right\}
$$

i.e., by all bi-homogeneous components of H_{1}, \ldots, H_{l}.

Proof. To begin with, $\mathcal{Z}\left(\{,\}_{1}\right)=\mathcal{Z}(\mathcal{S}(\mathfrak{g}))=\mathbb{k}\left[H_{1}, \ldots, H_{l}\right]$. By the definition of $\{,\}_{t}$, we have $\mathcal{Z}\left(\{,\}_{t}\right)=\varphi_{s}^{-1}(\mathcal{Z}(\mathcal{S}(\mathfrak{g})))$ for $t \neq 0, \infty$, where $s^{2}=t$ and

$$
\varphi_{s}\left(H_{j}\right)=\left(H_{j}\right)_{\left(d_{j}, 0\right)}+s\left(H_{j}\right)_{\left(d_{j}-1,1\right)}+s^{2}\left(H_{j}\right)_{\left(d_{j}-2,2\right)}+\ldots
$$

Using the Vandermonde determinant, we deduce from this that all $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ belong to Z and the algebra generated by them contains \mathcal{Z}_{t} with $t \in \mathbb{k} \backslash\{0\}$. Moreover, the specific bihomogeneous components $H_{1}^{\bullet}, \ldots, H_{l}^{\bullet}$ generate \mathcal{Z}_{0}, since H_{1}, \ldots, H_{l} is a g.g.s. Therefore, the polynomials (3.1) generate the whole of 2.

However, not every $i \in\left\{0,1, \ldots, d_{j}\right\}$ provides a nonzero bi-homogeneous component of H_{j}. Let us make this precise. Since the case of inner involutions is technically easier, we consider it first.

Theorem 3.3. Suppose that $\sigma \in \operatorname{Aut}(\mathfrak{g})$ is inner, and let H_{1}, \ldots, H_{l} be a g.g.s. in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ with $d_{j}^{\bullet}=\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}$. Then
(i) all $d_{j}^{\bullet}, j=1, \ldots, l$, are even;
(ii) $\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \neq 0$ if and only if $d_{j}-i$ is even and $0 \leqslant d_{j}-i \leqslant d_{j}$;
(iii) the polynomials $\left\{\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \mid j=1, \ldots, l ; \& d_{j}-i=0,2, \ldots, d_{j}^{\bullet}\right\}$ freely generate \mathcal{Z}.

Proof. (1) Since σ is inner, $\sigma\left(H_{j}\right)=H_{j}$ for all j. On the other hand, $\left.\sigma\right|_{\mathfrak{g}_{0}}=\mathrm{id},\left.\sigma\right|_{\mathfrak{g}_{1}}=-\mathrm{id}$, and hence $\sigma\left(\left(H_{j}\right)_{\left(i, d_{j}-i\right)}\right)=(-1)^{d_{j}-i}\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$. This yields (i) and one implication in (ii).
(2) In view of part (1), the number of non-zero bi-homogeneous components of H_{j} is at most $\left(d_{j}^{\bullet} / 2\right)+1$. Hence the total number of nonzero bi-homogeneous components of all H_{j} is at most $\sum_{j=1}^{l}\left(d_{j}^{\bullet} / 2\right)+1=\left(\operatorname{dim} \mathfrak{g}_{1} / 2\right)+\mathrm{rk} \mathfrak{g}$.

As σ is inner, one also has $\mathrm{rkg}=\mathrm{rk} \mathfrak{g}_{0}$. Therefore, $\operatorname{tr} \cdot \operatorname{deg} \mathcal{Z}=\left(\operatorname{dim} \mathfrak{g}_{1} / 2\right)+\mathrm{rk} \mathfrak{g}$, see Eq. (2.4). Because the bi-homogeneous components of all H_{j} generate \mathcal{Z} (Theorem 3.2), we see that all $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ with $d_{j}-i=0,2, \ldots, d_{j}^{\bullet}$ are nonzero and algebraically independent. Thus, they freely generate z.

With extra technical details, Theorem 3.3 extends to the outer involutions as well. Let σ be an arbitrary involution of \mathfrak{g}. It is easily seen that a set of homogeneous generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ can be chosen so that each H_{j} is an eigenvector of σ, i.e., $\sigma\left(H_{j}\right)=\varepsilon_{j} H_{j}= \pm H_{j}$. Moreover, the set of pairs $\left\{\left(d_{j}, \varepsilon_{j}\right) \mid j=1, \ldots, l\right\}$ does not depend on the set of generators, cf. [S74, Lemma 6.1]. However, we need a set of free generators that both is a g.g.s. and consists of σ-eigenvectors.

Lemma 3.4. If there is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$, then there is also a g.g.s. that consists of eigenvectors of σ.

Proof. Let H_{1}, \ldots, H_{l} be a g.g.s., hence $\sum_{j=1}^{l} \operatorname{deg}_{\mathfrak{g}_{1}} H_{j}=\operatorname{dim} \mathfrak{g}_{1}$ in view of Theorem 3.1.
Let \mathcal{A}_{+}be the ideal in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ generated by all homogeneous invariants of positive degree. Then $\mathcal{A}:=\mathcal{A}_{+} / \mathcal{A}_{+}^{2}$ is a finite-dimensional \mathbb{k}-vector space. If $H \in \mathcal{A}_{+}$, then $\bar{H}:=H+\mathcal{A}_{+}^{2} \in$ \mathcal{A}. As is well-known, F_{1}, \ldots, F_{m} is a generating system for $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ if and only if the \mathbb{k}-linear span of $\bar{F}_{1}, \ldots, \bar{F}_{m}$ is the whole of \mathcal{A}. In our situation, $\operatorname{dim}_{k} \mathcal{A}=l$ and $\mathcal{A}=\left\langle\bar{H}_{1}, \ldots, \bar{H}_{l}\right\rangle$.

If H_{i} is not a σ-eigenvector, i.e., $\sigma\left(H_{i}\right) \neq \pm H_{i}$, then we consider the generating set

$$
H_{1}, \ldots, H_{i-1}, \frac{H_{i}+\sigma\left(H_{i}\right)}{2}, \frac{H_{i}-\sigma\left(H_{i}\right)}{2}, H_{i+1}, \ldots, H_{l}
$$

for $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ that includes $l+1$ polynomials. Since $\bar{H}, \ldots, \bar{H}_{i-1}, \bar{H}_{i+1}, \ldots, \bar{H}_{l}$ are linearly independent in \mathcal{A}, we obtain a better generating set by replacing H_{i} with one of the functions $H_{i}^{(+)}=\frac{H_{i}+\sigma\left(H_{i}\right)}{2}$ or $H_{i}^{(-)}=\frac{H_{i}-\sigma\left(H_{i}\right)}{2}$. Let us demonstrate that there is actually only one suitable replacement for H_{i}, and this yields again a g.g.s. Recall that $d_{j}^{\bullet}=\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}^{\bullet}=\operatorname{deg}_{\mathfrak{g}_{1}} H_{j}$.
(a) Suppose that d_{j}^{\bullet} is even. Then $\sigma\left(H_{i}^{\bullet}\right)=H_{i}^{\bullet}$ and H_{i}^{\bullet} cancel out in $H_{i}^{(-)}$. Therefore, $\operatorname{deg}_{\mathfrak{g}_{1}} H_{i}^{(-)}<\operatorname{deg}_{\mathfrak{g}_{1}} H_{i}$ and the sum of \mathfrak{g}_{1}-degrees for $H_{1}, \ldots, H_{i-1}, H_{i}^{(-)}, H_{i+1}, \ldots, H_{l}$ is less than $\operatorname{dim} \mathfrak{g}_{1}$. By Theorem 3.1, this means that the choice of $H_{i}^{(-)}$in place of H_{i} does not provide a generating system, and the only right choice is to take $H_{i}^{(+)}$. Moreover, $H_{i}^{\bullet}=$ $\left(H_{i}^{(+)}\right)^{\bullet}$ and hence $H_{1}, \ldots, H_{i-1}, H_{i}^{(+)}, H_{i+1}, \ldots, H_{l}$ is a g.g.s.
(b) If d_{j}^{\bullet} is odd, then we end up with the g.g.s. $H_{1}, \ldots, H_{i-1}, H_{i}^{(-)}, H_{i+1}, \ldots, H_{l}$.

The procedure reduces the number of generators that are not σ-eigenvectors, and we eventually obtain a g.g.s. that consists of σ-eigenvectors.

Without loss of generality, we can assume that H_{1}, \ldots, H_{l} is a g.g.s. and $\sigma\left(H_{j}\right)= \pm H_{j}$.
Lemma 3.5. For any involution $\sigma \in \operatorname{Aut}(\mathfrak{g})$, we have
(1) $\sigma\left(H_{j}\right)=H_{j}$ if and only if d_{j}^{\bullet} is even;
(2) $\mathrm{rk} \mathfrak{g}_{0}=\#\left\{j \mid \sigma\left(H_{j}\right)=H_{j}\right\}$.

Proof. (1) The proof is similar to that of Theorem 3.3(i).
(2) This follows from results of T.Springer on regular elements of finite reflection groups [S74, Corollary 6.5]. To this end, one has to consider the Weyl group corresponding to a Cartan subalgebra $\mathfrak{t}=\mathfrak{t}_{0} \oplus \mathfrak{t}_{1} \subset \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ such that \mathfrak{t}_{0} is a Cartan in \mathfrak{g}_{0}.

Now, we can state and prove the main result of this section.
Theorem 3.6. Let σ be an involution of \mathfrak{g} such that $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ has a g.g.s. Then z is a polynomial algebra that is freely generated by the bi-homogeneous components of all $\left\{H_{j}\right\}$. More precisely, if $\sigma\left(H_{j}\right)=H_{j}$, then d_{j}^{\bullet} is even and the nonzero bi-homogeneous components of H_{j} are $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ with $d_{j}-i=0,2, \ldots, d_{j}^{\bullet}$; if $\sigma\left(H_{j}\right)=-H_{j}$, then d_{j}^{\bullet} is odd and the nonzero bi-homogeneous components of H_{j} are $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ with $d_{j}-i=1,3, \ldots, d_{j}^{\bullet}$.

Proof. By Lemma 3.5, we may order the basic invariants $\left\{H_{j}\right\}$ such that

$$
d_{j}^{\bullet} \text { is } \begin{cases}\text { even } & i \leqslant k:=\mathrm{rk} \mathfrak{g}_{0} \\ \text { odd } & i \geqslant k+1\end{cases}
$$

Clearly, if d_{j}^{\bullet} is even, then $\varepsilon_{j}=1$ and H_{j} has at most $\left(d_{j}^{\bullet} / 2\right)+1$ nonzero bi-homogeneous components, while if d_{j}^{\bullet} is odd, then $\varepsilon_{j}=-1$ and H_{j} has at most $\left(d_{j}^{\bullet}+1\right) / 2$ nonzero bi-homogeneous components. Hence the total number of all nonzero bi-homogeneous components is at most

$$
\sum_{j=1}^{k}\left(\frac{d_{j}^{\bullet}}{2}+1\right)+\sum_{j=k+1}^{l} \frac{d_{j}^{\bullet}+1}{2}=\sum_{j=1}^{l} \frac{d_{j}^{\bullet}}{2}+k+\frac{l-k}{2}=\frac{\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}}{2}=\operatorname{tr} \cdot \operatorname{deg} Z
$$

Therefore, all admissible bi-homogeneous components must be nonzero and algebraically independent.

Remark 3.7. If there is no g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$, then $\sum_{j} \operatorname{deg}_{\mathfrak{g}_{1}} H_{j}>\operatorname{dim} \mathfrak{g}_{1}$ for any set of basic invariants. Hence the number of the bi-homogeneous components of $\left\{H_{j}\right\}$ is bigger than $\operatorname{tr} . \operatorname{deg} Z$ and these generators of Z are algebraically dependent. Moreover, the algebra $\mathcal{Z}_{0}=\mathcal{Z}\left(\mathcal{S}\left(\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}\right)\right)$, which is contained in \mathcal{Z}, is not polynomial [Y17, Section 6], and also $H_{1}^{\bullet}, \ldots, H_{l}^{\bullet}$ are algebraically dependent, cf. Theorem 3.1. Thus, we cannot say anything good about Z in the four "bad" cases.

Remark 3.8. Recall from the introduction the map $r_{0}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. If σ is inner, then \mathfrak{g}_{0} contains a Cartan subalgebra of \mathfrak{g} and r_{0} is injective. Hence $\left(H_{j}\right)_{\left(d_{j}, 0\right)}=r_{0}\left(H_{j}\right) \neq 0$ for all j, which also follows from Theorem 3.3. Clearly, $r_{0}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right) \subset \mathcal{Z}$ for any σ. More precisely, $r_{0}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ is freely generated by the $r_{0}\left(H_{j}\right)=\left(H_{j}\right)_{\left(d_{j}, 0\right)}$ such that $\sigma\left(H_{j}\right)=H_{j}$ (i.e., d_{j}^{\bullet} is even). However, for the inner (and some outer) involutions, $r_{0}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ is a proper subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. And this is the reason, why Z appears to be not always a maximal commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ 。

4. The extended algebra \tilde{z} is polynomial and maximal Poisson-commutative

In this section, we assume that $\mathfrak{g} \neq \mathfrak{s l}_{2},\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is indecomposable, and there is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$. We write $\mathfrak{z}(\mathfrak{q})$ for the centre of a Lie algebra \mathfrak{q}. An open subset of \mathfrak{g}^{*} is said to be big, if its complement does not contain divisors.

There is an extraordinary powerful tool for proving maximality of certain subalgebras.
Theorem 4.1 ([PPY, Theorem 1.1]). Let $F_{1}, \ldots, F_{r} \in \mathcal{S}(\mathfrak{g})$ be homogeneous algebraically independent polynomials such that their differentials $\left\{d F_{i}\right\}$ are linearly independent on a big open subset of \mathfrak{g}^{*}. Then $\mathbb{k}\left[F_{1}, \ldots, F_{r}\right]$ is an algebraically closed subalgebra of $\mathcal{S}(\mathfrak{g})$, i.e., if $H \in \mathcal{S}(\mathfrak{g})$ is algebraic over the field $\mathbb{k}\left(F_{1}, \ldots, F_{r}\right)$, then $H \in \mathbb{k}\left[F_{1}, \ldots, F_{r}\right]$.

In order to apply this theorem to \mathcal{Z} and \tilde{z}, we need some properties of divisors in \mathfrak{g}^{*}.
Lemma 4.2. Let $D \subset \mathfrak{g}^{*}$ be an irreducible divisor. Then there is a non-empty open subset $U \subset D$ such that, for each $\xi \in U$, we have
(i) $\xi \notin \mathfrak{g}_{(t), \text { sing }}^{*}$ if $t \neq \infty$;
(ii) if $\xi=\xi_{0}+\xi_{1}$ with $\xi_{i} \in \mathfrak{g}_{i}^{*}$, then $\xi_{0} \in\left(\mathfrak{g}_{0}^{*}\right)_{\text {reg }}$.

Proof. (i) The Lie algebra $\mathfrak{g}_{(0)}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}^{\text {ab }}$ has the codim-2 property, see [P07', Theorem 3.3]. Hence codim $\mathfrak{g}_{(0) \text {,sing }}^{*} \geqslant 2$. Recall that $\operatorname{dim} \mathfrak{g}_{\text {sing }}^{*}=\operatorname{dim} \mathfrak{g}-3$. Therefore, the union of the singular subsets $\mathfrak{g}_{(t) \text {,sing }}^{*}, t \in \mathbb{k}^{\times}$, is a subset of codimension 2, as follows from Eq. (2.3). Hence there is a non-empty open subset of D such that $\mathrm{rk} \pi_{t}(\xi)=\mathrm{rk} \pi_{t}$ for each $\xi \in D$ and $t \neq \infty$.
(ii) Since \mathfrak{g}_{0} is reductive, we also have $\operatorname{dim}\left(\mathfrak{g}_{0}^{*}\right)_{\text {sing }} \leqslant \operatorname{dim} \mathfrak{g}_{0}-3$.

Lemma 4.3. Suppose that the differentials $\left\{d\left(H_{j}\right)_{\left(i, d_{j}-i\right)}\right\}$ are linearly dependent on an irreducible divisor $D \subset \mathfrak{g}^{*}$. Then $D \subset \mathfrak{g}_{\infty, \text { sing }}^{*}$.

Proof. Combining Lemmas 2.3 and 4.2, we see that if the differentials of the $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$'s are linearly dependent at a generic point $\xi \in D$, then

- either $\mathrm{rk} \pi_{\infty}(\xi)<\operatorname{rk} \pi_{\infty}$,
- or $\mathrm{rk} \pi_{\infty}(\xi)=\mathrm{rk} \pi_{\infty}$, but the restriction of $\pi_{0}(\xi)$ to $\operatorname{ker} \pi_{\infty}(\xi)$ does not have the prescribed (maximal possible) rank.

In the first case, we have $\xi \in \mathfrak{g}_{\infty, \text { sing }}^{*}$ by the very definition. Let us show that the second possibility does not realise. Write $\xi=\xi_{0}+\xi_{1}$. By Lemma 4.2 (ii), we may assume that $\xi_{0} \in \mathfrak{g}_{0, \text { reg }}$. Since rk $\pi_{\infty}(\xi)=\mathrm{rk} \pi_{\infty}$, we also have $\xi_{0} \in \mathfrak{g}_{\mathrm{reg}}$. As in the proof of Proposition 2.4, the rank of $\pi_{0}\left(\xi_{0}\right)$ on $\operatorname{ker} \pi_{\infty}(\xi)$ equals $\operatorname{dim} \operatorname{ker} \pi_{\infty}\left(\xi_{0}\right)-\mathrm{rk} \mathfrak{g}$. And again the same holds for the restriction of $\pi_{0}(\xi)$.

We also need the following simple but useful observation on $\mathfrak{g}_{\infty, \text { sing }}^{*}$.
Lemma 4.4. The subvariety $\mathfrak{g}_{\infty, \text { sing }}^{*}$ is of the form $X_{0} \times \mathfrak{g}_{1}^{*}$, where $X_{0} \subset \mathfrak{g}_{0}^{*}$ is a conical subvariety. Moreover, $X_{0} \cap \mathfrak{g}_{\mathrm{reg}}^{*}=\varnothing$.

Proof. Let $\xi=\xi_{0}+\xi_{1} \in \mathfrak{g}^{*}$. Since $\mathfrak{g}_{(\infty)}^{\xi}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{\xi_{0}}$, the value rk $\pi_{\infty}(\xi)$ depends only on $\xi_{0}=\left.\xi\right|_{\mathfrak{g}_{0}}$. Therefore, $\mathfrak{g}_{\infty, \text { sing }}^{*}=X_{0} \times \mathfrak{g}_{1}^{*}$, where $X_{0}=\mathfrak{g}_{\infty, \text { sing }}^{*} \cap \mathfrak{g}_{0}^{*}$.

It follows from the proof of Lemma 2.1 that $\min _{\xi_{0} \in \mathfrak{g}_{0}} \operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}=r k \mathfrak{g}-r k \mathfrak{g}_{0}$, and $\xi \in \mathfrak{g}_{\infty, \text { sing }}^{*}$ if and only if $\operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}>\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}$. But, if $\xi_{0} \in \mathfrak{g}_{\text {reg }}^{*}$, then $\operatorname{dim} \mathfrak{g}_{0}^{\xi_{0}}=\mathrm{rk} \mathfrak{g}_{0}$ and $\operatorname{dim} \mathfrak{g}_{1}^{\xi_{0}}=$ $\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}$.

A particularly nice situation occurs if $r_{0}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ is onto. This condition is rather restrictive. If σ is inner, then $\boldsymbol{b}(\mathfrak{g})=\boldsymbol{b}\left(\mathfrak{g}_{0}\right)+\left(\operatorname{dim} \mathfrak{g}_{1}\right) / 2$. And since $\sum_{j=1}^{l} d_{j}=\boldsymbol{b}(\mathfrak{g})$, the nonzero polynomials $\left\{\left(H_{j}\right)_{\left(d_{j}, 0\right)}\right\}_{j=1}^{l}$ cannot form a generating system in $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. Hence r_{0} cannot be onto for the inner σ. Another observation is that \mathfrak{g}_{0} has to be simple. This leads to the following list of suitable symmetric pairs:

$$
(\mathfrak{h} \oplus \mathfrak{h}, \mathfrak{h}),\left(\mathfrak{s l}_{n}, \mathfrak{s o}_{n}\right),\left(\mathfrak{s l}_{2 n}, \mathfrak{s p}_{2 n}\right),\left(\mathfrak{s o}_{2 n}, \mathfrak{s o}_{2 n-1}\right),\left(\mathcal{E}_{6}, \mathfrak{s p}_{8}\right),\left(\mathcal{E}_{6}, \mathcal{F}_{4}\right)
$$

Among them the map r_{0} is onto for $(\mathfrak{h} \oplus \mathfrak{h}, \mathfrak{h}),\left(\mathfrak{s l}_{2 n+1}, \mathfrak{s o}_{2 n+1}\right)$, $\left(\mathfrak{s l}_{2 n}, \mathfrak{s p}_{2 n}\right),\left(\mathfrak{s o}_{2 n}, \mathfrak{s o}_{2 n-1}\right)$, and $\left(\mathcal{E}_{6}, \mathcal{F}_{4}\right)$. But, the pair $\left(\mathcal{E}_{6}, \mathcal{F}_{4}\right)$ is not needed, because it does not have a g.g.s.

Theorem 4.5. (1) If the restriction homomorphism $r_{0}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ is onto, then $\mathfrak{g}_{\infty, \text { sing }}^{*}$ does not contain divisors and Z is a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$.
(2) Conversely, if Z is maximal Poisson-commutative, then r_{0} is onto.

Proof. (1) The list of suitable symmetric pairs is quite short. For each item in the list, \mathfrak{g}_{0} contains a nilpotent element that is regular in \mathfrak{g}. This implies that every fibre of the quotient morphism $\mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0} / / G_{0}$ contains a regular element of \mathfrak{g} and hence $\left(\mathfrak{g}_{0}\right)_{\text {reg }}^{*} \subset \mathfrak{g}_{\text {reg }}^{*}$. Thus, $\operatorname{dim}\left(\mathfrak{g}_{\text {sing }}^{*} \cap \mathfrak{g}_{0}\right) \leqslant \operatorname{dim} \mathfrak{g}_{0}-3$. Since $\mathrm{rk} \pi_{\infty}(\xi)=\mathrm{rk} \pi_{\infty}$ for each $\xi \in \mathfrak{g}_{0}^{*} \cap \mathfrak{g}_{\text {reg }}^{*}$ (Lemma 4.4), the subset $\mathfrak{g}_{\infty, \text { sing }}^{*}$ does not contain divisors. Therefore, the differentials $d\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ are linearly independent on a big open subset, in view of Lemma 4.3. Then, by Theorem 4.1, z is an algebraically closed subalgebra of $\mathcal{S}(\mathfrak{g})$. Since it is a Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ of the maximal possible transcendence degree, it is also maximal.
(2) If r_{0} is not onto, then the algebra generated by $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ and Z is Poisson-commutative, is contained in $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$, and properly contains Z.

Remark 4.6. (1) Consider the following four conditions:
(a) the restriction homomorphism $r_{0}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ is onto;
(b) \mathfrak{g}_{0} contains a regular nilpotent element of \mathfrak{g};
(c) $\mathfrak{g}_{\infty, \text { sing }}^{*}$ does not contain divisors;
(d) Z is a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$.

In the proof of Theorem $4.5(1)$, we have seen that $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d)$, whereas part (2) of Theorem 4.5 states that $(\mathrm{d}) \Rightarrow(\mathrm{a})$. Thus, all these conditions are equivalent. One can also give a direct proof for $(\mathrm{b}) \Rightarrow(\mathrm{a})$ that does not invoke $\mathfrak{g}_{(\infty)}$ and z. However, the implication $(a) \Rightarrow(b)$ is obtained case-by-case as yet.
(2) There is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ if and only if the restriction homomorphism $r_{1}: \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow$ $\mathbb{k}\left[\mathfrak{g}_{1}^{*}\right]^{\mathfrak{g}_{0}}$ is onto $\left[\mathrm{P} 07^{\prime}, \mathrm{Y} 14\right]$. Therefore, \mathbb{Z} is a polynomial maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$ whenever both r_{0} and r_{1} are onto.

Our ultimate goal is to prove that, in general, $\tilde{z}=\operatorname{alg}\left\langle\mathcal{Z}, \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}\right\rangle$ is a polynomial maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$. Unfortunately, the proof requires many technical preparations, if $\mathfrak{g}_{\infty, \text { sing }}^{*}$ contains divisors (i.e., r_{0} is not onto).

Lemma 4.7. Suppose that $\operatorname{dim} \mathfrak{g}_{\infty, \text { sing }}^{*}=n-1$, and let $D \subset \mathfrak{g}_{\infty, \text { sing }}^{*}$ be an irreducible component of dimension $n-1$. Then
(i) $D=D_{0} \times \mathfrak{g}_{1}^{*}$, where D_{0} is a G_{0}-stable conical divisor in \mathfrak{g}_{0}^{*}, and D_{0} does not contain regular elements of \mathfrak{g};
(ii) generic elements of D_{0} are semisimple, regular in $\mathfrak{g}_{0} \simeq \mathfrak{g}_{0}^{*}$, and subregular in \mathfrak{g};
(iii) $\mathrm{rk} \pi_{\infty}(\xi)=\mathrm{rk} \pi_{\infty}-2$ for generic point $\xi \in D$.

Proof. (i) This follows from Lemma 4.4.
(ii) If σ is inner, then \mathfrak{g}_{0} contains a Cartan subalgebra \mathfrak{t} of \mathfrak{g} and $\mathfrak{t} \cap D_{0}$ is a W_{0}-stable divisor in \mathfrak{t}, where W_{0} is the Weyl group of $\left(\mathfrak{g}_{0}, \mathfrak{t}\right)$. It is easily seen that any such divisor contains a subregular element of \mathfrak{g}.

The case of an outer σ is more involved. We use an argument, which is also valid for the inner case. If $\mathfrak{t}_{0} \subset \mathfrak{g}_{0}$ is a Cartan subalgebra of \mathfrak{g}_{0}, then a generic element $\nu \in D_{0} \cap \mathfrak{t}_{0}$ is either regular or subregular in \mathfrak{g}_{0}. Consider these two possibilities in turn.
(a) Suppose first that ν is regular in \mathfrak{g}_{0}. Then $\mathfrak{g}_{0}^{\nu}=\mathfrak{t}_{0}$ and therefore \mathfrak{g}^{ν} is a sum of a toral subalgebra and several copies, say k, of $\mathfrak{s l}_{2}$. Let \mathfrak{s}_{i} be the i-th copy of $\mathfrak{s l}_{2}$. Every such \mathfrak{s}_{i} is determined by a root β_{i} of \mathfrak{g}. That is,

$$
\mathfrak{s}_{i}=\mathfrak{g}_{-\beta_{i}} \oplus\left(\mathfrak{s}_{i}\right)^{\sigma} \oplus \mathfrak{g}_{\beta_{i}}
$$

Moreover, the one-dimensional subspace $\left(\mathfrak{s}_{i}\right)^{\sigma}$ is generated by the coroot β_{i}^{\vee}. It is also clear that $\left(\mathfrak{s}_{i}\right)^{\sigma} \subset \mathfrak{t}_{0}$ and β_{i}^{\vee} is orthogonal to ν. Assume that $k \geqslant 2$. Then ν is orthogonal to at least two different coroots. Since the number of relevant pairs $\left\{\beta_{i}, \beta_{j}\right\}$ is finite, we obtain that $D_{0} \cap \mathfrak{t}_{0}$ lies in a finite union of subspaces of \mathfrak{t}_{0} of codimension $\geqslant 2$. A contradiction! Hence $k \leqslant 1$. If $k=0$, then ν is regular in \mathfrak{g}, which is impossible, see (i). Thus, $k=1$ and ν is subregular in \mathfrak{g}.
(b) Suppose now that D_{0} does not contain regular semisimple elements of \mathfrak{g}_{0}. Our goal is to prove that this case does not occur.

Here $\mathfrak{t}_{0} \cap D_{0}$ is a union of reflection hyperplanes of W_{0}. Let \mathfrak{z}_{0} be one of these hyperplanes and $\nu \in \mathfrak{z}_{0}$ generic. Then $\mathfrak{g}_{0}^{\nu}=\mathfrak{s} \oplus \mathfrak{z}_{0}$, where $\mathfrak{s} \simeq \mathfrak{s l}_{2}$ and \mathfrak{z}_{0} is the centre of \mathfrak{g}_{0}^{ν}. Here $\left[\mathfrak{z}_{0}, \mathfrak{g}^{\nu}\right]=0$, since $\nu \in \mathfrak{z}_{0}$ is generic. Write $\mathfrak{g}^{\nu}=\mathfrak{h} \oplus \mathfrak{z}\left(\mathfrak{g}^{\nu}\right)$, where $\mathfrak{h}=\left[\mathfrak{g}^{\nu}, \mathfrak{g}^{\nu}\right]$ is semisimple. Then the symmetric pair $\left(\mathfrak{g}^{\nu}, \mathfrak{g}_{0}^{\nu}\right)$ decomposes as

$$
\left(\mathfrak{g}^{\nu}, \mathfrak{g}_{0}^{\nu}\right)=(\mathfrak{h}, \mathfrak{s}) \oplus\left(\mathfrak{z}\left(\mathfrak{g}^{\nu}\right), \mathfrak{z}_{0}\right)
$$

The only possibilities for the symmetric pair $(\mathfrak{h}, \mathfrak{s})$ are:

$$
\left(\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}, \mathfrak{s l}_{2}\right),\left(\mathfrak{s l}_{3}, \mathfrak{s o}_{3} \simeq \mathfrak{s l}_{2}\right),\left(\mathfrak{s l}_{2}, \mathfrak{s l}_{2}\right) .
$$

For $\mathfrak{s}=\left[\mathfrak{g}_{0}^{\nu}, \mathfrak{g}_{0}^{\nu}\right]$, the intersection $D_{0} \cap(\mathbb{k} \nu \oplus \mathfrak{s})$ is a conical divisor of $\mathbb{k} \nu \oplus \mathfrak{s}$ that contains ν. If $\eta \in \mathfrak{s}$ is non-zero semisimple, then $\nu+\eta \in\left(\mathfrak{g}_{0}\right)_{\text {reg }}$ is semisimple. Hence $\nu+\eta \notin D_{0}$. Therefore, $D_{0} \cap(\mathbb{k} \nu \oplus \mathfrak{s})$ has to contain a sum $\nu+e$, where $e \in \mathfrak{s}$ is regular nilpotent. For all pairs in (4.2), e is also regular in \mathfrak{h}. Hence e is a regular element of \mathfrak{g}^{ν}. Thereby $\nu+e$ is a regular element of \mathfrak{g}. However, this contradicts part (i).

Therefore, case (b) does not materialise and, according to (a), D_{0} contains a semisimple element ν that is regular in \mathfrak{g}_{0} and subregular in \mathfrak{g}. Since $D_{0} \cap \mathfrak{g}_{\mathrm{reg}}=\varnothing$, subregular semisimple elements of \mathfrak{g} are dense in D_{0}.
(iii) Since ν is regular in \mathfrak{g}_{0} and subregular in \mathfrak{g}, we have $\operatorname{dim} \mathfrak{g}_{0}^{\nu}=\mathrm{rk} \mathfrak{g}_{0}$ and $\operatorname{dim} \mathfrak{g}_{1}^{\nu}=$ $\mathrm{rk} \mathfrak{g}+2-\mathrm{rk} \mathfrak{g}_{0}$. The latter precisely means that $\mathrm{rk} \pi_{\infty}(\nu)=\mathrm{rk} \pi_{\infty}-2$ for ν in a non-empty open subset of D_{0}. This completes the proof.

Example 4.8. Let $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)=\left(\mathfrak{s l}_{2 n}, \mathfrak{s o}_{2 n}\right)$. Then $D_{0} \subset \mathfrak{g}_{0}$ is the zero set of the Pfaffian. If \mathfrak{g}_{0} consists of skew-symmetric matrices with respect to the antidiagonal, then

$$
x=\operatorname{diag}\left(a_{1}, \ldots, a_{n-1}, 0,0,-a_{n-1}, \ldots,-a_{1}\right) \in D_{0}
$$

is subregular whenever all a_{i} are nonzero and $a_{i} \neq \pm a_{j}$ for $i \neq j$.

Recall that $\left\{H_{i}\right\}$ is a g.g.s. for σ such that $\sigma\left(H_{i}\right)=\varepsilon_{i} H_{i}= \pm H_{i}$ for each i. As before, $d_{i}=\operatorname{deg} H_{i}$ and $l=\mathrm{rk} \mathfrak{g}$. Until the end of this section, we assume that $d_{1} \leqslant \cdots \leqslant d_{l}$. If \mathfrak{g} is simple, then there is a unique basic invariant of degree d_{l}, i.e., $d_{l-1}<d_{l}$.

Lemma 4.9. If \mathfrak{g} is simple and $x \in \mathfrak{g}$ is subregular, then the differentials $\left\{d_{x} H_{i} \mid i<l\right\}$ are linearly independent. Moreover, $\sigma\left(H_{l}\right)=H_{l}$ unless $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)=\left(\mathfrak{s l}_{2 k+1}, \mathfrak{s o}_{2 k+1}\right)$, where $l=2 k$ and $d_{l}=2 k+1$.

Proof. Let $e \in \mathfrak{g}$ be a subregular nilpotent element. Then $d_{e} H_{l}=0$ [V68, Corollary 2] and $\left\{d_{e} H_{i} \mid i<l\right\}$ are linearly independent [S180, Chapter 8.2]. If x is subregular and nonnilpotent, then the theory of associated cones developed in [BK79, §3] shows that $G e \subset$ $\overline{\mathbb{k}^{\times}(G x)}$. This implies that $d_{x} H_{i}$ with $i<l$ are linearly independent, too.

The equality $\sigma\left(H_{l}\right)=H_{l}$ is obvious for the inner involutions. If σ is outer, then going through the list of outer involutions, one checks that $\sigma\left(H_{l}\right)=-H_{l}$ if and only if $\mathfrak{g}=\mathfrak{s l}_{2 k+1}$ and $l=2 k$. Here necessary $\mathfrak{g}_{0}=\mathfrak{s o}_{2 k+1}$.

We need below some formulae for the differential and partial derivatives of a homogeneous polynomial $F \in \mathcal{S}(\mathfrak{g})=\mathbb{k}\left[\mathfrak{g}^{*}\right]$. If $x \in \mathfrak{g}^{*}$ and $d=\operatorname{deg} F$, then $\partial_{x}^{d-1} F$ is a linear form on \mathfrak{g}^{*}, i.e., an element of \mathfrak{g}. In fact, one has

$$
(d-1)!d_{x} F=\partial_{x}^{d-1} F
$$

By linearity, it suffices to check this for a monomial of degree d. Furthermore, for the operator $\partial_{x+s x^{\prime}}^{k}: \mathfrak{S}^{m}(\mathfrak{g}) \rightarrow \mathcal{S}^{m-k}(\mathfrak{g})$ with $x, x^{\prime} \in \mathfrak{g}^{*}$ and $s \in \mathbb{k}$, there is the following expansion:

$$
\partial_{x+s x^{\prime}}^{k}=\partial_{x}^{k}+\binom{k}{1} s \partial_{x^{\prime}} \partial_{x}^{k-1}+\cdots+\binom{k}{i} s^{i} \partial_{x^{\prime}}^{i} \partial_{x}^{k-i}+\cdots+s^{k} \partial_{x^{\prime}}^{k} .
$$

Lemma 4.10. Suppose that the restriction homomorphism r_{0} is not onto (equivalently, $\mathfrak{g}_{\infty, \text { sing }}^{*}$ contains divisors). Then
(i) there is $x \in \mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$ such that x is semisimple, regular in \mathfrak{g}_{0}, and subregular in \mathfrak{g} (i.e., $\left.\operatorname{dim} \mathfrak{g}^{x}=\mathrm{rk} \mathfrak{g}+2\right)$. Moreover, for a generic $x^{\prime} \in \mathfrak{g}_{1}^{*} \simeq \mathfrak{g}_{1}$, we have $y:=x+x^{\prime} \in \mathfrak{g}_{\mathrm{reg}}$;
(ii) $\lim _{t \rightarrow \infty}\left\langle d_{y} F \mid F \in \mathcal{Z}_{t}\right\rangle_{\mathfrak{k}}=\lim _{s \rightarrow 0} \varphi_{s}\left(\mathfrak{g}^{x+s x^{\prime}}\right)(=: \mathbb{V})$;
(iii) $\operatorname{dim}\left(\mathbb{V} / \mathbb{V} \cap \mathfrak{g}_{0}\right)=\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}+1$.

Proof. (i) The existence of such an x follows from Lemma 4.7. Then $\mathfrak{g}_{0}^{x}=\mathfrak{t}_{0}$ and if x^{\prime} is a generic element of \mathfrak{g}_{1}^{x}, then y is regular in \mathfrak{g}. Hence $x+x^{\prime} \in \mathfrak{g}_{\text {reg }}$ for almost all $x^{\prime} \in \mathfrak{g}_{1}$.
(ii) By the definition of $\{,\}_{t}$, we have $\mathcal{Z}_{t}=\varphi_{s}^{-1}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ if $t \neq 0, \infty$ and $s^{2}=t$. Let $\varphi_{s}^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ be the dual map, i.e., $\left.\varphi_{s}^{*}\right|_{\mathfrak{g}_{0}^{*}}=\mathrm{id},\left.\varphi_{s}^{*}\right|_{\mathfrak{g}_{1}^{*}}=s^{-1}$.id. For any $F \in \mathcal{S}(\mathfrak{g})$, we have $\varphi_{s}\left(d_{y} F\right)=d_{\varphi_{s}^{*}(y)} \varphi_{s}(F)$. In particular,

$$
d_{y} \varphi_{s}^{-1}\left(H_{i}\right)=\varphi_{s}^{-1}\left(d_{\varphi_{s}^{*}(y)} H_{i}\right)
$$

where $\varphi_{s}^{*}(y)=x+s^{-1} x^{\prime}$. If s tends to ∞, then s^{-1} tends to 0 . It remains to notice, that for almost all s, the element $x+s x^{\prime}$ is regular and then $\mathfrak{g}^{x+s x^{\prime}}$ is the linear span of $\left\{d_{x+s x^{\prime}} H_{j}\right\}_{j=1}^{l}$, see Eq. (2•1).
(iii) The hypothesis that r_{0} is not onto excludes the pairs $(\mathfrak{h} \oplus \mathfrak{h}, \mathfrak{h})$ and $\left(\mathfrak{s l}_{2 k+1}, \mathfrak{s o}_{2 k+1}\right)$. Hence \mathfrak{g} is simple and, by Lemma 4.9, $d_{x} H_{1}, \ldots, d_{x} H_{l-1}$ are linearly independent, $d_{x} H_{l}$ is a linear combination of $d_{x} H_{j}$ with $j<l$, and $\sigma\left(H_{l}\right)=H_{l}$. Since x is semisimple and subregular, $\mathfrak{g}^{x}=\mathfrak{z}\left(\mathfrak{g}^{x}\right) \oplus \mathfrak{s l}_{2}$ and $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}^{x}\right)=l-1$. Hence $\mathfrak{z}\left(\mathfrak{g}^{x}\right)=\left\langle d_{x} H_{i} \mid i<l\right\rangle_{\mathfrak{k}}$.

Take $j<l$ and set $m_{j}=d_{j}-1$. Then by Eq. (4.3) and by Eq. (4.4) with $k=m_{j}$, we have

$$
\begin{aligned}
\left(m_{j}\right)!d_{x+s x^{\prime}} H_{j}=\partial_{x+s x^{\prime}}^{m_{j}} H_{j} & =\sum_{i=0}^{m_{j}}\binom{m_{j}}{i} s^{i} \partial_{x^{\prime}}^{i} \partial_{x}^{m_{j}-i} H_{j}, \\
\left(m_{j}\right)!\sigma\left(d_{x+s x^{\prime}} H_{j}\right)=\partial_{x-s x^{\prime}}^{m_{j}} \sigma\left(H_{j}\right) & =\sum_{i=0}^{m_{j}}\binom{m_{j}}{i}(-s)^{i} \partial_{x^{\prime}}^{i} \partial_{x}^{m_{j}-i} \sigma\left(H_{j}\right) .
\end{aligned}
$$

It follows that $\partial_{x^{\prime}}^{i} \partial_{x}^{m_{j}-i} H_{j} \in \mathfrak{g}_{0}$ if and only if either i is even and $\sigma\left(H_{j}\right)=H_{j}$ or i is odd and $\sigma\left(H_{j}\right)=-H_{j}$. Therefore,

- if $\sigma\left(H_{j}\right)=H_{j}$, then $\lim _{s \rightarrow 0} \varphi_{s}\left(d_{x+s x^{\prime}} H_{j}\right)=d_{x} H_{j} \in \mathfrak{g}_{0}$; while
- if $\sigma\left(H_{j}\right)=-H_{j}$, then $d_{x} H_{j} \in \mathfrak{g}_{1}$ and

$$
\begin{aligned}
\left(m_{j}\right)!\varphi_{s}\left(d_{x+s x^{\prime}} H_{j}\right)=s\left(\partial_{x}^{m_{j}} H_{j}+m_{j} \partial_{x^{\prime}} \partial_{x}^{m_{j}-1} H_{j}\right) & +(\text { terms of degree } \geqslant 2 \text { w.r.t. } s) \\
& =s\left(\left(m_{j}\right)!d_{x} H_{j}+m_{j} \partial_{x^{\prime}} \partial_{x}^{m_{j}-1} H_{j}\right)+\ldots
\end{aligned}
$$

Thus, if $\sigma\left(H_{j}\right)=-H_{j}$, then

$$
\lim _{s \rightarrow 0}\left\langle\varphi_{s}\left(\boldsymbol{d}_{x+s x^{\prime}} H_{j}\right)\right\rangle_{\mathbb{k}}=\left\langle\boldsymbol{d}_{x} H_{j}+\frac{1}{\left(m_{j}-1\right)!} \cdot \partial_{x^{\prime}} \partial_{x}^{d_{j}-2} H_{j}\right\rangle_{\mathfrak{k}}
$$

Note that here $\partial_{x^{\prime}} \partial_{x}^{d_{j}-2} H_{j} \in \mathfrak{g}_{0}$. Write $\mathfrak{z}\left(\mathfrak{g}^{x}\right)=\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{0} \oplus \mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1}$, where $\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{i}=\mathfrak{z}\left(\mathfrak{g}^{x}\right) \cap \mathfrak{g}_{i}$. Then $\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1}=\left\langle d_{x} H_{j} \mid \sigma\left(H_{j}\right)=-H_{j}\right\rangle_{\mathfrak{k}}$ and $\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{0}=\left\langle d_{x} H_{j} \mid \sigma\left(H_{j}\right)=H_{j}, j \neq l\right\rangle_{\mathfrak{k}}$. Hence $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}^{x}\right)_{0}=\mathrm{rk} \mathfrak{g}_{0}-1$ and $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1}=\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}$.

Let \mathbf{p}_{1} denote the projection $\mathfrak{g} \rightarrow \mathfrak{g}_{1}$ along \mathfrak{g}_{0}. Then $\mathbf{p}_{1}(\mathbb{V})=\mathbb{V} /\left(\mathbb{V} \cap \mathfrak{g}_{0}\right)$ and our goal is to compute $\operatorname{dim} \mathbf{p}_{1}(\mathbb{V})$. By Eq. (4•5), we have $\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1} \subset \mathbf{p}_{1}(\mathbb{V})$.

For our further argument, some properties of $d_{x} H_{l} \in \mathfrak{g}_{0}^{x}$ are needed. It would be nice to have $d_{x} H_{l}=0$ for x as in (i). Since this is not always the case, we need a trick.

Let $\tilde{\mathfrak{g}}=\mathfrak{g} \oplus \mathfrak{c}$ be the central extension of \mathfrak{g}, where $\operatorname{dim} \mathfrak{c}=1$. We extend the \mathbb{Z}_{2}-grading to $\tilde{\mathfrak{g}}$ so that $\mathfrak{c} \subset \tilde{\mathfrak{g}}_{0}$ and φ_{s} to $\tilde{\mathfrak{g}}$ by letting $\left.\varphi_{s}\right|_{\mathfrak{c}}=$ id. Take non-zero $z \in \mathfrak{c}$ and $\gamma \in \mathfrak{c}^{*}$. Note that $\tilde{\mathfrak{g}}^{y+\gamma}=\tilde{\mathfrak{g}}^{y}$ for any $y \in \mathfrak{g}^{*}$. Therefore $\mathbb{V} \oplus \mathfrak{c}=\lim _{s \rightarrow 0} \varphi_{s}\left(\tilde{\mathfrak{g}}^{x+\gamma+s x^{\prime}}\right)$. Set $\boldsymbol{\zeta}=x+\gamma$. Then $\boldsymbol{\zeta} \in \tilde{\mathfrak{g}}^{*}$ is still subregular and $z(\boldsymbol{\zeta}) \neq 0$. Clearly, there is a linear combination

$$
\mathbf{H}_{l}=H_{l}+c_{l-1} z^{d_{l}-d_{l-1}} H_{l-1}+\ldots+c_{j} z^{d_{l}-d_{j}} H_{j}+\ldots+c_{0} z^{d_{l}}
$$

with $c_{i} \in \mathbb{k}$ such that $\partial_{\zeta}^{d_{l}-1} \mathbf{H}_{l}=d_{\zeta} \mathbf{H}_{l}=0$. Note that $z, H_{1}, \ldots, H_{l-1}, \mathbf{H}_{l}$ freely generate $\mathcal{Z S}(\tilde{\mathfrak{g}})$.

Let \mathcal{A}_{ζ} be the Mishchenko-Fomenko subalgebra of $\mathcal{S}(\tilde{\mathfrak{g}})$ associated with ζ. By definition, \mathcal{A}_{ζ} is generated by

$$
\left\{z, \partial_{\zeta}^{k} H_{j}\left(j<l, 0 \leqslant k \leqslant m_{j}\right), \partial_{\zeta}^{k} \mathbf{H}_{l}\left(0 \leqslant k \leqslant m_{l}-1\right)\right\}
$$

As the total number of these generators is $\boldsymbol{b}(\mathfrak{g})$ and tr.deg $\mathcal{A}_{\zeta}=\boldsymbol{b}(\tilde{\mathfrak{g}})-1=\boldsymbol{b}(\mathfrak{g})$ [MY, Lemma 2.1], we see that \mathcal{A}_{ζ} is freely generated by them. Note that the set in (4.6) contains a basis for the l-dimensional space $\mathfrak{z}\left(\mathfrak{g}^{x}\right) \oplus \mathfrak{c}=\mathfrak{z}\left(\tilde{\mathfrak{g}}^{\zeta}\right)$. Therefore, $F=\partial_{\zeta}^{m_{l}-1} \mathbf{H}_{l}$ does not lie in $\mathcal{S}^{2}\left(\mathfrak{z}\left(\mathfrak{g}^{x}\right) \oplus \mathfrak{c}\right)$. Since $\partial_{\zeta}^{m_{l}} \mathbf{H}_{l}=0$, the polynomial F is a $\tilde{\mathfrak{g}}^{\zeta}$-invariant in $\mathcal{S}^{2}\left(\tilde{\mathfrak{g}}^{\zeta}\right)$ [MY, Lemma 1.5]. It is clear that $\sigma(F)=F$ and therefore $F \in \mathcal{S}^{2}\left(\tilde{\mathfrak{g}}_{0}\right) \oplus \mathcal{S}^{2}\left(\mathfrak{g}_{1}\right)$. Now $\tilde{\mathfrak{g}}^{\zeta}=$ $\mathfrak{c} \oplus \mathfrak{g}^{x}=\mathfrak{c} \oplus \mathfrak{z}\left(\mathfrak{g}^{x}\right) \oplus \mathfrak{s l}_{2}$. There is a standard basis $\{e, h, f\}$ of this $\mathfrak{s l}_{2}$ such that $e, f \in \mathfrak{g}_{1}$ (cf. Example 2.2) and $F \in\left(4 e f+h^{2}\right)+\mathcal{S}^{2}\left(\mathfrak{z}\left(\mathfrak{g}^{x}\right) \oplus \mathfrak{c}\right)$.

If $x^{\prime} \in \mathfrak{g}_{1}^{*}$ is generic enough, then $\partial_{x^{\prime}} F=\eta+\xi$, where $\eta \in \mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1}$ and ξ is a non-zero element in $\langle e, f\rangle_{\mathfrak{k}} \subset \mathfrak{g}_{1}$. Note that in this case $\left(m_{l}-1\right)!d_{\zeta+s x^{\prime}} \mathbf{H}_{l}$ lies in $s \partial_{x^{\prime}} F+s^{2} \tilde{\mathfrak{g}}$. Further,

$$
\left(m_{l}-1\right)!\varphi_{s}\left(d_{\zeta+s x^{\prime}} \mathbf{H}_{l}\right)=s^{2}(\eta+\xi)+\frac{m_{l}-1}{2} s^{2} \partial_{x^{\prime}}^{2} \partial_{\zeta}^{d_{l}-3} \mathbf{H}_{l}+(\text { terms of degree } \geqslant 3 \text { w.r.t. } s)
$$

Here $\partial_{x^{\prime}}^{2} \partial_{\zeta}^{d_{l}-3} \mathbf{H}_{l} \in \mathfrak{g}_{0}$. Hence $\mathbf{p}_{1}(\mathbb{V})=\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1}+\mathbb{k}(\eta+\xi)=\mathfrak{z}\left(\mathfrak{g}^{x}\right)_{1} \oplus \mathbb{k} \xi$. The desired equality $\operatorname{dim} \mathbf{p}_{1}(\mathbb{V})=r k \mathfrak{g}-r k \mathfrak{g}_{0}+1$ follows.

Lemma 4.11. Let $y=x+x^{\prime}$ be as in Lemma 4.10 with x^{\prime} generic. Then the rank of the restriction of $\pi_{0}(y)$ to $\operatorname{ker} \pi_{\infty}(y)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{x}$ is equal to $\operatorname{dim}\left(\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{x}\right)-\mathrm{rk} \mathfrak{g}$.

Proof. Set $U=\operatorname{ker} \pi_{\infty}(x)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{x}$. Consider the maximal torus $\mathfrak{t}=\mathfrak{g}_{0}^{x}+\mathbb{k}^{l-1}$, where \mathbb{k}^{l-1} is the centre of \mathfrak{g}^{x}. The intersection $\mathfrak{t}_{0}=\mathfrak{g}_{0} \cap \mathfrak{t}=\mathfrak{g}_{0}^{x}$ is a Cartan subalgebra of \mathfrak{g}_{0}. Further, $\mathfrak{g}_{0}=\mathfrak{t}_{0} \oplus \mathfrak{m}$, where \mathfrak{m} is the \mathfrak{t}_{0}-stable complement of \mathfrak{t}_{0} in \mathfrak{g}_{0}. The torus \mathfrak{t} defines a finer decomposition of U, namely

$$
U=\mathfrak{m} \oplus \mathfrak{t}_{0} \oplus\left(\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right) \oplus \mathfrak{z}
$$

where $\mathfrak{g}_{ \pm \alpha}$ are root spaces and $\mathfrak{z} \simeq \mathbb{k}^{l-\mathrm{rk} \mathfrak{g}_{0}}$.
Choose a very particular x^{\prime}, namely as $x^{\prime}=\xi_{\alpha}-\xi_{-\alpha}$ with non-zero root vectors $\xi_{\alpha} \in \mathfrak{g}_{\alpha}$, $\xi_{-\alpha} \in \mathfrak{g}_{-\alpha}$ under the usual identification $\mathfrak{g}_{1} \simeq \mathfrak{g}_{1}^{*}$. Then the matrix of $\left(\left.\pi_{0}(y)\right|_{U}\right)$ with respect to a basis for U adapted to the above finer decomposition has a block form with easy to understand blocks (see Fig. 1):

- $\pi_{0}(y)$ is non-degenerate on \mathfrak{m};
- $\pi_{0}(y)\left(\mathfrak{m}, \mathfrak{t}_{0} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right)=0$;
- $\pi_{0}(y)\left(\mathfrak{t}_{0}, \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right) \neq 0$.

Fig. 1. The block structure of $\left.\pi_{0}(y)\right|_{U}$
This is enough to see that the rank of $\pi_{0}(y)$ on $\mathfrak{g}_{0} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ is at least $\operatorname{dim} \mathfrak{g}_{0}-r k \mathfrak{g}_{0}+2$. Hence $\mathrm{rk}\left(\left.\pi_{0}(y)\right|_{U}\right) \geqslant \operatorname{dim} U-\mathrm{rk} \mathfrak{g}$. This happens for one, not exactly generic x^{\prime}, however, the generic value cannot be smaller and it also cannot be larger by Lemma A.3.

The algebra $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ is contained in the Poisson centre of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$. Let \tilde{z} be the (Poissoncommutative) subalgebra of $\mathcal{S}(\mathfrak{g})$ generated by \mathcal{Z} and $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. If H_{1}, \ldots, H_{l} is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ such that $\sigma\left(H_{i}\right)= \pm H_{i}$ for each i, then \tilde{z} is freely generated by $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ with $i \neq d_{j}$ and a set of basic invariants $\tilde{H}_{1}, \ldots, \tilde{H}_{\text {rk } \mathfrak{g}_{0}} \in \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. In other words, a set of basic invariants of \tilde{z} is obtained from that of \mathcal{Z} if one replaces the generators of $r_{0}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ with the free generators of $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. [Recall that $\left(H_{j}\right)_{\left(d_{j}, 0\right)} \neq 0$ if and only if $\varepsilon_{j}=1$ and there are rk \mathfrak{g}_{0} such indices j, see Remark 3.8.]

Theorem 4.12. (i) The differentials of the algebraically independent generators of $\tilde{\mathcal{z}}$, chosen among $\left\{\left(H_{j}\right)_{\left(i, d_{j}-i\right)}\right\}$ and $\left\{\tilde{H}_{j}\right\}$, as above, are linearly independent on a big open subset of \mathfrak{g}^{*}.
(ii) The algebra \tilde{z} is a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}_{0}}$.

Proof. (i) Assume that the differentials of the chosen algebraically independent generators of \tilde{z} are linearly dependent at each point y of an irreducible divisor $D \subset \mathfrak{g}^{*}$. Since $z \subset \tilde{z}$, the same holds for $d\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$. Then $D \subset \mathfrak{g}_{\infty, \text { sing }}^{*}$ by Lemma 4.3 and $D=D_{0} \times \mathfrak{g}_{1}^{*}$ by Lemma 4.7(i). Let $y=x+x^{\prime}$ be a generic element of D.

Recall that $d_{y} z$ stands for the linear span of $d_{y} F$ with $F \in \mathcal{Z}$. We have

$$
d_{y} z=\sum_{t \neq \infty} d_{y} \mathcal{Z}_{t}
$$

According to Lemma $4.2, y \in \mathfrak{g}_{(t), \text { reg }}^{*}$ for each $t \neq \infty$. Hence $d_{y} \mathcal{Z}_{t}=\operatorname{ker} \pi_{t}(y)$ whenever $t \neq$ ∞. By Lemma 4.7(iii), rk $\pi_{\infty}(y)=r k \pi_{\infty}-2$. Combining Lemmas 4.7(ii), 4.10(i), and 4.11,
we see that the rank of the restriction of $\pi_{0}(y)$ to $\operatorname{ker} \pi_{\infty}(y)$ is equal to $\operatorname{dim} \operatorname{ker} \pi_{\infty}(y)-\mathrm{rk} \mathfrak{g}$. Now Theorem A. 4 applies and asserts that

$$
\operatorname{dim}\left(d_{y} z / d_{y} z \cap \operatorname{ker} \pi_{\infty}(y)\right)=\frac{1}{2} \mathrm{rk} \pi_{\infty}(y)=\frac{1}{2} \mathrm{rk} \pi_{\infty}-1
$$

By construction, $\mathbb{V} \subset d_{y} \mathcal{Z} \cap \operatorname{ker} \pi_{\infty}(y)$. Recall that $\operatorname{ker} \pi_{\infty}(y)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{x}$. In view of (4.7) and Lemma 4.10(iii), we have

$$
\operatorname{dim}\left(d_{y} z / d_{y} z \cap \mathfrak{g}_{0}\right) \geqslant \frac{1}{2} \mathrm{rk} \pi_{\infty}-1+\left(\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}+1\right)=\frac{1}{2} \mathrm{rk} \pi_{\infty}+\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}
$$

The differentials $\left\{\boldsymbol{d}_{x} \tilde{H}_{j} \mid j=1, \ldots, r \mathrm{r} \mathfrak{g}_{0}\right\}$ are linearly independent and lie in \mathfrak{g}_{0}. Hence

$$
\operatorname{dim} d_{y} z \geqslant \frac{1}{2} \mathrm{rk} \pi_{\infty}+\mathrm{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{g}_{0}+\mathrm{rk} \mathfrak{g}_{0}=\operatorname{tr} \cdot \operatorname{deg} \mathcal{Z}
$$

Now we see that the differentials of all the generators of \tilde{z} are linearly independent at y. A contradiction!

Part (ii) follows from (i) and Theorem 4.1.
Remark. In the jargon of completely integrable systems, which is used e.g. in [MF78, B91], Eq. (4.7) means that the restriction of z to the symplectic leaf of $\{,\}_{\infty}$ at y is a "complete family in involution".

5. FANCY IDENTITIES FOR POISSON TENSORS

In this section, the existence of a g.g.s. is of no importance, any indecomposable symmetric pair $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is admitted.

Let ω be the standard n-form on \mathfrak{g}^{*}, where $n=\operatorname{dim} \mathfrak{g}$, and let π be the Poisson tensor (bivector) of the Lie-Poisson bracket on \mathfrak{g}^{*}, see Section 1.1. Having a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathfrak{g}, one can write

$$
\pi=\sum_{i<j}\left[e_{i}, e_{j}\right] \otimes \partial_{i} \wedge \partial_{j}, \text { where } \partial_{i}=\partial_{e_{i}}
$$

For simplicity, we identify \mathcal{W}^{1} with $\mathcal{S}(\mathfrak{g}) \otimes \mathfrak{g}^{*}$ and ∂_{i} with e_{i}^{*}, where e_{i}^{*} are the elements of the dual basis $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\} \subset \mathfrak{g}^{*}$. We also identify $d e_{i}$ with e_{i} and therefore Ω^{1} with $\mathcal{S}(\mathfrak{g}) \otimes \mathfrak{g}$.

For any $k>0$, set

$$
\bigwedge^{k} \pi=\underbrace{\pi \wedge \pi \wedge \ldots \wedge \pi}_{k \text { factors }}
$$

and regard it as an element of $\mathfrak{S}^{k}(\mathfrak{g}) \otimes \bigwedge^{2 k} \mathfrak{g}^{*}$. Then $\bigwedge^{(n-l) / 2} \pi \neq 0$ and all higher exterior powers of π are zero. There is a formula describing $\Lambda^{(n-l) / 2} \pi$ in terms of the Poisson centre of $\mathcal{S}(\mathfrak{g})$. Applying the $\operatorname{map} \varphi_{s}^{-1}$, one obtains a similar formula for $\varphi_{s}^{-1}(\pi)$, which is the Poisson tensor of $\{,\}_{s}$, in terms of the Poisson centre of $\left(\mathcal{S}(\mathfrak{g}),\{,\}_{s}\right)$. The main idea of [Y14] was to consider the minimal s-components of both sides. Here we consider the maximal s-components and obtain interesting new identities.

By definition, $d F \in \Omega^{1}$ for each $F \in \mathcal{S}(\mathfrak{g})$. Take $H_{1}, \ldots, H_{l} \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. Then

$$
d H_{1} \wedge \ldots \wedge d H_{l} \in \mathcal{S}(\mathfrak{g}) \otimes \bigwedge^{l} \mathfrak{g}
$$

At the same time, $\bigwedge^{(n-l) / 2} \pi \in \mathcal{S}(\mathfrak{g}) \otimes \bigwedge^{n-l} \mathfrak{g}^{*}$. The volume form ω defines a non-degenerate pairing between $\bigwedge^{l} \mathfrak{g}$ and $\bigwedge^{n-l} \mathfrak{g}$. If $u \in \Lambda^{l} \mathfrak{g}$ and $v \in \Lambda^{n-l} \mathfrak{g}$, then $u \wedge v=c \omega$ with $c \in \mathbb{k}$. We write this as $\frac{u \wedge v}{\omega}=c$ and let $\frac{u}{\omega}$ be the element of $\left(\bigwedge^{n-l} \mathfrak{g}\right)^{*}$ such that $\frac{u}{\omega}(v)=\frac{u \wedge v}{\omega}$. For any $\mathbf{u} \in \mathcal{S}(\mathfrak{g}) \otimes \bigwedge^{l} \mathfrak{g}$, we let $\frac{\mathbf{u}}{\omega}$ be the corresponding element of

$$
\mathcal{S}(\mathfrak{g}) \otimes\left(\bigwedge^{n-l} \mathfrak{g}\right)^{*} \cong \mathcal{S}(\mathfrak{g}) \otimes \bigwedge^{n-l} \mathfrak{g}^{*}
$$

There is a Poisson interpretation of the Kostant regularity criterion [K63, Theorem 9], see also Eq. (2•1), the so-called Kostant identity (see [Y14]):

$$
\frac{d H_{1} \wedge \cdots \wedge d H_{l}}{\omega}=\bigwedge^{(n-l) / 2} \pi
$$

The identity holds if the basic invariants are normalised correctly. It still holds if we apply φ_{s}^{-1} to both sides.

Suppose that σ is outer and $\sigma\left(H_{j}\right)=-H_{j}$. Then

$$
d\left(H_{j}\right)_{\left(d_{j}-1,1\right)} \in \underbrace{\mathcal{S}^{d_{j}-1}\left(\mathfrak{g}_{0}\right) \otimes \bigwedge^{1} \mathfrak{g}_{1}}_{I} \oplus \underbrace{\mathfrak{g}_{1} \mathcal{S}^{d_{j}-2}\left(\mathfrak{g}_{0}\right) \otimes \bigwedge^{1} \mathfrak{g}_{0}}_{I I}
$$

Let $d H_{j}^{[1]}$ stand for the component of the first type. This is a 1-form on \mathfrak{g}^{*}. Suppose that $\sigma\left(H_{i}\right)=H_{i}$ for $i \leqslant k$ and $\sigma\left(H_{i}\right)=-H_{i}$ for $i>k$. Then $k=\mathrm{rk} \mathfrak{g}_{0}$ here, cf. Lemma 3.5.

Let $\pi_{\mathfrak{g}_{0}}$ denote the Poisson tensor of \mathfrak{g}_{0}. Since \mathfrak{g}_{0} is reductive, $\Lambda^{\left(\operatorname{dim} \mathfrak{g}_{0}-r k \mathfrak{g}_{0}\right) / 2} \pi_{\mathfrak{g}_{0}}$ is nonzero on the big open subset $\left(\mathfrak{g}_{0}^{*}\right)_{\text {reg }}$.

Proposition 5.1. If σ is an inner involution, then

$$
\frac{d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \cdots \wedge d\left(H_{l}\right)_{\left(d_{l}, 0\right)}}{\omega}=\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}\right) / 2} \pi_{\infty} \otimes \bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{0}-l\right) / 2} \pi_{\mathfrak{g}_{0}}
$$

If σ is an outer involution, then

$$
\begin{align*}
& \frac{d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \cdots \wedge d\left(H_{k}\right)_{\left(d_{k}, 0\right)} \otimes d H_{k+1}^{[1]}}{} \wedge \cdots \wedge d H_{l}^{[1]} \\
& \omega=\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}-l+k\right) / 2} \pi_{\infty} \otimes \bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{0}-k\right) / 2} \pi_{\mathfrak{g}_{0}}
\end{align*}
$$

Proof. The product $d H_{1} \wedge \cdots \wedge d H_{l}$ is an l-form on \mathfrak{g}^{*} with polynomial coefficients. Among these coefficients, we are interested in those that have the maximal possible degree in \mathfrak{g}_{0}. It is not difficult to see that the degree in question is equal to $\boldsymbol{b}(\mathfrak{g})-l=(n-l) / 2$ and that the corresponding l-form is either $d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \cdots \wedge d\left(H_{l}\right)_{\left(d_{l}, 0\right)}$ in the inner case or

$$
d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \cdots \wedge d\left(H_{k}\right)_{\left(d_{k}, 0\right)} \otimes d H_{k+1}^{[1]} \wedge \cdots \wedge d H_{l}^{[1]}
$$

in the outer case. For the first one, we have

$$
\frac{d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \cdots \wedge d\left(H_{l}\right)_{\left(d_{l}, 0\right)}}{\omega} \in \mathcal{S}^{(n-l) / 2}\left(\mathfrak{g}_{0}\right) \otimes \bigwedge^{\operatorname{dim} \mathfrak{g}_{0}-l} \mathfrak{g}_{0}^{*} \otimes \bigwedge^{\operatorname{dim} \mathfrak{g}_{1}} \mathfrak{g}_{1}^{*}
$$

In case of an outer involution σ, the $(n-l)$-vector belongs to

$$
\mathcal{S}^{(n-l) / 2}\left(\mathfrak{g}_{0}\right) \otimes \bigwedge^{\operatorname{dim} \mathfrak{g}_{0}-k} \mathfrak{g}_{0}^{*} \otimes \bigwedge^{\operatorname{dim} \mathfrak{g}_{1}-l+k} \mathfrak{g}_{1}^{*}
$$

The right hand side of the Kostant identity is a polyvector with polynomial coefficients of degree $\boldsymbol{b}(\mathfrak{g})-l$. If $\xi \otimes(x \wedge y)$ is a summand of π and $\xi \in \mathfrak{g}_{0}$, then either $x, y \in \mathfrak{g}_{1}^{*}$ or $x, y \in \mathfrak{g}_{0}^{*}$. This justifies the right hand sides of (5.1) and (5.2).

If σ is inner, then $\left\{\left(H_{i}\right)_{\left(d_{i}, 0\right)}\right\}$ are algebraically independent. Hence also the right hand side of (5•1) is nonzero. In particular, $\bigwedge^{\operatorname{dim} \mathfrak{g}_{1} / 2} \pi_{\infty} \neq 0$ in complete accordance with Lemma 2.1. If σ is outer, then $\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}-l+k\right) / 2} \pi_{\infty} \neq 0$ by Lemma 2.1. It is also clear that $\Lambda^{\left(\operatorname{dim} \mathfrak{g}_{0}-k\right) / 2} \pi_{\mathfrak{g}_{0}} \neq 0$. Therefore the left hand side of (5.2) is nonzero, too.

Suppose that σ is inner. Then $\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}\right) / 2} \pi_{\infty}=F \cdot x_{1} \wedge \ldots \wedge x_{\operatorname{dim} \mathfrak{g}_{1}}$, where $F \in \mathcal{S}^{\operatorname{dim} \mathfrak{g}_{1}}\left(\mathfrak{g}_{0}\right)$ and $\left\{x_{j}\right\}$ is a basis for \mathfrak{g}_{1}^{*}. The zero set of F is exactly $\mathfrak{g}_{\infty, \text { sing }}^{*}$. Under the identifications $\mathfrak{g}_{0} \simeq \mathfrak{g}_{0}^{*}$, we have that $F\left(\xi_{0}\right)=\operatorname{det}\left(\left.\operatorname{ad}\left(\xi_{0}\right)\right|_{\mathfrak{g}_{1}}\right)$ for $\xi_{0} \in \mathfrak{g}_{0}$.

Let $\left\{\tilde{H}_{1}, \ldots, \tilde{H}_{l}\right\}$ be a set of suitably normalised basic \mathfrak{g}_{0}-invariants in $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Then they satisfy the Kostant identity with $\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{0}-l\right) / 2} \pi_{\mathfrak{g}_{0}}$ on the right hand side. In other words, if ω_{0} is the volume form on \mathfrak{g}_{0}^{*}, then

$$
\frac{d \tilde{H}_{1} \wedge \cdots \wedge d \tilde{H}_{l}}{\omega_{0}}=\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{0}-l\right) / 2} \pi_{\mathfrak{g}_{0}}
$$

Plugging this identity into (5•1), we obtain the following statement.
Corollary 5.2. Keep the assumption that σ is inner and regard $\left(H_{j}\right)_{\left(d_{j}, 0\right)}$ as an element of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Then

$$
d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \ldots \wedge d\left(H_{l}\right)_{\left(d_{l}, 0\right)}=F \cdot d \tilde{H}_{1} \wedge \ldots \wedge d \tilde{H}_{l}
$$

where F is the same as above. Hence the differentials $\left\{d\left(H_{i}\right)_{\left(d_{i}, 0\right)}\right\}$ are linearly dependent exactly on the subset $\mathfrak{g}_{\infty, \text { sing }}^{*} \cup\left(\mathfrak{g}_{0}^{*}\right)_{\text {sing }}$.

Proposition 5.3. Let σ be an outer involution. Then $\left(H_{j}\right)_{\left(d_{j}-1,1\right)}$, where $k<j \leqslant l$, together with a basis $\left\{\xi_{1}, \ldots, \xi_{\operatorname{dim} \mathfrak{g}_{0}}\right\}$ of \mathfrak{g}_{0} freely generate \mathcal{Z}_{∞}. Further, there is $Q \in \mathcal{S}\left(\mathfrak{g}_{0}\right)$ such that

$$
Q \cdot \frac{\xi_{1} \wedge \ldots \wedge \xi_{\operatorname{dim} \mathfrak{g}_{0}} \wedge d H_{k+1}^{[1]} \wedge \ldots \wedge d H_{l}^{[1]}}{\omega}=\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}-l+k\right) / 2} \pi_{\infty}
$$

If Q is regarded as a function on \mathfrak{g}^{*}, then its zero locus is the maximal divisor of \mathfrak{g}^{*} contained in $\mathfrak{g}_{\infty, \text { sing }}^{*}$.

Proof. Set $P_{0}=\bigwedge_{i=1}^{\operatorname{dim} \mathfrak{g}_{0}} \xi_{i}, P_{1}=\bigwedge_{j=k+1}^{l} d H_{j}^{[1]}$, and $P=P_{0} \wedge P_{1}$. By the construction of $H_{j}^{[1]}$, we have also $P=P_{0} \wedge\left(\bigwedge_{j=k+1}^{l} d\left(H_{j}\right)_{\left(d_{j}-1,1\right)}\right)$.

Take $x \in \mathfrak{g}_{0}^{*}$. If $\sigma\left(H_{j}\right)=-H_{j}$, then $d_{x} H_{j}=d H_{j}^{[1]}(x)=d_{x}\left(H_{j}\right)_{\left(d_{j}-1,1\right)} \in \mathfrak{g}_{1}$. If $y=x+x^{\prime}$ with $x \in \mathfrak{g}_{0}^{*}, x^{\prime} \in \mathfrak{g}_{1}^{*}$, then $P(y)=P_{0} \wedge P_{1}(x)$. We wish to show that $P(y) \neq 0$ on a big open subset of \mathfrak{g}^{*}. This is equivalent to the claim that $P_{1}(x) \neq 0$ on a big open subset of \mathfrak{g}_{0}^{*}.

Assume that P_{1} is zero on an irreducible divisor $X \subset \mathfrak{g}_{0}^{*}$. By Lemma 4.2(ii), $x \in\left(\mathfrak{g}_{0}^{*}\right)_{\text {reg }}$ for a generic $x \in X$. If $x \in \mathfrak{g}_{0}^{*}$ is regular in \mathfrak{g}, then the elements $d_{x} H_{i}$ with $1 \leqslant i \leqslant l$ are linearly independent, see Eq. (2•1), and $P_{1}(x) \neq 0$. Thus, $\operatorname{dim} \mathfrak{g}^{x} \geqslant l+2$ for all $x \in X$ and $X \times \mathfrak{g}_{1} \subset \mathfrak{g}_{\infty, \text { sing }}^{*}$. This settles the claim for the cases, where r_{0} is surjective and $\mathfrak{g}_{\infty, \text { sing }}^{*}$ does not contain divisors.

Suppose that $\operatorname{dim} \mathfrak{g}_{\infty, \text { sing }}^{*}=n-1$. Let $x \in X$ be generic. By Lemma 4.7, $\operatorname{dim} \mathfrak{g}^{x}=l+2$. Lemma 4.9 states that the elements $d_{x} H_{j}$ with $\sigma\left(H_{j}\right)=-H_{j}$ are linearly independent. Thereby $P_{1}(x) \neq 0$. The claim is settled.

By Theorem 4.1, the subalgebra of $\mathcal{S}(\mathfrak{g})$ generated by $\left(H_{j}\right)_{\left(d_{j}-1,1\right)}$ with $k<j \leqslant l$ and ξ_{i} with $1 \leqslant i \leqslant \operatorname{dim} \mathfrak{g}_{0}$ is algebraically closed. Since it lies inside \mathcal{Z}_{∞} and has the same transcendence degree, $\operatorname{dim} \mathfrak{g}_{0}+(l-k)$, it coincides with \mathcal{Z}_{∞}.

Since P is non-zero on a big open subset, we have

$$
Q \cdot \frac{\xi_{1} \wedge \ldots \wedge \xi_{\operatorname{dim} \mathfrak{g}_{0}} \wedge d H_{k+1}^{[1]} \wedge \ldots \wedge d H_{l}^{[1]}}{\omega}=\bigwedge^{\left(\operatorname{dim} \mathfrak{g}_{1}-l+k\right) / 2} \pi_{\infty}
$$

for some $Q \in \mathcal{S}(\mathfrak{g})$, see e.g. [Y14, Section 2]. Since all the coefficients in the right hand side are elements of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$, we have $Q \in \mathcal{S}\left(\mathfrak{g}_{0}\right)$ as well.

Remark 5.4. If σ is inner, then $\operatorname{tr} . \operatorname{deg} \mathcal{Z}_{\infty}=\operatorname{dim} \mathfrak{g}_{0}$ and it is easily seen that $\mathcal{Z}_{\infty}=\mathcal{S}\left(\mathfrak{g}_{0}\right)$ as subalgebra of $\mathcal{S}\left(\mathfrak{g}_{(\infty)}\right)$. In particular, \mathcal{Z}_{∞} is always a polynomial algebra.

Combining Proposition 5.3 with Eq. (5.2) and the Kostant identity for \mathfrak{g}_{0}, we obtain the following assertion.

Corollary 5.5. Let $\tilde{H}_{1}, \ldots, \tilde{H}_{k}$ be properly normalised basic \mathfrak{g}_{0}-invariants in $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Then

$$
d\left(H_{1}\right)_{\left(d_{1}, 0\right)} \wedge \ldots \wedge d\left(H_{k}\right)_{\left(d_{k}, 0\right)}=Q \cdot d \tilde{H}_{1} \wedge \ldots \wedge d \tilde{H}_{k}
$$

in $\mathcal{S}\left(\mathfrak{g}_{0}\right) \otimes \bigwedge^{k} \mathfrak{g}_{0}$ with the same Q as in Proposition 5.3. The differentials $d\left(H_{1}\right)_{\left(d_{1}, 0\right)}, \ldots, d\left(H_{k}\right)_{\left(d_{k}, 0\right)}$ are linearly dependent exactly on the union of $\left(\mathfrak{g}_{0}^{*}\right)_{\text {sing }}$ with the zero set of Q.

Note that Q is the Pfaffian in the setting of Example 4.8.

6. FURTHER DEVELOPMENTS AND POSSIBLE APPLICATIONS

We believe that this paper is the beginning of a long exciting journey. Several applications of our construction are already available and are presented below. Goals further ahead are stated as conjectures.
6.1. Quantum perspectives. Let $\mathcal{U}(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g}. Given a Poissoncommutative subalgebra $\mathcal{C} \subset \mathcal{S}(\mathfrak{g})$, it is natural to ask whether there exists a commutative subalgebra $\widehat{\mathcal{C}} \subset \mathcal{U}(\mathfrak{g})$ such that $\operatorname{gr}(\widehat{\mathcal{C}})=\mathcal{C}$. This question was posed by Vinberg for the Mishchenko-Fomenko subalgebras [Vi91], and it is known nowadays as Vinberg's problem. For the semisimple \mathfrak{g}, the first conceptual solution was obtained in [R06]. The rôle of the symmetrisation map $\varpi: \mathcal{S}(\mathfrak{g}) \rightarrow \mathcal{U}(\mathfrak{g})$ in that quantisation for the classical \mathfrak{g} is explained in [MY].

Conjecture 6.1. Suppose that there is a g.g.s. for σ. Let $\widehat{\mathcal{z}}$ be the subalgebra of $\mathcal{U}(\mathfrak{g})$ generated by $\varpi\left(\left(H_{j}\right)_{\left(i, d_{j}-i\right)}\right)$ with $1 \leqslant i \leqslant l, 0 \leqslant i \leqslant d_{i}$. Then \widehat{z} is commutative and $\operatorname{gr}(\widehat{\mathcal{z}})=z$.

For the symmetric pairs $\left(\mathfrak{g l}_{n+m}, \mathfrak{g l}_{n} \oplus \mathfrak{g l}_{m}\right),\left(\mathfrak{s p}_{2(n+m)}, \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2 m}\right)$, and $\left(\mathfrak{s o}_{n+m}, \mathfrak{s o}_{n} \oplus \mathfrak{s o}_{m}\right)$, there might be a connection between \widehat{z} and commutative subalgebras of Yangians or twisted Yangians.

The Yangian $Y\left(\mathfrak{g l}_{m}\right)$ is a deformation of the enveloping algebra $\mathcal{U}\left(\mathfrak{g l}_{m}[z]\right)$ of the current algebra $\mathfrak{g l}_{m}[z]$ given by explicit generators and relations. Then $\mathcal{U}\left(\mathfrak{g l}_{m}\right)$ is a subalgebra of $Y\left(\mathfrak{g l}_{m}\right)$. The facts on Yangians, which are used below, can be found in [M07], see in particular Chapter 8 therein. The most relevant for us is the centraliser construction of Olshanski [O91] and Molev-Olshanski [MO00]. For any n, there is an almost surjective map

$$
\Psi_{n}: Y\left(\mathfrak{g l}_{m}\right) \rightarrow \mathcal{U}\left(\mathfrak{g l}_{n+m}\right)^{\mathfrak{g l}_{n}}
$$

where the words "almost surjective" mean that $\mathcal{U}\left(\mathfrak{g l}_{n+m}\right)^{\mathfrak{g l}_{n}}$ is generated by the image of $Y\left(\mathfrak{g l}_{m}\right)$ and $\mathcal{U}\left(\mathfrak{g l}_{n}\right)^{\mathfrak{g l}_{n}}$. It is known that, for a fixed $m, \bigcap_{n \geqslant 1} \operatorname{ker} \Psi_{n}=0$.

Question 6.2. Is there a commutative subalgebra $\mathcal{B} \subset Y\left(\mathfrak{g l}_{m}\right)$ such that $\operatorname{gr}\left(\Psi_{n}(\mathcal{B})\right)$ together with $\mathcal{Z S}\left(\mathfrak{g}_{0}\right)$ generate $\tilde{\mathcal{Z}} \subset \mathcal{S}\left(\mathfrak{g l}_{m} \oplus \mathfrak{g l}_{n}\right)$?

Let $Y\left(\mathfrak{s p}_{2 m}\right) \subset Y\left(\mathfrak{g l}_{2 m}\right)$ be the twisted Yangian in the sense of G. Olshanski. Here $\mathcal{U}\left(\mathfrak{s p}_{2 m}\right) \subset Y\left(\mathfrak{s p}_{2 m}\right)$ and there is again an almost surjective map

$$
\Psi_{n}: Y\left(\mathfrak{s p}_{2 m}\right) \rightarrow \mathcal{U}\left(\mathfrak{s p}_{2 n+2 m}\right)^{\mathfrak{s p}_{2 n}} .
$$

Then one can pose an analogous question. A similar situation occurs for $Y\left(\mathfrak{s o}_{m}\right) \subset Y\left(\mathfrak{g l}_{m}\right)$ and $\mathcal{U}\left(\mathfrak{s o}_{n+m}\right)$ with n even.

Any natural quantisation of \mathcal{Z} has to provide a commutative subalgebra $\widehat{\mathcal{Z}} \subset \mathcal{U}(\mathfrak{g})^{\mathfrak{g}_{0}}$. By adding $\mathcal{U}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ one obtains the related quantisation $\widehat{\tilde{z}}$ of $\tilde{\mathcal{Z}}$. Let V be a finite-dimensional simple \mathfrak{g}-module. Then $\widehat{\tilde{z}}$ acts on the subspace $V^{\mathfrak{n}_{0}} \subset V$ of the highest weight vectors of \mathfrak{g}_{0}.
Conjecture 6.3. Let $\widehat{\tilde{z}} \subset \mathcal{U}(\mathfrak{g})$ be the subalgebra generated by $\varpi\left(\left(H_{j}\right)_{\left(i, d_{j}-i\right)}\right)$ with $1 \leqslant i \leqslant l$, $0 \leqslant i \leqslant d_{i}$ and by $\mathcal{U}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$. Then $\tilde{\tilde{z}}$ acts on $V^{\mathfrak{n}_{0}}$ diagonalisably and with a simple spectrum.

If Conjecture 6.3 is true, then the action of $\widehat{\tilde{z}}$ produces a solution of the branching problem $\mathfrak{g} \downarrow \mathfrak{g}_{0}$. There are two renowned examples, where both conjectures are true.

Example 6.4 (The Gelfand-Tsetlin construction [GT50, GT50']). Let ($\mathfrak{g}, \mathfrak{g}_{0}$) be one of the symmetric pairs $\left(\mathfrak{s l}_{n+1}, \mathfrak{g l}_{n}\right),\left(\mathfrak{s o}_{n+1}, \mathfrak{s o}_{n}\right)$. Then each H_{i} has at most two nonzero bihomogeneous components. To be more precise, the Pfaffian in the case of $\mathfrak{g}=\mathfrak{s o}_{2 l}$ has one nonzero component, and all the other generators have exactly two. It follows that \tilde{z} is generated by $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ and $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. The quantum analogue $\widehat{\tilde{z}}$ is generated by $\mathcal{U}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ and $\mathcal{U}(\mathfrak{g})^{\mathfrak{g}}$.

For each irreducible finite-dimensional representation V of \mathfrak{g}, the restriction to \mathfrak{g}_{0} is multiplicity free. Hence the action of $\widehat{\tilde{z}}$ on $V^{\mathfrak{n}_{0}}$ has a simple spectrum.

6.2. Classical applications. Let us return to the Poisson side of the story.

Suppose that there is a g.g.s. for σ. Although \tilde{z} (or z) is not a maximal Poissoncommutative subalgebra of $\mathcal{S}(\mathfrak{g})$, it can be included into such a subalgebra in many natural ways. Let $\mathcal{C}=\mathbb{k}\left[F_{1}, \ldots, F_{\boldsymbol{b}\left(\mathfrak{g}_{0}\right)}\right]$ be a maximal Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Then necessary $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}} \subset \mathcal{C}$. Suppose further that the F_{i} 's are homogeneous and their differentials are linearly independent on a big open subset of \mathfrak{g}_{0}^{*}. For instance, one can take $\mathcal{C}=\mathcal{A}_{\gamma}$ with $\gamma \in\left(\mathfrak{g}_{0}\right)_{\text {reg, }}^{*}$, see [PY08]. An easy calculation shows that $\operatorname{alg}\langle\tilde{z}, \mathcal{C}\rangle=\operatorname{alg}\langle\mathcal{Z}, \mathcal{C}\rangle$ has $\boldsymbol{b}(\mathfrak{g})$ generators. Indeed, $\tilde{\mathcal{Z}}($ or $\mathfrak{Z})$ has $\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right)$ free generators. Then we replace the generators sitting in $\mathcal{S}\left(\mathfrak{g}_{0}\right)$ (there are $\mathfrak{r k} \mathfrak{g}_{0}$ of them) with the whole bunch of generators of \mathcal{C}. In this way, we obtain

$$
\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right)-\mathrm{rk} \mathfrak{g}_{0}+\boldsymbol{b}\left(\mathfrak{g}_{0}\right)=\boldsymbol{b}(\mathfrak{g})
$$

generators $\left\{F_{i}, \boldsymbol{h}_{j} \mid 1 \leqslant i \leqslant \boldsymbol{b}\left(\mathfrak{g}_{0}\right), 1 \leqslant j \leqslant \boldsymbol{b}(\mathfrak{g})-\boldsymbol{b}\left(\mathfrak{g}_{0}\right)\right\}$. Furthermore, the differentials $\left\{d F_{i}, d \boldsymbol{h}_{j}\right\}$ are linearly independent at $x \in \mathfrak{g}^{*}$ if and only if $\operatorname{dim}\left(d_{x} \tilde{z}+d_{x} \mathcal{C}\right)=\boldsymbol{b}(\mathfrak{g})$. Write $x=x_{0}+x_{1}$ with $x_{i} \in \mathfrak{g}_{i}$ and suppose that $x_{0} \in\left(\mathfrak{g}_{0}^{*}\right)_{\text {reg }}$. Then

$$
\left(d_{x} \tilde{\mathcal{z}} \cap d_{x} \mathcal{C}\right) \subset \mathfrak{g}_{0}, \quad \pi(x)\left(\mathfrak{g}_{0}, d_{x} \tilde{z}\right)=0, \quad \text { and hence } \quad d_{x} \tilde{z} \cap d_{x} \mathcal{C}=\mathfrak{g}_{0}^{x_{0}}
$$

If in addition $\operatorname{dim} d_{x} \tilde{\mathcal{z}}=\operatorname{tr} . \operatorname{deg} \mathcal{Z}$ and $\operatorname{dim} d_{x_{0}} \mathcal{C}=\boldsymbol{b}\left(\mathfrak{g}_{0}\right)$, then $\operatorname{dim}\left(d_{x} \tilde{\mathcal{L}}+d_{x} \mathcal{C}\right)=\boldsymbol{b}(\mathfrak{g})$. In view of Theorem 4.12(i), we can conclude that the differentials $\left\{d F_{i}, d \boldsymbol{h}_{j}\right\}$ are linearly
independent on a big open subset of \mathfrak{g}^{*}. Thus, Theorem 4.1 applies and assures that $\operatorname{alg}\langle\tilde{\mathcal{Z}}, \mathcal{C}\rangle$ is a maximal Poisson-commutative subalgebra of \mathfrak{g}.

Arguing inductively, one can produce a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})$ from a chain of symmetric subalgebras

$$
\mathfrak{g}=\mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \ldots \supset \mathfrak{g}^{(m)}
$$

where $\mathfrak{g}^{(m)}$ is Abelian and each symmetric pair $\left(\mathfrak{g}^{(i)}, \mathfrak{g}^{(i+1)}\right)$ has a g.g.s.
Remark. (i) For any simple Lie algebra \mathfrak{g}, there is an involution σ that has a g.g.s. [P07', Sect. 6]. Therefore our construction of a maximal Poisson-commutative subalgebra of $\mathcal{S}(\mathfrak{g})$ related to a chain of symmetric subalgebras works for any simple \mathfrak{g}.
(ii) In [Vi91, §6], limits of Mishchenko-Fomenko subalgebras were introduced. The Poisson counterpart of the Gelfand-Tsetlin subalgebra of $\mathcal{U}\left(\mathfrak{s l}_{n+1}\right)$ related to the chain

$$
\mathfrak{s l}_{n+1} \supset \mathfrak{g l}_{n} \supset \mathfrak{g l}_{n-1} \supset \ldots \supset \mathfrak{g l}_{2} \supset \mathfrak{g l}_{1}
$$

appears as one of these limit subalgebras, see also Example 6.4. The key point of Vinberg's construction is that the Poincaré series of any limit subalgebra is the same as that of \mathcal{A}_{γ} with $\gamma \in \mathfrak{g}_{\text {reg }}^{*}$. With a few exceptions, our approach produces Poisson-commutative subalgebras with different Poincaré series. This can be illustrated by the chain

$$
\mathfrak{s o}_{5} \supset \mathfrak{s o}_{4} \supset \mathfrak{s o}_{2} \oplus \mathfrak{s o}_{2}
$$

Here the degrees of the generators of the related maximal Poisson-commutative subalgebra are $(4,2,2,2,1,1)$ opposite to $(4,3,2,1,2,1)$ in the case of \mathcal{A}_{γ}.

Another feature is that Z can be used for constructing a Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Let $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ be an arbitrary symmetric pair. If there is a g.g.s. for $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$, then we are able to consider both algebras, z and \tilde{z}. For $\eta \in \mathfrak{g}_{1}^{*}$, let $z_{\eta}, \tilde{z}_{\eta}$ denote the restrictions of z and \tilde{z} to $\mathfrak{g}_{0}^{*}+\eta$. By choosing η as the origin, we identify $\mathfrak{g}_{0}^{*}+\eta$ with \mathfrak{g}_{0}^{*}. Then z_{η} and \tilde{z}_{η} are homogeneous subalgebras of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. Moreover, they Poisson-commute with \mathfrak{g}_{0}^{η}.

Lemma 6.5. The subalgebras z_{η} and \tilde{z}_{η} are Poisson-commutative.
Proof. Take $H, F \in z$ or $H, F \in \tilde{z}$ and $x \in \mathfrak{g}_{0}^{*}$. Let \mathbf{h} and \mathbf{f} be the restrictions of H, F to $\mathfrak{g}_{0}^{*}+\eta$. Then $d_{x+\eta} H=d_{x} \mathbf{h}+\xi_{1}, d_{x+\eta} F=d_{x} \mathbf{f}+\nu_{1}$, where $\xi_{1}, \nu_{1} \in \mathfrak{g}_{1}$. Set $\xi_{0}=d_{x} \mathbf{h}, \nu_{0}=d_{x} \mathbf{f}$. Our goal is to show that $x\left(\left[\xi_{0}, \nu_{0}\right]\right)=0$.

Since H and F commute w.r.t. any bracket $\{,\}_{t}$ with $t \in \mathbb{P}$, we have in particular $x\left(\left[\xi_{1}, \nu_{1}\right]\right)=0$, as well as $(x+\eta)\left(\left[\xi_{0}+\xi_{1}, \nu_{0}+\nu_{1}\right]\right)=0$. Both are also \mathfrak{g}_{0}-invariants. Therefore

$$
(x+\eta)\left(\left[\xi_{0}, \nu_{0}+\nu_{1}\right]\right)=0, \quad 0=(x+\eta)\left(\left[\nu_{0}, \xi_{0}+\xi_{1}\right]\right)=x\left(\left[\nu_{0}, \xi_{0}\right]\right)+\eta\left(\left[\nu_{0}, \xi_{1}\right]\right)
$$

Now $0=(x+\eta)\left(\left[\xi_{1}, \nu_{0}+\nu_{1}\right]\right)=\eta\left(\left[\xi_{1}, \nu_{0}\right]\right)$ and it is clear that $x\left(\left[\xi_{0}, \nu_{0}\right]\right)=0$.

Remark 6.6. Let $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)=\left(\mathfrak{s l}_{n}, \mathfrak{s o}_{n}\right)$. The corresponding involution σ is of maximal rank and any set of generators $H_{1}, \ldots, H_{l} \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ is a g.g.s. for σ. The related Poisson-commutative subalgebra Z appeared, in a way, in work of Manakov [M76]. He stated that the restriction of Z to $\mathfrak{g}_{0}+\eta$ with $\eta \in \mathfrak{g}_{1}$ is a Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$ of the maximal possible transcendence degree, which is $\boldsymbol{b}\left(\mathfrak{g}_{0}\right)$. Below we present a connection between his results and ours. We are grateful to E.B. Vinberg for bringing our attention to the fact that Manakov's construction involves an involution.

Let $\mathfrak{c}_{1} \subset \mathfrak{g}_{1}$ be a Cartan subspace. If $\eta \in \mathfrak{c}_{1}$ is generic, then $\mathfrak{l}:=\mathfrak{g}_{0}^{\eta}$ is reductive and it is also the centraliser of \mathfrak{c}_{1} in \mathfrak{g}_{0}. There are well-known equalities: $\operatorname{dim} \mathfrak{g}_{1}-\operatorname{dim} \mathfrak{g}_{0}=$ $\operatorname{dim} \mathfrak{l}-\operatorname{dim} \mathfrak{c}_{1}$ and $\mathrm{rk} \mathfrak{l}=\mathrm{rk} \mathfrak{g}-\operatorname{dim} \mathfrak{c}_{1}$.

Theorem 6.7. For almost all $\eta \in \mathfrak{c}_{1}$, we have
(i) $\operatorname{tr} \cdot \operatorname{deg} \mathfrak{Z}_{\eta}=\boldsymbol{b}\left(\mathfrak{g}_{0}\right)-\boldsymbol{b}(\mathfrak{l})+\mathrm{rk} \mathfrak{l}$;
(ii) if there is a g.g.s. for σ, then \tilde{z}_{η} is a maximal Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\text {l }}$. Besides, if \mathfrak{l} is Abelian, then \tilde{z}_{η} is a maximal Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$.

Proof. Suppose that η is generic enough. Then

- $\operatorname{dim} d_{y} Z=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+r k \mathfrak{g}+r k \mathfrak{g}_{0}\right)$ for y in a dense open subset of $\mathfrak{g}_{0}+\eta$, and
- $\quad \operatorname{dim} d_{y} \tilde{z}=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+r k \mathfrak{g}+r k \mathfrak{g}_{0}\right)$ for y in a big open subset of $\mathfrak{g}_{0}+\eta$.

Note that the subspaces $d_{y} z$ and $d_{y} \tilde{z}$ are orthogonal to \mathfrak{g}_{0} w.r.t. the bilinear form $\pi(y)=$ $y([]$,$) . Hence for both of them, the intersection with \mathfrak{g}_{1}$ has dimension at most $\operatorname{dim} \mathfrak{c}_{1}$. It is easily seen that actually $\operatorname{dim}\left(d_{y} \tilde{\mathcal{Z}} \cap \mathfrak{g}_{1}\right)=\operatorname{dim} \mathfrak{c}_{1}$. Furthermore,

$$
d_{y} z_{\eta} \simeq d_{y} z /\left(d_{y} z \cap \mathfrak{g}_{1}\right)
$$

and the same formula holds for $\tilde{\mathcal{Z}}$. Therefore

$$
\begin{aligned}
\operatorname{tr} \cdot \operatorname{deg} z_{\eta} \geqslant \frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\mathrm{rk} \mathfrak{g}+\mathrm{rk} \mathfrak{g}_{0}\right) & -\operatorname{dim} \mathfrak{c}_{1}=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}-\operatorname{dim} \mathfrak{c}_{1}+\mathrm{rk} \mathfrak{g}-\operatorname{dim} \mathfrak{c}_{1}+\mathrm{rk} \mathfrak{g}_{0}\right) \\
& =\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{0}-\operatorname{dim} \mathfrak{l}+\mathrm{rk} \mathfrak{l}+\mathrm{rk} \mathfrak{g}_{0}\right)=\boldsymbol{b}\left(\mathfrak{g}_{0}\right)-\boldsymbol{b}(\mathfrak{l})+\mathrm{rk} \mathfrak{l} .
\end{aligned}
$$

Since $z_{\eta} \subset \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{l}}$ and $\mathfrak{r k} \mathfrak{l}=\operatorname{ind} \mathfrak{l}$, the transcendence degree of z_{η} cannot be larger than $\boldsymbol{b}\left(\mathfrak{g}_{0}\right)-\boldsymbol{b}(\mathfrak{l})+\mathrm{rk} \mathfrak{l}$ by [MY, Prop. 1.1]. Because \tilde{z} in an algebraic extension of \mathbb{Z}, we also have $\operatorname{tr} . \operatorname{deg} \tilde{z}_{\eta}=\operatorname{tr} . \operatorname{deg} z_{\eta}$.

The difference $\operatorname{tr} \cdot \operatorname{deg} \tilde{z}-\operatorname{tr} \cdot \operatorname{deg} \tilde{z}_{\eta}$ is equal to $\operatorname{dim} \mathfrak{c}_{1}$. We consider the algebra \tilde{z} only if there is a g.g.s for σ. In that case the map r_{1} is surjective and therefore for certain members H_{i} of the g.g.s. we have $H_{i}^{\bullet} \in \mathcal{S}\left(\mathfrak{g}_{1}\right)$ [P07']. The number of such element is equal to $\operatorname{dim} \mathfrak{c}_{1}$, and they restrict to constants on $\mathfrak{g}_{0}^{*}+\eta$.

We see that \tilde{z}_{η} is freely generated by $\tilde{H}_{1}, \ldots, \tilde{H}_{\mathrm{rk} \mathfrak{g}_{0}} \in \mathcal{S}\left(\mathfrak{g}_{0}\right)^{\mathfrak{g}_{0}}$ and the restrictions to $\eta+\mathfrak{g}_{0}$ of $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$ with $0<i<d_{j}$. Moreover, the differentials of these generators are linearly independent on a big open subset. According to Theorem 4.1, \tilde{z}_{η} is an algebraically
closed subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$. By a standard argument, it is a maximal Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)^{\text {l }}$.

Suppose that \mathfrak{l} is Abelian. Then $\operatorname{dim} \mathfrak{l}=\operatorname{rk} \mathfrak{l}$ and \tilde{z}_{η} is a Poisson-commutative subalgebra of $\mathcal{S}\left(\mathfrak{g}_{0}\right)$ of the maximal possible transcendence degree. Here \tilde{z}_{η} is maximal in $\mathcal{S}\left(\mathfrak{g}_{0}\right)$.

The statements of Theorem 6.7 are not entirely satisfactory. It would be nice to have an explicit description of η such that the results hold. In the original setting of Manakov, l is trivial and the equality $\operatorname{tr} . \operatorname{deg} z_{\eta}=\boldsymbol{b}\left(\mathfrak{g}_{0}\right)$ holds for each regular $\eta \in \mathfrak{c}_{1}$, see [GDI]. But a more precise assertion requires a further analysis of $\mathfrak{g}_{(t) \text {,sing }}^{*}$ and we prefer to postpone it.

Appendix A. On Pencils of SKew-symmetric forms

Here we gather some general facts concerning skew-symmetric bilinear forms. Let \mathcal{P} be a two-dimensional vector space of (possibly degenerate) skew-symmetric bilinear forms on a finite-dimensional vector space V. Set $m=\max _{A \in \mathcal{P}}$ rk A, and let $\mathcal{P}_{\text {reg }} \subset \mathcal{P}$ be the set of all forms of rank m. Then $\mathcal{P}_{\text {reg }}$ is a conical open subset of \mathcal{P}. For each $A \in \mathcal{P}$, let ker $A \subset V$ be the kernel of A. Our object of interest is the subspace $L:=\sum_{A \in \mathcal{P}_{\text {reg }}} \operatorname{ker} A$.

Lemma A. 1 ([PY08, Appendix]). If Ω is a non-empty open subset of $\mathcal{P}_{\text {reg }}$, then $\sum_{A \in \Omega} \operatorname{ker} A=$ L.

Corollary A.2. For all $A, B \in \mathcal{P} \backslash\{0\}$, we have $A(\operatorname{ker} B, L)=0$ and therefore $A(L, L)=0$.
Proof. Clearly, the equality $A(\operatorname{ker} B, L)=0$ holds if B is a scalar multiple of A. If not, then we consider $L_{b}:=\operatorname{ker}(A+b B)$ for $b \in \mathbb{k}$. Here

$$
A\left(\operatorname{ker} B, L_{b}\right)=(A+b B)\left(\operatorname{ker} B, L_{b}\right)-b B\left(\operatorname{ker} B, L_{b}\right)=0 .
$$

By Lemma A.1, there is an open subset $\mathfrak{O} \subset \mathbb{k}$ such that L is spanned by $\left\{L_{b} \mid b \in \mathfrak{O}\right\}$. Hence

$$
A(\operatorname{ker} B, L)=A\left(\operatorname{ker} B, \sum_{b \in \mathfrak{D}} L_{b}\right)=0
$$

Suppose that $C \in \mathcal{P} \backslash \mathcal{P}_{\text {reg }}$. Then $U=\operatorname{ker} C$ may not be a subspace of L. Take $A \in \mathcal{P} \backslash\{0\}$ that is not proportional to C and restrict it to U. The resulting skew-symmetric form on U does not change if we replace A with any $A+b C$, where $b \in \mathbb{k}$.

Lemma A.3. Let C, A, and U be as above. Then $r k\left(\left.A\right|_{U}\right) \leqslant \operatorname{dim} U-(\operatorname{dim} V-m)$.
Proof. By Corollary A.2, we have $A(U, L)=0$. Set $r=\operatorname{dim} V-m$. Because \mathcal{P} is irreducible, $\overline{\mathcal{P}_{\text {reg }}}=\mathcal{P}$ and there is a curve $\tau: \mathbb{k}^{\times} \rightarrow \mathcal{P}_{\text {reg }}$ such that $\lim _{t \rightarrow 0} \tau(t)=C$. Hence

$$
\lim _{t \rightarrow 0}(\operatorname{ker} \tau(t)) \subset \operatorname{ker} C
$$

where the limit is taken in the Grassmannian of the r-dimensional subspaces of V. Set $U_{0}:=\lim _{t \rightarrow 0}(\operatorname{ker} \tau(t))$. If $t \neq 0$, then $\operatorname{ker} \tau(t) \subset L$ and $A(\operatorname{ker} \tau(t), U)=0$. Hence also $A\left(U_{0}, U\right)=0$ and $U_{0} \subset \operatorname{ker}\left(\left.A\right|_{U}\right)$. It remains to notice that $\operatorname{dim} U_{0}=r$.

Remark. Lemma A. 3 implies Vinberg's inequality: if \mathfrak{q} is Lie algebra, then ind $\mathfrak{q}^{\gamma} \geqslant$ ind \mathfrak{q} for any $\gamma \in \mathfrak{q}^{*}$, see [P03, Cor. 1.7].

Theorem A.4. Suppose that $\mathcal{P} \backslash \mathcal{P}_{\text {reg }}=\mathbb{k} C$ with $C \neq 0$ and $U=\operatorname{ker} C$. Keep the notation of Lemma $A .3$ and suppose further that $\operatorname{rk}\left(\left.A\right|_{U}\right)=\operatorname{dim} U-\operatorname{dim} V+m$. Then $\operatorname{dim}(L \cap U)=$ $\operatorname{dim} V-m$ and $\operatorname{dim} L=(\operatorname{dim} V-m)+\frac{1}{2}(\operatorname{dim} V-\operatorname{dim} U)$.

Proof. Let $B \in \mathcal{P}_{\text {reg }}$ be non-proportional to A. Given $A, B \in \mathcal{P}_{\text {reg, }}$, there is the so-called Jordan-Kronecker canonical form of A and B, see [T91]. Namely, $V=V_{1} \oplus \cdots \oplus V_{d}$, where $A\left(V_{i}, V_{j}\right)=0=B\left(V_{i}, V_{j}\right)$ for $i \neq j$, and accordingly, $A=\sum A_{i}$ and $B=\sum B_{i}$. There are two possibilities for $\left(A_{i}, B_{i}\right)$, one obtains either a Kronecker or a Jordan block here, see figures below. Assume that $\operatorname{dim} V_{i}>0$ for each i.

$$
A_{i}
$$

$\begin{gathered}\text { A Jordan block } \\ \left(\lambda_{i} \in \mathbb{k}\right)\end{gathered} \quad:$

a Kronecker
block

where $\mathcal{J}\left(\lambda_{i}\right)=\left(\begin{array}{cccc}\lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i}\end{array}\right)$. In general, there can occur "Jordan blocks with $\lambda_{i}=$ $\infty^{\prime \prime}$, but this is not the case here, since $B \in \mathcal{P}$ is assumed to be regular.

Note that if V_{i} gives rise to a Jordan block, then $\operatorname{dim} V_{i}$ is even and both A_{i} and B_{i} are non-degenerate on V_{i}. For a Kronecker block, $\operatorname{dim} V_{i}=2 k_{i}+1$, rk $A_{i}=2 k_{i}=\mathrm{rk} B_{i}$ and the same holds for every non-zero linear combination of A_{i} and B_{i}.

There is a unique $\lambda \in \mathbb{k} \backslash\{0\}$ such that $C=A+\lambda B$. This λ can be determined as the root of the equation $\operatorname{det}\left(A_{i}+\lambda B_{i}\right)=0$ for any Jordan block $\left(A_{i}, B_{i}\right)$. This readily follows from the uniqueness of the singular line $\mathbb{k} C \subset \mathcal{P}$. On the other hand, the above matrices show that the root corresponding to $\left(A_{i}, B_{i}\right)$ is λ_{i}. Therefore, all λ_{i} 's are equal and coincide with λ.

Let us assume that V_{i} defines a Kronecker block if and only if $1 \leqslant i \leqslant d^{\prime}$. Then necessarily $d^{\prime}=\operatorname{dim} V-m$. Let $\operatorname{ker}\left(A_{i}+b B_{i}\right) \subset V_{i}$ be the kernel of the bilinear form $A_{i}+b B_{i}$. Then

$$
L=\bigoplus_{i=1}^{d^{\prime}} \sum_{b: A+b B \in \mathcal{P}_{\text {reg }}} \operatorname{ker}\left(A_{i}+b B_{i}\right)=: \bigoplus_{i=1}^{d^{\prime}} L_{i} .
$$

It follows from the above matrix form of a Kronecker block that $\operatorname{dim} L_{i}=k_{i}+1$, cf. also [PY08, Appendix].

Set $C_{i}=A_{i}+\lambda B_{i}$ for each $i \in\{1,2, \ldots, d\}$. It is a bilinear form on V_{i}.

- If $i \leqslant d^{\prime}$, then $\operatorname{dim} \operatorname{ker} C_{i}=1$. Therefore $\operatorname{ker} C_{i} \subset L_{i}$ and $\operatorname{dim}(\operatorname{ker} C \cap L)=d^{\prime}$.
- If $i>d^{\prime}$, then $\operatorname{dim} \operatorname{ker} C_{i}=2$.

Hence $\operatorname{dim} U=2\left(d-d^{\prime}\right)+d^{\prime}=2 d-d^{\prime}$. Since $U=\bigoplus_{i=1}^{d} \operatorname{ker} C_{i}$ and the spaces $\left\{\operatorname{ker} C_{i}\right\}$ are pairwise orthogonal w.r.t. any form in \mathcal{P}, we have $A\left(\operatorname{ker} C_{j}, U\right)=0$ for $j \leqslant d^{\prime}$. Hence the condition $\mathrm{rk}\left(\left.A\right|_{U}\right)=\operatorname{dim} U-\operatorname{dim} V+m$ implies that A_{i} is non-degenerate on ker C_{i} for any $i>d^{\prime}$. The explicit matrix form of a Jordan block shows that $\operatorname{ker} C_{i}$ is spanned by two middle basis vectors of V_{i}. Therefore, A_{i} is non-degenerate on $\operatorname{ker} C_{i}$ if and only if $\operatorname{dim} V_{i}=2$, and hence $C_{i}=0$.

Summing up, we obtain

$$
\operatorname{dim} L=\sum_{i=1}^{d^{\prime}}\left(k_{i}+1\right)=d^{\prime}+\sum_{i=1}^{d^{\prime}} \frac{1}{2} \mathrm{rk} C_{i}=d^{\prime}+\frac{1}{2} \mathrm{rk} C=(\operatorname{dim} V-m)+\frac{1}{2}(\operatorname{dim} V-\operatorname{dim} U)
$$

This completes the proof.

Acknowledgements. Most of this work was done while one of the authors (D.P.) was staying at the Max-Planck-Institut für Mathematik (Bonn); he acknowledges gratefully the hospitality and excellent working conditions offered by the Institute.

REFERENCES

[B91] A. Bolsinov. Commutative families of functions related to consistent Poisson brackets, Acta Appl. Math., 24, no. 3 (1991), 253-274.
[BB02] A. Bolsinov and A. Borisov. Compatible Poisson brackets on Lie algebras. (Russian) Mat. Zametki 72 (2002), no. 1, 11-34; translation in Math. Notes 72 (2002), no. 1-2, 10-30.
[BK79] W. Borho and H. Kraft. Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), no. 1, 61-104.
[DZ05] J.-P. Dufour and N.T. Zung. "Poisson structures and their normal forms". Progress in Mathematics, 242. Birkhäuser Verlag, Basel, 2005.
[FFR] B. FEIGIN, E. FRENKEL, and L. Rybnikov. Opers with irregular singularity and spectra of the shift of argument subalgebra, Duke Math. J., 155 (2010), no. 2, 337-363.
[GDI] B. Gajić, V. Dragović, and B. Jovanović. On the completeness of the Manakov integrals, J. Math. Sci., 223:6 (2017), 675-685.
[GT50] I.M. GELFAND and M.L. Tsetlin. Finite-dimensional representations of the group of unimodular matrices. (Russian) Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825-828. English transl. in: I.M. Gelfand, Collected Papers, vol. II, Springer-Verlag, Berlin, 1988, pp. 653-656.
[GT50'] I.M. GELFAND and M.L. Tsetlin. Finite-dimensional representations of groups of orthogonal matrices. (Russian) Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 1017-1020. English transl. in: I.M. Gelfand, Collected Papers, vol. II, Springer-Verlag, Berlin, 1988, pp. 657-661.
[K63] B. Kostant. Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
[M76] S.V. MANAKOV. Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl., 10 (1976), no.4, 93-94 (in Russian).
[MF78] A.S. MISHCHENKO and A.T. FOMENKO. Euler equation on finite-dimensional Lie groups, Math. USSR-Izv. 12 (1978), 371-389.
[M07] A. Molev, "Yangians and Classical Lie Algebras". Mathematical Surveys and Monographs, 143, American Mathematical Society, Providence, RI, 2007.
[MO00] A. MOlev and G. Olshanski. Centralizer construction for twisted Yangians, Selecta Math., 6 (2000), no. 3, 269-317.
[MY] A. MOLEV and O. Yakimova. Quantisation and nilpotent limits of Mishchenko-Fomenko subalgebras, (arxiv:1711.03917v1 [math.RT], 32 pp.)
[O91] G.I. OLSHANSKI. Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, In: Topics in Representation Theory, Advances in Soviet Math. (A.A. Kirillov ed.), vol. 2, AMS, Providence RI, 1991, 1-66.
[P03] D. PANYUSHEV. The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, Math. Proc. Camb. Phil. Soc., 134, Part 1 (2003), 41-59.
[P07] D. PANYUSHEV. Semi-direct products of Lie algebras and their invariants, Publ. RIMS, 43, no. 4 (2007), 1199-1257.
[P07'] D. PANYUSHEV. On the coadjoint representation of \mathbb{Z}_{2}-contractions of reductive Lie algebras, Adv. Math., 213 (2007), 380-404.
[PPY] D. PANYUSHEV, A. PREMET and O. YAKIMOVA. On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, 313 (2007), 343-391.
[PY08] D. PANYUSHEV and O. YAKIMOVA. The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Letters, 15, no. 2 (2008), 239-249.
[PY12] D. PANYUSHEV and O. YAKIMOVA. On a remarkable contraction of semisimple Lie algebras, Annales Inst. Fourier (Grenoble), 62, no. 6 (2012), 2053-2068.
[R06] L. G. Rybnikov, The shift of invariants method and the Gaudin model, Funct. Anal. Appl. 40 (2006), 188-199.
[S180] P. SlODOWY. "Simple singularities and simple algebraic groups", Lect. Notes Math. 815, Berlin: Springer, 1980.
[S74] T.A. SpRINGER. Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159-198.
[T91] R.C. THOMPSON. Pencils of complex and real symmetric and skew matrices, Linear Algebra and its Appl., 147 (1991), 323-371.
[V68] V.S. VARADARAJAN. On the ring of invariant polynomials on a semisimple Lie algebra, Amer. J. Math., 90 (1968), 308-317.
[Vi91] E.B. Vinberg. Some commutative subalgebras of a universal enveloping algebra, Math. USSR-Izv. 36 (1991), 1-22.
[VP89] Э.Б. ВинБерг, В.Л. Попов. "Теория Инвариантов", В: Соврем. пробл. математики. Фундаментальные направл., т. 55, стр. 137-309. Москва: ВИНИТИ 1989 (Russian). English translation: V.L. Popov and E.B. Vinberg. "Invariant theory", In: Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp.123-284) Berlin Heidelberg New York: Springer 1994.
[Y14] O. YaKImOVA. One-parameter contractions of Lie-Poisson brackets, J. Eur. Math. Soc., 16 (2014), 387-407.
[Y17] O. YaKImOVA. Symmetric invariants of \mathbb{Z}_{2}-contractions and other semi-direct products, Int. Math. Res. Notices, (2017) 2017 (6): 1674-1716.
(D. Panyushev) Institute for Information Transmission Problems of the R.A.S, Bolshoi Karetnyi per. 19, Moscow 127051, Russia

E-mail address: panyushev@iitp.ru
(O. Yakimova) Universität Zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 KÖLn, Deutschland

E-mail address: yakimova.oksana@uni-koeln.de

[^0]: 2010 Mathematics Subject Classification. 17B63, 14L30, 17B08, 17B20, 22E46

