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INTRODUCTION. Let L be a numerically effective and big line

bundle on a smooth projective surface S. Questions about the

spannedness and very arnpleness cf KS 181 L arise naturally,

e.g. [Bom], [So-V]. Recently, Reider [Rdr] introduced.a tech-

nique which yields answers to these" questions that are not ob-

tainable by previous methods.

Motivated by Bornbieri's classical work [Born] we are

interested in using Reider' s method to answer the following

question.

Question. Let S be a smooth projective 5urface on which KS

i5 arnple (this is relaxed to nef and big in §3). What i5 the

smallest integer t > 0 so that the map associated to

gives a "k-th order embedding".

The first problem is to decide what we rnean by a k-th or

der embedding. We introduce the concept of k-spannedness. Let

~ be a line bundle on 5 (resp. on a nonsingular curve cl.

We say that ~ is k-spanned for k ~ 0 if for any distinct

points Zl,···,zr on s (resp. on C) and any positive in-
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tegers k
1

, ... ,kr with

r

.2 k i = k + 1, the map
1.=1

is an (admissible) O-eyele defined by

loeal eoordin-

'~OS,~ is isomorphie to

Z (. {z l' · · · , z} and , ~OSr ,zi
for

o5,z
is

is gene-

c) •

is onto, where (~,O~)

the ideal sheaf ,~ where

(respeetively 0c ),z
k i

generated by (Xi'Yi) at zi' with (Xi'Yi)

ates at z. on S, i = l, ... ,r (respeetively
l.

k.
1.rated by Yi' Yi loeal eoordinate at Zi on

Note that O-spannedness is equivalent to ~ be spanned

and l-spannedness is equivalent to ~ being very ample.

There are a number of other notions of k-th order embed-

ding (see"§4 for some diseussion). Our ehoiee of the above de-

finition was guided by two eriteria:

1) the definition should be the weakest definition that inclu

des the obvious examples (e.g. if L is very ample then Lk

should give a k-th order embedding) but for which strong re-

sults can be proveni

2) there should be a strong criterion for KS~L to give a

k-th order embedding, where L is nef and big.
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In this article we show that there is a very satisfactory

answer to 2). We use this to answer the question for which

Positive t the 1ine bundle Kt (respectively K-t ) isS S

k-spanned where KS (respectively K~l) is ample. In the ar-

ticle [Be-So] by the first and the last author a detai1ed in-

vestigation of k-spannedness is made.

In §O we introduce background material that we need.

In §1 we prove that if

is an exact sequence with ~ locally free rank 2 vector bund-

1e on Sand L· L ~ 4k + 5 where (~,OS/'~) is a O-cyc1e

of length k + 1 ~ 1, then there is an effective divisor 0

containing 7 and such that

L • 0 - k - 1 ~ D • D < L'· 0/2 < k + 1.

This follows from Bogomolov' s instability theorem along the

lines of Reider's results.

In § 2 we show that if is not k-spanned and

L • L ~ 4k + 5 these appropriate exact sequences as above ex-

ist. We give an explicit construction of the sequences and
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bundles. Van de Ven explained this construction to the third

author for zero eyeles Pl+ ... +Pk+l where the p~s
1

are all

distinct. One ean also eonstruet the bundles by a general re-

sult of Catanese [C].

In §3 we derive a number of applications. We refer the

reader to theorems (3.2) and (3.8).

Finally in §4 we diseuss the definition of k-th order em-

bedding that we would have preferred to use. This other notion

is aesthetically quite niee and it has a good geometrie inter-

pretation. It also agrees with k-spannedness for k = 0,1,2

(see (4.1)). Unfortunately it is technically hard to verify

whieh L give k-th order embeddings with respeet t6 this al-

ternate definition.

We would like to call attention to [5a] where Reider's

method is also studied.

The first and the third author would like to thank the

Max-Planck-Institut für Mathematik for its support. The third

author would like to thank the University of Notre Dame and

the National 5cienee Foundation (Grant DM5 84-20315) for their

support.
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§o. Notation and background material

We work over the complex numbers. Throughout the paper,

S always denotes a smooth eonneeted projeetive surface. We

denote its structure sheaf by Os and the canonical sheaf cf

the holomorphic 2-forms by Ks . For any coherent sheaf ~ on

S we shall denote by hi(~) the complex dimension of Hi(~),

where Hi(~) stands for Hi(S,S).

Let ~ be a line bundle on S. ~ is said to be numeri-

cally effeetive, nef for ahort, if ~. C ~ 0 for each ir-

reducible curve C on S, and in this ease ~ is said to be

Qig if Cl(~)2 > 0, where cl(~) is the first Chern class of

~.

(0.1) We fix some more notation.

- (resp. ~) the numerical (resp. linear) equivalence of divi

sors; X(~) = l(-l)ihi(~), the Euler characteristic of a line

bundle ~; I~I, the complete linear system associated to ~

and r(~), the space of its global sections.

As usual we don't distinguish between locally 'free shea-

ves and vector bundles, nor between lin~ bundles and cartier

divisors. Hence we shall freely switch from the mUltiplicative

to the additive notation and viceversa.
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definining a o-dimensional

(0.3) THEOREM (Bogomolov, [Bog], [Re]) J&j; g be" a locally

2free rank 2 vector bundle OD S, such that cl (~) > 4C2 (~) .

Then there exist line bundles ~,~, ga-dimensional scheme ~

on S and an exact seguence

o -+ ~ -+ « -+ .M • .1'~ -+ o.

Furthermore.

i) (~-.Al ) • (~ - .Al) > 0;

ii) (~ -~) • H > 0 for any ample line bundle H on S.

(0.3.1) Note that ~ - .Al in (0.3) i8 Q-effective. Indeed,

)( (m(~ - J() ) goes to the infinity as m2 by i) . Then

hO(m(~ - .M)) goes to the infinity as m
2 since

h2(m(~ - .Al)) = 0 for m » 0 in view of ii) .

(0.4) k-spannedness. Let ~ be a line bundle on S (resp. on

a nonsingular curve C). We say that i5 k-spanned for

k ~ 0 if for any distinct points, zl,···,zr on S (resp.

on C) and any positive integers k 1 , · · · , k r with

r

it k i = k + 1, the map
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is onto, where (7:,0~) i9 a O-dimensional subscheme defined

by the ideal sheaf ,~ where ,~os is Os (resp. 0c )
L L,Z ,Z ,Z

k i
for Z ( {Zl' ... 'Z) and '~Os i8 generated by (xi,y·)

r 'Zi 1.

at Zi' with (Xi'Yi) local coordinates at zi on S,

i = 1, ••• ,r

ordinate at

sible.

(resp.

Zi on

,~ is generated by

Cl. We call a O-cycle

k i
Yi ' Yi local co-

~ as above adrnis-

(0.4.1) Note that O-spanned i8 equivalent to ~ being spanned

by r(~) and l-spanned 1s equivalent to very ample.

Note also that if ~ i8 k-spanned, then ~. C ~ k for

every irreducible reduced curve C on S, with equality only

if C i5 a smooth rational curve in ~k.

o

For any further background material we refer to [Rdr],

[Re] and [Be-So].
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§1. Numerical conditions

Let & be a locally free rank 2 vector bundle on a sur

face S. Assume that C~(~) > 4C2 (&) and let ~ given by an

exact sequence

(1.1)

where the ideal sheaf ,~ defines same O-dimensional analytic

set ~ and L is a nef and big line bundle. Let

(1.2)

be the exact sequence given by Bogomolov's theorem (0.3). Note

that sequences (1.1) and (1.2) lead to

(1.3)

The following generalizes some numerical conditions obtained

by Reider's method [Rdr].

(1.4) PROPOSITION. Let L be a Def and big line bundle on a

surface S and let & be a locally free rank 2 yector bundle

Qß S Hitb c~(~) > 4c2(~). with the notation as above, as

~ ,~ is non-trivial. Then the seguence
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obtained from (1.1) .sm1 (1.2) is non trivial, ~ ::::: L - D

where D is an effectiye divisor containing 2:,.Al::::: Os (0)

and L - 20 i§ ~-effective. Furthermore

(1.4.1) L - 0 - deg ~ ~ 0 - 0 < L - 0/2 < deg ~ .

At (L - 0)2 = (L - L)(O - D), thgn L ~ XO for some X € ~,

2 < X ~ 1 + deg 2:/0-0.

Proof. First, note that the composition ~ -+ g -+ L @.1' 2:

cannot be the zero morphism. If it was, then

~ ~ ker{& -+ L e.1!} = Os that is !l ::::: °s(-~) for some

effective divisor ~ and L ::::: .M - ~ by (1.3) • Henee, for an

arbitrary ample line bundle H, (~ - .M). H = (-L - 2~) - H < 0

since L is nef and ~ is effective, this contradicting

(0.3), ii). Thus we have, if ~::::: 0S(D),

0

I
Os (0) 8 !J'~

I
o -+ Os --+ t --+ L 8 !J'~ -+ 0

I
~

r
0
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where ~ ~ L - D by (1.3). We claim that D i8 effective and

it contains f. Tc see this, tensorize the sequences above by

~-1. Then hO(~ ~ ~-1) ~ 0, so after proving that hO(~-l) = 0,

we get an embedding ,

and we are done. Now, for any ample line bundle H on 5, we

have L· H = (~ + D) • H ~ 0 since L is nef and further

(~ - D) • H > 0 by (0.3),1i). Therefore ~. H > 0 which im

plies that ~-1 is not effective.

Now, again by Bogomolov's theorem (0.3), we have

(1.4.2) (L - 2D) • L > 0

while from the above diagram we see that

(1.4.3)

and hence

(1.4.4)

C2 (E) = (L - D) • 0 + deg ~ = deg f

L • 0 - deg f S D • D.

The Hodge index theorem and (1.4.2) yield
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20 • D < L • D

so we find

Therefore

(1.4.1) •

D •

L •

D < deg ~

D < 2 deg ~

by combining (1.4.4) and (1.4.5).

again by (1.4 .4), which proves

The fact that L - 20

(1. 4 • 2) as in (0. 3 . 1) •

is Q-effective follows from

Finally if (L· D) 2 = (L • L) (0 • 0) it has to be

L • D # 0 since otherwise D· D = 0, contradicting (1.4.5);

then L ~ AD, for same A € Q, by the Hodge inde~ theorem.

From (1.4.4) we get A ~ 1 + deg ~/D • D, while (1.4.2) yields.

A > 2.
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§2. Construction of vector bundles.

Let L be an arbitrary line bundle on a surface S. In

this section we construet, in an explieit geometrie way, 10

eally free rank 2 veetor bundles g on S given by exaet se

quences of type (1.1) of previous seetion, for admissible

O-eyeles ~ as in Definition (0.4). For simplieity we carry

out a detailed computation in one special case which, however,

completely describes all the techniques that are to be used.

This approach, in the case of O-cycles ~ = P1+. · · +Pr with

all Pi's distinct was shown to the third author by A. Van de

Vene

The existence of the vector bundles we construct also

follows from necessary and suffieient conditions due to

Catanese [C], for certain extensions of sheaves to be locally

free.

(2.1) PROPOSITION. ~ L be a line bundle on a surface S

and let ~ be an adrnissible O-cycle such that deg ~ = n and

Supp (~) i5 a single point z (respectiyely n distinct

points zl, ... ,zn) Qll s. Assume that Ks + L is (n - 1)

spanned and the map
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19 not onto, ~

near points at z

IKS + LI

(reep,

does not separate n-infinitely

n distinct points

Then there exists a locally free rank 2-vector bundle ~ QD

s giyen by the exact seguence

Proof. Here we only carry out the case when Supp(~) 1s a

single point z. The proof in the case Supp(f) = {Zl, .•• ,Zn}

is a straightforwad modification cf it.

Let (x,y) be local coordinates at z. Then

, 0 = 0 for
2: S,p S,p

the ideal of Os
n-1"Os = (x,y )., z

p ~ z and 'rOs,z = (X,yD). Let "

defined by " 0 = ° if P #- zS,p S,p

Hence from the assumptions made we get

be

and

(2.2)

To see this look at the exact commutative diagram

0 0

r r
o~ a:; a:;D n-1

---+0---+ l a::z z z

r r
n;

0 ~ K
S

et L ----+ K
S

et L ~ 0

r r
o --+ K

S
~ L et ,~ ~ K

S
Cf L Cf t' --+ a:; ---+0z

r r
0 0
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If (2.2) is not true, then

and hence f(KS ~ L) ~ c~ is onto, a contradiciton.

From the bottom line of the above diagram and (2.2) we

see that there is an injection

(2.2.1)

Note that in the case when Supp(~) = {Z1, ... ,Zn}' isomorphism

(2.2) is equivalent to say that satisfies the Cauley-

Bacharach property relatiyely to IKs ~ LI : that is, for any

throughpassingdivisor

j € {1, ..• ,n}, then

with [G-H]).

A contains supp (2:)

5upp(~) - Zj'

entirely (compare

To go on, we need to fix some more notation. Let

the exceptional divisors,

Ti Si ~ 5 i - 1
-1

E. =lT. (p. 1)
1. 1. 1.-

be the blowing up of S. 11.-
at a point

i = 1, ... ,n E.
1.

the proper transform of under Tr. 0
1.+1

o 1f ,
n

i = 1, ... ,n - 1, and En = En . Further one sees that

= 1 if li-jl = 1; Ei·Ej
:c::I 0 if li-jj > 1;

(2.3)

Ei = -2 if i #- n; En • En
= -1.
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and denote by v: 5 ~ S the composi-

tion of the 1T i ' s. Now, by a suitable choice of the points

Pi's , a straightforward check shows that

(2.4)

11'*, , * iE2-···-(n-1)En ;<'V

T '?l, + E <'V -E -<'V <'V

n 1

*'IJ" 'Y,
<'V -E - 2E 2 - nE .
<'V

1 n'

*Let L = v L. Therefore by Leray' s spectral sequence and the

Serre duality,

<'V H1(Kg + L - 2liE
i

) <'V

i

by (2.2.1). Then there ex-and hence H
1 (2 2iEi - L) #- (0)

i

ists a locally free rank 2 vector bundle ~ on Sand a non

trivial extension

#) O~ °s(2 iEi) ~ °s(~) ~ O-(L - 2iEi) ~ 0S
i i

Putting A = 2iE. one has
J.

i

A • En = -1; A • E. = 0, i = l, •.• ,n - 1
J.

by (2.3) and hence A cuts on Ared a divisor 0 , of degree

-1, which lies on the cornponent E . Look at the restriction
n
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o 1 (-6)
IP

--+ 0 •

(2.5) CLAIM. The sequence #)- is a non trivial extensionEn

with ~- ~ 0 1 lD 0 1
En IP IP

vector bundle on S 1.n-

and is a locally free rank 2

Proot of the Claim. Look at the exact sequence

o ~ 0s(2A - L - En ) ~ 0S(2A - L) ~ OE (2A - L) --+ 0 •
n

From Leray's spectral sequence, Serre's duality and (2.2) we

get an isomorphism

Then the restrietion map

i8 onto. Now, 18 al-dimensional vector space

which parametrizes .the non-trivial extensions of type #)E.
n

Therefore since is surjective, we can choose ~ in #) in

such a way that ~E ~ ° 1 lD 0 1· Indeed by tensoring with
n IP IP

° 1(-1) the standard exact sequence
IP
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o -+ 0 1
IP

-+ -+ '!J 1
IP

-+0

we find a non-trivial extension

o -+ 0 (-1) -+ 0 1 $ 0 1
1P 1 IP (p

-+ o 1 (1)
IP

-+ O.

To prove the second part of the Claim, let U C S 1n- be an

affine neighborhood of Pn-1 = vn(En ). From the exact sequence

we find by the above a map

cp :

If <p i8 surject1ve, we are done.

are independent on

-1Indeed, So c: cp ( 0 , 1) ,

-1
f(v n (U),05) ~ f(U,Os )

n-1

in a neighborhood of En , so that, since ~ is locally free

of rank 2, one has

15

m
= 9' ~ ~ 0-

5
/ !J' ,n n .set

P Tc see thatn-1·

and

1s free at

write

which says that

t =,n En

m ~ 1. Look at the exact sequence

surjective,
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which becomes by the above

o ~ 0 1(m+1) $ 0 1(m+1) ~ ~ ~ S ~ 0 .
IP IP m+1 m

Then H1(~ ) ~ H1 (S) m ~ 1. Sincem+1 m '

H1 (Sl) ~ H
1

(O 1(1) $ 0 1(1» = (0), we get
IP IP

1H (S ) = 0, m ~ 1.m

Thus Grothendieck' s theorem on formal functions says that

Ri(Vn)*('n~) = 0, i ~ 1, and hence Leray's spectral sequence

gives us H
1

(v-
1

(U) "n~) ~ H
1

(U, (1rn)*'n~) = (0), so 1/1 is

surjective.

o

Note that

(2.6)

Indeed, since A· Ei = O,i ~ n, we get from #) an exact se

quence

o ~ 0 1
IP

o 1
IP
~ o.

1Therefore <§- ,.., 0 1 '9 0 1 since H (0 1) = (0). Then (2.6)·
Ei IP IP IP

follows by using the fact that Ared i5 a tree of smooth ra-

tional curves, i.e. ~- i5 trivial for allE.
1.

i = 1, ... ,n and
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since there are no cycles on the graph associated to Ared ,

the trivializations patch to a global trivialization on Ared .

Note also that

above. Now, aThis is immediate from Claim (2.5) and (2.6)

straightforward check shows that E~_1 = -1 on and

further (Tn).A • (~n).Ei = 0, i = 1, ... ,n-2, (Tn ).A-En _1 = -1.

Again, by using this and the arguments as in the proof of

Claim (2.5) it thus follows that (vn-l 0 ~n).«J i5 free at

'"n-l(En - 1 ) = Pn-2 on 5 2. By going on in this way, a stepn-

by step proof shows that g = 11 «J is a locally free rank 2
*

vector bundle on s. Then by pushing forward sequence #) we,

find an exact sequence

where deg ~ = n. This proves Proposition (2.1).
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§3. Applications

From the results of sections 1,2 we deduce the following

(3.1) THEOREM. ~ L be a nef and big line bUDdle on a §YX-

k-spanned or there exists an effective divisor

s and let L • L ~ 4k + 5. Then either K
S

+ L is

D such that

L - 2D ~ ~-effectiye, D contains some admissible O-cycle

of degree S k + 1 where the k-spannedness fails and

L - D - k - 1 S D - D < L - D/2 < k + 1.

Proof. If KS + L is not k-spanned there exists a O-dimen

sional cycle ~ on S on the same type as in (0.4) and of

degree deg ~ S k + 1 such that

is not ento. Then by (2.1) there exist a locally free rank 2

vector bundle &. on Sand an exact sequence

where O~ = 0s/'~. Since Ci(&) = L-L and c 2 (&) = deg ~, the

assumption L· L ~ 4k + 5 leads to Ci(l) > 4C2 (&), so Pro

position (1.4) applies to give the result.

o
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The previous results allows us to give some answer to the

following

Question. Let L be a nef and big line bundle on a surface

s. What is the smallest integer t > 0 such that the map as

sociated to f(KS 0 Lt ) gives a "k-th order embedding" where

by k-th order embedding we mean Ks0 Lt to be k-spanned.

o

Since a lot of results are known in the "classical n cases

k = 0,1, we shall assume from now on that k ~ 2.

(3.2) THEOREM. ~ L be a nef and big line bundle on a sur

~ S and let t 2L· L ~ 4k + 5. ~ KS 0 Lt is k-span

ned, outside of a finite numbers of curyes, for t = k,k + I,

k + 2, k + 3 unless there exists an effective divisor D

with the numerical properties listed in the table below

t L·O 0·0 L L·L k see
examples

-1 (3.2.1 d)

1 0 (3'.2.1 c)

k 1 -0 1 (3.2.1 a)

1 ~ 4 2 (3.2.1 b)

, 2 2 -i\O, 2 2 or 3

3 i\EZ 1 2,3 or 4

k+1 1
1 -0 (3.2.1 a)

0 (3.2.1 c)

k+2 1 1 -0 1 (3.2.1 a)
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Furthermore, under the extra assumptions k ~ 3 and L·L ~ 5,

KS 8 Lk- 1 ~ k-spanned unless there exists an effectiye divi

.Qm: D such that either L· D = 1, D· D c -2, -1,0 Ql;:

L • D = 2, D • D = 0, k = 3 (see example (3.2.1 e».

Proof. In view of Theorem (3.1), if KS 8 Lt is not k-span

ned, there exists an effective divisor D, containing an ad-

missible O-cycle of degree ~ k + 1 where the k-spannedness

fails and such that

*) tL • D - k -1 ~ D • D < tL • D/2 < k + 1 •

Note that, since we are looking for the k-spannedness outside

of a finite number of curves, we can assume that L· D > o.

Indeed, standard arguments show that the set ~ of the irre-

ducible, reduced curves C of S such that L· C = 0 is

finite. Then clearly L· D > 0 if D passes through a point

X € S\~. Nowa case by case analysis for each considered.value

of t, simply using *) and the Hodge index theorem gives the

results.

(3.2.1) Let us give some examples showing that the above

result is sharp.

2(3.2.1 a) Let S = W , L = 0 2(1). Since, given a line l on
IP

S, (KS + (k+i)L) • t = k + i -3 < k for i = 0,1,2 we see

that KS + (k+i) L is not k-spanned for i = 0,1,2. In this

case D = l,L ~ D and L2 = 1.
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(3.2.1 b) Let S CJ
(p2 L = 0 2 (2) · Note that (KS + 2L)·l < 2,

IP

and thus KS + 2L is not k-spanned for k ~ 2. Here D = t ,

L2 = 4, L . D = 2, 0
2

= 1, L '" 20.

(3.2.1 e) Let 1 1
S = IP x IP, L = 0S(l,l). Note' that

(KS + (k+i) L) • H = k + i -2 < k for i :c: 0,1, where H i5 a

eurve of type (1,0) or (0,1). Thus KS + (k + i)L i5 not

k-spanned for i = 0,1. Here D = H, D • o = 0, L2 = 2,

L • D = 1 .

be a eubic surfaee inS (p3. Let L = 0 3(1) Is .
IP

Note that (KS + kL) • D = k - 1 for any line D on S. Thus

(3.2.1 d) Let

KS + kL is not k-spanned. Here D· D = -1, L • D = 1.

(3.2.1 e) Let (S,L) be a conie bundle, i.e. S i5 a bira~

tionally ruled surface and L is a nef and big line bundle on

S such that L· f = 2, f a fibre of the ruling, and L i5

relatively ample with respeet to the rUling. Then

(K
S

+ 2L)·f = 2 and henee K
S

+ 2L i8 not 3-spanned. Here

D = f, 0 • D = 0, L· D = 2.

o

We derive now from (3.1) and (3.2) a number of consequen-

ces.

(3 . 3) COROLLARY. Let S be a surfaee with ample eanonieal

bundle. Assume t
2KS • KS ~ 4k + 5. Then K~ i§ k-spanned for
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t = k + 4 and i8 k-spanned fer t ~ k + 3, k + 2, k + 1 un-

less there exists an effective divisor 0 such that either

t ~ k+3, k+2, K '0 = 0'0 ~ 1
S '

and either o·n = -1,1, QX k=2,3 ßn9 KS'O = D'n = 2, KS ~ D.

k-spanned unless there exists an

that either KS ' 0 ~ 1, n· D = -1

O'D = O.

Furthermore, li k ~ 3 KS'KS ~ 5, then Kk .i§.S

effective divisor 0 such

~ k = 3 and K '0 = 2,
S

Praof, It fellows fram Theorem (3,2), by noting that K 'DS

and D'D have the same parity by the genus formula.

(3.4) COROLLARY. 1&t s be as in Corollary (3,3) • Further as-

* 1ssume that the cotangent bundle "s ample, Then the two .Q.g-

ses in (3,3) lii.th K '0 = 1, 0 • D = -1 can't occur •
S

Proof, If K '0 = 1, D'D = -1, then there exists an irredu-s
cible reduced component C of D such that K 'C = 1,

S

c2
~ O. Therefore g(C) = 0 er 1, where 9 (C) denotes the

arithmetic genus of
~

C. Let v . C--+ C.
of C. Then the cotangent bUDdle

* * * * * 1s beiogv ,.S C ,.- and v "S ample
C

Therefore g(C) ~ 2, a contradiction.

be the normalization

*~~ is ample since
C

u a f inite rnorphism.

(3,5) COROLLARY, Let S be a surface with KS.~ 0 and let

L be a Dei and big line bUDdle on S with t 2L' L ~ 4k + 5.
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~ Lt i§ k-spanned for t = k+2 and is k-spanned for

t = k+1,k unless there exists an effective divisor D such

that either, t = k+1,k, L-O c 1, 0-0 = 0, ~ t" = k with

k = 2,3, L-D = 2, 0-0 = 2, L-D_

Further, 1f k ~ 3 and L - L ~ 5, Lk- 1 is k-spanned

unless there exists an effective diyisor 0 such that either

L-O = 1, D-D = 0,2, Q6 L-D = 2, D-O = 0, k = 3.

Proof. It follows from Theorem (3. 2) by noting that D - 0

is even by the genus formula_

(3.6) COROLLARY_ I&:t s be aDel Pezzo surface (i.e. -KS

ample)_ Then K~t i§ k-spanned if and only if

t ~ k+2 II KS-KS = 1;

t ~ k/3 li s = 1P 2 ;

t ~ k/2 if S = 1P 1 x(p1;

t ~ k II KS-KS ~ 3 m;: KS-KS = 2 and k #- 1.

Further if KS-KS 2, -t is yerv arnple iff t ~ 2.= KS

Proof. If S = 1P 2 KS 0 Os (k+3) ~ Os (k) is k-spanned by,

(3.2) , that -t
~ °S(3t) is k-spanned if and only ifso KS

3t ~ k.
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If , again by (3.2),

is k-spanned except possibly if 0S(1) • 0 = 0 • 0 = 1 for

some effective divisor D. If D is a curve of type (a,b)

this leads to 2ab = 1, a contradiction. Therefore 0s(k) i5

k-spanned and hence -t
KS ~ °s(2t) is k-spanned tao if and on-

ly if 2t ~ k.

Now, let KS·KS ~ 3 or KS·KS = 2, k"#. 1 and t ~ k.

Note that condition (t+1)2Ks • KS ~ 4k + 5 18 satisfied, then,

if K;t 1s not k-spanned, there exists by (3.1) an effective

divisor D such that

Therefore we have

since

D·D ~ 0, K-1 • D = 1 and hence D· D ~ 1
S

have the same parity by the genus forrnula.

But (D·O) (KS·KS ) ~ (KS ·D)2 by the Hodge index theorem, so we

get D· D = 1 and D '" K;1, a contrad1ction. Thus K;t 1s

k-spanned if t ~ k. To see the converse note that there ex-

ists a line l

minimal. Then if

on S

-t
K

S

with l2 = K ·t = -1 since
s '

i8 k-spanned, t = K~1.l ~ k.

S is not

the converse, note that the general element of

Let

so the same

is k-spanned whenever

condition

argument as

the

t ~ k+2. As to

IK;11 i5 a

Thent ~ k+2.and

satisfied,

KS·KS C1 1

2(t+1) KS·KS ~ 4k+S is

above shows that K;t

smooth el11ptic curve E. Then, if K~t i5 k-spanned, one

-thas by [Be-So], (1.4.1), t = KS • E ~ k+2.
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F~nally, in the special case KS·KS = 2, again the same

argument as above shows that K~t is very ample if t ~ 2; on

the other hand it is easy to see that K;l i9 not very

ample.

Note also that for k ~ 1 = KS·Ks ' one sees that K~(k+1)

i8 not k-spanned.

o

It is worth to point out the following general fact.

(3.7) REMARK. certain natural conditions imply there are no

*rational curves on a surface S (e.g. ~s nef), as weIl as

certain natural conditions imply there are no rational or el-

be a line bundle on s. Then the

. . *ll.ptl.c curves (e.g., <fI s
sense of Kobayashi). Let L

following hold.

ample or s hyperbolic in the

(3.7.1) If (5, L) contains no lines and L is ample and

spanned with

t ~ (k+2) /2.

is k-spanned if

(3.7.2) Assume there are no rational curves on Sand let L

be very ample with

t ~ (k+l)/3.

L·L > 9. Then i8 k-spanned for
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(3.7.3) Assume there are no rational or elliptie eurves on S

and let L be very ample with L-L > 16_ Then is

k-spanned if t ~ (k+2)/4.

Let us show (3.7_1)_ If

t ~ (k+2)/2, we have from (3_1)

is not k-spanned tor

L-D(k+2)/2 - k - 1 ~ 0-0 < L-O(k+2)/4 < k+1

tor some effeetive divisor 0_ Then, sinee L-O ~ 2, the only

possible cases are L-O = 2 or 3. If L-O = 2, then D-O ~ 1

and the Hodge index theorem leads to the eontradietion

5 s: (0-0) (L-L) s: (L-D)2 CI 4 •. If L- 0 = 3, then 0-0 ~ 2+k/2

whieh gives the eontradiction ( 2+k/ 2 ) 5 s: (D· 0) (L· L) ~ 9.

Similarly for (3.7.2), (3.7.3). Note that the assumptions made

lead to L-O > 2, L-O > 3, respectively.

o

We conclude this section by looking at the k-spannedness

of KS ~ L for low values of k.

(3.8) THEOREM. Lgt L be a Def and big line bUDdle on a ~-

faee S and let L-L ~ 4k + 5. Then KS + L i5 k-spanned for

k I: 2, 3 , outside of a finite number of curves, unless there

exists an effective divisor D with the numerical properties

listed in the table below
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k L·O 0·0

1 -2,-1 er 0

2 2 -1 or 0

3 0

4 1

1 -3,-2,-1 er 0

2 -2,-1 or 0

3 3 -1 er 0

4 0

5 1

6 2

Proof. If KS 8 L is not k-spanned outside of a finite num-

ber of curves, then by (3.1),

L·D - k-1 ~ 0·0 < L·0/2 < k+1

for some effective divisor 0 and we can assume L·O > O.

Let k = 2, so L' L ~ 13. Note that by the Hodge index

theorem it has te be L·O ~ 4 since otherwise 0'0 ~ 2 and

(L·L) (0·0) ~ 25, which leads to a contradiction. In the same

way the case L·O = 3, 0·0 = 1 is ruled out.

J

Let k = 3, so L·L ~ 17. Again, by the Hodge index theo-

rem we see that L·D ~ 6 as weIl as the cases L'D = 2,



- 30 -

0- D = 1; L- 0 = 3, 0- 0 = 1; L- 0 = 4, 0- 0 = 1

0-0 = 2 lead to contradictions_

and L-O = 5,

(3.9) COROLLARY. Let S be a surface with ample canonical

bundle and with Ks -Ks ~ 13. ~ K~ is 2-spanned unless

there exists an effectiye divisor 0 such that either

K - 0 = 1 0-0 = -1S ' , D-O = O.

Proof. It follows from (3.8) by noting that K - 0S
and 0-0

have the same parity by the genus formula.

(3.10) COROLLARY. ~ S be a surface with KS - P aDd let

L be an ample line bUDdle on S ~ L-L ~ 13. ~ L ~.

2-spanned unless there exists an effective divisor ,0 such

that either

0-0 = O.

L-O = 1, 0-0 = -2, 0, or L-O = 2 3,

Proof. It follows from (3.8), by noting that 0-0 is even by

the genus formula.

(3.10) REMARK. The analogues of (3.3), (3.9) and (3.5), (3.10)

for KS and L respectively nef and big are easily shown.

Note that in the nef and big case we get results on k-spanned-

ness outside of -2 curves with KS - D = 0 or L-D = 0 re

spectively. We leave this to the reader.
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§4. Further remarks.

It is worth to point out that in the special case k = 2

the not ion of k-spannedness is related in a natural way to

properties of the Douady Space s[r] of O-dimensional sUbspa-

ces (~,O~)

length (O~) =

of a smooth compact complex surface

r, for r ~ 3. Recall that, for any

S

r S [r],

with

is

smooth by a Fogarty's result [F). Further the natural map from

the Hilbert scheme to the Chow scheme gives abirational mor-

phism a s[r] --+ s(r) where S (r)
r

product of s. Note that a i5 anr
-1 where A is the diagonal ofa (A),r

is the r-th symmetrie

isomorphism outside of

s(r). We also refer to

[ Il], [ 12] and [ Bea] .

(4.1) LEMMA. Let ~ ~ 2-spanned line bundle on S and let

be a O-dimensional subscheme defined by the ideal

sheaf ,~ ~ length (O~) = 3. Then the map r(~) ~ r(~~O~)

15 onto.

Proof. Let DI
X

be the maximal ideal in the analytie local

ring oS,x of a point X € s.

We claim that either or 9> =
~

where elearly , ~ stands here for 9'~oS , x. Indeed, if

'~/GJ~ n 9'7, = (0), then ,~ S .~; this leads to a surjeetive

morphism 0s,x/'~ ~ 0s,x/m~ which i9 in faet an isomorphism

2sinee length (O~) = 3. Henee 9'~ = .x.
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Now one easily sees that the map

is onto sinee ~ is 2-spanned. To eonelude it thus suffiees'

to show that the map

is onto whenever

To see this, note that there exists a linear element w

in 'Y.' w €
2. -.x x' whieh ean be eonsidered as a loeal para-

meter at x. Let v be the smallest integer satisfying the

following property: there exists some

€ .v _ mv+1 and (0y x x y w S,x·

with

Note that v ~ 2. Otherwise we can write, for some

232u € mx ' y = u mod(.x). Then clearly y = u' where

u' = yl/2 is a loeal parameter at x. Therefore (W,U,2) ~ 1~

and henee we get a surjeetive morphi~m Os /(W,U,2)~ Os /'~.,x ,x L

This leads to a contradietion einee length (Os /(W,u,2» = 2.,x

(w U,,3) C ,
, -!l

If v = 3,

Then

we ean write

where

for some

is a Ioeal

parameter at x. Therefore 2: is an admissible cyele with

3'f = (w,u" ) is

onto, ~ being 2-spanned.
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Thus we are done after proving that case v ~ 4 does not

vcceur. Indeed, if v ~ 4, then ,~ C (W,A) and there exists
.L - X

va surjeetive morphism Os /'~ ~ Os /(W,R ); this leads
,X.L ,X x

again to a eontradietion sinee length (OS /(w,m v » = v.,x x

o

It would be niea if the following was true.

(4.2) CONJECTURE. Assume L is a nef line bundle on a smooth

surfaee Sand kanon-negative integer. Let

e = max{ ab, a+b = k+l). Assume L· L ~ 4c + 1. If there are no

effective divisors D with

then for all length k+1 zero-cycles (~,O~) the map

is onto.

(4.3) REMARK. It should be noted that the statement of Lemma

(4.1) above is not true if lenght (O~) > 3. E.g., let ~ be

the O-cycle with Supp(~) a single point z and let (x,y)

be local coordinates at z Then

length (O~)=4 and the element

a quotient modulo (X
4 ,y) ncr

xy ean be cbtained neither as

4(x, y ).
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(4.3.1) ·Note also that another alternate definition of k-span

nedness would be the following: for any distinct points

Pl, •.. ,Pr on Sand any positive integers k
1

, •.• ,kr with

r

.2 k i = k+l then the map
1.=1

is onto, where the ,,'si are the maximal ideals sheaves for

If k = 0,1 one sees that definition (0.4) of k-spanned-

ness implies the alternate definition above. This is 00 longer

true when k ~ 2 E. g., let again be a O-cycle with

Supp(~) a single point z and let

ates at z. Then the element xy

neither as a quotient modulo (X
3 ,y)

(x,y) be loeal ecordin

€ 0 S/R ~ ean be obtained

3ncr (x, y ).

o

Let s[r] be denote the component of the Hilbert scheme

of S parametrizing the O-dimensional suhsehemes (~,O~) of

S with length (O~) = r. Let A be a line bundle on S. Given

a zero~cycle (~,O~) with length (O~) = r ~ 1 and

*)
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onto, we define the associated rational map

"'r-l(J) s[r] ~ Grass(T(J),r)

at (~,O~), where Grass (T(~),r) denotes the Grassmannian of

all r-dimensional quotients of T(J), by sending (~,O~) into

the quotient *).

If S 18 a surface in WN which generates ~N we clas

sically have a generically defined map 9
r

: s(r) - ~ wN for

r ~ N

the

which sends

IP r - 1 their

P1+ ... +Pr for distinct points

images generate. Where it make

p'.s to
1.

sense,

Note that if f(J) ~ f(J ~ 0%) is onto for all length

r zero-cycles, then '" 1(~) is a globally defined morphisrn.r-

Further, if r = 1, this is the usual morphism to IP (f (.M))

associated to f(~).

Note also that if a line bundle ~ is O-spanned, "'O(~)

is a morphism and if ~ 18 1-spanned, i.e. ~ is very ample,

'" i (~), for i = 0, 1, are morphisms and '" 0 (~) i5 an embedd

ing. The following shows that the k-th order embedding in the

above sense (i.e. "'k-1(·) is an embedding) is almost implied

by the k-spannedness for k = 2.
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(4.4) PROPOSITION. With the notation as above, il

2-spanned, then the maps 'P 1 (~), for 1 ~ 2, are everywhere

defined morphisms and ~l(~) i8 one to one.

Proof. The first part of the statement is clear. To prove

that CPl(~) 1s one to one we have to show that if (7 1 ,°7 ),
1

(~2,07) are length 2 O-cycles, then
2

ker(r(~) ~ r(~ ~ 07 )) # ker(r(~) ~ r(~ e 07 )).
1 2

If we had equality, then if s vanishes on ~l- it must van-

ish on !'2. If red(!'1) ~ red(!'2)

would imply that

this i8 absurd since it

(4.4.1)

can't be onto w1th 7 3 = ~1 U (pl, p € red(~2)' p f red(!'l).

Indeed any s € r(~) which is zero on 7 1 would be zero on

2 2 and hence at p. Since length (02 ) = 3, this contradicts
3

the fact that (4.4.1) must be ente by the above Lemma. If

red(!'1) = red(2'2) and 7 1 ~ 2 2 we must have red(2 1 ) equal

to a single point p. It 18 easy to check that if s € r(~)

whereis zero on !'1 ,7 2 , then i t must belong to r (~ e m~)

i8 the maximal ideal of Os . Thus if any s € r(~ ~ 07 )
,p 1

2
IA

P

is automatically zero on 7 2 , it would follow that
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can' t be onto. This contradicts the 2-spannedness (in fact

l-spannedness).

(4.5) REMARK. Let ~n(S) be the set of admissible zero cycles

o.f

whose

n. It is worth noting that given s € s(n),

is a Zariski open subset of a -1 (s)
r

a-1 (s)
r

closure is the unique irreducible component of

on 5 of length

a-1 (s) n gJn(S)
r

maximal dimension ([11], Cor. 1 and Thm. 2). From this and

standard dimension counts, see e.g. [lI], we see that'

dim (s[n] - gJn(S» = 2n - 4. Thus if ~ is k-spanned, the as

sociated rational map S [k+l] --+ Grass (f (~) , k+l) is a mor-

phism outside off a subset z of codimension 4. Note also

that cod(ar(Z» ~ 6 in light of (4.1) and the usual dimen

sion counts.

(4.6) REMARK. It i5 natural to hope that by using Reider's

method with a choice of different ideals instead of

the numerical condition in (3.1) would imply a strong form of

k-spannedness for KS 8 L, L nef and big line bundle on S.

Indeed by using the ideals of type (Xa,yb) a slight bit more

information can be obtained. In general though we have found

this extra information very obscure. The one new exception

comes from using the ideal (X2 ,y2). We can conclude in this

case that if L·L ~ 17 and there are no effective divisors D

with

n
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L-O - 4 ~ D-O < L-O/2 < 4,

then KS ~ L 1s 2-spanned with respeet to the alternate de

finition (4.3.1).

The proof runs along these lines. By the above numerieal

eonditions is 2-spanned with respeet to definition

(0.4). Then for a given point p € S, the morphism

i8 onto or the seetions that vanish to the seeond order at x

only generate a 2-dimensional subspace V

We ean ehoose two linear funetions A,B

2 3
of ~s 0 L ~ Inp/mp .•

in loeal coordinates

at p such that A
2 ,B2 tensor a non identieally zero seetion

of KS 8 L generate V. We now eonstruct a veetor bundle &

fitting in an exact sequence

where '2: is the ideal sheaf generated by at x and

1 elsewhere. This construction follows by a modification of

the construetion we give in § 2 of this paper and also immedi

ately from [Cl. Note that length (O~) c 4. Thus by the numeri-

cal conditons there exists a certain seetion s of K
S

0 L

whieh at x i8 of the form A2f(A,B) + B2g (A, B) + AB. This

shows that V = K ~ L 0
2 3,. /a .

5 P P
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