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CONTACT STRUCTURES, DEFORMATIONS AND TAUT FOLIATIONS

JONATHAN BOWDEN

Abstract. Eynard has shown that any two taut foliations whose tangent distributions
are homotopic as plane fields are also homotopic as foliations. By using Eliashberg and
Thurston’s deformations of foliations to contact structures we give examples of taut foliations
that are not homotopic through taut foliations. Using similar methods we furthermore
show that the space of representations of a hyperbolic surface with fixed Euler class is in
general not path connected. We also consider the problem of which universally tight contact
structures on Seifert fibered spaces are deformations of taut or Reebless foliations, giving a
complete answer if the topological genus of the base is positive or if the twisting number of
the contact structure is non-negative.

1. Introduction

In their book on confoliations Eliashberg and Thurston, [6] established a fundamental link
between the theory and foliations and contact topology, by showing that any foliation that
is not the product foliation on S2×S1 can be C0-approximated by a contact structure. The
proof of this result naturally leads to the study of confoliations, which are a generalisation
of both contact structures and foliations. Recall that a smooth cooriented 2-plane field
ξ = Ker(α) on an oriented 3-manifold M is a confoliation if α ∧ dα ≥ 0. For the most
part interest has focussed on the contact case, where the study of deformations and isotopy
are equivalent in view of Gray stability. On the other hand many questions in deformation
theory of foliations or more generally confoliations remain to a large extent unexplored.

Rather than considering general confoliations, we will focus on questions concerning the
topology of the space of foliations. In contact topology one has a tight vs. overtwisted
dichotomy, which is in some sense mirrored in the theory of foliations by Reebless foliations
and those with Reeb components. In analogy with 3-dimensional contact topology where
one seeks to understand deformation classes of tight contact structures, we will be primarily
concerned with studying the topology of the space of Reebless and taut foliations and the
contact structures they approximate.

It is well known that every contact structure is a deformation of a foliation by Etnyre,
[8], a result whose proof was implicit in Mori, [27]. The foliations that Etnyre considers use
open books and by construction contain Reeb components. This led Etnyre to ask whether
every universally tight contact structure on a manifold with infinite fundamental group is
a deformation of a Reebless foliation. By considering the known criteria for the existence
of Reebless foliations on small Seifert fibered spaces, it is easy to see that this is false in
general. This was first observed by Lekili and Ozbagci, [20]. Nevertheless it is still an
interesting problem to determine which contact structures can be realised as deformations
of Reebless foliations, a problem which was already raised by Eliashberg and Thurston in
[6]. Furthermore, the counter examples coming from small Seifert fibered spaces are not
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2 JONATHAN BOWDEN

completely satisfactory, since the obvious necessary condition for a manifold to admit a
Reebless foliation is that it admits universally tight contact structures in both orientations,
and for small Seifert manifolds this is in fact equivalent to the existence of a Reebless foliation
(cf. Proposition 6.5).

In contrast to the case of small Seifert manifolds Etnyre’s original question has a positive
answer for Seifert fibered spaces whose bases have positive topological genus. Before stating
this result let us recall the notion of the twisting number t(ξ) of a contact structure ξ on
a Seifert fibered space. This is defined as the maximal Thurston-Bennequin number of a
Legendrian knot that is isotopic to a regular fiber, where this is measured relative to the
canonical framing coming from the base.

Theorem 1.1. Let ξ be a universally tight contact structure on a Seifert fibered space with
infinite fundamental group and t(ξ) ≥ 0, then ξ is isotopic to a deformation of a Reebless
foliation. If g > 0 and t(ξ) < 0, then ξ is isotopic to a deformation of a taut foliation.

The proof of Theorem 1.1 involves examining the Giroux-type normal forms for universally
tight contact structures of Massot and considering foliations that are well adapted to these
normal forms. The cases of negative and non-negative twisting are treated separately, with
the former being reduced to the t(ξ) = −1 case via a covering trick.

Other examples of tight contact structures on hyperbolic manifolds that admit no Reeb-
less foliations were given by Etgü, [7]. However, these examples are neither known to be
universally tight, nor is it shown that there are tight contact structures for both orientations.
This then suggests the following topological version of Etnyre’s original question, which then
has an affirmative answer for Seifert fibered spaces:

Question 1.2. Does every irreducible 3-manifold with infinite fundamental group that admits
both positive and negative universally tight contact structures necessarily admit a (smooth)
Reebless foliation?

Until recently there was little known about the topology of the space of foliations on a
3-manifold. For the class of horizontal foliations on S1-bundles Larchancé, [19] showed that
the inclusion of the space of horizontal integrable plane fields into the space of all integrable
plane fields is homotopic to a point and in particular its image is contained in a single path
component in the space of all integrable plane fields. In her PhD thesis Eynard showed that
a much more general result holds. In particular, she proved the following theorem, which
mirrors Eliashberg’s h-principal for overtwisted contact structures.

Theorem 1.3 (Eynard, [9]). Let F0 and F1 be smooth oriented taut foliations on a 3-
manifold M whose tangent distributions are homotopic as (oriented) plane fields. Then TF0

and TF1 are smoothly homotopic through integrable plane fields.

The foliations that Eynard constructs use a parametric version of a construction of Thurston,
first exploited by Larchancé, that allows foliations to be extended over solid tori. This then
introduces an uncontrolled number of Reeb components. In view of this it is natural to ask
whether any two horizontal foliations are in fact homotopic through horizontal foliations or
more generally whether any two taut foliations whose tangent plane fields are homotopic
are homotopic through taut or even Reebless foliations. Since any horizontal foliation on an
S1-bundle is essentially determined by its holonomy representation, the former question is
then related to the topology of the representation space Rep(π1(Σg),Diff+(S1)) considered
with its natural C∞-topology. Concerning the topology of this space we prove the following:
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Theorem 1.4. Let #Comp(e) denote the number of path components of Rep(π1(Σg),Diff+(S1))
with fixed Euler class e 6= 0 such that e divides 2g − 2 6= 0 and write 2g − 2 = n e. Then the
following holds:

#Comp(e) ≥
∑
d |n

d2g.

The idea behind the proof of this theorem is very simple: a smooth family of representa-
tions ρt corresponds to a smooth family of foliations Ft via the suspension construction and
one then deforms this family to a family of contact structures using a parametric version of
Eliashberg and Thurston’s perturbation theorem. Deformations of contact structures corre-
spond to isotopies via Gray stability and this then gives an isotopy of contact structures,
which then distinguish path components in the representation space.

In general, however, there is no parametric version of Eliashberg and Thurston’s perturba-
tion theorem, since in general the contact structure approximating a foliation is not unique.
On the other hand under certain additional assumptions, that are for instance true for hor-
izontal foliations on non-trivial S1-bundles, Vogel, [31] has shown a remarkable uniqueness
result for the isotopy class of a contact structure approximating a foliation, which implies in
particular that this isotopy class is in fact a deformation invariant. Instead of using Vogel’s
results we give a simpler argument which uses linear perturbations to deform families of
foliations to contact structures in a smooth manner and this suffices for our purposes.

We also present a second independent proof of Theorem 1.4, which uses the rich struc-
ture theory of Anosov foliations instead of contact topology. In the case of representations
with maximal Euler class Matsumoto, [26] showed that any representation is topologically
conjugate to the suspension of a Fuchsian representation and Ghys, [11] showed that this
conjugacy can be assumed to be smooth. Such foliations correspond to the weak unsta-
ble foliation of the Anosov flow given by the geodesic flow of a hyperbolic metric on the
unit cotangent bundle ST ∗Σg. Consequently any smooth representation with maximal Euler
class is in fact conjugate to a Fuchsian representation and the space of representations with
maximal Euler class is path connected by results of Goldman, [14]. By considering fiberwise
coverings it is easy to construct Anosov representations with non-maximal Euler classes. In
general not every horizontal foliation lies in the same component as an Anosov foliation. We
do however obtain the following analogue of Ghys’ result, which answers a question posed
to us by Y. Mitsumatsu.

Theorem 1.5. Any representation φ ∈ Rep(π1(Σg),Diff+(S1)) that lies in the path compo-
nent of an Anosov representation φAn is itself Anosov. In particular, it is conjugate to a
discrete subgroup of a finite covering of PSL(2,R) and is injective.

Since there always exist non injective representations in the case of non-maximal Euler class
this immediately implies the existence of more than one path component in the representation
space for any non-maximal Euler class that admits Anosov representations. By using certain
conjugacy invariants (cf. Theorem 9.3) it is then easy to recover the precise estimates of
Theorem 1.4.

Of course not every taut foliation on an S1-bundle is horizontal so this theorem still leaves
open the question of whether taut foliations are always deformable through taut foliations.
By considering certain small Seifert fibered spaces, the deformation method in fact yields
examples of this as well.
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Theorem 1.6. There exist taut foliations F1,F2 that are homotopic as foliations but not
as taut foliations. Furthermore, any homotopy through foliations must contain at least one
Reeb component.

Further examples of taut foliations that cannot be joined by a path in the space of Reebless
foliations are given by using the special structure of foliations on the unit cotangent bundle
over a closed surface. In particular, we show that the weak unstable foliation of the geodesic
flow Fhor on ST ∗Σg cannot be smoothly deformed to any taut foliation with a torus leaf
FT without introducing Reeb components (Corollary 8.11). One can view this fact as a
generalisation of the result of Ghys and Matsumoto concerning horizontal foliations of ST ∗Σg,
in that it shows that the path component of an Anosov foliation in the space of all Reebless
foliations contains only Anosov foliations. This is perhaps slightly surprising since for the
product foliation on Σg×S1 one can spiral along any vertical torus γ×S1 to obtain smooth
deformations that introduce incompressible torus leaves. On the other hand, although there
exists no smooth deformation through taut foliations, it is not hard to construct a taut
deformation between Fhor and FT through foliations that are only of class C0. Thus these
examples exhibit further the difference between foliations of class C0 and those of higher
regularity.

Outline of paper: In Section 2 we recall some basic definitions and constructions of folia-
tions and contact structures and in Section 3 we review some basic facts about Seifert fibered
spaces and horizontal foliations. Section 4 contains the relevant versions of Eliashberg and
Thurston’s results on deforming foliations to contact structures and Section 5 contains back-
ground on horizontal contact structures and normal forms. In Sections 6 and 7 we prove
Theorem 1.1 first for negative twisting numbers and then in the non-negative case. Section
8 contains our main results concerning deformations of taut foliations and finally in Section
9 we analyse components of the representation space of a surface group that contain Anosov
representations, yielding an alternative proof of Theorem 1.4.

Acknowledgments: We thank T. Vogel for his patience in explaining many wonderful ideas
which provided the chief source of inspiration for results of this article. The hospitality of
the Max Planck Institute für Mathematik in Bonn, where this research was carried out, is
also gratefully acknowledged.

Notation and Conventions: All manifolds, contact structures and foliations are smooth
and oriented.

2. Foliations and contact structures

In this section we recall some basic definitions and constructions for foliations and contact
structures. For a more in depth discussion of foliations on 3-manifolds we refer to the book
of Calegari, [2].

2.1. Foliations: A codimension-1 foliation F on a 3-manifold M is a decomposition of M
into immersed surfaces called leaves that is locally diffeomorphic to the foliation of R3 given
by projection to the z-axis. We will always assume that all foliations are smooth and are
cooriented. One can then define a global non-vanishing 1-form α by requiring that

Ker(α) = TF = ξ ⊂ TM.
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By Frobenius’ Theorem such a cooriented distribution is tangent to a foliation if and only if

α ∧ dα = 0

and in this case ξ is called integrable. An important example of a foliation is the Reeb
foliation.

Example 2.1 (Reeb foliation). Consider D2 × S1 with coordinates (r, θ, φ). Choose a non-
negative step function γ(r) that has support in [0, 1] and is decreasing on the interior. Then
FReeb is defined as the kernel of the following form

α = γ(r) dφ+ (1− γ(r))dr.

This foliation has a unique compact leaf given by ∂D2×S1 and the foliation on int(D2)×S1

is by parabolic planes. A solid torus with such a foliation will be called a Reeb component.

General foliations are very flexible - they satisfy an h-principal - and in particular every
plane field is homotopic to the tangent distribution of a foliation. A more geometrically
significant class of foliations are those that are taut. Here a foliation is taut if every leaf
admits a closed transversal. Note that any foliation that contains a Reeb component is not
taut, since the boundary leaf of the Reeb component is separating and compact. Thus taut
foliations fall into the more general class of Reebless foliations, i.e. those that contain no
Reeb component. The existence of a Reebless foliation puts restrictions on the topology of
M due to the following theorem of Novikov.

Theorem 2.2 (Novikov). Let F be a Reebless foliation on a 3-manifold. Then all leaves
of F are incompressible, π2(M) = 0 and all transverse loops are essential in π1(M). In
particular, π1(M) is infinite.

It follows from Novikov’s theorem that a foliation is Reebless if and only if all its torus leaves
are incompressible. We also have the following criterion for tautness due to Goodman.

Theorem 2.3 (Goodman). Let F be a foliation on a 3-manifold M . If no oriented combi-
nation of torus leaves of F is null-homologous in H2(M), then F is taut.

It will be important to modify foliations in various situations below and we will repeatedly
make use of a spinning construction which introduces torus leaves into foliations that are
transverse to an embedded torus.

Construction 2.4 (Spiralling along a torus). Let F be a foliation on a manifold obtained by
cutting a closed manifold open along an embedded torus

M = M \ T 2 × (−ε, ε)

and assume that F is transverse on the boundary components T−, T+ of M . We furthermore
assume that F is linear on the boundary so that it is given as the kernel of closed 1-forms
α− and α+ respectively. Letting z be the normal coordinate on T 2 × (−ε, ε) we then define
a foliation as the kernel of the following form

α = ρ(−z)α− + ρ(z)α+ + dz.

Here ρ is a step function that is positive for z > 0 and identically zero otherwise so that ρ
vanishes to infinite order at the origin.
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Note that spiralling along an embedded torus T has the effect of introducing a closed torus
leaf. Furthermore, this modification can be achieved through a 1-parameter deformation of
foliations. Finally observe that if T is a compressible torus given as the boundary of a closed
transversal, then spinning along T has the effect of introducing a Reeb component having T
as a closed leaf. In this case spinning along T corresponds to turbulisation. This in particular
shows that Reeblessness and hence tautness are not deformation invariants of foliations.

2.2. Contact structures: In addition to foliations we will also consider totally non-integrable
plane fields or contact structures. Here a contact structure ξ is a distribution such that α∧dα
is nowhere zero for any defining 1-form with ξ = Ker(α). Unless specified our contact struc-
tures will always be positive with respect to the orientation on M so that α ∧ dα > 0. If α
only satisfies the weaker inequality α ∧ dα ≥ 0, then ξ is called a (positive) confoliation.

There is a fundamental classification of contact structures into those that are tight and
those that are not.

Definition 2.5 (Overtwistedness). A contact structure ξ on manifold M is called over-
twisted if it admits an embedded disc D ↪→M such that

TD|∂D = ξ|∂D.

If a contact structure ξ admits no such disc then it is called tight. A contact structure is

universally tight if its pullback to the universal cover M̃ →M is tight.

3. Seifert manifolds and horizontal foliations

3.1. Seifert manifolds: A Seifert manifold is a closed 3-manifold that admits a locally free
S1-action. These manifolds are well understood and can all be built using the following
recipe: Let R be an oriented, compact, connected surface with boundary of genus g and let
Ri = ∂iR for 0 ≤ i ≤ r denote its oriented boundary components. We then obtain a Seifert
manifold by gluing Wi = D2 × S1 to the i-th boundary component of R× S1 in such a way
that the oriented meridian mi = ∂D2 maps to −αi[Ri] + βi[S

1] in homology, where S1 is
oriented to intersect R positively.

The resulting manifold M admits a locally free S1-action in a natural way and the numbers
(g, β0

α0
, ..., βr

αr
) are called the Seifert invariants of M . This action has a finite number of orbits

that have non-trivial stabilisers, which are called exceptional fibers. These exceptional fibers
correspond to the cores of those solid tori Wi for which the attaching slope βi

αi
is not integral.

The Seifert invariants are not unique, as one can add and subtract integers so that the
sum

∑ βi
αi

remains unchanged to obtain equivalent manifolds. This then corresponds to a

different choice of section on R×S1 with respect to which the Seifert invariants were defined.
However, the Seifert invariants can be put in a normal form by requiring that b = β0

α0
∈ Z

and that

0 <
β1
α1

≤ β2
α2

≤ ... ≤ βr
αr

< 1.

This normal form is then unique, except for a small list of manifolds (see [15]). Note that
according to our conventions a Seifert fibered space M with normalised Seifert invariants
(g, b, β1

α1
, ..., βr

αr
) is an oriented manifold. The Seifert fibered space M considered with the

opposite orientation has Seifert invariants (g,−b− r, 1− β1
α1
, ..., 1− βr

αr
).
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Warning: The conventions for Seifert manifolds differ greatly in the literature. Here we
follow the convention of [23] and [5], which differs from [16] and [21].

Given a Seifert manifold with a decomposition M = (R× S1) ∪W0 ∪ ... ∪Wr and Seifert

invariants (g, b, β1
α1
, ..., βr

αr
), there is a natural fiberwise n-fold covering M

p−→ M ′ branched

over the exceptional fibers, where the manifold M ′ has Seifert invariants (g, nb, nβ1
α1
, ..., nβr

αr
).

The best way to see this is to let Zn ⊂ S1 be the n-th roots of unity and to set M ′ = M/Zn
with p being the quotient map. On the subset R × S1 the map p is just the product
of the standard n-fold cover S1 → S1 with the identity on R × S1, which extends in a
unique way to the tori Wi in a fiber preserving way. Moreover, by considering standard
fibered neighbourhoods of the exceptional fibers we see that the branching order around an
exceptional fiber is gcd(n, αi). We note this in the following proposition for future reference.

Proposition 3.1 (Fibrewise branched covers). Let M be a Seifert manifold with Seifert
invariants (g, b, β1

α1
, ..., βr

αr
). Then there is a fiber preserving branched n-fold covering map

M
p−→M ′, where M ′ has (unnormalised) Seifert invariants (g, nb, nβ1

α1
, ..., nβr

αr
). The branch-

ing locus of p is a (possibly empty) subset of the exceptional fibers and the branching order
around the k-th singular fiber is gcd(n, αk).

3.2. Horizontal Foliations: We next discuss horizontal foliations on Seifert manifolds re-
ferring to [5] for details. Here a foliation on a Seifert space is called horizontal, if it is
everywhere transverse to the fibers of the Seifert fibration. A horizontal foliation F on a

Seifert fibered space is equivalent to a representation ρ̃ : π1(M)→ D̃iff+(S1), such that the

homotopy class of the fiber is mapped to a generator of the centre of D̃iff+(S1). One then has

M = (B̃×R)/ρ̃, where B̃ denotes the universal cover of the quotient orbifold of M , and the
horizontal foliation on the product descends to F . The representation ρ̃ then descends to a
representation of the orbifold fundamental group of the base to the ordinary diffeomorphism
group ρ : πorb1 (B)→ Diff+(S1).

In all but a few cases a Seifert manifold admits a horizontal foliation if and only if it admits
one with holonomy in PSL(2,R), in the sense that the image of the holonomy map in ρ lies
in PSL(2,R). Moreover, an examination of the proof of ([5], Theorem 3.2) and its analogue
for PSL(2,R)-foliations shows that it is always possible to ensure that the holonomy around
some embedded curve in the base is hyperbolic provided that the base has positive genus.
We note this in the following proposition.

Proposition 3.2 (Existence of horizontal foliations, [5]). Let M be a Seifert fibered space
whose base has topological genus g, then M admits a horizontal foliation if

2− 2g − r ≤ −b− r ≤ 2g − 2.

In this case the horizontal foliation can be taken to have holonomy in PSL(2,R) and the
holonomy around some embedded curve in the base can be chosen to be hyperbolic. If g > 0
then the converse also holds.

Thus in most cases the existence of a horizontal foliation on M is the same as the existence
of a flat connection on M thought of as an orbifold PSL(2,R)-bundle. In the case of genus
zero, one has slightly more elaborate criteria for the existence of a PSL(2,R)-foliation.
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Theorem 3.3 ([18], Theorem 1). Let M be a Seifert manifold with normalised invariants
(0, b, β1

α1
, , ..., βr

αr
). Then M admits a horizontal foliation with holonomy in PSL(2,R) if and

only if one of the following holds:

• 2− r ≤ −b− r ≤ −2
• b = −1 and

∑r
i=1

βi
αi
≤ 1 or b = 1− r and

∑r
i=1

βi
αi
≥ r − 1.

4. Perturbing foliations

In their book on confoliations, Thurston and Eliashberg showed how to perturb foliations
to contact structures. In its most general form, their theorem shows that any 2-dimensional
foliation F that is not the product foliation on S2×S1 can be C0-approximated by a positive
and a negative contact structure. However, under additional assumptions on the holonomy
of the foliation this perturbation can actually be realised as a deformation. That is, there
is a smooth family ξt of plane fields, such that ξ0 is the tangent plane field of F and ξt is
contact for all t > 0. Moreover, if every closed leaf has linear holonomy or if the foliation is
minimal with some holonomy, then F can be linearly perturbed to a contact structure. Here
a linear perturbation is a family of 1-forms αt such that Ker(α0) = TF and

d

dt
αt ∧ dαt

∣∣∣∣
t=0

> 0.

This latter condition is then equivalent to the existence of a 1-form β such that

〈α, β〉 = α ∧ dβ + β ∧ dα > 0.

Note further that

〈fα, fβ〉 = f 2〈α, β〉
so that the condition of being linearly deformable depends only on the foliation and not on
the particular choice of defining 1-form.

Theorem 4.1 (Eliashberg-Thurston, [6]). Let F be a C2-foliation that is not without holo-
nomy.

(1) If all closed leaves admit some curve with attracting holonomy. Then TF can be
smoothly deformed to a positive resp. negative contact structure.

(2) If all closed leaves have linear holonomy, then this deformation can be chosen to be
linear.

Remark 4.2. Foliations without holonomy are very special and can be C0-approximated by
surface fibrations over S1. Thus the assumption that the foliation has some holonomy can
be replaced by the topological assumption that the underlying manifold does not fiber over
S1. Examples of manifolds which cannot fiber are non-trivial S1-bundles, or more generally
Seifert fibered spaces with non-trivial Euler class, and rational homology spheres.

In general it is not possible to deform families of foliations to contact structures in a
smooth manner. However, if a family of foliations Fτ admits linear deformations for all τ
in some compact parameter space K, then the fact that 〈α, β〉 > 0 is a convex condition,
means that one can use a partition of unity to smoothly deform the entire family. We note
this in the following proposition, which will be mainly applied when the family has no closed
leaves at all.
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Proposition 4.3 (Deformation of families). Let Fτ be a smooth family a foliations that is
parametrised by some compact space K and suppose that each foliation in the family admits
a linear deformation. Then Fτ can be smoothly deformed to a family of positive rep. negative
contact structures ξ±τ .

Another consequence of the convexity of the linear deformation condition is that any two
positive linear deformations a foliation are isotopic by Gray stability.

Proposition 4.4. Any two positive, resp. negative linear deformations of a foliation are
isotopic.

5. Horizontal contact structures

Horizontal contact structures on Seifert manifolds, like horizontal foliations, may be thought
of as connections with a certain curvature condition. As opposed to the flat case where the
horizontal distribution is a foliation, the distribution in question is contact if and only if the
holonomy around the boundary of any small disc is less than the identity. This then puts
topological restrictions on the topology of Seifert manifolds that admit horizontal contact
structures and one has the following necessary and sufficient conditions.

Theorem 5.1 ([16], [21]). A Seifert manifold with normalised invariants (g, b, β1
α1
, ..., βr

αr
)

carries a (positive) contact structure transverse to the Seifert fibration if and only if one of
the following holds:

• −b− r ≤ 2g − 2
• g = 0, r ≤ 2 and −b−

∑ βi
αi
< 0

• g = 0 and there are relatively prime integers 0 < a < m such that

β1
α1

>
m− a
m

,
β2
α2

>
a

m
and

βi
αi

>
m− 1

m
, for i ≥ 3.

Remark 5.2. The final condition is the realisability condition of [5], which is equivalent to the
existence of a horizontal foliation by Naimi, [28]. For g > 0 the condition for the existence
of a horizontal contact structure is the upper bound of the double sided inequalities that
determine the existence of horizontal foliations (cf. Proposition 3.2).

A given Seifert manifold can admit several isotopy classes of horizontal contact structures.
Massot, [23] showed that a contact structure can be isotoped to a horizontal one if and only
if it is universally tight and has negative twisting number. Recall that the twisting number
t(ξ) of ξ is the maximal Thurston-Bennequin number of a knot that is smoothly isotopic to a
regular fiber, where the Thurston-Bennequin invariant is measured relative to the canonical
framing coming from the base.

Furthermore, any horizontal contact structure ξ admits a normal form. This means that

ξ can be isotoped to a contact structure which is vertical on M̂ ∼= R×S1, where M̂ denotes
the total space with open neighbourhoods of the exceptional fibers removed. The contact

structure on M̂ is vertical and has twisting number −n so that ξ is given as the pullback of

the canonical contact structure under a fiberwise n-fold covering M̂ → ST ∗R that we denote
pξ. By ([23], Proposition 6.1) such a contact structure admits at most one extension to M
which is universally tight, up to isotopy and orientation reversal of plane fields.
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Theorem 5.3 (Normal form, [23]). Let ξ be a universally tight contact structure on a Seifert
manifold with t(ξ) < 0. Then ξ admits a normal form.

Moreover, if g > 0, then this normal form is unique, that is the covering homotopy class
of the covering map pξ determines ξ completely up to isotopy, unless −b − r < 2g − 2 and
n = −1, in which case there is only one isotopy class up to changing the orientation of ξ
without any assumption on the genus.

Remark 5.4. The statement in [23] does not use the map pξ, but rather the homotopy class

of a non-vanishing 1-form λ. For this one notes that the choice of section ŝ in M̂ used to
compute the normalised Seifert invariants gives a section in ST ∗R via the covering map pξ.

These sections then give identifications of ST ∗R and M̂ with R × S1 and with respect to
these identifications the map pξ is up to fiberwise isotopy the product of the identity with
the standard n-fold cover of S1.

Under the identification of R × S1 with ST ∗R the canonical contact structure is isotopic
to the kernel of some 1-form

αλ = cos(θ)λ+ sin(θ)λ ◦ J,
where λ is a non-vanishing 1-form on R and J is an almost complex structure. The contact

structure on M̂ is then given by the kernel of the 1-form

αλ,n = cos(nθ)λ+ sin(nθ)λ ◦ J.
Now if M admits a contact structure ξ with twisting number −n, then one can see that ξ

is isotopic to the pullback of a contact structure ξ′ with twisting number −1 under an n-fold
fiberwise branched cover. We note this in the following proposition.

Proposition 5.5. Let M be a Seifert manifold admitting a contact structure with twisting

number t(ξ) = −n < −1, then there is a fiberwise branched covering M
p−→ M ′ and a

contact structure ξ′ on M ′ with twisting −1 such that ξ is isotopic to p∗ξ′.

Proof. Let (g, b, β1
α1
, ..., βr

αr
) be the normalised Seifert invariants of M and let M

p−→M ′ be the

n-fold fiberwise branched cover given by Proposition 3.1. Since t(ξ) = −n by assumption,
the contact structure ξ admits a normal form with associated 1-form

αλ,n = cos(nθ)λ+ sin(nθ)λ ◦ J.
By ([23], Proposition 8.2) the indices of λ are (nb, dnβ1

α1
e, ..., dnβr

αr
e) and Poincaré-Hopf implies

nb+
r∑
i=1

⌈nβi
αi

⌉
= 2− 2g.

It then follows by ([23], Theorem B) that the Seifert manifold M ′, which has Seifert invariants
(g, nb, nβ1

α1
, ..., nβr

αr
), admits a contact structure ξ′ with normal form given by

αλ = cos(θ)λ+ sin(θ)λ ◦ J,
which is in particular transverse to the branching locus of the map p. The pullback of
the contact structure ξ′ can then be perturbed in a C∞-small fashion to obtain a contact
structure, which is denoted by p∗ξ′. Since there is a unique way to extend the pullback
p∗ξ′|M̂ to a contact structure on all of M , which can be made positively transverse ([23],
Proposition 6.1) and p∗ξ′ is positively transverse to the fibration, we conclude that ξ is
isotopic to p∗ξ′. �
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We next note that any two contact structures with twisting number −1 are necessarily
contactomorphic modulo orientation reversal of plane fields.

Proposition 5.6. Let ξ, ξ′ be contact structures on a Seifert fibered space which are univer-
sally tight and satisfy t(ξ) = t(ξ′) = −1. Then ξ and ξ′ are contactomorphic as unoriented
contact structures.

Proof. We first observe that if t(ξ) = t(ξ′) = −1 and −b − r 6= 2g − 2 then ξ′ and ξ are
isotopic as unoriented contact structures by Theorem 5.3. If −b − r = 2g − 2 then we
let αλ and αλ′ be the 1-forms associated to the normal form of ξ and ξ′ respectively on

M̂ = R × S1 ⊂ M . After possibly replacing λ with −λ, we may assume that both ξ and ξ′

are isotopic to positively transverse contact structures. By ([23], Proposition 8.2) the indices
of both λ and λ′ must then agree on ∂R. This is equivalent to the restrictions of the maps

pξ, pξ′ : M̂ → ST ∗R

being fiberwise isotopic on the boundary of M̂ . Furthermore, since t(ξ) = t(ξ′) = −1 the
maps above are in fact diffeomorphisms so that after an initial isotopy we may assume that

pξ and pξ′ agree near ∂M̂ . It follows that pξ ◦ p−1ξ′ is a diffeomorphism of M̂ that extends to
all of M so that ξ and ξ′ are contactomorphic. �

Remark 5.7. If M admits an orientation preserving diffeomorphism that reverses the orien-
tation on the fibers, then any oriented horizontal contact structure is contactomorphic to
the contact structure given by reversing the orientation of the plane field. In this case the
above proposition in fact holds for contactomorphism classes of oriented contact structures.
Examples of such manifolds are given by Brieskorn spheres Σ(p, q, r) ⊂ C3, in which case
the conjugation map on C3 yields the desired map.

6. Deformations of taut foliations on Seifert manifolds

In this section we consider the problem of determining which contact structures on Seifert
manifolds are deformations of taut foliations. The obvious necessary condition for a contact
structure to be a perturbation of a taut foliation is that it is universally tight. We will
show that in most cases a universally tight contact structure ξ with negative twisting is a
deformation of a taut foliation. By this we mean that there is a smooth family of plane fields
ξt, so that ξ0 is the tangent distribution of a taut foliation and ξt is a contact structure for
t > 0 that is isotopic to ξ.

In fact by Proposition 5.5 it suffices to consider contact structures with twisting number
−1, in which case it is fairly easy to construct the necessary foliations at least when the
genus of the base is at least one. The genus zero case is more subtle as not every contact
structure with negative twisting can be a perturbation of a taut foliation. We first note some
preliminary lemmas.

Lemma 6.1. Let ξ = p∗ξ′ be a horizontal contact structure on a Seifert fibered space which

is the pullback of a horizontal contact structure ξ′ under a fibered branched cover M
p−→M ′.

Assume that t(ξ′) = −1 and that ξ′ is isotopic to a deformation of a taut foliation through a
deformation that is transverse to the branching locus of p. Then ξ is also a deformation of
a taut foliation.
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Proof. Let α′ be a defining form for ξ′ and let αt be a smooth family of non-vanishing 1-
forms so that Ker(α0) is integrable and tangent to a taut foliation and αt is contact for t > 0.
After applying a further isotopy, we may also assume that Ker(α1) = ξ′ and that the entire
family is transverse to the branching locus L of p. Then p∗αt is a deformation of a taut
foliation that is contact away from L, where it is closed. We let β be any exact 1-form so
that α0 ∧ β|L > 0. Then α̃t = αt + εβ provides the desired deformation for any ε that is
sufficiently small. �

We shall also need a slightly more precise version of Theorem 5.3.

Lemma 6.2. Let ξ be a horizontal contact structure on a Seifert manifold M and let F0

be a regular fiber that is Legendrian and satisfies tb(F0) = t(ξ). Then ξ can be brought into
normal form by an isotopy that fixes neighbourhoods of the exceptional fibers.

We now come to the main result of this section.

Theorem 6.3. Let ξ be a universally tight contact structure with negative twisting number
−n on a Seifert manifold and assume that the base orbifold has genus g > 0. Then ξ is a
deformation of a taut foliation. Moreover, if n > 1 or −b − r = 2g − 2 then this foliation
can be taken to be horizontal and the deformation linear.

Proof. By Proposition 5.5 there is a fiberwise branched covering M
p−→M ′ and a horizontal

contact structure ξ′ so that ξ is isotopic to p∗ξ′ and t(ξ′) = −1. For convenience we assume
that both ξ and ξ′ are in normal form and that p∗ξ′ = ξ. We let (g, nb, n β1

α1
, , ..., n βr

αr
) denote

the unnormalised Seifert invariant of M ′. By Theorem 5.1 we have that −b− r ≤ 2g − 2. If
n > 1 then according to ([23], Proposition 8.2), we also have

(1) nb+
r∑
i=1

⌈nβi
αi

⌉
= 2− 2g

so that the normalised invariants (g, b′,
β′
1

α′
1
, ..., β

′
r

α′
r
) of M ′ satisfy −b′−r = 2g−2. In particular,

if n > 1 and g > 0, then we must have that b ≤ 0.
Case 1: We first assume in addition that 2−2g ≤ −b, in the case that n = 1. Proposition

3.2 then gives a horizontal PSL(2,R)-foliation F on M ′ with hyperbolic holonomy around
some embedded curve γ. We may then apply Theorem 4.1 part (2) to deform the foliation
linearly to a horizontal contact structure ξhor. The characteristic foliation on the torus Tγ
corresponding to γ is Morse-Smale and has two closed orbits each intersecting a fiber in
a point. This is then stable under a suitably small linear deformation and by Giroux’s
Flexibility Theorem there is an isotopy with support in a neighbourhood of Tγ so that
tb(F0) = −1 for some regular fiber F0. In particular, we deduce that t(ξhor) ≥ −1. The
opposite inequality holds for all horizontal contact structures by ([23], Proposition 4.5) and
we conclude that t(ξhor) = −1. We may then isotope ξhor into normal form through an isotopy
that is fixed near the exceptional fibers of M ′ by Lemma 6.2. Since all contact structures
with twisting number −1 are contactomorphic by Proposition 5.6, we may assume that the
normal form of ξhor agrees with that of ξ′ after applying a suitable diffeomorphism. Note
that this diffeomorphism can also be chosen with support disjoint from the singular locus.
It follows that ξ′ is isotopic to a deformation of taut foliation. Since this deformation was
chosen to satisfy the hypotheses of Lemma 6.1 the result follows in this case.
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Case 2: We next assume that −b < 2−2g. In this case the twisting number of ξ must be
−1, since b > 0 so that equation (1) cannot have any solutions with g > 0. Moreover, there
is only one such contact structure on M up to changing the orientations of the plane field
by ([23], Theorem D). Thus it will suffice to show that some horizontal contact structure is
a deformation of a taut foliation. To this end we let γ be a homologically essential simple
closed curve in the base orbifold B, which exists by our assumption that g > 0. We cut M
open along the torus Tγ which is the preimage of γ in M and take any horizontal foliation
on the complement of Tγ whose holonomy is conjugate to a rotation on the two boundary
components of B \ γ. We may assume that the rotation angles are distinct, unless M = T 3,
in which case all tight contact structures are deformations of some product foliation.

We then spiral this foliation along the torus Tγ (cf. Section 2) to obtain a foliation Fγ
with a unique torus leaf that is non-separating. If α−1, α1 denote closed forms defining the
foliation on the boundary components of a tubular neighbourhood T × [−1, 1] of Tγ, then
Fγ is given as the kernel of the following 1-form:

α0 = ρ(−z)α−1 + ρ(z)α1 + dz,

where ρ is a suitably chosen step function and z denotes the second coordinate in T × [−1, 1].
Since the only torus leaf of F is non-separating, it follows that Fγ is taut. Moreover, we may
deform Fγ to a confoliation that is contact near Tγ. This is given by the following explicit
deformation

αt =

{
ρ(|z|+ t2) (cos(f(t−1z))α−1 + sin(f(t−1z))α1) + dz, if t 6= 0

ρ(−z)α−1 + ρ(z)α1 + dz, if t = 0

for a non-decreasing function f : R → [0, π
2
] that is constant outside of [−1, 1], has positive

derivative on (−1, 1) and satisfies

f(z) =

{
0, if z ≤ −1
π
2
, if z ≥ 1.

Since ρ(z) is infinitely tangent to the identity at the origin the family αt is in fact smooth.
After possibly changing orientations we may assume that the slope of α−1 is smaller than
that of α1. Note that since ρ vanishes to infinite order at 0 this deformation is smooth
and by construction ξt = Ker(αt) is horizontal for t ∈ (0, 1]. Moreover, the assumption
that −b < 2 − 2g means that there can be a horizontal foliation for one and only one
orientation on M , so the change of orientation does not affect anything. The resulting
confoliation is then transitive and can thus be C∞-perturbed to a contact structure which is
by construction horizontal. By ([6], Proposition 2.8.3), this perturbation can then be altered
to a deformation. �

For the case that g = 0 we have the following:

Theorem 6.4. Let ξ be a universally tight contact structure with negative twisting number
−n on a Seifert manifold M with normalised Seifert invariants (g, b, β1

α1
, , ..., βr

αr
) and r ≥ 3.

Then ξ is a linear deformation of a horizontal (and hence taut) foliation if one of the following
holds:

• g = 0 and 2− r ≤ −nb−
∑
bnβi
αi
c − r ≤ −2.

• ξ is isotopic to a vertical contact structure and the base orbifold is hyperbolic.
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Proof. We let M
p−→ M ′ be the n-fold branched cover given by Proposition 5.5. The

assumption in the first case means that M ′ admits a PSL(2,R) foliation that has hyperbolic
holonomy around some embedded curve by Proposition 3.2. The proof is then identical to
case 1 of the proof of Theorem 6.3 above and the first claim follows.

In the second case the vertical contact structure gives a natural n-fold covering

M
pξ−→ ST ∗B,

where ST ∗B is the unit cotangent bundle of the base orbifold of M , which is in turn a
compact quotient of PSL(2,R). The cotangent bundle ST ∗B carries a canonical contact
structure ξcan which descends from a left-invariant one on PSL(2,R) and p∗ξ ξcan = ξ. It is
easy to see that this contact structure is a linear deformation of a taut foliation by considering
the linking form on the Lie algebra of PSL(2,R) and thus the same holds on the quotient
ST ∗B (cf. [1], Example 3.1). The proposition then follows by pulling back under pξ. �

Note that there can be no general statement in the genus zero case. For as a consequence
of Theorem 5.1, there are Seifert manifolds that admit horizontal contact structures, but no
taut foliations. A particularly interesting case is that of small Seifert fibered spaces which
are those having 3 exceptional fibers and whose base orbifold has genus 0. In this case any
universally tight contact structure must have negative twisting number, which is equivalent
to being isotopic to a horizontal contact structure. Furthermore, swapping the orientation
of M has the effect of changing b to −b+ 3. Thus inspection of the criteria of Theorem 5.1
shows that M admits a horizontal contact structure in both orientations if and only if its
invariants are realisable and hence this is equivalent to the existence of a horizontal foliation.
For Seifert fibered spaces whose bases are of genus g = 0 the existence of a taut foliation
is equivalent to that of a horizontal foliation. We summarise in the following proposition,
which is proved by Lisca and Stipsicz, [22] using Heegard-Floer homology, rather than using
Theorem 5.1 which can be proven by completely elementary methods (cf. [16]).

Proposition 6.5. Let M be a Seifert fibered space over a base of genus g = 0. Then the
following are equivalent:

(1) M admits a universally tight contact structure in both orientations with negative
twisting number

(2) M admits a horizontal contact structure in both orientations
(3) M admits a horizontal foliation
(4) M admits a taut foliation.

If M is small, the assumption on the twisting number can be removed in (1) and one can
replace taut by Reebless in (4).

Note that it is not clear whether any given horizontal contact structure on a small Seifert
fibered space is the deformation of a horizontal foliation in the case that both exist. However,
in all likelihood this ought to be the case.

7. Deformations of Reebless foliations on Seifert manifolds

In this section we show that all universally tight contact structures ξ with t(ξ) ≥ 0
are deformations of Reebless foliations. This follows from the existence of a normal form
for such contact structures given in [24] which generalises Giroux’s normal form for tight
contact structures with non-negative maximal twisting on S1-bundles.
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In the following a very small Seifert fibered space is a Seifert fibered space that admits
a Seifert fibering with at most 2 exceptional fibers. Note that a very small Seifert fibered
space is either a Lens space (including S3) or S1 × S2. The Lens spaces do not admit
Reebless foliations by Novikov’s Theorem and the only Reebless foliation on S1 × S2 is the
product foliation, which cannot be perturbed to any contact structure. Thus it is natural
to rule out such spaces when showing that certain contact structures are deformations of
Reebless foliations. Furthermore, a folklore result of Eliashberg and Thurston, [6] states that
a perturbation of a Reebless foliation is universally tight. Unfortunately, as pointed out by
V. Colin, [4] the proof given loc. cit. contains a gap, and one only knows that there exists
some perturbation that is universally tight. But in any case it is a reasonable assumption
to make when considering which contact structures are deformations of Reebless foliations.

We first note the existence of normal forms for universally tight contact structures with
non-negative twisting.

Theorem 7.1 ([24], Theorem 3). Let ξ be a universally tight contact structure on a Seifert
manifold M that is not very small and is not a T 2-bundle with finite order monodromy. If
t(ξ) ≥ 0, then ξ is isotopic to a contact structure that is horizontal outside a finite collection
of incompressible embedded vertical tori T = t Ti.

Conversely, any two contact structures ξ0, ξ1 that are vertical on a fixed collection of vertical
tori T and horizontal elsewhere are isotopic as unoriented contact structures.

With the aid of the normal form described above it is now a simple matter to show the
following.

Theorem 7.2. Let ξ be a universally tight contact structure on a Seifert fibered space M
with t(ξ) ≥ 0 and assume that M is not very small. Then ξ is a deformation of a Reebless
foliation.

Proof. First assume that M is not a torus bundle with finite order monodromy. Then
by Theorem 7.1 we may assume after a suitable isotopy that ξ is horizontal away from a
collection of tori T = tTi where ξ is vertical. Now let F be any foliation which has the
incompressible tori Ti as closed leaves and is horizontal otherwise. We also require that the
sign of the intersection of any fiber with F agrees with that of ξ on M \ T . Such foliations
can easily be constructed by taking any horizontal foliation on the components of M \ T
that has the correct co-orientation and then spiralling into the torus leaves. Note that all
torus leaves are incompressible so that F is Reebless.

We first deform F near the torus leaves as in the proof of Theorem 6.3 to obtain a
transitive confoliation ξ′ which is contact near the closed leaves and has vertical tori precisely
corresponding to the Ti. The confoliation ξ′ can then be deformed to a contact structure
which is horizontal on M \ T . By Theorem 7.1 this contact structure, suitably oriented,
is then isotopic to ξ. Finally the two step deformation of F can be achieved via a single
deformation in view of ([6], Proposition 2.8.3).

If M is a torus bundle with finite order holonomy, then the universally tight contact
structures are classified (see [17]) and it is easy to see that they are all deformations of some
T 2-fibration. �
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8. Topology of the space of taut and horizontal foliations

The topology of the space of representations Rep(π1(Σg),PSL(2,R)) for a closed surface
group of genus g ≥ 2 has been well studied and its connected components were determined
by Goldman, [14]. Recall that for any topological group the representation space of a surface
group is

{(a1, b1, ..., ag, bg) ∈ G2g |
g∏
i=1

[ai, bi] = 1}.

In the case of PSL(2,R) the connected components of the representation space are given by
preimages under the map given by the Euler class

Rep(π1(Σg),PSL(2,R))
e−→ [2− 2g, 2g − 2].

Moreover, the quotient of the connected component with maximal Euler class under the
natural conjugation action is homeomorphic to Teichmüller space and is hence contractible.
On the other hand the topology of the representation space Rep(π1(Σg),Diff+(S1)) endowed
with the natural C∞-topology, which can be interpreted as the space of foliated S1-bundles
after quotienting out by conjugation, is not as well understood. It would perhaps be natural
to conjecture that map induced by the inclusion

G = PSL(2,R) ↪→ Diff+(S1)

induces a weak homotopy equivalence on representation spaces or at least a bijection on path
components. It is known that both representation spaces are path connected in the case of
the maximal component (cf. [11], [26]). Indeed, results of Matsumoto and Ghys show that
any maximal representation is smoothly conjugate to one that is Fuchsian.

On the other hand, we will show that this is not the case for the space of representations
with non-maximal Euler class. The basic observation is that the cyclic d-fold cover Gd of
G = PSL(2,R) also acts smoothly on the circle via Zd-equivariant diffeomorphisms so that
there is a natural map

Rep(π1(Σg), Gd) −→ Rep(π1(Σg),Diff+(S1)).

In general the images of these maps lie in different path components for different values of
d and fixed Euler class. More precisely, we have the following.

Theorem 8.1. Let #Comp(e) denote the number of path components of Rep(π1(Σg),Diff+(S1))
with fixed Euler class e 6= 0 such that e divides 2g − 2 6= 0 and write 2g − 2 = n e. Then the
following holds:

#Comp(e) ≥
∑
d |n

d2g.

Proof. By ([13], Theorem 3.1) for each divisor d of n = |2g−2
χ
| there is a contact structure ξd

with twisting number −d on the S1-bundle E with Euler class e. If d > 1, then any such
contact structure is vertical and is thus a linear deformation of a horizontal foliation Fd by
Proposition 6.4. In the case d = 1 the contact structure ξ1 is also a linear deformation of a
horizontal foliation by the proof of Theorem 6.3. In either case, we let ρd be the associated
representation in Rep(π1(Σg),Diff+(S1)). Note that the image of ρd can be assumed to lie
in Gd. Assume that ρt is a smooth family of representations joining ρd to ρd′ for d 6= d′.
We let Ft denote the smooth family of associated suspension foliations joining Fd and Fd′ .
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Then since each foliation in the family Ft cannot have any closed leaves and E does not fiber
over S1, we may perturb the family linearly to a 1-parameter family of contact structures
by Proposition 4.3. It then follows from Proposition 4.4 that ξd is isotopic to ξd′ , which is a
contradiction. Thus both ρd and ρd′ lie in distinct components of Rep(π1(Σg),Diff+(S1)).

For a fixed d the vertical contact structure ξd determines a fiberwise d-fold cover of the
unit cotangent bundle ST ∗Σg. By ([13], Lemme 3.9) the isotopy class of the associated
d-fold covering is a deformation invariant of ξd and hence of ρd. Isotopy classes of fiberwise
d-fold coverings are in one to one correspondence with elements in H1(Σg,Zd) and it follows
that the numbers of path components of representations whose perturbations have twisting
number d is at least d2g. From this we conclude that

#Comp(e) ≥
∑
d |n

d2g. �

Remark 8.2. For the sake of concreteness let us consider the representation ρ2d given by a
(2d)-fold fiberwise cover of the suspension of a Fuchsian representation determined by the
inclusion of a discrete cocompact lattice in PSL(2,R) and ρst the stabilisation of a Fuchsian
representation of a surface of Euler characteristic 1

2d
(2−2g). These representations have the

same Euler class but lie in different components of Rep(π1(Σg),Diff+(S1)), which answers a
question raised by Y. Mitsumatsu and E. Vogt in studying certain turbulisation constructions
for 2-dimensional foliations on 4-manifolds.

Larchancé, [19] also considered the problem of deforming taut foliations through certain
restricted classes of foliations. She noted that on T 2-bundles over S1 with Anosov mon-
odromy of a certain kind, the stable and unstable foliations Fs,Fu cannot be deformed to
one another through foliations without torus leaves. This uses Ghys and Sergiescu’s classi-
fication results, [12] for foliations without closed leaves on such manifolds. However, Fs and
Fu can be deformed to one another through taut foliations: one first spirals both foliations
along a fixed torus fiber to obtain foliations F ′s,F ′u with precisely one closed torus leaf T .
On the complement of T one has a foliation by cylinders on T 2 × (0, 1) intersecting each
fiber in a linear foliation. It is then easy to construct a deformation between F ′s and F ′u
through foliations with one homologically non-trivial torus leaf. Thus we conclude that one
can deform Fs to Fu through taut foliations.

In view of this, it remains to find taut foliations that cannot be deformed to one another
through taut foliations, although their tangent distributions are homotopic. We give two
types of examples of this phenomenon: the first uses deformations and contact topology and
the other uses the special structure of taut foliations on cotangent bundles.

Theorem 8.3. The space of taut foliations is in general not path connected on small Seifert
fibered spaces.

Proof. We let M = −Σ(2, 3, 6k−1) be the link of the complex singularity z21 +z32 +z6n+5
3 = 0

taken with the opposite orientation, which has Seifert invariants (0,−2, 1
2
, 2
3
, 5k−1
6k−1). As noted

on ([23], p. 1746) the Seifert manifold M admits a vertical contact structure ξvert that has
twisting number −(6k− 7) if k > 1, which is then a linear deformation of a taut foliation F
by Proposition 6.4. One further checks that the following holds

(2) −2n+
⌈n

2

⌉
+
⌈2n

3

⌉
+
⌈n(5k − 1)

6k − 1

⌉
= 2
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if and only if n = 6l − 1 and 1 ≤ l ≤ k − 1. By ([23], Proposition 8.2) this is a necessary
condition for the existence of a horizontal contact structure on M with twisting number −n.

Moreover, the quotient space of the (6l−1)-fold cover M
p−→M ′

l given by Proposition 3.1 has
normalised invariants (0,−1, 1

2
, 1
3
, k−l
6k−1) and thus admits a horizontal foliation Fl by Theorem

3.3. Since Fl cannot have any closed leaves and M does not fiber over S1, the foliation Fl can
be linearly deformed to a horizontal contact structure ξl. Now the corresponding necessary
condition for the existence of a horizontal contact structure on M ′

l with twisting number
t(ξl) is obtained by substituting n = −(6l − 1)t(ξl) into equation (2) and it follows that

−(6l − 1)t(ξl) = 6l′ − 1, for some l ≤ l′ ≤ k − 1.

Note that the (negative) twisting number of a contact structure is sub-multiplicative under
covering maps. Thus, if 6l − 1 is coprime to 6k − 7, then we deduce that

−t(p∗ξl) ≤ −(6l − 1)t(ξl) < 6k − 7

so that ξ′ = p∗ξl cannot be isotopic to ξvert. Note that 6l − 1 will be coprime to 6k − 7 for
all values of l such that l > 1

6
(
√

6k − 7− 1) with at most one exception.
Since M is non-Haken all taut foliations are without closed leaves. Thus any path of taut

foliations joining F to F ′ = p∗Fl can be deformed to an isotopy between ξvert and ξ′ by
Propositions 4.3 and 4.4, which yields a contradiction if 6l − 1 is coprime to 6k − 7. �

Remark 8.4. A better understanding of the classification of Ghiggini and Van-Horn-Morris
should yield that the space of taut foliations on −Σ(2, 3, 6k−1) has at least k−1 components.

Furthermore, Vogel, [31] has shown that the isotopy class of a contact structure approxi-
mating a foliation without torus leaves is a deformation invariant for such foliations, provided
the manifold is not a T 2-bundle. This give alternative proofs of Theorems 8.1 and 8.3. As
his results only assume C0-closeness they yield that the conclusions about path components
also hold with respect to the weaker C0-topology. All results also remain true for foliations
that are only of class C2 as this suffices for Theorem 4.1 and its various consequences.

Since the foliations in Theorem 8.3 are by construction horizontal, their tangent distribu-
tions are homotopic as oriented plane fields. Thus by [19], they are homotopic as foliations
(cf. also [9]). The construction of such a homotopy of integrable plane fields introduces many
Reeb components, so it is natural to ask whether this is necessary. Since the manifolds
Σ(2, 3, 6k− 1) used in Theorem 8.3 are non-Haken the notions of tautness and Reeblessness
coincide and we deduce the following.

Corollary 8.5. There exist taut foliations F1,F2 that are homotopic as foliations but not
as taut foliations. Furthermore, any homotopy through foliations must contain at least one
Reeb component.

Note that since the twisting number of a contact structure is a contactomorphism invariant,
the proof of Theorem 8.3 shows that the space of taut foliations is also disconnected even
if one only considers diffeomorphism classes of foliations. If instead one only considers
deformation classes of taut foliations, then it is possible to give examples where the numbers
of components is infinite. This uses not only the special structure of foliations on the unit
cotangent bundle but also the structure of a foliation near torus leaves.
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8.1. Torus leaves and Kopell’s Lemma: The fundamental result concerning the way a
foliation behaves near a torus leaf is the following lemma of Kopell.

Lemma 8.6 (Kopell). Let f, g be commuting C2-diffeomorphisms mapping [0, 1) into itself
(not necessarily surjectively) and assume that f is contracting. Then either g has no fixed
point in (0, 1) or g = Id.

Furthermore, torus leaves occur in a finite number of stacks in the following sense (cf. [9],
[30]).

Lemma 8.7. Let F be a 2-dimensional foliation on a 3-manifold M . Then there is a finite
collection of disjoint embeddings Ni = T 2 × [0, ci] in M with ci ≥ 0 so that Ti × {0} and
Ti × {ci} are leaves and such that M \ ∪Ni contains no torus leaves. Furthermore, these
neighbourhoods may be chosen such that F is transverse to foliation given by the intervals
{pt} × [0, ci].

Now for any stack Ni as in Lemma 8.7, one has an induced holonomy homomorphism
defined on a slightly larger neighbourhood T 2× [−ε, ci+ ε] of Ni. This then induces germinal
holonomy maps near each of the boundary components Ti×{0} and Ti×{ci} respectively. We
let f, g be representatives of the commuting holonomy germs around generators α, β ∈ π1(T 2)
both having domain [ci, ci + ε]. After possibly replacing f with its inverse, we may assume
that the germ of f at ci is non-trivial and that f(ci + ε) < ci + ε by the assumption that
M \∪Ni contains no torus leaves. Now suppose g has a fixed point y in the interval (ci, ci+ε].
Again y cannot be a fixed point of any fn as there are no torus leaves in the complement
of the Ni. Since f and g commute the sequence yn = fn(y) consists of fixed points of g.
Moreover, yn is bounded and monotone increasing or decreasing, depending on whether f(y)
is greater than or less than y. Thus the sequence yn has a limit which is a common fixed
point of both f and g. This common fixed point must be ci, since Fix(f)∩Fix(g) = {ci} on
[ci, ci + ε]. It follows that f has no fixed points on (ci, y) and is thus a contraction on [ci, y).
Kopell’s Lemma then implies that g is either trivial or has no fixed points on (ci, y).

From the analysis of the previous paragraph we see that the foliation F is transverse to each
torus Tε′ = T 2×{ci+ε′} for all sufficiently small ε′ > 0. Moreover, the induced foliation F|Tε′
on Tε′ is transverse to the foliation on T 2 given by circles parallel to the generator α ∈ π1(T 2)
and inherits a natural orientation. Thus with respect to this S1-foliation F induces a return
map φ ∈ Diff+(S1). This return map has an associated rotation number

rot(φ) = lim
n→∞

φn(x)

n
∈ S1.

Note that for all ε′ sufficiently small the induced foliations on Tε′ are conjugate. Thus
the rotation number being conjugation invariant is well-defined for all ε′ sufficiently small.
We let λ+ = rot(φ) be the asymptotic slope of the foliation on the top of Ni, i.e. near
T 2×{ci}. There is also an asymptotic slope λ− on the bottom of Ni. Note that fixed points
of holonomy maps correspond to closed orbits of F|Tε′ . Note further that if the asymptotic
slope is rational, then φ must have a periodic point and it follows from Kopell’s Lemma
that φ has finite order. Thus in the case of rational asymptotic slope the foliation on Tε′ is
conjugate to a fibration by circles of slope rot(φ).

Now if the slopes λ− and λ+ do not coincide then the stack of leaves is stable in the sense
that any foliation in a C0-neighbourhood of F has a closed torus leaf in a neighbourhood
of Ni. For if the asymptotic slopes are different, then there are generators γ, δ in π1(T

2)
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so that the holonomy maps h = Hol(γ) and g = Hol(δ) respectively are defined on the
interval I = (−ε, ci + ε) and are contracting near 0 and ci. Since h is contracting near the
end points of [0, ci], it follows that h(x) > x and h(y) < y for some x, y ∈ I with x < y
and consequently h has a C0-stable fixed point in the interval I by the Intermediate Value
Theorem. The sequence zn = gn(y) is then monotone and bounded and its limit is a common
fixed point of g and h which corresponds to a torus leaf contained in some neighbourhood of
Ni. If a stack of tori has arbitrarily small perturbations that are without closed leaves then
the stack is called unstable. We summarise this discussion in the following lemma.

Lemma 8.8. Let Ni = T 2 × [0, ci] be an unstable stack of torus leaves of a 2-dimensional
foliation and assume that the asymptotic slope at one end is rational. Then on a slightly
enlarged neighbourhood T 2×(−ε, ci+ε) the induced foliations on T 2×{−ε′} and T 2×{ci+ε′}
are conjugate fibrations by circles of the same slope for any 0 < ε′ < ε.

The final ingredient is Thurston’s straightening procedure for foliations on S1-bundles (see
also [2]).

Theorem 8.9 (Thurston, [30]). Let F be a foliation on an S1-bundle without closed leaves.
Then F is isotopic to a horizontal foliation. Furthermore, if F is already horizontal on a
vertical torus T , then this isotopic can be made relative to T .

We are now ready to prove the following theorem.

Theorem 8.10. The space of taut foliations on ST ∗Σg has at least Z2g components if g ≥ 2,
all of which are homotopic as foliations.

Proof. By [13], [17] all horizontal contact structures on ST ∗Σg are contactomorphic and can
be made vertical. Furthermore, their isotopy classes are parametrised by H1(Σg,Z) ∼= Z2g,
where H1(Σg,Z) = [Σg, S

1] acts via gauge transformations. Choose ξvert, ξ
′
vert non-isotopic

vertical contact structures. Such contact structures are deformations of foliations F ,F ′ by
Theorem 6.3. In fact, identifying a vertical contact structure with the canonical contact
structure on ST ∗Σg it is easy to see that they are linear deformations of foliations that are
descended from left invariant foliations on PSL(2,R) (cf. [1]).

Now suppose Ft is a deformation of taut foliations joining F and F ′. Then since both
foliations are without closed leaves there is a smallest t0 such that Ft0 has closed leaves.
Otherwise we could linearly perturb the deformation by Proposition 4.3 to obtain a con-
tradiction. Note that all the closed leaves of Ft0 are unstable incompressible tori. There
is then a finite collection of embeddings Ni = Ti × [0, ci] so that the foliation contains no
closed leaves outside the union of the Ni and both Ti × {0} and Ti × {ci} are closed leaves
by Lemma 8.7. After an isotopy we may assume that the Ti are vertical tori and we let γi
denote their image curves in Σg.

We claim that the asymptotic slopes of all tori Tci+ε′ with 0 < ε′ < ε near top end of Ni are
rational. For note that the foliation Ft has no closed leaves and remains transverse to the
torus Tci+ε′ for t close to t0 and ε′ fixed. Thus applying Thurston’s straightening procedure
we may isotope Ft to be made horizontal whilst keeping Tci+ε′ fixed. The induced foliation
Ft0|Tci+ε′ is just the suspension of the holonomy diffeomorphism about γi ∈ π1(Σg). But by

[26] the holonomies of a horizontal foliation on ST ∗Σg are always conjugate to hyperbolic
elements in PSL(2,R) and thus must have fixed points. It follows that the asymptotic slope
of Ft|Tci+ε′ is rational for all t < t0 and by continuity this also holds for t0. Thus since Ni is

unstable, Lemma 8.8 implies that Tci+ε′ and Tε′ must be foliated by circles of the same slope.
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We then cut open the manifold and reglue along Tci+ε′ and T−ε′ to obtain a smooth foliation
F ′′ without closed leaves whose restriction to some vertical tori is a foliation by circles. After
again applying Thurston’s straightening procedure to F ′′ we obtain a horizontal foliation,
whose holonomy around γi is conjugate to a rational rotation. After taking the pullback of
a suitable covering of the base this holonomy can be assumed to be trivial. Since the Euler
class is multiplicative under coverings, the associated pullback foliation is also a horizontal
foliation on an S1-bundle with maximal Euler class.

Furthermore, since the holonomy around γi is trivial, we can cut along γi and glue in discs
to obtain a representation of a surface group that contradicts the Milnor-Wood inequality.
Thus we conclude that no foliation in the family can have closed leaves. It follows that
the family cannot exist and that F and F ′ cannot be deformed to one another through
taut foliations. Since there are Z2g different isotopy classes of contact structures there are
at least this many deformation classes of taut foliations. Finally since all foliations are
horizontal their tangent distributions are homotopic as plane fields and thus by [9], [19] they
are homotopic as integrable plane fields. �

In fact, the proof of Theorem 8.10 shows that if a family of taut foliations Ft on ST ∗Σg

contains a foliation which does not have closed leaves, then the same is true for the entire
family. This observation also applies to families of Reebless foliations. Furthermore, since
a foliation on ST ∗Σg without closed leaves is isotopic the suspension foliation given by a
Fuchsian representation in view of [11] we deduce the following corollary.

Corollary 8.11. Let Fhor be a horizontal foliation on the unit cotangent bundle of a hy-
perbolic surface ST ∗Σg. Then any foliation in the path component of Fhor in the space of
Reebless foliations is isotopic to the foliation given by the suspension of a Fuchsian repre-
sentation.

It is easy to construct taut foliations FT with a single vertical torus leaf on any S1-bundle
as long as the base has positive genus and we may assume that the tangent distribution of
such a foliation is homotopic to a horizontal distribution. Moreover, in view of Corollary
8.11 there can be no Reebless deformation between FT and any horizontal foliation, even if
one allows diffeomorphisms of either foliation.

We conclude that any deformation of foliations joining FT to a horizontal foliation must
in fact have Reeb components. The same applies to any diffeomorphic horizontal foliations
whose contact perturbations are not isotopic. That is to say there are foliations on the
toroidal manifold ST ∗Σg, such that any deformation between them must have Reeb compo-
nents.

Note, however, that the foliations FT and Fhor can in fact be deformed to one another
through taut foliations that are only of class C0. This follows by first spiralling the horizontal
foliation Fhor along the vertical torus T , which can be done in a C0 manner. The remainder

of the foliation is determined by a representation of a free group to D̃iff+(S1). Joining any
two such representations arbitrarily and spiralling into T then gives the desired deformation.

9. Anosov foliations

In this section we give an alternative approach to the results obtained above that uses
the classification of Anosov foliations of Ghys, [11]. We will call a representation Anosov
if its associated suspension foliation is diffeomorphic to the weak unstable foliation of an
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Anosov flow. Recall that a flow Φt
X generated by a vector field X on a closed 3-manifold M

is Anosov if the tangent bundle splits as a sum of line bundles

TM = Eu ⊕ Es ⊕X
such that for some choice of metric and C, λ > 0

||(Φt
X)∗(vu)|| ≥ C−1eλt||vu|| and ||(Φt

X)∗(vs)|| ≤ Ce−λt||vs||,
where vu ∈ Eu, vs ∈ Es. The line fields Eu, Es are called the strong stable resp. unstable
foliations of the flow and the foliations Fu,Fs tangent to the integrable plane fields

Eu ⊕X , Es ⊕X
are called the weak unstable resp. stable foliations of the flow. An important property of
Anosov flows and foliations is their structurally stability.

Lemma 9.1 (C1-stability of Anosov foliations). Let F be an Anosov foliation. Then any
foliation in a C1-small neighbourhood of F is also Anosov.

Proof. Suppose F = Fu is diffeomorphic to the weak unstable foliation of an Anosov flow X,
which is normalised to have unit length with respect to the chosen metric and let Fs be the
corresponding weak stable foliation. We rewrite the Anosov condition in a more convenient
form:

(3) det(Φt
X)∗|Fu ≥ C−1eλt and det(Φt

X)∗|Fs ≤ Ce−λt,

where the determinant is measured with respect to an orthonormal frame on the weak
unstable and stable foliations. We let T be such that

(4) det(ΦT
X)∗|Fu > 2 and det(ΦT

X)∗|Fs <
1

2
.

Note that condition (4) is C1-stable in X and we claim that it is equivalent to the conditions
in (3). To see this note that after rescaling the flow and the metric we may assume that
T = 1. We then write t = n+ r with 0 ≤ r < 1 so that

det(Φt
X)∗|Fu = det(Φn+r

X )∗|Fu > 2n det(Φr
X)∗|Fu ≥ 2n+r inf

0≤s≤1

1

2
det(Φs

X)∗|Fu .

So the first inequality in (3) holds for a suitable choice of constant C and λ = ln 2. Similarly
the second condition also holds. Thus the Anosov condition on a flow is C1-stable.

Now suppose F ′ is sufficiently C1-close to F so that it is transversal to Fs and set X ′ =
F ′∩Fs, again normalised to have unit length. Note that F ′u = F ′ and Fs are invariant under
the flow given by X ′, which is Anosov because of C1-stability, and the lemma follows. �

We will need the following version of a result of Matsumoto, [25].

Lemma 9.2. Let ρ1, ρ2 ∈ Rep (Γ,Homeo+(S1)) for an arbitrary finitely generated group Γ

and assume that there are lifts ρ1, ρ2 to H̃omeo+(S1) such that the translation numbers satisfy

tr(ρ1(g1)ρ1(g2))− tr(ρ1(g1))− tr(ρ1(g2)) = tr(ρ1(g1)ρ1(g2))− tr(ρ1(g1))− tr(ρ1(g2))
for all g1, g2 ∈ Γ. Assume further that the rotation numbers of ρ1(gi) and ρ2(gi) agree for
generators gi of Γ. Then ρ1 and ρ2 have the same bounded integral Euler class and are thus
conjugate provided that the actions they induce are minimal.
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With the aid of this lemma we obtain the following theorem, which gives an alternate proof
of Theorem 8.1 and also answers a question posed to us by Y. Mitsumatsu.

Theorem 9.3. The space of Anosov representations RAn ⊂ Rep(π1(Σg),Diff+(S1)) is both
open and closed with respect to the C∞-topology. It has finitely many connected components
which are distinguished by the rotation numbers of the images of a set of standard generators
ai, bi ∈ π1(Σg).

Proof. We first note that since the Anosov condition is C1-stable, the set RAn is open in
Rep(π1(Σg),Diff+(S1)). Now let ρn be a sequence of Anosov representations converging to
ρ. Since each ρn is Anosov it is conjugate to an embedding of a discrete subgroup in some
k-fold cover Gk of G = PSL(2,R) by [11] where k is fixed. The number of components of
Repmax(π1(Σg), Gk) is finite by [14] and are distinguished by elements in H1(π1(Σg),Zk).
Furthermore, all representations in a fixed component with maximal Euler class project
to Fuchsian representations in Repmax(π1(Σg), G). By [26] all Fuchsian representations are
topologically conjugate and thus the same holds for each component of Repmax(π1(Σg), Gk).
It follows that the sequence ρn contains only finitely many topological conjugacy classes, so
after choosing a subsequence we may assume that

ρn = φn ρAn φ
−1
n

for a fixed Anosov representation ρAn and some φn ∈ Homeo+(S1). We choose lifts φn and

ρAn to H̃omeo+(S1) and set

ρn = φn ρAn φ
−1
n .

We then set
ρ(g) = lim

n→∞
ρn(g).

This limit exists since by assumption ρn(g) converges to ρ(g) and the translation number of
ρn(g) being conjugation invariant is constant. Since the rotation number is also conjugacy
invariant we see that the hypotheses of Lemma 9.2 are satisfied for ρ and ρAn. Furthermore,
since ρAn is Anosov it is automatically minimal.

The action on S1 induced by ρ has either a periodic orbit, an exceptional minimal set
or it is minimal. Note that the first case is ruled out since the Euler class is non-zero.
If the action had an exceptional minimal set K ⊂ S1, then the semi-proper leaves of the
associated suspension foliation must have infinitely many ends by Duminy’s Theorem (cf. [3]).
Collapsing the complement of K would give a minimal (C0)-action ρmin whose associated
suspension foliation has a leaf with infinitely many ends. Furthermore, ρmin has the same
bounded integral Euler class as ρ and ρAn. It follows that ρmin is topologically conjugate
to ρAn, which is Anosov and thus a covering of a Fuchsian representation. By [10] the
suspension foliation of a Fuchsian group has only leaves with 1 or 2 ends and thus the same
holds for ρAn, giving a contradiction. Thus ρ is minimal and consequently by Lemma 9.2
it is topologically conjugate to ρAn. It is then in fact smoothly conjugate to an Anosov
representation by [11].

Finally the components of Repmax(π1(Σg), Gk) can be distinguished by the rotation num-
bers on generators ai, bi, since these correspond precisely to the elements H1(π1(Σg),Zk)
that distinguish components. Since the rotation number of an Anosov representation lies in
the k-th roots of unity Zk ⊂ S1 these rotation numbers are constant on components and this
concludes the proof. �
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As a consequence of Theorem 9.3 we obtain the following extension of Ghys and Matsumoto’s
global stability statement about conjugacy classes of representations in Rep(π1(Σg),Diff+(S1))
for the case of maximal Euler class, [11], [26] to other topological components.

Corollary 9.4. Any representation φ ∈ Rep(π1(Σg),Diff+(S1)) that lies in the path compo-
nent of an Anosov representation φAn is smoothly conjugate to an embedding of a discrete
subgroup in some finite cover of PSL(2,R) and is topologically conjugate to φAn. In partic-
ular, it is injective.

Remark 9.5. Theorem 9.3 and its corollary also remain true for representations of any hy-
perbolic orbifold group πorb1 (Bhyp).

In the case of maximal Euler class the property of being an Anosov representation is in
fact C0-stable. This is just a consequence of the fact that any representation with maximal
Euler class is conjugate to an Anosov one. It would be interesting to know whether such
C0-stability holds in for Anosov representations that are not maximal. Of course in this case
it is no longer true that every horizontal foliation is diffeomorphic to one that is Anosov by
Theorem 8.1. More generally, one might ask the following:

Question 9.6. Is the property of being the weak unstable foliation of a smooth Anosov flow
C0-stable?

This question cannot be answered by considering contact pertubations, since Vogel’s results,
[31] on the uniqueness of contact structures approximating foliations imply that the isotopy
class of a contact structure C0-approximating an Anosov foliation is unique. So the obvious
obstruction coming from contact topology is not present.
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