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Abstract

We continue the study of twisted automorphisms of Hopf algebras
started in [4]. In this paper we concentrate on the group algebra case. We
describe the group of twisted automorphisms of the group algebra of a
group of order coprime to 6. The description turns out to be very similar
to the one for the universal enveloping algebra given in [4].

1 Introduction

In [3], using the language of Galois algebras, monoidal (auto-)equivalences of
categories of representations of finite groups were described in terms of some
group-theoretic data. Composition of monoidal equivalences corresponding to
tensor product of Galois algebras turns out to have a quite complicated form in
terms of that data. In particular, the group structure on isomorphism classes of
monoidal auto-equivalences (bi-Galois algebras) is not very easy to deal with.

Here we describe this structure using a different presentation (as twisted
automorphisms) for monoidal (auto-)equivalences, which was developed in [4].
Since any Galois algebra over a finite group has a normal basis ([11]) the results
of [3, 4] imply that any bi-Galois algebra corresponds to a twisted automorphism.
In [4] general structure of the (Cat-)group of twisted automorphisms of a Hopf
algebra was examined. As an example, the case of the universal enveloping
algebra of a Lie algebra (over the ring of formal power series) was treated. In
that situation any twisted automorphism is a bialgebra automorphism together
with an invariant twist (the so-called separated case). The gauge classes of
invariant twists form an abelian group isomorphic to the invariant elements of
the exterior square of the Lie algebra. The group of gauge classes of twisted
automorphisms is a crossed product of the group of automorphisms of the Lie
algebra and the group of invariant twists.

For the group algebra case the situation is more complicated yet resembles
closely the case of a universal enveloping algebra. For simplicity we restrict
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ourselves to groups of odd order. We still have the separation property but
separation into a composition of a group automorphism and an invariant twist
is not unique: there are invariant twists (symmetric twists), which are gauge
isomorphic to group automorphisms (class-preserving automorphisms). How-
ever we can make it unique by using only anti-symmetric twists. The gauge
classes of anti-symmetric twists form an abelian group AutantiTw (k[G]) with the
operation closely related to the one on twists of a universal enveloping algebra.
If the order of the group is coprime to 6, the group of anti-symmetric twists
is a subgroup of the group of all invariant twists Aut1Tw(k[G]). Moreover, the
group of invariant twists is the direct product of the group of anti-symmetric
twists and the group of symmetric twists (the group of class-preserving outer
automorphisms):

Aut1Tw(k[G]) ' Outcl(G)×AutantiTw (k[G]).

We can summarise the main results of the paper in the form of a commutative
diagram with exact rows and columns:

Outcl(G) //

��

Out(G) //

��

Out(G)/Outcl(G)

��
Aut1Tw(k[G]) //

��

AutTw(k[G]) //

��

Out(G)/Outcl(G)

AutantiTw (k[G]) // AutantiTw (k[G])

Note that in general the subgroup Out(G) (which can be identified with the
group of symmetric twisted homomorphisms) is not normal in AutTw(k[G]).
The coset AutTw(k[G])/Out(G) is naturally identified with the set of triangular
structures on the Hopf algebra k[G] with trivial Drinfeld invariant. If the order
of the group is coprime to 6, this set has a group structure (the group of anti-
symmetric twists).

Throughout the paper let k be a ground field, which is supposed to be
algebraically closed of characteristic zero.
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2 Twists on group algebras

Here we revise Movshev’s classification of twists on the group algebra k[G] of a
finite group in terms of Galois algebras [11]. An important ingredient of that
classification is a group with a non-degenerate 2-cocycle. Recall that a group
2-cocycle α ∈ Z2(S, k·) is non-degenerate if, for any s ∈ S, the homomorphism

CG(s)→ k·, x 7→ α(x, s)α(s, x)−1

is nontrivial. Note that a cocycle cohomologous to a non-degenerate cocycle
is also non-degenerate. There is a correspondence between groups with non-
degenerate 2-cocycles and the so-called groups of central type. A group is of
central type if it has an irreducible representation of dimension equal to the
index of its centre (the largest possible). The quotient by the centre of a group
of central type is a group with non-degenerate 2-cocycle (thus the alternative
name central type factor group). Conversely a group with non-degenerate 2-
cocycle has a central extension, which is a group of central type. Using the
classification of finite simple groups, Howlett and Isaacs proved that groups of
central type are solvable (the conjecture of Iwahori and Matsumoto) [9].

Theorem 2.1. The groupoid Gal(k[G]) of Galois G-algebras is equivalent to the
groupoid Ctf (G) of pairs (S, α), where S is a subgroup of G and α ∈ Z2(S, k·) is
a non-degenerate 2-cocycle. A morphism (S, α)→ (T, β) is a pair (g, c), where
g ∈ G and c : S → k· such that gSg−1 = T and

α(x, y)c(xy) = β(gxg−1, gyg−1)c(gxg−1)c(gyg−1), x, y ∈ S.

For the proof of this slightly modified version of Movshev’s result see [3]. A
Galois G-algebra corresponding to the pair (S, α) can be realized explicitly as
the algebra of functions:

R(G,S, α) = {r : G→ k[S, α] : r(sg) = s(r(g)) ∀s ∈ S, g ∈ G}

with the G-action given by (fφ)(g) = φ(gf).
It was proved in [11] (see also [3]) that all Galois G algebras possess nor-

mal bases thus (according to section 2.2. of [4]) establishing the equivalence
of the groupoids AutTw(k[G]) → AutGal(k[G]). Although a quasi-inverse to
this equivalence is very hard to construct in general, in some cases twists corre-
sponding to Galois algebras can be written explicitly. Note that, for an abelian
A, the alternation map

α 7→ Alt(α), Alt(α)(s, t) = α(s, t)α(t, s)−1

identifies the cohomology group H2(A, k·) with the group Hom(Λ2A, k·) of al-
ternative bi-multiplicative forms

β : A×A→ k·, β(s, s) = 1 ∀s ∈ A.

Moreover a bi-multiplicative form (not necessarily alternative) is always a 2-
cocycle. It is not hard to see that any alternative form on an abelian group is
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the alternation of some bi-multiplicative form. Thus any 2-cocycle on an abelian
A is cohomologous to some bi-multiplicative form. It follows from the definition
that a bi-multiplicative form is non-degenerate as a 2-cocycle if and only if it is
non-degenerate in the ordinary sense (establishes an isomorphism A→ Â). For
a non-degenerate bi-multiplicative form β on abelian A denote by b the adjoint
bi-multiplicative form on Â. Note that b is also non-degenerate. Define

F(A,b) =
∑
ψ,χ∈Â

b(ψ, χ)pψ ⊗ pχ,

where pχ = 1
|A|

∑
s∈S χ(s)−1s is the minimal idempotent in k[A] corresponding

to the character χ. In the next lemma we will verify that F(A,b) (as an element
of k[G]⊗2) is the twist corresponding to the Galois G-algebra R(G,A, β).

Lemma 2.2. Let F = F(A,b) be a twist corresponding to an abelian subgroup
A ⊂ G and a bi-multiplicative form β. Then the function algebra (k(G), ∗F ) with
the F -twisted multiplication is isomorphic to the Galois G-algebra R(G,A, β).

Proof. First note that (k(G), ∗F ) coincides with the induction algebra indGS (B)
where B is the function algebra (k(A), ∗F ) with the F -twisted multiplication.
So all we need to check is that (k(A), ∗F ) is isomorphic to the skew group
algebra k[A, β]. Note that k[A, β] is (canonically) isomorphic to k[Â, b]. Now
an isomorphism k[Â, b] → (k(A), ∗F ) can be established explicitly by assigning
eχ 7→ lχ =

∑
a∈A χ(a)pa. Indeed, since pχ(lψ) = δχ,ψlψ and lχiψ = lχψ, the

twisted product has the form

lχ ∗F lψ =
∑

χ′, ψ′ ∈ Âb(χ′, ψ′)pχ′(lχ)pψ′(lψ) = b(χ, ψ)lχlψ = b(χ, ψ)lχψ.

Automorphisms of Galois G-algebras were studied in [3]. In view of theorem
2.1, they are automorphisms of objects of the groupoid Ctf (G) of central type
factor subgroups of G.

Theorem 2.3. The group of G-automorphisms AutG(R) of the Galois G-
algebra R = R(G,S, α) fits into an exact sequence:

1→ Ŝ → AutG(R)→ StNG(S)/S(A).

Here Ŝ = Hom(S, k·) is the group of characters of S, NG(S) is the normaliser
of S in G, and A ∈ H2(S, k·) is the class of α. In particular, the automorphism
group AutG(R) has the same order as G only if S is normal abelian and the
class A is G-invariant.

Now following [2, 3] we will prove that (up to gauge equivalence) twists for
twisted isomorphisms are supported by normal abelian subgroups. Very similar
results were proved in [5].
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Theorem 2.4. Any twisted isomorphism (f, F ) of group algebras k[G1]→ k[G2]
is gauge isomorphic to a twisted isomorphism of the form (f ′, F(S,β)) for some
normal abelian S ⊂ G and a non-degenerate bi-multiplicative form β with G-
invariant alternation.

Proof. For a twisted automorphism (f, F ) of k[G] the f -twist F must corre-
spond to a Galois G-algebra R with the automorphism group isomorphic to G.
Thus R is isomorphic (as a Galois G-algebra) to R(G,S, α) for a normal abelian
S with a non-degenerate 2-cocycle with G-invariant cohomology class. Finding
a bilinear form b with the same class, we can replace R(G,S, α) with (the iso-
morphic Galois G-algebra) R(G,S, b). Finally the Galois G-algebra R(G,S, b)
corresponds to the twist F(S,β). Thus the twist F is gauge isomorphic to the
twist F(S,β):

F(S,β)∆(a) = (a⊗ a)F

for some invertible a ∈ k[G], which can be viewed as a gauge transformation
a : (f, F )→ (f ′, F(S,β)), where f ′(x) = af(x)a−1.

3 Separation of twisted isomorphisms

The fact that twists of twisted isomorphisms are supported by abelian normal
subgroups allows us to prove separation for twisted automorphisms of the group
algebra of a group of odd order.

Proposition 3.1. For a group G of odd order any twisted automorphism (f, F )
of the group algebra k[G] is gauge isomorphic to a unique twisted automorphism
of the form (f ′, F(S,β)), where f ′ is an automorphism of k[G] induced by a group
automorphism of G, where S is normal abelian, and where β is a non-degenerate
alternative G-invariant form.

Proof. For odd order S the alternation map is bijective on Hom(Λ2S, k·). Thus
we can strengthen the statement of the theorem 2.4 assuming that β is a non-
degenerate alternativeG-invariant form. This assumption makes the twist F(S,β)

G-invariant. Hence the twisted automorphism (f ′, F(S,β)) is separated and f ′ is
a bialgebra automorphism of k[G], which has to be induced by a group auto-
morphism of G.

Below we show that group algebras of groups of even order can have non-
separated twisted isomorphisms.

Let β : Â × Â → k· be a non-degenerate bi-multiplicative form on the dual
group of an abelian normal subgroup A ⊂ G with G-invariant alternation

b(g(χ)g(ξ)) = b(χ, ξ), b(χ, ξ) = β(χ, ξ)β(ξ, χ)−1.

This means that for any g ∈ G the form βg(χ, ξ) = β(g(χ), g(ξ))β(χ, ξ)−1 is
symmetric. Define

G̃ = {(g, c)|g ∈ G, c : Â→ k·, βg(χ, ξ) = c(χ)c(ξ)c(χξ)−1, ∀χ, ξ ∈ Â}.
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It is a group with the product

(g1, c1)(g2, c2) = (g1g2, (c1)g2c2),

where cg(χ) = c(g−1(χ)). Define a homomorphism f : k[G̃]→ k[G] by

f(g, c) = g
∑
χ∈Â

c(χ)pχ

and the twist
F =

∑
χ,ξ∈Â

β(χ, ξ)pχ ⊗ pξ,

where pχ = 1
|A|

∑
a∈A χ(a)−1a. By the definition

∆′(f(g, c))F = F (f(g, c)⊗ f(g, c))

so that (f, F ) is a twisted homomorphism. The subgroup

K = {(a, c−1
a ), a ∈ A} ⊂ G̃

is mapped into 1, which means that (f, F ) induces a twisted homomorphism
(f, F ) : k[G] → k[G], where G = G̃/K. Note that pairs (a, 1), where 1(χ) =
χ(1), form a normal subgroup in G̃(G) isomorphic to A. Moreover, the quotient
group G/A is isomorphic to the quotient group Q = G/A and the Q-action on
A, coming from G, coincides with the one coming from G. The class of the
extension A→ G→ Q in H2(Q,A) was calculated in [3]. It is equal to the class
of A → G → Q shifted by the image of b ∈ Hom(λ2(Â), k·) = H2(Â, k·) under
the map

D : H0(Q,H2(Â, k·))→ H2(Q,H1(Â, k·)) = H2(Q,A),

which is the differential of the second term of the Hochschild-Serre spectral
sequence associated with the split extension of A by Q. The map D is trivial
in the absence of 2-torsion. Thus for odd order G the twisted homomorphism
(f, F ) is a twisted automorphism and, in particular, is separable. In the case
when G is not isomorphic to G the twisted homomorphism (f, F ) can not be
separable. Of course non-triviality of D(b) is not enough to guarantee that G
is not isomorphic to G as abstract groups, but in the next example (taken from
[3], see also [5]) it can be checked directly.

Example 3.2. Affine symplectic and metaplectic groups.

Let A be an elementary abelian 2-group with a symplectic form ( , ) :
A ⊗ A → F2. Let Q be the group of automorphisms of A preserving ( , ),
i.e. the symplectic group Sp(n, 2), where n is the rank of A. Let G be the
semi-direct product of A and Q, i.e. the affine symplectic group ASp(n, 2). Let
m : A⊗A→ F2 be a bi-linear form such that m(x, y)−m(y, x) = (x, y). Define
a non-degenerate bi-multiplicative form β : A⊗A→ k· by

β(x, y) = (−1)m(x,y).
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By the definition the alternation of β is G-invariant. The group G corresponding
to the abelian normal subgroup A with the form β coincides with the quotient
of the group of pairs

{(g, q)|g ∈ Sp(n, 2), q : A→ F2,

m(g(x), g(y))−m(x, y) = q(x) = q(y)− q(x+ y), ∀x, y ∈ A},

which is called the metaplectic group Mp(n, 2) [14]. It is known that for n > 2
the metaplectic group Mp(n, 2) is not isomorphic to the affine symplectic group
ASp(n, 2). Thus the twisted homomorphism

(f, F ) : k[ASp(n, 2)]→ k[Mp(n, 2)].

is not separable.

4 Class-preserving automorphisms

Here we describe invariant twists, which stabilise the unital inclusion k → k[G]
(as in the section 4.3 of [4]) and link them with class-preserving automorphisms
of G. Recall that an automorphism f : G→ G is class-preserving if f preserves
conjugacy classes of G: for any g ∈ G,

f(g) = xgx−1, for some x ∈ G.

Clearly, class-preserving automorphisms are closed under composition, forming
a normal subgroup Autcl(G) of the automorphism group Aut(G). Inner auto-
morphisms are obviously class-preserving. Moreover, the homomorphism

Autcl(G) ∂← G (1)

sending g ∈ G to the inner automorphism ( )g defines a crossed module of
groups Autcl(G). In particular, π0(Autcl(G)) = Outcl(G) is the group of class-
preserving automorphisms modulo inner.

The study of class-preserving automorphisms was initiated in [1], where the
first examples of groups with nontrivial Outcl(G) were constructed. Since then
many more examples were produced and some triviality results were proved. In
particular, using the classification of finite simple groups, Sah proved solvability
of Outcl(G) [12] and Feit and Seitz verified triviality of Outcl(G) for simple G
[6]. Recently, class-preserving automorphisms were used to produce a counter-
example to the isomorphism problem of integer group rings [8].

Here we characterize class-preserving automorphisms as invariant twists on
the group algebra stabilizing the unital inclusion k → k[G].

Proposition 4.1. The homomorphisms G→ k[G]·, Autcl(G)→ Autbialg(k[G])
induce an isomorphism of crossed complexes of groups Autcl(G)→ Aut innbialg(k[G]).
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Proof. Since k is algebraically closed (of characteristic zero), k[G] is a sum of
matrix algebras and the restriction map Outbialg(k[G]) → Aut(Z(k[G])) is an
isomorphism. The centre Z(k[G]) is spanned by class sums (sums over conjugacy
classes of G). Thus the kernel of Autbialg(k[G])→ Outbialg(k[G]) coincides with
the kernel of Aut(G)→ Aut(Z(k[G])) and is Autcl(G).

We will say that a class preserving automorphism φ is supported by a normal
subgroup N ⊂ G if there is an element x ∈ k[N ] such that φ(g) = xgx−1.
Below we give a cohomological description of class-preserving automorphisms
supported by abelian normal subgroups.

Proposition 4.2. Let A be an abelian normal subgroup of G. Then the group

{x ∈ k[A]| (x⊗ x)∆(x)−1 ∈ (k[A]⊗2)G}

is isomorphic to the group of 1-cocycles ψ : G→ A (with respect to the natural
G-action on A) such that

∀χ ∈ Â, χ(ψ(s)) = 1, ∀s ∈ StG(χ). (2)

Here StG(χ) = {g ∈ G| χ(g(a)) = χ(a) ∀a ∈ A} is the stabilizer in G of χ ∈ Â.
Under that isomorphism, central x correspond to coboundaries.

Proof. For an element x ∈ k[A] such that (x⊗x)∆(x)−1 is G-invariant, define a
1-cocycle ψ(g) = [x, g] = xgx−1g−1. Since A is normal and since xGx−1 = G it
takes its values in k[A] ∩G = A. By definition, the class of ψ lies in the kernel
of the homomorphism

H1(G,A)→ H1(G, k[A]·) (3)

induced by the natural inclusion A → k[A]·. Since the field k is algebraically
closed, the algebra k[A] is isomorphic to the function algebra k(Â). Moreover,
this isomorphism preserves G-actions. Thus k[A]· is a permutation G-module
and

H1(G, k[A]·) = ⊕O⊂ÂH
1(StG(O), k·) = ⊕O⊂ÂŜtG(O),

where the sum is taken over G-orbits in Â and StG(O) is the stabilizer of an
orbit O. So the class of a cocycle ψ is in the kernel of (3) iff

∀χ ∈ Â, χ(ψ(s)) = 1, ∀s ∈ StG(χ),

which proves the proposition.

Example 4.3. Quadratic class-preserving automorphisms.

Let V be a vector spaces over F = F2 (the two element field). Let b :
V ⊗ V → F be a non-degenerate symmetric bilinear form on V and q : V → F
an associated quadratic form:

q(u+ v)− q(u)− q(v) = b(u, v), u, v ∈ V.
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Note that the existence of q implies that b is alternative: b(v, v) = 0 for any
v ∈ V . Let Q = Aut(V, b) be the group of automorphisms of b (a symplec-
tic group) and G = Q n V ∗ be a semi-direct product (an affine symplectic
group). Define an element in the group ring k[V ∗] of the dual space V ∗ by
x =

∑
v∈V (−1)q(v)pv. Here the pv = 1

2dim(V )

∑
l∈V ∗(−1)l(v)l are minimal idem-

potents in k[V ∗] corresponding to elements of V . Then

(x⊗ x)∆(x)−1 =
∑
u,v∈V

(−1)b(u,v)pu ⊗ pv

is G-invariant. The corresponding 1-cocycle ψ : G→ V ∗ has the form

ψ(g)(v) = q(v)− q(g(v)). (4)

Since g preserves the linearisation of q, ψ(g) is linear in v. Now it is straight-
forward to see that [x, g] is given by the formula (4):

xg(x−1) =
∑
v∈V

(−1)q(v)pv
∑
u∈V

(−1)−q(g(u))pu =
∑
v∈V

(−1)q(v)−q(g(v))pv = q(v)−q(g(v)).

Obviously the cocycle (4) satisfies the condition (2). To see that it is non-trivial
we will follow the arguments of [7]. Recall that for a vector v ∈ V the map
(symplectic transvection) τv(u) = u − b(v, u)v is an automorphism of b. Note
that symplectic transvections generate the group Aut(V, b).

Write V as U⊕U∗ so that the form b becomes b((u, l), (v,m)) = l(v)−m(u).
Define q by q(u, l) = l(u). For a vector (u, l) ∈ V the corresponding symplectic
transvection has the form:

τ(u,l)(v,m) = (v + (m(u)− l(v))u,m+ (m(u)− l(v))l).

Now the value of the 1-cocycle ψ on the transvection is

q(τ(u,l)(v,m))− q(v,m) = (m(u) + l(v))(l(u) + 1),

which coincides with b((u, l), (v,m))(q(u, l) + 1). Thus we have the following
formula

ψ(τv)(u) = b(v, u)(q(v) + 1), v ∈ V.
The cocycle ψ is a coboundary if there is a linear function l ∈ V ∗ such that

l(τv(u))− l(u) = −b(v, u)l(v)

coincides with ψ(τv)(u) = b(v, u)(q(v) + 1), which gives a contradiction l(v) =
q(v) + 1 to the linearity of l.

Example 4.4. Cubic class-preserving automorphism of 35.M11.

Let V be a vector spaces over F = F3 (the three element field). Let τ :
V ⊗ V ⊗ V → F be a non-degenerate symmetric tri-linear form on V and
c : V → F an associated cubic form:

c(u+ v)− c(u)− c(v) = τ(u, u, v) + τ(u, v, v), u, v ∈ V.
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Note that c is a depolarization of 2τ :

c(u+ v+w)− c(u+ v)− c(u+w)− c(v+w) + c(u) + c(v) + c(w) = 2τ(u, v, w)

and the form τ satisfies: τ(v, v, v) = 0 for any v ∈ V . Let Q = Aut(V, τ) be
the group of automorphisms of the form τ and G = Q n V ∗ be a semi-direct
product. As in the previous example define an element in the group ring k[V ∗]
of the dual space V ∗ by x =

∑
v∈V ω

c(v)pv. Here ω ∈ k is a primitive cubic
root of unity and the pv = 1

3dim(V )

∑
l∈V ∗ ωl(v)l are minimal idempotents in

k[V ∗] corresponding to elements of V . Since the group Aut(V, τ) preserves the
function τ(u, u, v) + τ(u, v, v), the element of k[V ∗]:

(x⊗ x)∆(x)−1 =
∑
u,v∈V

(−1)τ(u,u,v)+τ(u,v,v)pu ⊗ pv

is G-invariant. The corresponding 1-cocycle ψ : G→ V ∗ again has the form

ψ(g)(v) = c(v)− c(g(v)). (5)

Since g preserves the linearisation of q (which is τ(u, u, v) + τ(u, v, v)), ψ(g) is
linear in v. In contrast with the previous example it is much more difficult to
find a tri-linear form with a non-trivial 1-cocycle ψ.

Following [13], define on F35 (the field of 243 elements), considered as a
vectors space V over F3, a symmetric tri-linear form

τ(x, y, z) = Tr(xyz9 + xy9z + x9yz).

Here Tr : F35 → F3 is the trace of the field extension F3 ⊂ F35 . Let ε ∈ F35 be
a primitive root of unity of degree 11 such that Tr(ε) = −1. It can be checked
directly that the following linear operators r, s, t on V preserve τ :

s(v) = εv, t(v) = v3.

To define r note that the powers ε, ε3, ε4, ε5, ε9 span the space V . In this basis
r has the form

r(ε) = −ε, r(ε3) = −ε9, r(ε4) = −ε5,

r(ε5) = −ε3, r(ε9) = −ε4.

It was proved in [13] that r, s, t generate the group Aut(V, τ) and that the
group Aut(V, τ) is isomorphic to the Mathieu group M11. Now define c by
c(x) = Tr(x11). It can be checked that r2, s, t stabilize c (it was also proved in
[13] that r2, s, t generate the subgroup of M11 isomorphic to PSL2(11)). Now
if we assume that the 1-cocycle (5) is a coboundary

c(v)− c(g(v)) = l(v)− l(g(v)), ∀v ∈ V

we should have a non-zero linear function l ∈ V ∗ invariant under s, which is not
possible. Indeed, writing l as l(v) = Tr(λv) for some λ ∈ F35 we would have
Tr(λεv) = Tr(λv) for all v ∈ V , which implies λ = 0.
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5 Invariant anti-symmetric twists and triangu-
lar structures on group algebras

It follows from the proposition (3.1) that up to gauge transformations invariant
anti-symmetric twists on the group algebra k[G] of a group G of odd order
correspond to normal abelian subgroups A ⊂ G with non-degenerate alternative
bi-multiplicative G-invariant forms α : A×A→ k·:

F(A,β) =
1
|A|

∑
a1,a2∈A

β(a1, a2)a1 ⊗ a2.

A bijective correspondence between non-degenerate bi-multiplicative forms
β : A × A → k· on an abelian group A and non-degenerate bi-multiplicative
forms b : Â × Â → k· on its group of characters Â can be defined explicitly by
the rule: for any x ∈ A there is a unique χ ∈ Â (and vice versa) such that

β(x, y) = χ(y) ∀y ∈ A ⇔ b(χ, ψ) = ψ(x) ∀ψ ∈ Â.

This correspondence allows us to give a different presentation for anti-symmetric
twists. Denote by pχ = 1

|A|
∑
x∈A χ

−1(x)x the minimal idempotent of the group

algebra k[A] corresponding to the character χ ∈ Â:

ypχ = χ(y)pχ, ∀y ∈ A.

Lemma 5.1. The anti-symmetric twist

F(A,β) =
1
|A|

∑
a1,a2∈A

β(a1, a2)a1 ⊗ a2

can be written as ∑
χ,ψ∈Â

b(χ, ψ)pχ ⊗ pψ.

Proof. Indeed,∑
χ,ψ∈Â

b(χ, ψ)pχ ⊗ pψ =
1
|A|

∑
a1,a2∈A

∑
χ,ψ∈Â

b(χ, ψ)χ(a1)ψ(a2))a1 ⊗ a2. (6)

Since
b(χ, ψ)χ(a1)ψ(a2)) = ψ(x)b(x, a1)ψ(a2) = b(x, a1)ψ(xa2)

and
1
|A|

∑
ψ∈Â

ψ(xa) = δx,a−1

the expression (6) can be rewritten as

1
|A|

∑
a1,a2∈A

β(a−1
2 , a1)a1 ⊗ a2.

It remains to notice that β(a−1
2 , a1) = β(a1, a2).
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For a subgroup B of an abelian group A with a non-degenerate alternative
bi-multiplicative form β : A×A→ k· denote by

B⊥ = {a ∈ A| β(a, b) = 1,∀b ∈ B}

the orthogonal complement. A subgroup B is called isotropic if B ⊂ B⊥, i.e.
the restriction of α on B is trivial. A subgroup B is Lagrangian if B = B⊥. A
Lagrangian subgroup B ⊂ A fits into a short exact sequence

B → A→ B̂

with the last morphism being induced by the form β: a 7→ (x ∈ B 7→ β(a, b)).
Suppose that there exists a multiplicative splitting B̂ → A. Then we have a
Lagrangian decomposition

A ' B ⊕ B̂

where elements of A can be written as pairs (x, χ) where x ∈ B and χ ∈ B̂.
The form β in this presentation take the following shape β((x, χ), (y, ψ)) =
χ(y)ψ(x)−1.

Lemma 5.2. An abelian group with an alternative bi-multiplicative non-degenerate
form has a Lagrangian decomposition.

Proof. We prove this by induction on the order of the group. Let a ∈ A be
an element with the property: for any x ∈ A such that xm = a there is n so
that an = x. Then the inclusion 〈a〉 → A of the cyclic subgroup generated by a
splits as well as the surjection A→ 〈̂a〉 induced by the form β on A. So we can
write A ' A′ ⊕ 〈a〉 ⊕ 〈̂a〉 where A′ ' 〈a〉⊥/〈a〉 with the induced form. By the
induction it follows that, A′ has a Lagrangian decomposition, and hence so has
A.

With any Lagrangian decomposition A ' B ⊕ B̂ there are associated two
more presentations for the twist F(A,β), which, in a way, are mixtures of the
previous two. Define pχ = 1

|B|
∑
x∈B χ(x)−1x ∈ k[B].

Lemma 5.3. The anti-symmetric twist

F(A,β) =
1
|A|

∑
a1,a2∈A

β(a1, a2)a1 ⊗ a2

can be written as
F(A,β) =

∑
χ,ψ∈B̂

pψχ⊗ pχ−1ψ.

Proof. Indeed,∑
χ,ψ∈B̂

pψχ⊗ pχ−1ψ =
1
|B|2

∑
χ,ψ∈B̂

∑
x,y∈B

χ(y)ψ−1(x)xχ⊗ yψ =

12



1
|A|

∑
a1,a2∈A

β(a1, a2)a1 ⊗ a2.

Analogously (using the symmetry between B and B̂) we can write

F(A,β) =
∑
x,y∈B

xpy−1χ⊗ ypx,

where px = 1
|B|

∑
χ∈B̂ χ(x)−1χ ∈ k[B̂].

As the next example shows, not any Lagrangian subgroup fits into a La-
grangian decomposition.

Example 5.4.

Let A be Z/Zp2⊕Z/Zp2 with the standard alternative form β((1, 0), (0, 1)) =
ε for a primitive root ε of degree p2. The subgroup B = pA is Lagrangian but
the extension B → A→ B̂ does not split.

Of course we can always split the short exact sequence B → A → B̂ set-
theoretically. Choosing a section

s : B̂ → A, β(s(χ), x) = χ(x), ∀x ∈ B,χ ∈ B̂

we can identify A with B × B̂ equipped with the product

(x, χ)(y, ψ) = (xyΓ(χ, ψ), χψ),

where Γ : B̂ × B̂ → B is a 2-cocycle defined by the splitting s:

s(χψ) = s(χ)s(ψ)Γ(χ, ψ).

The bi-multiplicative form β on A transports to B × B̂:

β((x, χ), (y, ψ)) = χ(y)ψ(x)−1β(χ, ψ),

where β(χ, ψ) = β(s(χ), s(ψ)).
Repeating the calculations for the twist on Lagrangian decomposition, we

will have the following form for the twist F(A,β) on B × B̂:

F(A,β) =
∑
χ,ψ∈B̂

β(χ, ψ)pψχ⊗ pχ−1ψ. (7)

We finish this section with a well-known remark on triangular structures on
group algebras. We include the proof of the proposition below because we will
use its argument later on.

Proposition 5.5. The set T r(k[G]) of triangular structures on the group al-
gebra is isomorphic to the set of pairs (A,α) consisting of a normal abelian
subgroup A ⊂ G and a non-degenerate skew-symmetric bi-multiplicative G-
invariant form α : A×A→ k·.

13



Proof. By the proposition (4.4.1) of [4] a support sub-bialgebra (minimal tri-
angular sub-bialgebra) of a triangular structure R is a commutative and co-
commutative normal sub-bialgebra HR. Thus it is k[A] for an abelian sub-
group A = G(HR) ⊂ G, which must be normal since HR is normal. The
isomorphism b : H∗

R → HR induces (and is induced by) the homomorphism
of groups of group-like elements G(b) : G(H∗

R) → G(HR) = A. Note that
G(H∗

R) = Hom(A, k·) is the group of characters of A. Thus the isomorphism
G(b) : Hom(A, k·) → A induces (and is induced by) a non-degenerate bi-
multiplicative form α : A × A → k·. The G-invariance of α follows from the
H-invariance of b while skew-symmetricity of α is equivalent to self-duality of
b.

6 Group structure on anti-symmetric twists

We start with the following abstract situation. Let T be a group and t : T → T
be an automorphism of order 2. Define a left T -action on itself via

xg = t(g)−1xg. (8)

In particular, the stabiliser of the identity element is T t = {s ∈ T | t(s) = s}
the subgroup of τ -invariant elements. Note also that this action preserves the
subset

X = {x ∈ T | t(x) = x−1}

and that X is closed under power maps x 7→ xm for m ∈ Z.

Lemma 6.1. Suppose that ( )2 is bijective on X. Then

X ∩ T t = {1}, T = T tX.

In particular, for any x, y ∈ X, there is a unique factorisation:

xy = s(x, y)(x ◦ y), s(x, y) ∈ T t, x ◦ y ∈ X

with
(x ◦ y)2 = yx2y.

The operations s, ◦ satisfy

s(x, y)s(x ◦ y, z) = s(y, z)s(x, y ◦ z),

(x ◦ y) ◦ z = xs(y,z) ◦ (y ◦ z), (x ◦ y)s = xs ◦ ys.

Here xs = s−1xs. Moreover if the operation ◦ is commutative, then

[x, y] = s(x, y)s(y, x)−1.

Here [x, y] = xyx−1y−1.

14



Proof. First we notice that in the assumption of the lemma (the bijectivity of
( )2)X coincides with the orbit {t(g)−1g, g ∈ T} of the identity element. Indeed,
solving y2 = x for x ∈ X we will be able to write x as t(y)−1y (since y is also
in X). The next thing to observe is that the intersection X ∩ T t is trivial: for
x ∈ X ∩ T t, we have x = t(x) = x−1 or x2 = 1, which implies x = 1.

Now we write T as the product T tX. For g ∈ T , solve y2 = t(g)−1g in X.
Then for s = gy−1, we have

t(s)s−1 = t(g)t(y)−1yg−1 = t(g)y2g−1 = 1.

So s is in T t. The decomposition g = sy is unique since X ∩ T t = {1}.
Since T t normalizes X (the action of T t on X via (8) is the conjugation),

we can write xyz as an element of T tX in two ways:

(xy)z = s(x, y)(x ◦ y)z = s(x, y)s(x ◦ y, z)((x ◦ y) ◦ z),

x(yz) = xs(y, z)(y◦z) = s(y, z)xs(y,z)(y◦z) = s(y, z)s(xs(y,z), (y◦z))(xs(y,z)◦(y◦z))

which gives the equations of the lemma.
For x ◦ y = y ◦ x we have

[x, y] = (xy)(yx)−1 = s(x, y)(x ◦ y)(y ◦ x)−1s(y, x)−1 = s(x, y)s(y, x)−1.

Now let T be the group Aut1Tw(k[G]) of gauge classes of invariant twists with
t being the automorphism of transposition of tensor functors of a twist. Then
by the section 4, the stabiliser T t is the group Outcl(G) of outer class-preserving
automorphisms of G and X is (isomorphic to) the set of abelian normal sub-
groups of G equipped with G-invariant non-degenerate bimultiplicative form. If
G is odd then the order of any element from X is also odd so we are in the
situation of the lemma 6.1. This defines a binary operation ◦ on X:

F(A1,α1) ◦ F(A2,α2) = F(A,α),

where
F 2

(A,α) = F(A,α2) = F(A1,α1)F
2
(A2,α2)

F(A1,α1).

Note that the right hand side belongs to the group algebra of the subgroup
A1A2 ⊂ G. Since the subgroups Ai are normal abelian, their product A1A2 is
meta-abelian with the commutant [A1, A2] ⊂ A1 ∩A2 ⊂ A1A2.

First we describe the support group A. Let

K = {c ∈ A1 ∩A2| α1(x, c) = α2(x, c)−1 ∀x ∈ A1 ∩A2}

be the kernel of the bimultiplicative form on A1 ∩ A2, which is the product of
the restrictions of α1 and α2.
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Lemma 6.2. The formula

π(a1a2, c) =
α1(a1, c)
α2(a2, c)

, ai ∈ Ai, c ∈ K

defines a homomorphism π : A1A2 → K̂ with an abelian kernel A = ker(π).
The formula

α(u1u2, v1v2) = α1(u1, v1)α2(u2, v2)

defines a non-degenerate alternative bi-multiplicative form on A.

Proof. The definition of π does not depend on the factorisation a1a2. Then
for d ∈ A1 ∩A2:

α1(a1d, c)
α2(a2, c)

=
α1(a1, c)α1(d, c)

α2(a2, c)
=

α1(a1, c)
α2(d, c)α2(a2, c)

=
α1(a1, c)
α2(a2d, c)

.

To see that A is abelian note first that the commutant [A1, A2] lies in K. To
check that the commutant [A,A] is trivial, it is enough to verify that b1([u1u2, v1v2], y) =
0 for any u1u2, v1v2 ∈ A and any y ∈ A1. Writing

[u1u2, v1v2] = [u1, v2][u2, v1] = [u1, v2][v1, u2]−1

we need to verify that b1([u1, v2], y) = b1([v1, u2], y). Indeed, by G-invariance
of bi and the defining relations for u1u2, v1v2 (together with [A1, A2] ⊂ K), we
have the chain of equalities:

b1([u1, v2], y) = b1(u1, [y, v2])−1 = b2(u2, [y, v2])−1 =

b2([y, u2], v2) = b1([y, u2], v1) = b1(y, [v1, u2])−1 = b1([v1, u2], y).

We need to verify that the value of the form α does not depend on factori-
sations of its arguments. To see that, we give another presentation of the group
A. Denote by A1 ./ A2 the group of pairs (x1, x2), xi ∈ Ai with the product:

(x1, x2)(y1, y2) = (x1y1[x2, y1]
1
2 , [x2, y1]

1
2x2y2).

The map
A1 ./ A2 → G, (x1, x2) 7→ x1x2

is a group homomorphism with the image A1A2. The group A fits into a com-
mutative diagram with exact rows and columns:

K //

��

A1 ∩A2
//

��

̂((A1 ∩A2)/K)

��
ker(Π) //

��

A1 ./ A2
Π //

��

̂(A1 ∩A2)

��
A // A1A2

π // K̂

(9)
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The homomorphism Π is given by the same formula as the map π. We can
define a skew-symmetric pairing on A1 ./ A2 using the formula

α((u1, u2), (v1, v2)) = α1(u1, v1)α2(u2, v2).

It follows from the non-degeneracy of αi that the orthogonal to ker(Π) in A1 ./
A2 is the anti-diagonal image of A1∩A2. Hence that the kernel of the restriction
of the pairing from A1 ./ A2 to ker(Π) coincides with the anti-diagonal image
of K. Thus the pairing restricts from ker(Π) to a non-degenerate pairing on
ker(Π)/K = A.

Proposition 6.3. The support subgroup and the bi-multiplicative form corre-
sponding to the twist F(A1,α1) ◦F(A2,α2) are the group A and the form α defined
in the lemma 6.2.

Proof. First we prove that A contains the support subgroup. Note that the
supports of F(A1,α1)◦F(A2,α2) and R = F(A1,α1)F

2
(A2,α2)

F(A1,α1) coincide. To see
that R belongs to k[A]⊗k[A] it is enough to check that (I⊗π)(R) = 1. Indeed, as
an R-matrix, R defines a homomorphism of Hopf algebras l 7→ (l⊗ I)(R) whose
image is the group algebra of the support subgroup of R. The condition (I ⊗
π)(R) = 1 will mean that the support subgroup is in the kernel of π. We check
this condition by showing that (I ⊗ π)(F(A1,α1)) = (I ⊗ π)(F(A2,α2))

−1 or, more
precisely, by showing that for any c ∈ K the evaluation (I ⊗ π)(F(A1,α1))(I ⊗ c)
is the inverse of (I ⊗ π)(F(A2,α2))(I ⊗ c) (here we think of k[K̂] as the function
algebra k[K]∗). Since for y ∈ A1 π(y)(c) = α1(y, c)

(I ⊗ π)(F(A1,α1))(I ⊗ c) =
1
|A1|

∑
x,y∈A1

α1(x, y)x⊗ π(y)(c) =

1
|A1|

∑
x,y∈A1

α1(x, y)α1(y, c)x =
∑
x∈A1

(
1
|A1|

∑
y∈A1

α1(xc−1, y))x.

The inner sum 1
|A1|

∑
y∈A1

α1(xc−1, y) is the δ-function δx,c. Hence (I⊗π)(F(A1,α1))(I⊗
c) = c. Similarly, using that π(y)(c) = α2(y, c)−1 for y ∈ A2, we get that
(I ⊗ π)(F(A2,α2))(I ⊗ c) = c−1.

Let χu1u2 be the character on A corresponding to an element u1u2 ∈ A via
the form α:

χu1u2(x1x2) = α1(u1, x1)α2(u2, x2), x1x2 ∈ A.

To show that α2 is the form corresponding to R ∈ k[A]⊗2 we need to check that
(χu1u2 ⊗ χv1v2)(R) = α(u1u2, v1v2)−2 for any u1u2, v1v2 ∈ A. Write R as

1
|A1|2|A2|

∑
xi,zi∈A1yi∈A2

α1(x1, x2)α2(y1, y2)2α1(z1, z2)x1y1z1 ⊗ x2y2z2.

Since xiyizi = xi
yiziyi (where yizi = yiziy

−1
i ), we have for (χu1u2 ⊗ χv1v2)(R)

1
|A1|2|A2|

∑
xi,zi∈A1yi∈A2

α1(x1, x2)α2(y1, y2)2α1(z1, z2)
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α1(u1, x1
y1z1)α2(u2, y1)α1(v1, x2

y2z2)α2(v2, y2),

which by multiplicativity and invariance of the forms αi equals

1
|A1|2|A2|

∑
xi,zi∈A1yi∈A2

α1(x1, x2u
−1
1 )α1(z1,y

−1
1 u−1

1 z2)

α2(y1, y2)2α2(u2, y1)α1(v1, x2
y2z2)α2(v2, y2).

This expression can be simplified since 1
|A1|

∑
x1∈A1

α1(x1, x2u
−1
1 ) is the δ-

function δx2,u1 and 1
|A1|

∑
x1∈A1

α1(z1,y
−1
1 u−1

1 z2) is the δ-function δ
z2,

y
−1
1 u1

:

1
|A2|

∑
yi∈A2

α2(y1, y2)2α2(u2, y1)α1(v1, u1
y2y

−1
1 u1)α2(v2, y2). (10)

Now, writing y2y
−1
1 u1 = y2y

−1
1

u1(y2y−1
1 )−1u1 and using that u−1

1 v1 = v1 by
commutativity of A, we have

α1(v1, u1
y2y

−1
1 u1) = α1(v1, u1)α1(v1, y2y−1

1 )α1(v1,u1 (y2y−1
1 )−1)α1(v1, u1) =

α1(v1, y2y−1
1 )α1(u

−1
1 v1, (y2y−1

1 )−1)α1(v1, u1)2 = α1(v1, u1)2.

This allows us to simplify the expression (10) further:

1
|A2|

∑
yi∈A2

α2(y1, y2
2u

−1
2 )α1(v1, u1)2α2(v2, y2).

Finally 1
|A2|

∑
y1∈A2

α2(y1, y2
2u

−1
2 ) is the δ-function δy2,u2 , which leaves us with

α1(v1, u1)2α1(v2, u2)2 = α(u1u2, v1v2)−2.

Clearly the operation ◦ on anti-symmetric twists is commutative. Thus the
commutator of any two anti-symmetric twists F1 = F(A1,b1) and F2 = F(A2,b2)

can be written as
[F1, F2] = (u⊗ u)∆(u)−1

for some u ∈ k[G]. An explicit form of such u is closely related to a certain
invariant of the pair (A1, b1), (A2, b2), which we are going to describe now. The
construction is very similar to the one for twists on universal enveloping algebras
from [4]. Denote by B = [A1, A2] the commutant of A1 and A2 in G. To a pair
of characters (χ1, χ2) on B we assign an element [x1, x2] ∈ B, where xi ∈ Ai
are defined by

bi(xi, x) = χi(x), ∀x ∈ B.

The elements xi are defined up to subgroups

B⊥
bi

= {y ∈ Ai| bi(y, x) = 1 ∀x ∈ B}.
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Note that these subgroups have the following commutation property:

[B⊥
b1 , A2] = [A1, B

⊥
b2 ] = 1.

Indeed, for arbitrary x ∈ B⊥
b1
, y ∈ A2 and for any z ∈ A1

b1([x, y], z) = b1(x, [y, z]) = 1.

Hence [x, y] = 1. Similarly for [A1, B
⊥
b2

]. Thus the commutator [x1, x2] depends
only on (χ1, χ2). Define a map

c : B̂ × B̂ × B̂ → k· (11)

by c(χ1, χ2, χ3) = χ3([x1, x2]). This map is multiplicative in each variable. It’s
also G-invariant by the construction. Moreover this map is symmetric. Indeed,
let yi ∈ ai be such that

bi(yi, u) = χ3(u), ∀u ∈ B.

Then

χ3([x1, x2]) = b1(y1, [x1, x2]) = b1([x2, y1], x1) = χ1([y1, x2]),

which means that c(χ1, χ2, χ3) = c(χ3, χ2, χ1). Similarly

χ3([x1, x2]) = b2(y2, [x1, x2]) = b2([y2, x1], x2) = χ2([x1, y2]),

which means that c(χ1, χ2, χ3) = c(χ1, χ3, χ2).

Proposition 6.4. The commutator of two anti-symmetric twists F1 = F(A1,b1)

and F2 = F(A2,b2) belongs to the group algebra k[[A1, A2]] of the commutator
B = [A1, A2] and has the form∑

ψ,χ∈B̂

c(χ, χ, ψ)c(χ, ψ, ψ)pψ ⊗ pχ.

Here c : B̂ × B̂ × B̂ → k· is the map defined above.

Proof. Note that B is an isotropic subgroup in (A1, b1) and (A2, b2). Choose
Lagrangian subgroups B ⊂ Bi ⊂ Ai and write (as in (7))

Fi =
∑

χi,ψi∈B̂i

βi(χi, ψi)pψi
χi ⊗ pχ−1

i
ψi.

Note that the subgroups Bi are in the centre of A1A2. Thus we have the
following formula for the commutator [F1, F2] = F1F2t(F1)t(F2):∑

β1(χ1, ψ1)β2(χ2, ψ2)β1(χ
′
1, ψ

′
1)β2(χ

′
2, ψ

′
2)

pψ1pψ2pχ′−1
1
pχ′−1

2
χ1χ2ψ

′
1ψ

′
2 ⊗ pχ−1

1
pχ−1

2
pψ′1pψ2ψ1ψ2χ

′
1χ

′
2,
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which immediately gives χ′1 = ψ−1
1 , χ′2 = ψ−1

2 , ψ′1 = χ−1
1 , ψ′2 = χ−1

2 .
Since the groups Bi do not have 2-torsion βi(χi, ψi)βi(ψ

−1
i , χ−1

i ) = 1 and the
commutator takes the form:∑

χ1,ψi

pψ1pψ2χ1χ2χ
−1
1 χ−1

2 ⊗ pχ−1
1
pχ−1

2
ψ1ψ2ψ

−1
1 ψ−1

2 .

Obviously, pψ1pψ2 = 0 if the restrictions of ψ1 and ψ2 to B do not coincide.
Note that

∑
ψi|B=ψ pψ1pψ2 = pψ and that ψ([χ1, χ2]) = c(χ, χ, ψ), χ([ψ1, ψ2]) =

c(χ, ψψ) so the commutator is equal to∑
ψ,χ∈B̂

c(χ, χ, ψ)c(χ, ψ, ψ)pψ ⊗ pχ.

Now to find an element u =
∑
χ∈B̂ u(χ)pχ ∈ k[B] such that

[F1, F2] = (u⊗ u)∆(u)−1

it is enough to solve the equation

u(χψ) = c(χ, χ, ψ)c(χ, ψ, ψ)u(χ)u(ψ).

Since c is symmetric we can always find a solution. It is much more subtle to
check that this solution will be G-invariant, which will guarantee that u is in
the centre of k[G]. However if 3 is coprime to |G| then we can always do that
by solving u(χ)3 = c(χ, χ, χ). Thus we have the following result.

Theorem 6.5. For a finite group G whose order is not divisible by 2 and
3 the group of isomorphism classes AutTw(k[G]) of twisted automorphisms
of the group ring k[G] is isomorphic to the semi-direct product of Out(G) n
AutantiTw (k[G]), where AutantiTw (k[G]) coincides with the abelian group of anti-
symmetric twists; that is, the group of pairs (A, b) consisting of a normal sub-
group A ⊂ G and an alternative bi-multiplicative form b : A×A→ k·.

Example 6.6. Heisenberg group.

For an elementary abelian p-group E with a symplectic form b : E ⊗ E →
Fp with values in the prime field Fp, let H = H(E, b) be the corresponding
Heisenberg group:

Fix a primitive p-th root of unity ε in k. Any anti-symmetric invariant twist
in k[H]⊗2 has a form:

Fx =
1
p2

p−1∑
i,j,s,t=0

εit−jsxics ⊗ xjct =
p−1∑
i,j=0

xip−j ⊗ xjpi

for some non-central x ∈ E. Here pi = 1
p

∑p−1
t=0 ε

−itct are central idempotents.
Since F−1

x = Fx−1 , the commutator of two invariant twists can be expressed
as follows:

[Fx, Fy] =
∑

xi1pj1y
k1pl1x

−i2pj2y
−k2pl2 ⊗ xj1p−i1yl1p−k1xj2pi2yl2pk2 =
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p−1∑
i,j=0

[xi, yi]pj⊗[xj , yj ]pi =
p−1∑
i,j=0

ci
2b(x,y)pj⊗cj

2b(x,y)pi =
p−1∑
i,j=0

ε(i
2j+j2i)b(x,y)pj⊗pi.

Note that i2j + j2i = 1
3 ((i+ j)3 − i3 − j3). Thus for η ∈ k such that η3 = ε the

element u = u(x, y) =
∑p−1
k=0 η

−kb(x,y)pk satisfies

(u⊗ u)∆(u)−1 = [Fx, Fy].

Example 6.7. Non-commuting invariant anti-symmetric twists.

Here, following the Lie algebra case, we construct a group with two abelian
normal subgroups equipped with invariant bi-multiplicative forms with given
invariant (11). Let C be an abelian group and c : C ⊕ C ⊕ C → k· be a
symmetric tri-multiplicative map. Define on M(C, c) = C⊕C⊕ Ĉ the structure
of a meta-abelian group:

(x1, y1, χ1)(x2, y2, χ2) = (x1 + x2, y1 + y2, χ1χ2c(x1, y2,−)).

The subgroups A1 = C ⊕ {0} ⊕ Ĉ, A2 = {0} ⊕ C ⊕ Ĉ are normal abelian.
The standard alternative bi-multiplicative forms bi on A2 are invariant. The
commutant of the invariant twists Fi = F(Ai,bi) has the form

[F1, F2] = (u⊗ u)∆(u)−1

for
u =

∑
x,y∈C

c(x, x, y)c(x, y, y)px ⊗ py,

where px = |C|−1
∑
χ∈Ĉ χ(x)−1(0, 0, χ) ∈ k[Ĉ] ⊂ k[M(C, c)].

Let Q be a group acting on C and preserving c. Then Q acts by au-
tomorphisms on M(C, c) and this action preserves subgroups Ai with forms
bi. Thus the twists Fi = F(Ai,bi) remain invariant for the semi-direct product
G = M(C, c) o Q. Applying this construction to the tri-multiplicative map
c = e

2πiτ
3 corresponding to the tri-linear form τ from the example (4.4) with

Q = Aut(τ), we get an example of two invariant anti-symmetric twists whose
commutant corresponds to a non-trivial class-preserving automorphism.
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