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Abstract: In this paper we shall show how the non-unimodularity of the volume element
of a non-commutative torus, endowed with its canonical conformal structure, affects the
formula for the vatue at the origin, L(0), of the zeta function on this torus, Using in a
critical manner the adaption of the pseudo-differential calculus to this simplest example
of a non-commutative Riemannian manifold, we give a general formula for £(0). Instead
of vanishing, this computed value involves modified logarithms of the modular operator. In
order to concentrate on the computational aspect, we bypass in the present version of this
paper the important task of casting our discussion of conformatl structure within the

framework of the theory of positive cyclic cohomology.
81 Preliminaries

Recall that for a classical Riemann surface Z with metric g, to the Laplacian Dg:d"d,
where d 1is the de~Rham differential operator acting on the Riemann surface, one
associates the zeta function

() =Z A", Re(s) > 1,
where the summation is over the non-zero eigenvalues kj of a, The meromorphic
continuation of T(s) to s=0, where it has no pole, gives the important information

t(0)=(1/24m)[L S - Card{jhj:o} =(in2)c (), (i=v(-1)),

where S is the scalar curvature and

¢,(2)=(1/2ni)s 33 og(g)
the first Chern number (= Euler-Poincaré characteristic); this vanishes when J_ is the
classical Z2-torus [Rz/Zf.z, for example, and is an invariant within the conformal class of
the metric, that is under the transformation g — erg for f asmooth real valued function
on 2. Moreover, recall that one may define the determinant of the Laplacian = by

log det o = -7'(0).



Nox;v fix a real irrational number 6. The dynamical system given by an irrational rotation
of the circle S' is embodied in the C*-algebra A, That is, one has both an action of the
group Z and of the algebra C(S’) of continuous functions on §' given by
[1]1(s) = f(s-0) (irrational rotation)
[62™] 1(s) = e>™*f(s) (regular representation)
for all f in C(S‘). These operations do not commute; instead, one has
[eznis]“ = ezuie[ | ][eZnis]‘
We may represent these actions on a Hilbert space by passing to 38=L2(!R). the
completion of the algebra of compactly supported functions on R with respect to, the
inner product
<f,9> = [pf(s)g(s) ds,
which contains the subspace S(R) of functions of rapid decay. One defines the following
operators on elements E=E(s) of S(R):
(UE)(s) = E(s-8B)
(VE)(s) = 2™k(s)
These operators satisfy
YU = e®™uy, Ut = U, v =y

The norm closure of this algebra is the C*-algebra A, Notice that if we replace 8 by

2rix 2wiy

zero, U by e and ¥ by e in the above definitions we recover the algebra of
continuous functions on R%/Z2. If one wishes to express the elements of Ay as certain
series
2 aln,m)U"V™ a(n,m)ecC,
where the summation is over the elements (n,m) of ZZ, one finds by direct computation
using the commutation relations that the C*- algebra norm | || of the above series is
given by the number .
sup{Zib¢p, )% | b(p,@)=F a(n,m)e? ™5 (r s), T |E(r 8)2=1).
Clearly the C* or continuity éondition is hard to control in terms of the coefficients. On
the other hand, the smoothness condition is easy to control in this way. To see this, we
introduce another dynamical system given by the action of T2 = {ze C| |z/=1}% on Ay DY
the 1-parameter groups of automorphisms {a,}, {,} determined by
a,(U)= exp(2mis)V, a V)=V, (s€R),

B(U)=U, B(V)=exp(2mit)V, (teR).



We define the sub-algebra A§° of smooth elements of Ay to be those x in A, such that
the mapping R? - Ag
(s.0) | o By, (X)
between Banach spaces is smooth, Expréssed as a condition on the coefficients, this
imposes that they be of rapid decay, namely that {|n} |m|® la(n,m)|} be bounded for any
positive k, g. The derivations associated to the above groups of automorphisms are given
by their action on an element a of Ag as follows
8,(a)=1im,_ (a,(a) -a)/¢,
8,(a)=1im (B, (a) - @) /¢,
s0 that one has the defining relations,
§,(U) = 2niv, §,(V) = 0,
8,(U) = 0, 8,(V) = 2miV.
The derivations §,,6, are analogues of the differential operators a/9x, ¢/dy on the
smooth functions on R%/Z2. One also has inner derivations arising from commutators
which are trivial in the commutative case. These are the derivations associated to the
I-parameter families {0,},t€R, of inner automorphisms
Ut(X) - e-iﬁ. X ei!l.
for f =f* anon-constant self-adjoint element of A§° . The derivation corresponding to
this last group is given by ilog A where
Ax) =e " xéf
and
“(log A)(X) = [x,1], x€ Ag”.
As 8 is supposed irrational, therse is a unique trace T, on A, determined by the
orthogonality properties
T, (U"V™M=0 if (n,m)=z(0,0),and T4(1)=1.
We can construct a Hilbert space ¥, from A, by completing with respect to the inner
prdduct
<a,b>=1,(b%a), a,beA,,
and using the derivations §,,5, , introduce a complex structure by defining
o= 81+182. d%= -5+ ]'82
wherg (extending 9, 9" to unbounded operators on $£,) 9* is the adjoint of 9 with

respect to the inner product defined by t,. As an appropriate analogue of the space of



(1,0)-forms on the classical 2-torus, we propose that one takes the unitary bi-maodule
over Aa"" given by the closure of the space of finite sums 2_aab, a,beAg", with respect to
the inner product (or metric in this context) given as above by
<adb,a'ab'>=1,((8")*a(ab)(3b')*), a,a',b,b'eAq .

Then, in order to introduce the conformal class of a metric we consider the family of states
9=¢,, f=T"€A;", definedon A, by |

o(a)=1,(ae"), acA,.
Note that, whereas for T, we have the trace relation

T(b*a)=1,(ab*), a,beA,,
for ¢ we have
o(ab*)=g(b*e'ae™) =g (b av (- 1)(a)), acA,.
We define the inner product ( , ) on Ay by |
(a,b)=g(b*a), a,be A,
Viewed as a metric within the same conformal class as < , > determining a closure 3¢ of
the space of finite sums 2_adb, a,beAg”, we see that
<(3b)k (3c)k>=(ab,ac), b, c€ Ay,

where k:e”z, so that the appropriate correction to the operator @ is ka, where here right
multiplication by k is understood. With these remarks in mind, for an invertibie
non-constant self-adjoint element k of A", we intraduce the correction

D=(k 3)(k 3)*=kok,
to the Laplacian

D= 33*= -(82+67) .
It is the dependence on. k in the computationé of the behaviour of the zeta function of D at

the origin that will feature in what follows.
§2 Statement of the theorem

With the notation of §1, we study the Laplacian zeta function defined for Re(s)>1 by the
Mellin transform

g(s)=(1/r(s)) [ Trace*(e™")t* "dt=Trace(D™®),
where D=TT*, T=k3, and '

Trace*(e™®)=Trace(e™®)-DimKer(T),



where by Trace(.) we understand the ordinary trace of the aperator. The definition of
L (s) can be extended by meromorphic continuation to all values of s, barring s=1 where

the function has a simple pole. We now state the main result.

Theorem: Let B8 be an irrational number and k a self-adjoint non-zero element of A;".

Then the value at the origin of the zeta function {(s) of the operator D= k&k isgiven by
L(0)=1,(h(6,k))
where
h(B.k) = (/3)k™'8,8,(k) - (21/3)k™"8,(K)B(K)Kk ™' + (2m) D, (k™'8(k))8,(K)k™"
~(4T) 2,1+ A (K8 (K))B(KK + (21)D5( 1424 2+ AY (K 'B(K)BLKIK.
Here, summation of repeated indices over j=1,2 is understood and & _, m a positive
integer, stands for the modified logarithm

2, = (-H™MAa-"""0ga - T (-1 "5)(a-1)). ooo

As pointed out in §1, in the commutative case the corresponding value for the zeta function

at the origin is zero.
§3 Pseudo-differential calculus

With the notation of the preceding sections, we introduce in the present one the notion of a
pseudo-differential operator given the triple (A;’”,S1 .8,). See also [B]. First of all, for a
non-negative integer h, we define the vector space of differential operators of order at
most h to be those polynomial expressions in 6,,6, of the form

P(8,,8,)=1¢nd; 811 62 . a,€As", 1=(j,.i)€ 22, il=],+],.
To extend this definition, let R, be the group dual to R? and introduce the class of
operator valued distributions given by those complex linear functions P: C™(R,)—> A

which are continuous with respect to the semi-norms Pi, iy determined by

Pi,ipP(0)) =118} 82PN, 1,.1,€Z, 4., 9ECT(R,).
We use the notation y,= ALY AIPE ez"‘iz,z‘,:({1 ,Ez)e[RQ. for the canonical coordinates of
R,,and 9,=0/0%,, d,=8/3E, for the corresponding derivations. An example of an operator

valued distribution is provided by the 8§-function §=8(&) which has the formal Fourier



series

S(E)=Z - eZﬂinE1+2ﬂimE2
representing and determined by its value on Fourier expansions of elements of C°°(IRz).
We may now introduce the algebra of pseudo-differential operators via the algebra of

operator valued symbols.

Definition: An element p=p(E)=p(E,,E,) of CT(R,,Ag") isasumbol of order the
integer h if and only if for all non-negative integers 1,.i,,3,.],
Pi, 1, (8 332 0(E)) < o1+,
where ¢ is aconstant depending only on @, and if there exists an element k=k(¥,,E,) of
C™(R,-{1,1},AJ”) such that
timy L A"0ONE| AE,)= k(E, ,E,). ODO

We denote the space of symbols of order h by S, the union $=U, ., S, forming an
algebra. Symbols of non-integral order are not required for this paper. For integers n,m
set Sn‘m:Sn_m(E):S(E‘—2nn.£2—2nm). An example of a symbol of order h a positive
integer is provided by the polynomial Q(Z):lelshaj(i)ﬁlﬁin:iz, ajeAé”, and one has
By m(0)= L e (211) tmiz so that 8, (@)U =T 1a,81822(U™™). For an element
8=2_,, »a(n,m)UV™ of AZ® one therefore has 2, 8, (0)a(n,m)UV™=2_,  2:871832(a),
assaciating to the symbol p the differential operator PQ:P(S1 '82)=Z|j|,<,haj 8’%18%2 on Ag .
Indeed, for every integer h, asymbol g of that order determines an operator on A;"’ via
the map y: p|— Po given by the formula
P (@)=L | mezBnm @3N, MIUNT, a=2_  a(n,m)u™vT",

For example, the image under ¢ of the symbol (1 +|E|2)'k,k21 , of order -2k acts on Ag”.

Definition: The space y of pseudo-differential operators is given by the image of the

algebra & under the map ¢. ooQo

Definition: The equivalence p~p' between two symbols p,p' in S,, k€Z, holds if and

only if p-p’ is asymbol of order h for all integers h. OOQ



Definition: The class of pseudo-differential operators is the space w modulo addition by
an element of y(Z) where Z is the sub-algebraof S with elements equivalent to the

zero symbol. DOO

1t is possible to invert the map ¢ to obtain for each element P of w a unique symbol
g(P) up toequivalence. Recall from §1 that the trace T, ON A;'“ enables one to define the
adjoint of operators acting on Ag° via their extension 1o .%0.' By direct analogy with [G],

Chapter 1, Thearem, p16, one may deduce the following result.

Proposition. For an element P of y with symbol ag(P)=p=p(E), the symbol of the
adjoint P™ satisfies
x I, b, ol gl x
OGP~ 2L, ez, g2 /0100 31 32 81182(0(E)"].
If Q isanelementof y with symbal o(Q)=p'=p'(E), then the product PQ isalso in y
and has symbol

TP~ L, ez g2 (170N 371 92(0(£)8162(0'(2)]. oom

Notice that in the above Proposition as throughout the present paper, given symbols
{Qj}]‘."’=0 the relation gfvzj“’:o o; signifies that there exists a positive integer H such
that for all h>H, the difference g—zg'zogj isin S, for all integers k . The elliptic

pseudo-differential operators are those whase symbols fulfil the criterecn which follows.

Definition. Let h bean integer and ¢ asymbol of order h. Then p=p(E) is elliptic if
it is invertible within the algebra C°°([R2,Ag°) and if its inverse satisfies
loCe)™"ll < c( 1 +[g)~"

for a constent ¢ depending only on p and for [El=(£2+E2)'? sufficiently large. oD

An example of an elliptic operator is provided by the Laplacian I‘_']:-(612+8§') on A;“

introduced in 81 which has the corresponding invertible symbol o(o)=|gf.



§4 Understanding the computations

The arguments of this section are kept brief, being direct analogues of standard ones.
Bearing in mind the definition of the zeta function given in §2, we observs that by
Cauchy's formula we have
e P=(1/2n)[. eMA1-D)""dN

where X is a complex number but not real non-negative, and C encircles the
non-negative real axis in the anti-clockwise direction without touching it. One then
obtains a workable estimate of (\I-D)~" by passing ta the algebra of symbots. Using the
definition of a symbol, one can replace the trace in the formula for the zeta function by an
integration in the symbaol space (argument along the diagonal), namely,

L(s)=(1/m(sN [ 1o(0e ) (e dEdt.
The function [(s) has asimple pole at s=0 with residue 1 so that,

T(0)=Res, o] 5  To(a(e™)(E) N "dEat.
Just as in the arguments employed in the derivation of the asymptaotic formula (see for
example [G]),

[1,(a(e™)(ENdE~ T B, (DI, t>0-,

one may appeal to the Cauchy formula quoted above. In particular, if B, denotes (a chosen
approximation) to the inverse operator of (A\I1-D), its symbol has an expansion of the
form

g(B,)=0(B,)(E)=by(E) +b,(E) +b,(E) +...
where j ranges over the non-negative integers and hj(‘c'.)zbj(‘c'.,)\) is a symbol of order
-2-j. As we shall explain at more length in §5, these symbols may be calculated

inductively using the symbol aigebra formulae beginning with DO(E):(X*k2|E|2)4

which
is the principal (highest homogeneous degree in £) symbo? of (M=D)~". It turns out that
t(0) equals the coefficient of X~' in [to(bz(ﬁ))d‘c’.. By a homogeneity argument one has
in fact

L(0)=[to(b,(E))dE (1),



§5 Computational proof of the Theorem

Following on from the arguments of §4, by homogeneity there is no loss of generality in
placing A=-1 throughout the computation of L(0) and multiplying the final answer by
- 1. The prablem is then to derive in the symbol algebra a recursive solution of the form
0=by(E)+b,(E)+b,(E)+... tothe equation

6.(a(D+1))=1+0([¢[®).
The accuracy to order -3 in ¥ on the right hand side is in practice sufficient as we are
only interested in evaluating ¢ up to bz(E). Throughout this section the convention of

summation aver repeated indices in the range 1,j=1,2 isobserved.

Lemma 1: The operator D has symbol o(D)=a,(E)+a,(E)+a,(E) where, with
summation over repeated indices in therange i=1,2, one has
8,22, (E)=k7E ¥,
a,=8,(£)=2E,(k5,(K))
8,=8,(E)=k8,8,(k).

These expressions are derived by applying the product formula within the algebra of
symbols given in Praoposition 83 to o,(E)=gE; and 0,(E)=k and then multiplying on
the left by k. ooD

To begin the inductive calculation of the inverse of the symbol of D+1, set
by=bg(E)=(k3E[2+ 1) —(2)
and compute toorder -3 in E the product b, .((a,+1)+a,+3,). By singling out terms of
the appropriate degree -1 in & and using the Proposition of §3, one obtains '
b,= -(bya,ba+3(by)8(8,0b,)  —(3).
Inasimilar fashion, collecting terms of degree -2 in & andusing (3) one obtains
b,==(bo8abo+D42,by+d(by)8,(a, )by +a(b,)6,(8)bg+(1/2)32,(bg)86,(3,)b5) _(4).
it is extremely useful during the computation to exploit the fact that in the target formula
for £(0) given in (1), 85, one invokes the trace, so that members of the factors of the
individual summands may be permuted cyclically without loss of generaility for the
answer, Moreover, using integration by parts with respect to ¥ the expression

9,(b,)8,(a,)b, may be replaced by -b,(9,6,(a,)b,+8,(8,)9,(by)). One may therefore
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without loss of generality replace the right hand side of (4) by the sum of the following
list of nine symbols,
(i) -bZa, (i1) bZa,bya, (i) bo'ai(bo)si(az)boa, (1v) -byd(by)8(a,) (v) -bla,b,3.8,a,)
(vi) -9,(by)bga,b,8,(a,) (vif) -boaj(bo)ﬁj(az)boaiﬁi(az) (vH1)-ai(bo)aj(bo)Sj(az)bosi(az)
(ix) =(1/2)by9,9;(by)8,6,(3,).
By formula (1), one then has to sum the integrals of each of these nine terms over the
whole E-plane. The full details of the computation are lengthy and to include them in the
present article would make the reading of the document too cumbersome. It is worth
commenting however that the integrands in the expression jbz(E.—l) d’€ which depend
upon £ are rational functions whose denominators invoke only powers of (k2|E|2+ 1) and
whose numerators invoke only powers of k[E|. In the commutative case (k=1), the
computation invariably reduces to terms involving integrals of the form
Im=IO°°vm/(v+l)m+2dv:l/(m+l).
where m isa positive integer (in practice one encounters onlty the range m=0,1,2,3). In
the non-commutative case, when in particular k and Si(k), i=1,2, do not commuts, the
computation reduces to terms involving either an integral I, or anintegral of the form,
[&E™U™/(k%u + D™ LG /(K2 +1))d(KPu)= (9. AXL), i=1,2, some LeAg?
where 8. =[x/ (x+ 1™ H(/(xA+1)) dx
is in fact the modified logarithm function @ _ defined in 82 in the statement of the
Theorem and A is the operator introduced in §1.

These remarks invoke the following lemma,

Lemma 2. For everyelement L of A;" and every non-negative integer m one has,
[e(F™U™/(K2u+ D™ L1 /(KPu+1))d(k%0) = (D, A)(L).
Proof: On affecting the change of variables s'=log(u)+f one obtains
Jg°(k2‘“ "’/(k U+ l)m*‘)(L)(l/(k u+1))d(k%u)
== +D™IL1/(e% +1)d(e®)
= J_m<e‘m+"2’3/<e D™ AL (6772 /(e% +1))as
__ j_:(e‘"’*”z"/(e l)’“”)(A”z(L))j o (olls' /(g o=y Gt de
_ *J (e (me1/2) o8 ymey J_m(elts/(er(t+ e "L)UL(A"z(L))dt ds'
f 00 oM+ 1/2)8 (08" 4 ym+T( (s +loglAN/2 ) (($+108(8) | 1y) e A 17201 ))

=[O/ D™/ +1))Ax(A (L)) = (3, . A)(L).
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Now for A=1 the integral J_ equals I for every positive integer m. On the other hand,
by inspection one sees that 9 is of the form
9_=(c /(a-1)"{log(a)-P(A)},
where P isa polynomial of degree at most m. [n the neighbourhood of A=1 one has
log(a)= L7, (=117 a-1Y,
and from the its value at A=1, where J_ is non-singular one sees from this last
expression that d_ is the modified logarithm @ introduced in §2 where,
2,=((-D"/(A-1™N) {log(A)-Z I, (-1 7)) (a-1)).
This completes the proof of the lemma. OO

Applying these considerations, we find that the respective contributions of the entire list
of summands quoted above (with A= -1) is

(i) -mk7'88,(k)

(i) 2m(2,A") (K '8,(Kk))B(K)K'

(1) —21(D,(A 24 A)) (k™ '8,(k))8,()k™'

Gv)  TkT'8(K)BKIKT +kT1B.8.(K))

(v)  -2m(2,(1+A"2)(k"8,(k))8(K)K™

(vi)  2m(@,(1+A "2 (k18K 8 (KK

(vii)  21(@,8 22+ A724 A2 (k™ "8,(k))8, (K™
(Vi) =2m(D, & '2(2+ A724 A2 (K '8.(k))8 (KK
(ix)  -m/3(k7'8.(k)B.(Kk k™ '6.6,(k))

Summing the above one obtains:

(-r/3)k7'8,8,(Kk) + (21n/3)k "5, (K)B(KK " - (21) D, k™ '8.(K)B(K)K™

(AT 2,(1+8 (kT8 (K)B (KK - (2M)D4( 142424 A) (K '8,(k))B (k)K" , which
on multiplication by ~1 gives the result of the Theorem. Placing A =1 in the above
expressioﬁ yields n/3(k'18i(k)8i(k)k"— k"SiSi(k)) which under the trace T, gives
(-nt/6) 8,8,(log k) and t,(8,(a)) appropriately vanishes for all a in AS".
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