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Let A|F be a central simple algebra over a p-field F' of arbitrary characteristic.
Then concretely A may be represented as a complete 7n X m matrix algebra A =
M, (Dy), where Dy = D denotes a central division algebra of index d over F. Thus
the reduced degree of A over F is N = dm.!

We write og, respectively O p, for the ring of integers of F', respectively D, and
Pr = mpop, respectively Pp = mpPOp, for the maximal ideals of op, respectively
Op. We write kg, respectively kp, for the residual fields of F' and D.

. -An.op order-of-A is-any-subring-of -A-containing -the-identity -element of A which
is also a finitely generated op submodule of A containing an F' basis for A. Let
2 denote an op order of A. We call 2 hereditary [R, p. 27] if every left ideal of
A is a projective left A module. The order Y has a Jacobson radical Py [R, p.
77ff]; it is the minimal (two-sided) ideal of 2 such that the quotient ring /Py is
semi-simple. If 2 is hereditary, then 2/Pqy is a direct product of complete matrix
algebras with entries in kp, and 7p% = ‘}3’"‘1 with a positive integer r, called the
pertod of 2.

Following Benz [B], Bushnell/Fréhlich [BF], and Frohllch [F] we call A principal
if Po is a principal two-sided ideal of 2, i. e. if there exists tog € A such that
Po = ta - A =2 ty. If A is principal, then A is hereditary; more specifically, 2 is
principal if and only if the period r of % divides m and 2A/Po = [M,(kp)]", where
r8 = m.

The perlod of a plmclpal order 2l determines 2 up to conjugacy. If A is prin-

cipal with period ; then 2 fis ‘conjigate to the standard principal order 2, C

M, (My(Op)) such that the r x v matrix g = (gi;) belongs to 2, if and only if
gi; € My(Pp) for i > j. Thus the set of standard principal orders A, of A and,
hence the set of conjugacy classes of principal orders of A, corresponds bijectively
to the set of factors r of m.

For 2 principal write

R=RA) = {xec A : 2z~ =}
for the normalizer of 2. Then R is concretely the semi-direct product
R = (ta) x AX,
where tg, as before, is a generator of the Jacobson radical P of 2.

1We write R* for the group of units of any {unital) subring R of A and (u,v) to denote the
greatest common divisor of any pair of positive integers u, v.



Every maximal compact subgroup of A*/F* is conjugate to £(2,.)/F* for some
factor r of m [BF, (1.3.2)(v)]. Every compact subgroup of A*/F* is contained in
some maximal compact subgroup of AX/F*.

Fix a maximal extension field L|F of F' contained in A. In other words, assume
that F C L C A and that [L: F] = N. Write e for the ramification exponent and
f for the inertial degree of L|F; then N = ef too. In this context H. Benz [B, p.
31, sce the second paragraph] and A. Fréhlich [F, Theorem 1) have proved:

0. Theorem. There is one and only one principal order 2 such that L* C R(2).
The period of the order 2 is

m e
(fim) (dye)
Thus, m = r(A)s(A), where s(A) = (f,m).
Notation. For any mazimal subfield L|F of A we write A for the unique prin-
cipal order the normalizer of which contains L; we also write Ry p = (AL r)-

r(?) =

The purpose of this paper is first to derive some consequences of this impor-
tant theorem of Benz and Frohlich and second to generalize the concept of "pure
element” — introduced by Bushnell and Kutzko in the split case — to all central
simple algebras. I would like to thank A.J.Silberger for reading the manuscript and
making several improvements.

First we prove a technical result to be used later.

Notation. For E|F any subfield of A we writen = ng = [E : F| and Ng = N/ng.

1. Proposition. Let E|F be a subfield of A and let Ag denote the centralizer of
E in A. Then Ag|E is a central simple algebra which is isomorphic to a matriz
algebra M., (D"), where D'|E is a central division algebra of index d' = d/(d,n)
and m’ = (m, Ng).
Remark. The equality nNg = dm (= N} implies that Ng/{(m,Ng) = d/(d,n), i.
e. that d'm’ = Ng.
Proof. Since Ap®g M,,(E) and A®F E are isomorphic as central simple E-algcbras
(see, for instance, [K,'8°5]), the algebras Ap and A®F E belong to the same Brauer
class

[Ar] = [A®F E] € Br(E).
This class is the image of [4] € Br(F) under the natural map (extension of scalars)
Br(F) — Br(E). From local class field theory [S, chap. XIII, Prop. 7] we know that
these Brauer groups are canonically isomorphic to Q/Z, the isomorphism being
given by the “invariant map”. Since the diagram

Br(F) —— Br(E)

o -
WYz —— Q/Z

?Both [BF] and [F) restrict their treatment to the case of characteristic zero, but their results,
at least so far as they concern the questions dealt with here, do not depend upon the characteristic
zero assumption. Benz's results have a more general formulation. We follow Fréhlicli’s treatment
more closely, as it is better focused toward our own goals.



is commutative, it follows that inv(Ag) = n - inv(A4). Moreover, since Ag =
M, (D"}, where D'|E is central,

[D’: E] = index(D'|E) = denom(invD');

in other words, the reduced degree of D'|E is the denominator of the invariant
inv(D’) € Br(£). On the other hand,

inv(D') = inv(Ag) = inv(A4) - n = 3 -1,

where (a,d) =1, so
a d
—n)= ——=d.
denom(d n) @ d. 0O

Let E|F be a field such that ¥ C E C L. Thcn L|E is a maximal subfield of
Ag|FE too, so it lies in-the normalizer

R = RALe) = {z € A% ; 2Uypz™" = ULp}

of a unique principal order % g C Ag.

2. Theorem. Assume F C E C L C A as above. Then:
(i) ApjrpNAp =AL e
(ii) ﬁLIF‘ NAg = -ﬁL|E~
(i) Let Prjp and P g be the Jacobson radicals of App and Ag g, let

vo = vo(Brir|Brie) = (fe1F m),

s e [ . Sl e

and, fori € Z, set (i/vo)+ = |(i + vo — 1)/, the smallest integer which
is at least as large as i/vy. Then, for alli € Z,

' _ qli/vo)+
PrLrNAe =B’
(iv) Let vy denote the exponent of Ry, p corresponding to P =P p and let ty g
be a generator of the principal ideal Pr g of Apjg. Then vy = vy(ty k).

Remark. In the split case, i. e. m = N and D = F, we find that v9 = 1; in the
division algebra case, 1. e. m =1 and D = A, we obtain 1y = fg|r.

Proof. We shall prove Theorem 2 via a sequence of eight lernmas. For the whole
proof we shall employ the notations % = 2, B = Py r, and K = K p. We also
write v = vy for the exponent on R associated to ‘P.
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Lemma 1. AN Ag is an op order in the F algebra Ag and an og order in the ¥
algebra Ag.

Proof. Clearly, AN Ag is an op submodule of Ag and a ring containing the identity
element of Agp. We must show that AN Ag contains a basis for the F' vector space
Apg and that it is finitely generated as an op module. Since 2 is an op order in A,
we may choose an F vector space basis for A which is comprised of e¢lements of 2L
Since any element of Ag may be expressed as a linear combination of these basis
elements with coefficients in F, it follows that some o multiple of any element of
Ag lies in %, thus in % N Ag. This means that 2 N Ag contains a generating set,
and therefore also a basis, for Ag as a vector space over F'. Moreover, since AN Ag
is an op submodule of the op order U and since og is a principal ideal ring, AN Ag
is a finitely generated ep module. This proves that AN Ag is an op order in the
F algebra Ag. Clearly, Ag is also an F algebra and, since £ C L, it is clear that
2A and hence AN Ag is an og module. Being finitely generated as an o module,
AN Ag is also finitely generated as an og module. This implies that AN Ag is an
og order too. U

Lemma 2. RN Ag = ﬁLlE-

Proof. By Theorem 0 L* C Rz, where £ is maximal compact modulo center
in A%. From the exact sequence

EX[/F* < & g/F* - Ry p/E™
it follows that &g is compact mod center in A* too. Thus,
L* C g C &

where £ is some maximal compact mod}llo center subgroup of AX. By [BF, Remark
following (1.5.4)] it follows that & = &(%) for some principal order 2; from Theorem
0 we may conclude that A = 2, 8 = K, and therefore

[ TR R N T I LA T Tyt b Mg auﬁ»ﬁlE- g ﬁ‘muﬁ-ﬁ-’f Filsa ok e . L

On the other hand, (RN Ag)/F* C &/F* and K/ F* is compact, so the quotient,
group (RN Ag)/E* is compact too. Thercfore, since 2N Ag is a compact modulo
center subgroup of Ag and Ry 5 = R(2A, k) is maximal compact mod center in
A%, the inclusion mapping R e € AN Ag is a surjection. [

Lemma 3. AX N Ag = 911)5(|E'

Proof. For any principal order in A or Ag the group of units is the maximal compact
subgroup of its normalizer. Thus Lemma 2 implies that, to prove Lemma 3, it is
sufficient to show that A* N Ag is maximal compact in & N Ag. However, this
follows from the existence of the inclusion mapping

RN Ag/U* NAp — R/A* = Z,

since all subgroups of Z are infinite cyclic. [



Lemma 4. A* N Ag = (AN Ag)*.

Proof. The inclusion 2 is obvious. Conversely let be a € A* N Ag. There exists
b € A such that ab =1 in A. Now because a commutes with all clements from F
we conclude the same for b = a™!. Hence b € AN Ag such that a € (AN Ag)*. O

Lemma 5. leAE = QlL|E

Proof. It follows from Lemmas 3 and 4 that (AN Ag)* = Q[ElE. We know that
A g is an og order in Ag and, by Leinma 1, so is AN Ag. Applying [BF, (1.1.1)]
with Ag in place of A, we find that, since (AN Ag)* = QLEIE’ the orders AN Ag
and 2y, g have the same Jacobson radical P p. Since g g is principal,

Upe={z € Ag; Brg = C Pt

Hence, inasmuch as .z is the Jacobson radical of AN Ag, we have the inclusion
AN Ag C A g. Let B be the op order in Ap which is spanned by QizlE =
(AN Ag)*. Then

BCANAg CALE-
If the second inclusion is proper, B # %y g and, by [BF, (1.1.1)), %, z/Pr g has
a direct factor isomorphic to Fo x Fo. But %%y g is a principal order in Ag and
Ap & M., (D), so, using the notation introduced in Proposition 1, we have

Apie/BLie = [Ms'(kD')]r',

a dircct product of v’ matrix algebras over the residual field kp,, where r's’ = m/.
Therefore [BF, (1,1,1)] implies that, for a proper inclusion AN Ag C A g, we must
have s' = 1, 7' = m' > 2, and kp, = F. Since [kps : kg] = 4, it follows that
D'=E,d =1, m = Ng, and Ag = Mn,(FE). Applying Theorem 0 to the split
algebra Ag, we find that

o _ N
7 _T(QIL|E)'—6L|E_TH‘ —NE,

which implies that L|F is a fully ramified extension. However, since kg = Fs, the

field extension “F|F is also fully ramificd” Hénce the maximal extension L|Fisfully =~

ramified with k7 = Fy. It suffices to show that 24N Ag is a principal order in order
to show that AN Ag = %Ay g, because principal orders are uniquely determined
by their Jacobson radicals and we already know that AN Ag and Ay g have the
same Jacobson radicals. In the case that k;, = F, we may argue as in [F, (7.9)]3
to prove that AN Ag is a principal order. To give Frohlich’s argument let us first
recall that the field F is a p-field with residual field Fy and that L D F D F is a
tower of fully ramified extension fields. Taking a € L such that cop = B, we see
that  is also a prime element, of 2, since ordp(a) = 1/N. Since « € L, an overficld
of E, we have @ € Ap NA. Since 2 is principal, every element y € Ag N Py may
be expressed as y = o with £ € A. Since y € Ag and a~! € Ag, it follows that
Tt € AN Ag; therefore, a ' (Py N Ag) = AN Ag, i. e. AN Ag is the set of all
elements ©z € Ag such that az € Po N Ag, so AN Ag is principal. We have proved
that a proper inclusion AN Ag C g is impossible. [J

3The letters L and E interchange their meaning in Frohlich’s use of notation.



Lemma 6. PN Ag is a power of Brig for alli € Z.

Proof. Since A, g is a principal order, it follows from [BF, Remark following (1.3.2)]
that it is enough to show that PN Ag is a fractional ideal in Ag with respect to
AN Ag = Ay g which is normalized by f;5. By imitating the argument given in
Lemma 1 for AN Ag the reader can check that P* N Ag is an og lattice in Ag.
Moreover, P* being a fractional ideal of !, we see that P*NAg is a fractional ideal of
AN Ag. More preciscly, since Bt is an 2 module, (ANA) (P NAg) C PiNAg and
the other inclusion is even more obvious (see [BF, the definition following (1.1.3)].).
Finally B* N Ag is frjg-invariant because &g = AN Ag. U

Lemma 7. Let t =ty g be a generator of the principal ideal Pr g in Ap g. Then
PN Ag = PO+ where vy = v(t).

Proof. By Lemma 6, PP N Ag = ‘Z]3‘}LIE for some j € Z. Qlearly, ’BLE is generated
by 7. Since t € Ry g = RN Ag C & we have v(t!) = ju(t) = jr, where
P N Ag = th’ because ‘B?L{E‘ C P N Ag and m?LIE ¢ Pitln Ag. We

conclude that Piotén Ap = iﬂﬁ'é for all £ such that 1 <£<vyy. O

Lemma 8. v(t) = (fgir, f/s()).

Proof. Write Q = P g for the Jacobson radical of 2, g and vy for the corre-
sponding exponent on &g|g. Since t¥2 {(mr) is equivalent to mp,

v(rr) = v(t) va(rr).

Since 2 has the period r = r(?1), we have v{nr) = dr, where d is the index of the
division algebra Dy4|F. Similarly, since Ag = M,/ (D), where D'|E is a central
division algebra of index d', we have vg(mg) = d'r'; thus vp(7p) = d'egpr’, with
7" = r(2Agg), which implies that v(t) = dr/d'eg pr’. From Proposition 1 we have
d' = d/(d,n), so we obtain the result -

(1) R L T L [ V(t)‘z'( s

By Theorem 0, » = e/(d, e) and 7' = ey |g/(d',er|g), 50

r_ (dens)
ep|Fr’ (d,e)

Substituting this into (1), we find that

() (d e p)

v(t) = (d,e)

In the numerator we use the relation a(b, ¢) = (ab, ac) together with the fact that
(d,n)d’ = d to obtain
d,(d,n)e
u(t) = (d, ( ”) L|E)
(d.e)



Since
(d,(d,n)er g) = (d, (dep g, ergn)) = (d, e gn) = (d, efgr),

it follows that

(dyefE|F) d d

e f
v(t) = e ((d, ' @ e)fE|F) = ((—dE’fE'F) = (m,wa),

where Theorem 0 gives the equality d/(d,e¢) = f/(f,m). To complete the proof
recall that (f,m) =s(™). O

Lemmas 5, 2, 7, and 8 state and prove parts (i) through (iv) of Theorem 2,
respectively, so the proof of Theorem 2 is complete. [
3. Corollary.

(i) The invariants ' and s’ of A g = AL p N Ag are

s' = (frig,m) = (fig, m, Ng) = (fr15,m)

and
) ecijg . om’ (m,Ng)

A(dep)  (fupm)  (frem)
In particular, if L|E is fully ramified, s =1 and 7' = m/'.

(1) Conversely if B is a given principal order of Ag, then there is precisely onc
principal order A of A such that

T

B=ANAg, R(B) = R(A) N Ag,

where R(B), K(A) are the normalizers of B in AL and of A in A* resp.,
and we have: s(A) = (s(B) fg|p, m).
Proz;f.' The ’proof of (1) is immediate from Theorem 0 and Proposition 1. As to (ii)
we choose a maximal field extension L|E in Ag such that fi|g = s(*B). By Theorem
0 we conclude s(2zg) = (fr)g,m') = 5(B) because s(B) divides m' = m(Ag|E).
Therefore up to conjugating L we may assume Ay = B, i.e. L* C &(B). Now
A(B) C RK(A) implies A = Ap p and s(A) = (frip,m) = ((B) fgyp,m). O

We note that the first part of (ii) is Corollary 3 of Theorem 1 in [F].
Next we wish to generalize the concept of “pure element”, a notion introduced
by Bushnell and Kutzko in the split case [BK (1.5.5)]:

4. Definition. Let 2 be a principal order of A and let e and f be natural numbers
such that ef = dm = N. We call an element z € A an (e, f)-pure element with
respect to A if there is a subfield L|F of A which contains z such that:

(1) erjp =eand frir=f;

(ii) L* normalizes 2.



Notation. We write A(e, f,2) for the set of all (e, f)-pure elemnents with respect
to 2.

From (i) we see that L|F is a maximal subfield of A and from Theorem 0 that
the set A(e, f,2A) = 0 unless

) (f,m) - (d, e} =r{@).

Equation (*) is a necessary and sufficient condition for (ii) in the Definition. Note
that the field L occurring in the definition is not fixed; several different L’s may
contain the same x € . Assume that the numerical condition (*) is fulfilled. Then
0 € Ale, f,2); obviously, Ale, f,2) C R(A) U {0} and A(e, f, ) is stable under
conjugation by K().

5. Definition. For any pair of natural numbers e and f let F[T]. s be the set
of all irreducible monic polynomials f(T') € F[T] such that F[T)/(f(T)) as a field
extension of F' has ramification exponent dividing e and inertial degree dividing f.

As another consequence of Theorem 0 let us prove the following weak form of
“Intertwining of strata implies conjugacy” (see [BK (2.6.1)] and [Z, 1.4]):

6. Proposition. Let U be a principal order in A with normalizer 8 = R(), let e
and f be natural numbers such that ef = N, and assume that A(e, f,A} # @. Then
there is a natural bijection

AdS\Ale, f,A) — F[T)..s

from the set of R-conjugacy classes contained in Ale, f,2) to the set F[T]e 5 which
assigns to each conjugacy class in A(e, f, ) its corresponding minimal polynomial
over F. Especially this means that the natural nap Ad R\ Ale, f,A) > AdA™\A is
injective.

Proof. We begin by showing that the map is surjective, i. e. we choose f ( )
FI[TY. 5 and'show’ that f(T)-="0-hasa solution i "A(e; f;A)™"Since" deg 'f
there exists a solution z € A. Let E = F[z] C A and let Ag be the centralizer of
E in A. A maximal field extension L|E in Ag has degree

N e f

L:FE|l= = .
[ ) deg f(T) egir fEF

By assumption eg(r | e and fg g | f. Therefore there exists L{E such that ey g =
e/egp and frip = f/fE“:'. Consider the principal order %y r. Since e = e and
frip = f, Theorem 0 implies that r(Agz) = m/{(f,m) = e/(d,e) = r(2A). This
means that Ay and 2 are conjugate principal orders of A. Choosing y € A* such
that ¥y py~! = A, we find a solution yzy~! € yLy~! of f(T') such that (yLy~1)*
normalizes A. Thus, yzy~! € Ale, f, ), as required.

To prove injectivity we take non-zero elements z 1, z9 € A(e, f, A) with the same
minimal polynomial over F'. The Skolem/Noether Theorem implies that z; and x4
are conjugate in A*; we have to show that they are also conjugate in &. Assume

8
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that 1 € LY C £ and z2 € LY C & and assume that the maximal subfields L;|F
both satisfy the two conditions in the definition of (e,f)-pure elements with respect
to A. Choose g € A such that 25 = gz;9~!. Then

zp € LY C RN AL, and zy € gLYg7! C gRg™I N Ag,,

where A,, denotes the centralizer of wo in A. Both La|F(z2) and gLyg~ | F(x;)
are maximal subfields of Az,, so we have principal orders

QiLﬂp(mz) =AN A, and ngng—llF(a:g) = Q[ngg—1|F NAg, = ngg_l NA,,.

Since Lq|F(xz2) and gL,g~!|F(x2) have the same ramification exponents and in-
ertial degrees, Theorem 0 implies that 7(2z,|p(z,)) = 7(Rgr,g-1|F(s,)). Therefore
these orders are conjugate in A,,. For any h € A} such that

g9~ N AR =AN A, and h(gfg~ N AL )h™! = 8RN Ay,

we have

hgRg~ AN Ay, = RN Ag,.

Since Ly C RN Ag,, it follows that LY C hgRg~'h~'. Thereforc the maximal ficld
extension Ly|F of A normalizes both hgg~'h~! and 2. In this case, Theorem 0
implies that these two principal orders satisfy

hgg~th~' =2 = Ap, F,
so hg € K. Since h commutes with x4, the equality zp = gz1g~" implies also that
zy = hgz1(hg)~!. Thus z; and z, lie in the same £ conjugacy class, as required. O
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