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MORE ON EMBEDDINGS OF LOCAL

FIELDS IN SIMPLE ALGEBRAS

ERNST-WILHELM ZINK

Let AjF be a central sitllple algebra over a p-field F of arbitrary characteristic.
Then concretely A nlay be represented as a cOlnplete rn x rn Inatrix algebra A =
Mm(Dd ), where Dd = D denotes a central division algebra of index d over F. Thus
the reduced degrec of A over F is N = drn. 1

We write 0 F, respectively DD, for the ring of integers of F, respectively D, and
~F = 'IrFOF, respectively ~D = 'IrDDD: for the Illaxitnal ideals of 0F, respcctively
DD. Wc writc kF, respectively kD, for thc residual fields of Fand D .
. -An.o F oTder· of~A is,any~subring'of A.containing .the~identity'elelnent of A which

is also a finitcly generated 0 F sllbIllodule of A containing an F basis for A. Let
Q.l dcnote an 0 F order of A. We eall 21 hereditary [R, p. 27] if every left ideal of
Ql is a projective left 21 Illodule. Thc order Ql has a Jacobson radical \132t [R, p.
77ff]; it is thc Ininilnal (two-sided) ideal of 21 such that the quotient ring 21/\13\'t is
semi-silnple. If Q{ is hcreditary, thcn 21/\1321 is a. dircct product of cornplcte matrix
algebras with entries in kD, and 'IrF21 = \13;d with a positive integer T, ealled the
period of 2L

Following Benz [B], Bushnell/Fröhlich [BF], anel Fröhlich [F] we call 21 ]J7'inc'lpal
if \1321 is a principal two-sided ideal of 21, i. e. if there exists t\'t E 2l such that
\132t = t21 . 2{ = Q{ . t2t. If Q{ is prillcipal, then 21 is hcrcditary; lllore spcdfically, Q{ is
principal if and only if the period r of 21 divides rTl. and 21/llQ1 ~ [Ms(kD)r, where
TB = rn..

Thc period of a prillcipal order 2l detcrmines Q.l up to conjugacy. Ir Q.l is prin­
cipal with~ peri'6cl :,.~. fhEm 2l "is "corijt'lgat'e' t'ü the' s·tandai·([ IlrI11cipitlorder 21r C .
M,.(Ms(DD)) such that the r x r lllatrix 9 = (9ij) belongs to 2{r if and only if
9ij E M s (\13 D) for i > j. Thus thc set of standard principal orders 2{r of A and,
hence thc set of conjugacy cla.sscs of prillcipal orders of A, corresponds bijcetively
to the set of factors T of rn.

For Ql principal wri tc

for the norrnalizer of 2t. Thcn Jt is concretcly the scrni-direct product

where tQ1, as before, is a generator of the .Jacobson radical '13 of Qt.

1We wri te R x für the group of uni ts of any (uni tal) subring R. of A and (u, v) to dcnote the
greatest commOIl divisor of any pair of positive iutcgers u, v.
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(d, e)'

Every rnaxirnal cornpact subgroup ofA x
/ F X is conjugate to R(2tr ) IF X for SOTIle

factor r of rn [BF, (1.3.2) (v)]. Every cornpact subgroup ofAx IFX is contained in
some 1l1axirnal cOlnpact subgroup ofA x / F X

•

Fix Cl, Il1axinutl extension fielel LIF of F contained in A. In other worels, assuille
that F c L c A anel that [L : FJ = N. Write e for the raIllification exponent allel
f for the inertial elegrce of LIFj then N = ef too. In this context H. Benz [B, p.
31, see the seconel paragraph] allel A. Fröhlich [F, Theorem 1P havc proved:

o. Theorem. There is one and only one principal order 2t such thai LX C .R(2t).
The period 01 the ordcr' 2t is

111

r(2t) = (I, m)

Thus, 1n = r(2t)s(2t), where s(2t) = (f, ·m).

Notation. For (Lny rnaximal snbfield LIF of A we write 2tL1F fo1' the unique prin­
cipal order the normalizer 0] which contains L; we also write .RLIF = R(2tL IF)'

The purpose of this paper is first to derive SOIne cousequences of this iInpor­
taut theorcIn of Benz anel Fröhlich anel secolld to generalize the concept of "pure
ele~ent" - introcluced by Bushneli aI;d Kutzko· in the split case - to all central
sirnple algebras. I wOllld like to thank A.J .Silberger for reading the rnanuscript anel
rnaking several illlprovements.

First we prove a technical result to be used later.

Notation. For ElF any subfield 0] A wc write n = nE = [E : F] {Lud NE = N InE.

1. Proposition. Let ElF be a subfield 0] A and let A E denate the ccntrahzer 0]

Ein A. Th en A E [E is a central si1nple algebra which is isorn011Jhic t0 a rnatri:r:
algebra M m I (D'), where D'IE is (L ceniral division algebra 0 find e:r cl' = cl / (cl, n)
and rn' = (rn, NE)'

Remark. The eqllality nNE = drn (= N) iInplies that NEI(m" NE) = rll(d, n), i.
c. that d'm' = NE,

Proof. Since A E0EMn (E) and A0p E are isomorphie as central sirnple E-algebras
(see, för' instance, [K, '8':5]) l the algeoras A'E and A'0p E f>elongto 'thc 'saIl1'e Brauer
class

[A E ] = [A 0F E] E Br(E).

This dass is thc irnage of [A] E Bl'(F) under thc natural Inap (extension of scalars)
Br(F) --+ Bl'(E). FroIll local dass field theory [8, chap. XIII, Prop. 7J we know that
these Brauer grollps are canonically isorllorphic to Q/Z, the isorllorphisnl being
given by the :'invariant rnap". Since thc c1iagrarn

Br(F)

inv1
(PIZ

n

Br(E)

inv1
Q/Z

2Bot.h [BF] und (FJ rest.rict their treatment to the CELSe of characteristic zero, but their l'eslllts,
a.t least so far as they concern the qUestiOllS dea.lt with here, do not depend upon the charactcristic
zero assumption. Benz's resllits have a lIlore güllcral formulation. We follow Fröhliclt's trea.tment
more closely, as it is bettel' focused toward 0111' OWl1 goals,
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is COl1ullutative, it follows that inv(AE)
Mm.' (D'), wherc D' IE is central,

n . inv(A). Moreovcr, Slnce A E

J[D' : E] = index(D'IE) = denoln(invD') ;

in othcr words, the rcduced degree of D'IE is thc denominator of thc invariant
inv(D') E Br(E). On thc othcr ha.ud,

inv(D') = inv(AE ) = inv(A) . n = ~ . n ,

whcre (a, d) = 1, so

(
a d ,

denoIll -1 . n) = -(-) = cl. 0
( cl,n.

Let ElF bc a ficld such that F ~ E ~ L. ThcIl LIE is a rnaxin1al subfield of
AEIE too, so it lics in~the nornlali%er

of a unique principal order Q!LIE C A E .

2. Theorem. Assume F ~ E ~ L c A as above. Then:

(i) 2tL IF n AE = 2t LIE .

(ii) RLIF n A E = RLIE.

(iii) Let 'l3LIF and 'l3LjE be the Jacobson radicals of 2!LIF (Lnd 2tL1E , let

and, for i E Z, set (i/lJo)+ = l(i + Vo - l)/voJ, the s1nallest integer which
is at least as large as i/va. Then, fOT aU i E Z,

m i nA - m(i/vo)+
"t'-'LIF E - 1'-'LIE .

(iv) Let v'.l3 denote the exponent ofRLIF corresponding to 'l3 = ~LIF and let tLIE

be a genelntor of the pnncipal ideal ~ LIE of 21LjE · Then Va = v'l3 (t LIE)'

RemaTk. In the split case, i. c. rn = N and D = F, wc find that Va = 1; in the
division algebra case, i. e. 111. = 1 and D = A, we obtain lJo = f ElF.

Proof. 'vVe shall prove TheorcIll 2 via a scquence of eight lcnunas. For thc whole
proof we shall elnploy thc notations 2! = 2!LIFl ~ = ~LIF, allel R = RLIF' \Vc also
write 1/ = v'.l3 for thc exponent on ~ associated to 'lJ.
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Lemma 1. 2l n A E is an 0F order in the F algebrn A E and an OE order in the E
algebra A E .

Praof. Clearly, QtnA E is an 0F subrllodule of A e anel a ring containing the identity
eleluent of Ae . We 111ust show that 2l n A E contains a basis for thc F vector space
Ae anel that it is finitely gencrated as an 0 F IllOclulc. Since 2l is an 0 F order in A,
we lnay choose an F vector space ba..'üs for A which is c0111prised of elements of 2l.
Sinee any eleIllent of AB muy be expresscd as a linear combination of these basis
elerllents with coefficients in F, it follows that SOllle 0 F 111ultiple of any elClnent of
Ae lies in 2l, thus in 2t n Ae . This Ineans' that 2l n A e contains a generating set,
and therefore also a basis, for Ae as a vector space over F. Moreover, since 2lnAe
is an 0 F sllbnloclule of the 0 F order 2l and since 0 F is a principal ideal ring, 2t n A E

is a finitcly gellcrated 0 F Iuodule. This proves that 2l n AE is an 0 F order in thc
F algebra. A E . Clearly, A E is also an E algebra and, sinee E ~ L, it is elear that
2l anel hence 2l n Ae is an 0 E nlodule. Beillg finitely gcneratccl as an 0 F Inodule,
2t n A E is also finitely generated as an 0 E rllodllle. This iIllplies that 2l n A E is an
OE order tao. 0

Lemma 2. .Rn AE = .RLle . ..".

Praof. Ey TheorCln 0 LX C JtLIE, wherc RLIE is Inaxirual cOlnpact Inodulo center
in A~. FroIll thc exact sequence

it follows that .RLIE is cOlllpact mod center in A x too. Thus,

where ft is sorne rnaxinud C0I11pact I11oclulo center subgroup ofA x . By [BF, Reillark
following (1.5.4)] it follow~ that ft_= .R(21) for SOITle principal order Q1; from Theorenl
owc may conelude that 2l = 2l, .R = .R, anel therefore

~. .~ 4 jJ ~,I.~..~ .,~ -;tt.t.,,~ ,t '. ~ .. , tf' "(I -.. c....." I' 'j ~ .... .f ~ , \, • ~ ~ J- . ' '" \

On the other hand, (.R n A E )/F X ~ .R/px and Si/px is cOlllpact, so the quotient
group (.R n A E )/EX is cOlllpact tao. Therefore, since ~ n A E is a COIl1pact I110elulo
center subgroup of A~ anel .RLIE = .R(Q!LIE) is lnaxiInal conlpact lnoel center in
A~, the inclusion Inapping .RLIE ~ .~ n A E is a sllrjection. 0

Lemma 3. 2t x n A E = 2l~IE'

Proof. For any principal order in A 01' AE the group of llnits is the nlaxiIllal cornpact
subgroup of its norn1alizer. Thus Lelnma 2 irnplics that, to prove Lemma 3, it is
sufficient to show that 21. x n A E is lnaxirnal C0I11pact in ~ n A E . However 1 this
follows froln the existence of the inelusion 11lapping

since all sllbgrollps of Z are infinite eyclic. 0
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Lemma 4. 2t x n A E = (2l n AE)X_

Proof. Thc incIusion ;2 is obvious. Convcrsely let be CL E 2t x n A E . There exists
b E 2t such that ab = 1 in A. Now bccausc a COUll11utes with all clcrnents frolll E
we conclude the salllC fol' b = a- 1

. Hence bE 2tnAE such that a E (QlnAE)x. 0

Lemma 5. Ql n A E = 2lL IE-

Proof. It follows frolu Lcnlulas 3 and 4 that (2t n A E ) x = Ql2 IE' We know that

QlLIE is a.n OE order in AE and, by Lernrna 1, so is 2t n AE. Applying [BF, (1.1.1)]
with A E in place of A, we find that, since (2l n A E ) x = 2l2IE' the orders 2t n A E

anel 2lLIE have the sarlle Jacobson radical 'l3L1E- Since 2lL IE is principal,

2tL IE = {x E A E ; 'l3LIE . x ~ \,pLIE}.

Hence, inasrlluch as \,pLIE is the .Jacobson radical of Qt n AE , we havc the inclllsion

2l n AE ~ 2lL1E . Let ~ be the OE order in A E which is spanned by 2t21E =

(2t n AE)x, Then
~ ~ Qt n A E ~ 2lL IE -

If thc sccond inclusion is proper, ~ =I- 2tLIE allel, by [BF, (1.1.1)], 2tLIE/'l3LIE h<:1..s
a direct faetol' isornorphic to IF2 x IF2 . But 2lL1E is a principal order in AE and
AE rv Mm , (D'), so, llsing the notation introdllced in Proposition 1, we have

a clircct product of 1" rllatrix algebras ovcr the residual field kD " where 1" s' = 17/.
Therefore [BF, (1,1,1)] iInplies that, for a proper inclusion 2tnAE ~ 2lL1E , we IUUSt
have s' = 1, 1" = rn' ~ 2, and kD' = IF2 • Since [k D , : kE] = d', it follows that
D' = E, d' = 1,111' = NE, and A E 2=' MNe(E)- Applying ThcorcrI1 0 to the split
algebra A E , we find that

1" = r(QlLIE) = eLlE = 171' = NE,

which iInplies that LIE is a fully raIllifiecl extension_ However, since kE = IF2 , thc
field'·extensibn"EIP·is· :Uso 'fülly""'r1uriificd:' HClic'e thc(ülaxirllal ex'tCIlsiön LrF~is~füI15'­

rarnificd with kL = IF2 . It suffices to show that 2t n A E is a. principal ordcr in order
to show that 2t n A E = QlLIE' bccausc principal orders are uniqllely detenuincel
by their .1acobson raclicals and we already know that 2! n A E anel 2!LjE have thc
saUle .Jacobsoll radicals. In the case that kL = IF2 we nluy argue a.." in [F, (7.9)ff]3
to prove that 2! n A E is a principal order. To give Fröhlich's argurnent let us first
recall that the field F is a p-field with residual field IF2 and that L :) E :) F is a
tower of fully ramified extension fields. Taking 0: E L such that 0:0 L = 'l3L, wc sec
that a is also a prirne elclnent of 2!, sincc ordF(a) = I/N. Since a E L, an overficld
of E, wc havc 0: E AE n Ql. Since Ql is principal, evcry elernent y E A E n 'l321 Inay
be expressccl as y = 0::1; with x E Ql. Since y E A E and 0:- 1 E A E , it fo11ows that
x E 2! n AEi thcrefore, 0:- 1 ('l321 n A E ) = 2! n A E , i. e. 2t n A E is thc set of a11
elelnents :.C E A E such that ax E 'l321 n A E , so Ql n A E is principaI. We have provcd
that a proper incIusion 2! n AE ~ 2tL1E is inlpossible. 0

3The letters Land E intcrchange their II1caning in Fröhlich's use of notation.
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Lemma 6. $i n A E is apower Of$LIE for all i E Z.

Proof. Bincc 2!LIE is a principal order, it follows fronl [BF, R,clnark following (1.3.2))
that it is enough to show that $i n A E is a fractional ideal in A E with respect to
2! n A E = 2!LIE which is nornlalized by ~LIE' By imitatillg the argllIl1Cnt given in
Lcrrnna 1 for 2t n A E the reader can check that ~i n AE is an OE lattice in AE .

Moreover, ~i being a fractional ideal of2t, we see that ~inAE is a fractional ideal of
2tn A E . More preciscly, since '-Pi is an Q{ nlodule, (2!n A E )($i n AE) S;;; '-Pi nAE and
thc other inclllsion is even Inore obvious (scc (BF, thc definition following (1.1.3)].).
Finally $i n AE is ~LIE-invariant because ~LIE = ~ n AE. 0

Lemma 7. Let f, = tLIE bc (L generator of the principal ideal $LIE in 2t L1E . Then

'-Pi n A E = ~(i/vo)+, where Vo = 1I(t).

Proof. By Lemrna 6, '-Pi n A E = ~{IE for sonle j E Z. Clearly, '-P{IE is generated

by ti . Bince t E ~LIE = ~ n AE C ~, we have v(ti ) = jv(t) = j11o, wherc
mivo n A E - mi because mi C mivo n A E and mi rt mjvo+l n A E \~TC
-tJ - -tJ LIE' -tJ LIE - -tJ -tJ LIE 'f::: -tJ .

"+1conclude that ~jvo+l n A E = '-P~IE for a11 esuch that 1 :s g ::; Vo. 0

Lemma 8. v(t) = (fEIP, f /s(2t)).

Proof. Write .Q = $LIE for the Jacobsoll radical of 2!LIE and 110 for the corre­
sponding exponent on .RLIE' Since tVQ Crr F) is equivalent to 7rF,

Since 2! has the period r = 1'(2), we have v(1i'F) = dT, where d is the index of thc
division algebra DdIF. Sitnilarly, since A E = Mml(D'), whcre D'IE is a ccntral
division algebra of index d', we have VQ(7rE) = d'T'; thus vO(7rp) = d'CEIFT', with
1" = T(Q{LIE), which itnplies that J}(t) = dr/d'eEIF1J

• Frol11 Proposition 1 wc havc
d' = d/(d, n), so we obtain thc rcsult .

(1) .... 1 - • .,.;. il.1o ., ~ .. I , ~. • •

By Theorenl 0, T = e/(rl, e) and T' = eLIE/(d', eLlE), so

l'

eEIF1"

SIIbs ti t IIting this into (1), we find that

(d' 1 eLlE)

(d, e)

( )
_ (d, n)(d', eLlE)

v t - (d, e) .

In the llllnlcrator we usc thc relation a(b, c) = (ab, ac) together with thc fact that
(rl, n)d' = d to obtain

( )
_ (cl, (cl, n)eLIE)

v t - (d, e) .
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Since

(cl, (cl, n)eLIE) = (d, (deLlE, eLlEn)) = (d, eLlEn) = (cl, eIEIP),

it follows that

whcre Thcorenl 0 gives thc equality d/(d, e) = 1/(1, m). To cOInplcte thc proof
recall that (I, Tn) = s(2t). 0

LeInlnas 5, 2, 7, and 8 state and prove parts (i) through (iv) of TheorCln 2,
respectively, so thc proof of Theorem 2 is cOIllplete. 0

3. Corollary.

(i) The invariants T' and S' 0/ 2tLIE = 2tLIF n A E are

S' -: (!LIE, rn') = (!LIE, 11/', NE) = (!LIE, ra)

and

r' =
rn' (m, NE)

(!LIE, rn) .

In particularJ if LIE is fully rarnified, s' = 1 and r ' = n~'.

(ii) Conversely ij'13 is a given principal order 0/ A E, thcn thcTe is ]JTeC'isely oue
pn:ncipal order Q{ 0/ A such that

~('13) = ~(21) n AE ,

wheTe .f:l('13), ~(21) are the norrnalizeTs 01'13 in A~ and 012t in A x Tesp.,
and we have: s(2t) = (S('13)IEIF,rn).

~ ~ •• ~' J .l'" ~ - .. t· :"""" ~ ..~ • """I. ~ ,..... .,. ..... tl .' • - 11- "" J t .......,. J .... ir .... ~.. .... iII , •. , ~ I

Proof. The proof of (i) is iInlnediate froln Theoreln 0 and Proposition 1. As to (ii)
we choose a maximal ficld extension LIE in A E such that ILjE = 8('13). ByTheoreul
owe canelude s(2lLIE) = (!LIE,7n' ) = 8(~) bccallsc s(~) divides 'm' = rn(AEIE).
Therefore up to canjugatillg L we nlay assulne 2lLIE = '13, i.c. LX c .ll(~). Now
~('13) c .il(2t) iInplies Qt = 2lL(F and 8(21) = (ILIF, ru) = (s('13)fElF, ru). 0

We note that thc first part of (ii) is Corollary 3 of Theorenl 1 in [F].
Next we wish to generalize the conccpt of :'purc clernent" 1 a notion introeluced

by Bushnell and Kutzko in the split case [BK (1.5.5)]:

4. Definition. Let 21 be a principal order of A and let e and / be natural n111nbers
such that ef = drn = N. We call an eleInent x E A an (e , f)-p1tTe elernent with
respect to 21 if there is a sllbfield LIF of A which contains x such that:

(i) eLIF = e anel f LIF = f;
(ii) LX nonnalizes 21.

7



Notation. ~Ve write A(e, f, 21) fOT the .9ct 01 all (Cl f)-pure ele7nent.9 with respect
to 21.

Frorn (i) we see that L)F is a rnaximal subfield of A and fron1 TheoreIll 0 that
the set A(c, f, Q!) = 0 unless

(*)
m C

--= -=r(Q!)
(f, r11.) (cl, e) .

Equation (*) is a nccessary anel sufficient condition for (ii) in thc Definition. Note
that the field L occurring in the definition is IlOt fixcd; scvcral differcIlt L 's Inay
contain the saIne x E 2t. ASSUIne that thc numcrical condition (*) is fulfilled. Then
o E A(e, f, Ql); obviously, A(e, f, 2t) ~ Jl(Q!) U {O} and A(e, f, 21) is stable undel'
conjugation by Jl(2t).

5. Definition. For any pair of natural nurnbers e and flet F[T]eJ be thc set
of all irreducible lllonic polynolnials j(T) E F[T] such that F[T]/ (j(T)) as a field
extension of F has rarnification exponent dividing e and inertial degrcc dividing f.

As anothcr conscqucnce of Theorcln 0 let us provc the following wcak fonn of
"intertwining of strata ilnplics conjugacy" (see [BK (2.6.1)] and [2, 1.4]):

6. Proposition. Let 21 be a principal order in A with nonnalizcr' ~ = ~(Qt), let c
and f be natural number.9 such that cf = N, and assume that A(e, f, 21) =I- 0. Then
there is a naULral bijectioTl

AdJl\A(c, f, Ql) --t F[T]c,/

from the set 01 ~-conj1J,gacy classes contm:ned in A(c, f, 21) to the set F[T]e,f which
aBsigns to each conjugacy eiass in A(e, f, 21) its corresponding m.'inirnal polyno'mial
OVCT F. Especially this 7neans that the natural rna]J AdR\A (e, f, Ql) -+ Ad A x \ A ü;
injective.

Proo/. We begin by showing that the rnap is surjective, i. e. wc choose j(T) E
F[T]~,/ and"show that' f(T)·"=·~n-ha.s'-a:·s6IbtidnYh ~(e~'f,>021t'""Sri1ce" elcgf(T) ',!"N; on

there exists a solution x E A. Let E = F[x] c A and lct A E be the ccntrali~er of
E in A. A Inaxin1al fielc1 extension LIE in A E has degree

..... .., .

N
[L'E]---. - eleg j(T)

e j

eEIF . fEIF'

By assl1tnption eEIF I e and fEIF I f· Thcreforc there cxists LjE such that 'eLIE =
e/eE1F anel fLIE = 1/fEIF. ConsidcI' the principal order QlLIF. Bince eLIF = e anel
fLIF = /, Theorern 0 iInplics that r(2tL IF) = rn/(f,m) = e/(d,e) = r(Ql). This
Ineans that Q!LIF and 2l are conjugate principal orelers of A. Choosing y E A x such
that y21 L1Fy-1 = 21, we find a solution yxy-l E yLy-1 of f(T) such that (yLy-l) x

nonnali~es Q{. Thus, yxy-l E A(e, j, 2!), as required.
Ta prove injectivity wc take non-~ero elclnents Xl, X2 E A (e, /,21) with thc saIne

nüninlal polynomial over F. Thc Skolcm/Noethcr Thcorern iInplies that Xl anel .7:2

are conjugate in A x; wc have to show that they are also conjugatc in J{. ASSUlllC
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that Xl E L~ C Rand X2 E L~ C R a.nel a.."sunlC that thc Illaxinlal subfields Li IF
both satisfy the two conelitions in the definition of (e,f)-pure clcInents with respcct
to Q{. Choose 9 E A x such that X2 = gXlg- l . Then

anel L x -1 R -1 nAX2 E gig C gn.g X:;l'

where AX:;l elenotes the centralizer of X2 in A. Both L2IF(xi) anel gL l y- I IF(X2)
are lllaxilual subfielels ofAx2 , so we have principal oreIers

and

Since L2 IF(X2) and gL I g- I IF(X2) havc the sallle ralnificatioll exponcnts anel in­
ertial elegrees, Theorenl 0 iInplies that T(2!L 2 IF(X2)) = T(2!gL1y-1IF(X2))' Thercfore
these orders are conjugate in AX:;l' For any h E A~2 such that

and

we havc
hgRg-1h- 1 n A X2 = Rn AX:;l'

Sincc L~ c ~nAX2' it follows that L~ c hg~g-lh-l. Thercforc the lllaxiInal field
extension L 2 1F of A nonnalizes both hg'21.g- 1h- 1 anel 2!. In this case, Theoreln 0
iInplies that these two principaJ orders satisfy

so hg E ~. Sincc h COllllllutes with X2, the equality X2 = gXlg- 1 iInplics also that
X2 = hgXl (hg) -1. Thus Xl and X2 He in the sallle ~ conjugacy dass, as required. D
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