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INTRODUCTION. Let L be a numerically effective and big line
bundle on a smooth projective surface S. Questions about the
spannedness and very ampleness of KS ® I. arise naturally,
e.g. [Bom], [So~V]. Recently, Reider [RdAr] introduced a tech-

nigque which yields answers to these questions that are not ob-

tainable by previous methods.

Motivated by Bombieri’s classical work [Bom] we are
interested in using Reider's method to answer the following

question.

Question. Let S be a smooth projective surface on which Ko
is ample (this is relaxed to nef and big in §3). What is the
smallest integer t > 0 so that the map associated to F(Kg)

gives a "k-th order embedding".

The first problem is to decide what we mean by a k-th or-
der embedding. We introduce the concept of k-spannedness. Let
¢ be a line bundle on S (resp. on a nonsingular curve ().
We say that ¢ is k-spanned for k 2 0 if for any distinct

points Zys+++,2,. oOn S (resp. on C) and any positive in-



r
tegers kl""’kr with izl ki = k + 1, the map
F(¢) — (¢ 8 0,)
is onto, where (2,02) is an (admissible) O-cycle defined by
the ideal sheaf ?2 where 9208'5 is isomorphic to OS,z
(respectively Oc,z) for =z ¢ {zl,...,zr} and 5z°s,zi is
ki
generated by (xi,yi ) at Zis with (xi,yi) local coordin-
ates at z, on S, i=1,...,r (respectively 9Z is gene-
k.

rated by yil, Y; local coordinate at z; on c).

Note that O-spannedness is equivalent to ¢ be spanned

and l-spannedness is equivalent to ¢ being very ample.

There are a number of other notions of k-th order embed-
ding (see §4 for some discussion). Our choice of the above de-

finition was guided by two criteria:

1) the definition should be the weakest definition that inclu-

des the obvious examples (e.g. if L is very ample then Lk
should give a k-th order embedding) but for which strong re-

sults can be proven;

2) there should be a strong criterion for KSQL to give a

k-th order embedding, where L is nef and big.



In this article we show that there is a very satisfactory

answer to 2). We use this to answer the question for which

positive t the line bundle Ké (respectively K;t) is
k-spanned where KS (respectively Kgl) is ample. In the ar-

ticle [Be-So)] by the first and the last author a detailed in-

vestigation of k-spannedness is made.

In §0 we introduce background material that we need.

In §1 we prove that if

0 — OS — &§ — L @ 92 - 0

is an exact sequence with ¢ 1locally free rank 2 vector bund-
leon S and L * L 2 4k + 5 where (2,03/52) is a O-cycle
of length k + 1 2 1, then there is an effective divisor D
containing Z and such that

L+-D=-k-1¢D-D<UL=*D/2<Kk+ 1.

This follows from Bogomolov'’s instability theorem along the

lines of Reider's results.

In 82 we show that if K; @ L is not k-spanned and

L+ L 4k + 5 these appropriate exact sequences as above ex-

ist. We give an explicit construction of the sequences and



bundles. Van de Ven explained this construction to the third
author for zero cycles p1+...+pk+1 where the pis are all
distinct. One can also construct the bundles by a general re-

sult of Catanese [C].

In 83 we derive a number of applications. We refer the

reader to theorems (3.2) and (3.8).

Finally in §4 we discuss the definition of k-th order em-
bedding that we would have preferred to use. This other notion
is aesthetically quite nice and it has a good geometric inter-
pretation. It also agrees with k-spannedness for k=20,1,2
(seé (4.1)). Unfortunately it is technically hard to verify
which L give k-th order embeddings with respect to this al-

ternate definition.

We would like to call attention to [Sa] where Reider's

method is also studied.

The first and the third author would like to thank the
Max-Planck~Institut fir Mathematik for its support. The third
author would like to thank the University of Notre Dame and
the'National Science Foundation (Grant DMS 84-20315) for their

support.



§0. Notation and background material

We work over the complex numbers. Throughout the paper,
S always denotes a smooth connected projective surface. We
denote its structure sheaf by OS and the canonical sheaf of
the holomorphic 2-forms by KS. For any coherent sheaf % on
S we shall denote by hi(y) the complex dimension of Hi(g),

where Hl(g) stands for Hi(S,S).

Iet ¥ be a line bundle on S. ¢ is said to be numeri-
cally effective, nef for short, if ¢ « C 2 O for each ir-
reducible curve C on S, and in this case ¢ is said to be
big if cl(sf)2 > 0, where 01(2) is the first Chern class of

L.

(0.1) We fix some more notation.

~ (resp. %) the numerical (resp. linear) equivalence of divi-
sors; x(£) = 2(-1)ihi(2), the Euler characteristic of a line
bundle ¢; |¢|, the complete linear system associated to ¢

and T (£), the space of its global sections.

As usual we don't distinguish between locally free shea-
ves and vector bundles, nor between line bundles and Ccartier
divisors. Hence we shall freely switch from the multiplicative

to the additive notation and viceversa.



(0.2) Given an ideal sheaf 92 definining a O-dimensional

scheme ¥ on S, we set
deg ¥ = length (OS/&Z).

(0.3) THEOREM (Bogomolov, [Bog], [Re]) Let & be a locally
free rank 2 vector bundle opnp S, such that ci(a) > 4c2(a){

Then there exist line bundles ¢, A, a O-dimensional scheme %
on S and an exact sedquence

0—-»2—-»8—»1@5&—:0.

Fu o
i) (€ = M) = (£ - X) > 0;

ii) (¢ - 4) » H> 0 for any ample line hundle H on S.

(0.3.1) Note that ¢ - i in (0.3) is Q-effective. Indeed,
2

x (m(E ~ 4)) goes to the infinity as m by i). Then
ho(m(w - M)) goes to the infinity as m2 since
hz(m(s - X)) =0 for m > 0 in view of 1ii).

(0.4) k-spannedness, Let ¢ be a line bundle on S (resp. on

a nonsingular curve C). We say that ¢ is k-sgpanned for
k 2 0 if for any distinct points, Zyse--42,. oOn S (resp.

on C) and any positive integers kl,...,kr with

Ir
2 k; = k + 1, the map



Fr(€) — (e o 0,)

is onto, where (%,0,) is a O-dimensional subscheme defined

by the ideal sheaf 92 where fzos'z is os,z (resp. OC'Z)

k

i
for =z ¢ {zl,...,zr} and ’ios,zi is generated by (xi,yi )

at Zg. with (xi,yi) local coordinates at zy on s,
ky
i=1,...,r (resp. 92 is generated by Y Yy local co-

ordinate at z; on C). We call a O-cycle % as above admis-

sible.

(0.4.1) Note that O-spanned is equivalent to ¢ being spanned

by TI'(2) and l-spanned is equivalent to very ample.

Note also that if ¢ 1is k-spanned, then ¥ + C 2 k for
every irreducible reduced curve C on S, with equality only

if C is a smooth rational curve in Pk.

For any further background material we refer to [Rdr],

[Re] and [Be-So].



§1. onditions

ILet & be a locally free rank 2 vector bundle on a sur-
face S. Assume that ci(g) > 402(8) and let ¢ given by an

exact sequence

(1.1) 0 — 08 — & — L ® 92 — 0

where the ideal sheaf ¢ defines some O-dimensional analytic

z
set ¥ and L 1is a nef and big line bundle. Let

(1.2) 0 > ¢ — & — U a&a — 0

be the exact sequence given by Bogomolov's theorem (0.3). Note

that sequences (1.1) and (1.2) lead to
(1.3) cl(é) L9+ M .

The following generalizes some numerical conditions obtained

by Reider’s method [Rdr].

(1.4) PROPOSITION. Let L be a nef and big line bundle on a
surface S and let & be a locally free rank 2 yector bundle
on S with ci(e) > 402(8). With the notation as above, as-

sume 32 is non-trivial. Then the sequence



&‘;-—-—bg—-—&LGS’I

obtained from (1.1) and (1.2) is non trivial, ¢ 2L - D
where D is i iviso containip Z, A= OS(D)

and L - 2D jis Q-effective. Furthermore

(1.4.1) L-D-deg¥% { D+« D<L+* D/2 <deg ¥

If (L -+ D)2 = (L - L)y(D - D), then L ~ AD for some A € Q,
2 <A €1+ deqg Z/D-D.

Proof. First, note that the composition $ — & — L @92
cannot be the zero morphism. If it was, then
¢ C ker{é — L @92} = DS that is ¢ = OS(-E) for some
effective divisor % and L= A - % by (1.3). Hence, for an
arbitrary ample line bundle H, (¢ - M)*H = (=L - 29) « H< O

since L 1is nef and 9 is effective, this contradicting

(0.3), ii). Thus we have, if 4« = 05(D),

0

I

05(D) ® 9,

I

0 — OS — & — L ©® 32 - 0
4
0



L
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where ¢ * L - D by (1.3). We claim that D is effective and
it contains ¥%. To see this, tensorize the sequences above by
¢™ 1. Then nl(¢ ® ¢y # 0, so after proving that n%e ) = o,
we get an embedding -

o — HY(E & ¢™1) — HO(OS(D) 8 2,)
and we are done. Now, for any ample line bundle H on S, we

have L - H= (¢ + D) * H2 0 since L 1is nef and further

(¢ - D) « H>0 by (0.3),ii). Therefore ¢ + H > 0 which im-

plies that g1

is not effective.
Now, again by Bogomolov’'s theorem (0.3), we have
(1.4.2) (L-2D) » L>0
while from tﬁe above diagram we see that
(1.4.3) c,(E) = (L -D) *+ D+ deg & = deg ¥
and hence

(1.4.4) L -D-degZ ¢ D+ D. !

The Hodge index theorem and (1.4.2) yield
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(1.4.5) 2D+ D<L * D

so we find D +* D < deg ¥ by combining (1.4.4) and (1.4.5).
Therefore L+* D< 2deg ¥ again by (1.4.4), which proves

(1.4.1).

The fact that L - 2D is Q-effective follows from

(1.4.2) as in (0.3.1).

Finally if (L + D)2 = (L *» L)(D + D) it has to be
L+ D# 0 since otherwise D +* D = 0, contradicting (1.4.5);
then L ~ AD, for some A € Q, by the Hodge index theorem.
From (1.4.4) we get A gll + deg Z/D +« D, while (1.4.2) yields.

A > 2,
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§2. Construction of vector bundles.

Iet L be an arbitrary line bundle on a surface S. In
this section we construct, in an explicit geometric way, lo-
cally free rank 2 vector bundles & on S given by exact se-
quences of type (1.1) of previous section, for admissible
O-cycles % as in Definition (0.4). For simplicity we carry
out a detailed computation in one special case which, however,
completely describes all the techniques that are to be used.
This approach, in the case of O-cycles % = p,t...+P,. with
all p;'s distinct was shown to the third author by A. Van de

Ven.

The existence of the vector bundles we construct also’
follows from necessary and sufficient conditions due to
Catanese [C], for certain extensions of sheaves to be locally

free.

(2.1) PROPOSITION. Let L be a line bundle on a surface S

and let ¥ be an admissible O-cycle such that deg Z = n and
Supp (%) is a single point =z (respectively n distinct

points zl,...,zn)' on S. Assume that KS + L is (n - 1)-

spanned and the map

I(Kg ® L) — I'(Kg ® L ® 0,)
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is not onto, i.e, |KS + LJ| does not separate n-infinitely

near points at =z (resp. n distinct points zl,...,zn).
Then there exists a locally free rank 2-vector bundle & on
S given by the exact sequence

0 — OS — § — L & ¢, — 0.

¥
Proof. Here we only carry out the case when Supp(%) is a
single point z. The proof in the case Supp(%Z) = (29700002}

is a straightforwad modification of it.

Let (x,y) be local coordinates at z. Then
= = n !
?zos’p OS,p for p# z and ’208,2 (x,y ). Let ¢ be
' =
the ideal of OS defined by ¢ Os'p Os'p if p # 2z and

1). Hence from the assumptions made we get

n—
y'OS,Z = (x,y

(2.2) I'(Kg ® L® $,) =T(Kg ® L® ')

To see this look at the exact commutative diagram

0O —-C —
z

0 —

In
;
IS

r
0 — KS ® L ® 92 —_ KS ® L® 9% — cz — 0

I I
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If (2.2) is not true, then
nydim(T (Kg8L) /T (KG®183,,) ) >dim (I (K ®L) /T (KBL8S')) = n-1
and hence F(KS ® L) — Cg is onto, a contradiciton.

From the bottom line of the above diagram and (2.2) we

see that there is an injection
(2.2.1) 0 —>C — Hl(KS ® L8 9.

Note that in the case when Supp(%Z) = (Z9r00002.}, isomorphism
(2.2) is equivalent to say that ¢ satisfies the Cauley-
a ach propert tively to |KS ® L] : that is, for any
divisor A € |KS ® L passing through Supp(Z) - zj,
j € {1,...,n), then A contains Supp (Z) entirely (compare

with [G-H]).

To go on, we need to fix some more notation. Let

L Si — Si-l be the blowing up of Si1 at a point Pi_qr

= -1 trd - =
E, =m, (pi-l) the exceptional divisors, i =1,...,n, E;
the proper transform of Ei under Tigq @ o0 © Ty

i=1,...,n -1, and En = En' Further one sees that

Ei-Ej =1 if |i-j| = 1; Ei-fj = 0 if [i-j| >.1;

(2.3)



let S = S, So =S and denote by w : S — S the composi-

tion of the vi's. Now, by a suitable choice of the points

pi's , a straightforward check shows that

r o~ E ~ =F - - - - E -
* -_— — —
(204) k3 yz ~ -El - 2E2 = e e = nEn'
* — — —_
Kg I KS + El + 2E2 +...+ nEn .

*
Let L =7 L. Therefore by Leray'’s spectral sequence and the

Serre duality,

104

IR

H' (K ® L@ 9,) = H'(kg + T - 221"E'i) ' (2)1E,- T)

i i

and hence Hl(z z iEi - f) # (0) by (2.2.1). Then there ex-
i

ists a locally free rank 2 vector bundle 9% on S and a non

trivial extension

#) 0 — 05() iE;) — 05(9) — 0g(T - ) 1E;) — 0
i i

Putting A = z iﬁi one has
i

=0,i=1,...,n-l

by (2.3) and hence A cuts on Ared a divisor &6 , of degree

-1, which lies on the component En. Look at the restriction
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)= 0 — 0 . (8) — ¥= — 0 ,(=5) — 0 .
En : Pl En Pl
(2.5) CLAIM. The sequence #)E is a non trivial extension
n
with 9En . Owl @ Opl and (wn)*$ is a locally free rank 2

vector bundle on Sh-

Proof of the Claim, Look at the exact sequence

0 — 0g(24 -L -E) — 05(24 - 1) — oﬁn(zA -IL) — o0

From Leray’s spectral sequence, Serre's duality and (2.2) we

get an isomorphism
H2(2A -5 - En) = H2(2A - L).
Then the restriction map

1
H™(0 ,(-2})
I.'Pl

IR

1 = 1,= =
P ¢ H (24 - L) — H (En,zA - L)

is onto. Now, Hl(En,zA - L) 1is a 1-dimensional vector space

which parametrizes the non-trivial extensions of type #)E .
n

Therefore since Ph is surjective, we can choose ¥ in #) in

such a way that Y= = 0 e 0 ..
En IP1 IP1

o 1(-1) the standard exact sequence
P

Indeed by tensoring with
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0O — 0 — 0 (1) 8 0 (1) —m 9T — 0
IP1 IP1 IP1 Pl ,

we find a non-trivial extension

0 — 0 . (-1) = 0 .80 . — 0 _(1) — O.
pl pl pl pl

To prove the second part of the Claim, let U C Sn—l be an

affine neighborhood of p__, = wn(fn). From the exact sequence

0 — 9§ g4 — 8 — $E — 0
n n

we find by the above a map
-1
w:l‘(wn (U),8) - C a8 C

If ¢ is surjective, we are done. Indeed, 89 = w_l(o,l),

8, = ¢-1(1,0) are independent on F(v;l(U),Og) = F(U,OS )
n-1
in a neighborhood of En' so that, since ¥ 1is locally free

of rank 2, one has

r(u,(r_),8) = s.T'(U,0 ) ® s.T(U,0 )
n’* 0 S -1 1 Sp-1

which says that (wn)*g is free at Ph-1° To see that ¢ is

. . _ _ = _ m
surjective, write ’n = ’En and set gm 9n% ® Os/ﬁn,'

m 2 1. Look at the exact sequence
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m,  m+l
0 — ?n@ ® fn/yn — 3m+1 — gm — 0

which becomes by the above

0 — Owl(m+1) L Opl(m+1) —_ 3m+1

— ﬁm — 0

Then HY (3 = H'(3_), m2 1. Since

m+1)
Hl(sl) ~ Hl(opl(l) ® 091(1)) = (0), we get Hl(sm) =0, m 1.

Thus Grothendieck's theorem on formal functions says that

Rl(vn)*(ynﬁ) = 0, 12 1, and hence Leray's spectral sequence

. 1, -1 ~ 1l .
gives us H (w (U),?nﬁ) Z H (U’("n)*’ng) = (0), so ¢ is
surjective,

o
Note that
(2.6) ! =) ® 0
Ared Ared Ared

Indeed, since A - Ei = 0,1 # n, we get from #) an exact se-

quence

0 — 0 -_ G — 0 — 0.
IP1 Ei IP1
Therefore 9= = 0 . ® 0 since HY(0 .) = (0). Then (2.6)
Ei Pl IP1 IPl
follows by using the fact that A is a tree of smooth ra-

red

tional curves, i.e. %E is trivial for all i =1,...,n and
i
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since there are no cycles on the graph associated to Ared’

the trivializations patch to a global trivialization on Ared'

Note also that

(vrn)*‘sl n =08 0.

(v ), E:
iz MU

This is immediate from Claim (2.5) and (2.6) above. Now, a

straightforward check shows that Ei_l =-1 on S, _, and

further (w ),A + (v ),E; =0, i =1,...,n=2, (v ) A*E _, = ~1.
Again, by using this and the arguments as in the proof of

Claim (2.5) it thus follows that (wn oT ¥ is free at

-1 n)*

Wn-l(En—l) = Pp.p ©ON S, _,- BY going on in this way, a step

by step proof shows that ¢ =749 is a locally free rank 2
vector bundle on S. Then by pushing forward sequence #) we.

find an exact sequence

0O — OS - & — L @ 32 — 0

where deg Z = n. This pfoves Proposition (2.1).
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§3. Applications

From the results of sections 1,2 we deduce the following

(3.1) THEOREM. Let L be a nef and e on_a sur-
face S and let L ¢« L 2 4k + 5. Then either KS + L is
k-spanned or there exists an effective divisor D such that

L - 2D jis Q-effective, D contains some admissible O-cycle
of degqree < k + 1 where the k-gpannedness fails and

L-D~k-1¢D-*"D<ULZ=-D/2<Kk+ 1.

Proof. 1If Kg + L is not k-spanned there exists a 0-dimen-
sional cycle ¥ on S on the same type as in (0.4) and of

degree deg Z { k + 1 such that

F(KS ® L) — F(KS @ L ©® 02)
is not onto. Then by (2.1) there exist a locally free rank 2
vector bundle & on S and an exact sequence

0 — OS — & — L ® 92 — 0

= 2 = T =
where Og = 05/32. Since cl(é) = L+L and c2(8) = deg ¥, the
assumption L « L 2 4k + 5 1leads to ci(s) > 4c2(8), so Pro-

position (1.4) applies to give the result.
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The previous results allows us to give some answer to the

following

Question. Let L be a nef and big line bundle on a surface
S. What is the smallest integer t > 0 such that the map as-
sociated to F(KS ® Lt) gives a "k-th order embedding" where
by k-th order embedding we mean KS@ Lt to be k-spanned.

o

Since a lot of results are known in the "classical" cases

k = 0,1, we shall assume from now on that k 2 2.

(3.2) THEOREM. Jlet L bhe a nef and big line bundle on a sur-
face S and let t2L « L 2 4k + 5. Then K ® Lt is k-span-

ped, outside o ite pnumbers o eg, for t =k, k + 1,
k+2, k+3 unless there exists an effective divisor D
wit e num c ro es listed in the table below
t L-D D-D L L'L k see
examples
-1 (3.2.1 Q)
1 o} (3.2.1 ©)
k 1 ~D 1 (3.2.1 a)
1 < 4 2 (3.2.1 b)
.2 2 | ~aD, 2 2 or 3
3 AEZ 1 2,3 or 4
K41 1 1 ~D (3.2.1 a)
0 (3.2.1 c)
k+2 1 1 ~D 1 (3.2.1 a)
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Furthermore, under the extra assumptions k 2 3 and L+L 2 5,
Kq ® Lk_1 is k-gpanned unless there exists an effective divi-
gor D such that either L+ D=1, D=+ D= -2,-1,0 o

L+ D=2, D¢+<D=20, k=3 (see example (3.2.1 e)).

Proof. 1In view of Theorem (3.1), if Kg ® Lt

ned, there exists an effective divisor D, containing an ad-

is not k-span-

missible O-cycle of degree ¢ k + 1 where the k-spannedness

fails and such that
*) tL - D-k=-1<¢ D+ D<tL =+ D/2<k+1.

Note that, since we are looking for the k-spannedness outside
of a finite number of curves, we can assume that L - D > 0.
Indeed, standard arguments show that the set % of the irre-
ducible, reduced curves C of S such that L » ¢ =0 is
finite. Then clearly L - D > 0 if D passes through a point
X € S\¥. Now a case by case analysis for each considered value
of t, simply using *) and the Hodge index theoren gives the

results.

(3.2.1) Let us give some examples showing that .the above

result is sharp.

(3.2.1 a) Let 8§ = Pz, L=20 2(1). Since, given a line ¢ on
P

s, (KS + (k+i)L) + ¢ =k +1i -3 <k for 1i=0,1,2 we see

that KS + (k+i)L 1is not k-spanned for i = 0,1,2. In this

case D= ¢,L~ D and L2 = 1.
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(3.2.1 b) Let S =P? L =0 ,(2). Note that (Kg + 2L)-¢ < 2
P

and thus KS + 2L is not k-spanned for k 2 2. Here D = ¢,

I°=4, L+-D=2, D2 =1, L ~ 2D.

(3.2.1 «¢) Let s=pPx P, 1= 05(1,1). Note ' that
(Kg + (k+i)L) * H=k + 1 -2 <k for i = 0,1, where H 1is a
curve of type (1,0) or (0,1). Thus Ko + (k + 1)L is not
k-spanned for i =0,1. Here D=H, D+ D=0, 12 = 2,
L - D=1.

(3.2.1 d) Let S be a cubic surface in P3. Let L = 0 3(1)IS.
P

Note that (K_, + KL) » D=k - 1 for any line D on S. Thus

S
KS + KL is not k-spanned. Here D ¢« D= -1, L » D = 1.

(3.2.1 e) Let (S,L) Dbe a conic bundle, i.e. S is a bira-
tionally ruled surface and L is a nef and big line bundle on
S such that L + £ =2, f a fibre of the ruling, and L is
relatively ample with respect to the ruling. Then

(KS + 2L)+«f =2 and hence K_, + 2L 1is not 3-spanned. Here

s
D=f, D- D=0, L=+ D= 2.

We derive now from (3.1) and (3.2) a number of consequen-

ces.

(3.3) COROLLARY. Let S be a surface with ample canonical

bundle. Assume tsz . KS 2 4k + 5. Then Kg is k-spanned for
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t =k + 4 and is k-gpanned for t =k + 3, k + 2, k+ 1 un-
ess t exis n e ve diyiso D such_ that ejither
t = k+3, k+2, KD =D*D=1, Kg~ D, or t =k+l, Kg'D=1
and either DD = =-1,1, or k=2,3 apd KS-D = D+*D = 2, KS ~ D,
Furthermore, if k 2 3 and Kg'Kg 2 5, then K5 is
k-spanned unless there exists an effective divisor D such
that ejther KS°D = 1, DD = -1 r Kk =3 and KS-D = 2,
D+D = 0.

Proof, It follows from Theorem (3.2), by noting that KS-D

and D-D have the same parity by the genus formula.

(3.4) COROLLARY. Let S be as jin Corollary (3.3). Further as-
sume that the ¢otangent bundle 3; is ample. Then the two ca-
ses in (3.3) with KS°D =1, D+« D -1 can't occur,

Proof. If KS-D =1, D*D = -1, then there exists an irredu-

cible reduced component C of D such that KS-C =1,

02 { 0. Therefore g(C) = 0 or 1, where g(C) denotes the
arithmetic genus of C. Let v : C — C be the normalization

of C. Then the cotangent bundle 9% is ample since

* *_ & . .
o and v ﬂs is ample being v a finite morphism.

Therefore g(E) 2 2, a contradiction.

* _*
uﬂSCS

(3.5) COROLLARY. Let S be a surface with g~ 0 and let
L be a nef and big line bundle on S with tzL « L > 4k + 5,
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t

Then L is k-spanned for t = k+2 and is k-spanned for
t = k+1,k unless there exists an effective divisor D such

that either, t = k+1,k, LeD=1, D*D=20, or t =k with

k =2,3, LD=2, DD =2, I~D.

k-1

Further, if k2 3 and L - L2 5, L is k-spanned
unless there exists an effective divisor D such that either

L-b=1, DD =20,2, or LD =2, DD=0, k = 3.

Proof. It follows from Theorem (3.2) by noting that D +« D

is even by the genus formula.

(3.6) COROLLARY. Let S be a Del Pezzo surface (i.e. -KS
ample). Then K;t is k-spanned if and only if

t 2 k+2 if KS.KS = 1;

t 2 k/3 4if s =P%;

t > k/2 if S = Pipl;

t 2 k if KS'KS 2 3 or KS'KS =2 and k # 1.

-t .
Further if . =2, is very ample iff .
ther KS KS 2 KS e ample t 2 2
Proof. If S = P2, Ko ® 0g(k+3) = 0,(k) is k-spanned by
-t

(3.2), so that K A-OS(Bt) is k-spanned if and only if

S
3t 2 k.



- 26 -

]
is k-spanned except possibly if Os(l) *+ D=D-+* D=1 for

1f s =Pl |, again by (3.2), K 8 O (k+2) % O (k)

some effective divisor D . If D 1is a curve of type (a,b)

this leads to 2ab = 1, a contradiction. Therefore Os(k) is

k-spanned and hence K;t ™ Os(zt) is k-spanned too if and on-

ly if 2t 2 k.

Now, let KS-KS 2 3 or KS°KS =2, k#1 and t 2 k.

Note that condition (t+1)2xs-xs 2 4k + 5 is satisfied, then,
if K;t is not k-spanned, there exists by (3.1) an effective

divisor D such that

1

(E+1)Kg" + D -k-1 ¢ D*D < (t+1)K +D/2 < k+l

Therefore we have D+D ) 0, Kgl «+ D=1 and hence D - D > 1

since KgloD, DD have the same parity by the genus formula.

But (D-D)(KS°KS) < (KS°D)2 by the Hodge index theorem, so we

get DD=1 and D ~ Kgl, a contradiction. Thus K;t is
k~spanned if t 2 k. To see the converse note that there ex-
ists a 1line ¢ on S with ¢? = K.*¢ = -1, since S 1is not

S
-t -1
is k~-spanned, t = Kg ¢ 2 k.

minimal. Then if KS

Let KS-KS = 1 and t 2 k+2. Then the condition

(t+1)2KS°KS 2 4k+5 is satisfied, so the same argument as

above shows that K;t is k-spanned whenever ¢t > k+2. As to

the converse, note that the general element of |K;1| is a

smooth elliptic curve E . Then, if K;t is k-spanned, one
has by ([Be-So}l, (1.4.1), t = K;t + E 2 k+2.
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Finally, in the special case KS-KS = 2, again the same
-t

argunment as above shows that Kq is very ample if t > 2; on
the other hand it is easy to see that Kgl is not very

ample.

Note also that for k ¢ 1 = K *Kg, one sees that K;(k+1)

is not k-spanned.

It is worth to point out the following general fact.

(3.7) REMARK. Certain natural conditions imply there are no

%*
rational curves on a surface S (e.g. 38 nef), as well as

certain natural conditions imply there are no rational or el-

liptic curves (e.q., 3; ample or S  hyperbolic in the

sense of Kobayashi). Let L be a line bundle on S. Then the

following hold.

(3.7.1) If (S,L) contains no lines and L is ample and

t

spanned with LL 2 5, then K. ® L ig k=-spanned if

S
t 2 (k+2)/2.

(3.7.2) Assume there are no rational curves on S and let L

be very ample with L¢L > 9. Then Ks ® Lt is k-spanned for

t 2 (kt+t1)/3.
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(3.7.3) Assume there are no rational or elliptic curves on S
and let L be very ample with Le<L > 16. Then Kg o Lt is

k-spanned if t 2 (k+2)/4.

Let us show (3.7.1). If K, @ Lt  is not k-spanned for

t 2 (k+2)/2, we have from (3.1)
LeD(k+2)/2 - k - 1 £ D*D < LeD(k+2)/4 < k+1

for some effective divisor D. Then, since L-D > 2, the only
possible cases are L*D =2 or 3. If L+D =2, then DD 2 1
and the Hodgé index theorem leads to the contradiction
5 ¢ (D*D)(L°L) ¢ (L*D)2 = 4. If ©IL-D =3, then D+D > 2+k/2
which gives the contradiction (2+k/2)5 ¢ (D+*D) (L+L) ¢ 9.
Similarly for (3.7.2), (3.7.3). Note that the assumptions made

lead to LD > 2, L*D > 3, respectively.

We conclude this section by looking at the k-spannedness

of KS ® I. for low values of k.

(3.8) THEOREM. Let L be a nef and big line bundle on a sur-
face S and let Le¢L > 4k + 5. Then KS + L is k-spanned for
k = 2,3, outside of a finite number of curves, unless there
exists an effective divisor D with the numerica;'pgoperties

listed in the table below
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k LD D+D
1l -2,-1 or O
2 2 -1 or O
3 0
4 1
1 -3,-2,-1 or O
2 -2,-1 or O
3 3 -1 or O
4 0
5 1l
6 2
Proof, If K ® L is not k-spanned outside of a finite num--

ber of curves, then by (3.1),

L*D - k=1 ¢ D*D < L*D/2 < k+1

for some effective divisor D and we can assume L+<D > 0.

ILet k =2, so L*L 2 13. Note that by the Hodge index
theorem it has to be L+*D { 4 since otherwise D*D > 2 and
(L*L) (D*D) £ 25, which leads to a contradiction. In the same
way the case L+D = 3, DD = 1 is ruled out.

’ .
Iet kX =3, so L+L 2 17. Again, by the Hodge index theo-

rem we see that LD £ 6 as well as the cases LD = 2,



- 30 -

p.D=1; LD=3, bD=1; L*D=4, DD=1 and LD = 5,
DD = 2 lead to contradictions.

(3.9) COROLILARY. Let S be a surface with ample canonical
bundle and with KS-KS 2 13. Then Kg is 2-spanned unless
there exists an effective divisor D such that either
Kg * D=1, D')D=-1, or K g+ D=2, DD=o0.

Proof. It follows from (3.8) by noting that KS-D and D-D

have the same parity by the genus formula.

(3.10) COROLLARY. Let S be a surface with Kg ~ 0 and let

L be an ample line bundle on S with LeL > 13. Then L is:
2-gpanned unless there exists an effective divisor D such
that either LD =1, DD = =2, 0, or L-D=2 , 3,
DD = 0.

Proof., It follows from (3.8), by noting that D‘D is even by

the genus formula.

(3.10) REMARK. The analogues of (3.3), (3.9) and (3.5), (3.10)
for KS and L respectively nef and big are easily shown.
Note that in the nef and big case we get results on k-spanned-
ness outside of -2 curves with K, * D=0 or L*D =0 re-

S
spectively. We leave this to the reader.
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§4. Further remarks.

It is worth to point out that in the special case k = 2
the notion of k-spannedness is related in a natural way to
properties of the Douady Space sl¥l  of 0-dimensional subspa-
ces (2,02) of a smooth compact complex surface S with
length (02) =r, for r { 3. Recall that, for any r,S[r] is
smooth by a Fogarty's result [F]j. Further the natural map from
the Hilbert scheme to the Chow scheme gives a birational mor-
phism a. : sl . s(¥) ynere s(¥) is the r-tn symmetric
product of S. Note that a. is an isomorphism outside of
a;l(A), where A is the diagonal of s{f), We also refer to

(I1), [I2] and [Bea].

(4.1) LEMMA. Let ¢ be a 2-gpanned line bundle on S and let

(Z,04) be a O-dimensional subscheme defined by the ideal
sheaf 9, with length (0,) = 3. Then the map [ (£) — T (£80,)
is onto.

Proof, Let =, be the maximal ideal in the analytic local

ring Os'x of a point x € S,

. . 2 _ 2
We claim that either Ez/ax n 92 # (0) or 92 = |y,
where clearly b 4 stands here for ¥.,0 . Indeed, if
Z Z°8,x%x

2 — 2 - . L]
’z/“x n 92 = (0), then 92 c L this leads to a surjective

. 2 " . . . .
morphism Os'x/f2 —_ Os'x/mx which is in fact an isomorphism

— _ 2
since length (02) = 3. Hence 32 =& .
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Now one easily sees that the map
r¢)y —mr¢< oo /nz)
S,x "x

is onto since ¢ is 2-spanned. To conclude it thus suffices-

to show that the map

r¢) —mr(<« o Os’x/fz)
. 2
is onto whenever jz/ﬂx n 92 # (0).

To see this, note that there exists a linear element w

in 32, w € & = mi, which can be considered as a local para-

meter at x. Let v be the smallest integer satisfying the

following property: there exists some y € ?2 with
v v+l
y € s L and y ¢ wos’x.
Note that v # 2. Otherwise we can write, for some
u € Bor Y = u2 mod(mi). Then clearly y = u'2 where
u' = yl/2 is a local parameter at x. Therefore (w,u'z) c 92

and hence we get a surjective morphism ¢ /(w,u'z)—a 0 /e
: S,x S, ¥ Z
This leads to a contradiction since length (OS x/(w,u'z)) = 2.
I
. .3 4
If v = 3, we can write Yy = u- mod (mx) for some
u€am. Then (w,u"a) C ?z where u" = yl/3 is a 1local
parameter at x. Therefore ¥ is an admissible cycle with
$, = (w,u"’) and hence the map T (¢) — I(¢ 8 0 /%) is
[

onto, ¢ being 2-spanned.



Thus we are done after proving that case v 2 4 does not
occur. Indeed, if v 2 4, then ?z c (w,u;) and there exists

] L] v
a surjective morphism Os,x/.?2 — os,x/(w'“x)' this 1leads

again to a contradiction since length (OS x/(w,m;)) = v,
I

It would be nice if the following was true.

(4.2) CONJECTURE. Assume L is a nef line bundle on a smooth
surface S and k a non-negative integer. Let

¢ = max{ab,a+b = k+1}. Assume L+L 2 4c + 1. If there are no

effective divisors D with
LD - c { DD < L°D/2 < ¢

then for all length k+1 =zero-cycles (2,02) the pap
F(Kg ® L) — I'(Kg ® L ® 0,)

is onto.

(4.3} REMARK. It should be noted that the statement of Lemma
(4.1) above is pot true if lenght (02) > 3. E.g., let % Dbe
the O-cycle with Supp(Z) a single point 2z and let (x,y)
be local coordinates at z . Take 92 = (xz,yz) . Then
length (OZ)=4 and the element xy can be obtained neither as

a quotient modulo (xd,y) nor (x,y4).
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(4.3.1) Note also that another alternate definition of k-span-

nedness would be the following: for any distinct points

Pysre--/P,. o©ON S and any positive integers k kr with

l’.-o,
r

2 ki = k+1 then the map
i=1

X,
() — I o os/TI m,")

is onto, where the nis are the maximal ideals sheaves for

the pis.

If k = 0,1 one sees that definition (0.4) of k-spanned-
ness implies the alternate definition above. This is no longer
true when k 2 2 . E.qg., let again % be a 0O-cycle with
Supp(¥) a single point 2z and let (x,y) be local coordin-
ates at 2. Then the element xy € Os/nz can be obtained

neither as a quotient modulo (x3,y) nor (x,y3).

Let S[r] be denote the component of the Hilbert scheme
of S parametrizing the O~dimensional subschemes (Z,04) of

S with length (0 = r. Let 4 be a line bundle on S. Given

)
a zero-cycle (2,02) with length (0g) = x 2 1 and

*) F(A) — T (4 ® 0,)
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onto, we define the associated rational map
@r_l(#) : S[r] — Grass (I (d),r)

at (2,02), where Grass (I'(d),r) denotes the Grassmannian of

all r-dimensional quotients of T (d), by sending (z,0 into

o)
the quotient *).

If S 1is a surface in PN which generates PY we clas-
sically have a generically defined map - S(r) - - PN for
r { N which sends Pyt...tp. for distinct points pis to
IPr—l

the their images generate. Where it make sense,

0,.1(0(1)) =g_° a_.

Note that if T (d) —m I'(d © Oq) is onto for all length
r zero-cycles, then ¢r_1(ﬂ) is a globally defined morphism.
Further, if r = 1, this is the usual morphism to P (I (4))

associated to T ().

Note also that if a line bundle Q is O-spanned, ¢0(2)
is a morphism and if ¢ is l-spanned, i.e. ¢ is very ample,
¢i(2), for i = 0,1, are morphisms and ?o(£) is an embedd-
ing. The following shows that the k-th order embedding in the
above sense (i.e. wk_l(-) is an embedding) is almost implied

by the k-spannedness for k = 2.
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(4.4) PROPOSITION. With the notation as above, if ¢ is
2-spanned, then the maps ¢i(2), for i { 2, are everywhere
defined morphisms and ¢,(¢) is one to one.

oof. The first part of the statement is clear. To prove

that ¢l(2) is one to one we have to show that if (21,0z Y,
1

(22,0z ) are length 2 O0=-cycles, then
2

ker(r(¢) — r(«¢ e o # ker(r(¢) —»I‘(&L’ﬂbdz )) .

))
% 2

If we had equality, then if s vanishes on 21' it must van-

ish on ¥ If red(Z,) # red(¥,) this is absurd since it

2.
would imply that

(4.4.1) r(¢) — (e 023)

can't be onto with 23 = 21 U {(p}, PpE€ red(%z), p ¢ red(%l).

Indeed any s € I'(2) which is zero on 21 would be zero on

z and hence at p. Since length (0 = 3, this contradicts

)
2 Z,

the fact that (4.4.1) must be onto by the above Lemma. If

red(Z = red(zz) and Il # 22 we must have red(% equal

1) 1)
to a single point p. It is easy to check that if s € I (¥)

is zero on 21,22, then it must‘belong to T(¢ @ m;) where

n? is the maximal ideal of © . Thus if any s € T'(¢£ @ 0, )
P 5,p 21

is automatically zero on 22, it would follow that
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r(¢) —r e Os’p/m;)

can't be onto. This contradicts the 2-spannedness (in fact

l-spannedness).

(4.5) REMARK. Let dn(S) be the set of admissible zero cycles

on S of length n. It is worth noting that given s € S(n),

a;l(s) N 47(s) is a Zzariski open subset of a;l(s) whose

closure is the unique irreducible component of a;l(s) of
maximal dimension ([I1], Cor. 1 and Thm. 2). From this and

standard dimension counts, see e.gq. [I1], we see that:

aim (s{™ - 4™(s)) = 2n - 4. Thus if ¢ is k-spanned, the as-

sociated rational map S[k+1]

— Grass(I'(£),k+1) is a mor-
phism outside off a subset Z of codimension 4., Note also
that cod(ar(z)) 2 6 in iight of (4.1) and the usual dimen-

sion counts.

(4.6) REMARK. It is natural to hope that by using Reider’'s
method with a choice of different ideals instead of (xn,y)
the numerical condition in (3.1) would imply a strong form of
k-spannedness for KS ® L, L nef and big line bundle on 8.
Indeed by using the ideals of type (x,y°) a slight bit more
information can be obtained. In general though we have found
this extra information very obscure. The one new exception
comes from using the ideal (xz,yz). We can conclude in this

case that if Le¢L 2 17 and there are no effective divisors D

with
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LD - 4 { D*D < L-D/2 < 4,

then KS ® L is 2-spanned with respect to the alternate de-

finition (4.3.1).

The proof runs along these lines. By the above numerical
conditions Kq ® L is 2-spanned with respect to definition
(0.4). Then for a given point p € S, the morphism

3
M(Kg 8 L) — I'(Kg 8 L8 0y /a)

is onto or the sections that vanish to the second order at x

only generate a 2-dimensional subspace V of KS @ L® m;/m;.
We can choose two linear functions A,B in local coordinates

2 2

at p such that A",B tensor a non identically zero section

of KS ® L generate V. We now construct a vector bundle §

fitting in an exact sequence

0 — OS — & — L ©® 92 — 0

2 L2

where ?2 is the ideal sheaf generated by A°“,B at x and

1 elsewhere. This construction follows by a modification of
the construction we give in § 2 of this paper and also immedi-
ately from [C]. Note that length (0g) = 4. Thus by the numeri-

cal conditons there exists a certain section s of KS @ L

which at x is of the form A%f(A,B) + B2g(A,B) + AB. This

shows that V=K, 0 L @ sg/n3.

S p
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