# p-ADIC BETTI LATTICES 

by

## Yves André

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

MPI/90-8

# p-ADIC BETTI LATTICES 

Yves André

Under the label "p-adic Betti lattices", we shall discuss two kinds of objects.
The first type of lattices arises via Artin's embedding of integral Betti cohomology into p-adic étale cohomology for complex algebraic varieties; there are comparison theorems with algebraic De Rham cohomology both over the complex numbers (Grothendieck) and p-adically (Fontaine-Messing-Faltings). The second type of lattices, which we believe be new, arises in connection with p-adic tori. Although its definition is purely p-adic, it is closely tied to the classical Betti lattice of some related complex torus, and can be viewed as a bridge between the Dwork and Fontaine theories of p-adic periods; "half" of this lattice is provided by the cohomology of the rigid analytic constant sheaf $\mathbb{Z}$. In fact, both themes of this paper are motivated by a question of Fontaine about the p-adic analog of the Grothendieck period conjecture, as follows.

1. Let $X$ be a proper smooth variety over the field of rational numbers $\mathbb{Q}$. The singular rational cohomology space $H_{B}^{n}:=H^{n}\left(X_{C}, Q\right)$ carries a rational Hodge structure (for any $n$ ); this structure is defined by a complex one-parameter subgroup of $G L\left(H_{B}^{n} \otimes \mathbb{C}\right)$, whose rational Zariski closure in $\mathrm{GL}\left(\mathrm{H}_{\mathrm{B}}^{\mathrm{n}}\right)$ is the so-called Mumford-Tate group of $\mathrm{H}_{\mathrm{B}}^{\mathrm{n}}$.

Let $H_{\mathrm{DR}}^{\mathrm{n}}$ enote the n th algebraic De Rham cohomology group of X . There is a canonical isomorphism

$$
\mathscr{P}: \mathrm{H}_{\mathrm{DR}}^{\mathrm{n}} \boldsymbol{\otimes}_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} \mathrm{H}_{\mathrm{B}}^{\mathrm{n}} \boldsymbol{\otimes}_{\mathbb{Q}} \mathbb{C}
$$

provided by the functor GAGA and the analytic Poincaré lemma. The entries in $\mathbb{C}$ of a matrix of $\mathscr{P}$ w.r.t. some bases of $\mathrm{H}_{\mathrm{DR}}^{\mathrm{n}}, \mathrm{H}_{\mathrm{B}}^{\mathrm{n}}$, are usually called periods.
One variant of the Grothendieck period conjecture [G1] predicts that the transcendence degree of the extension of $\mathbb{Q}$ generated by the periods is the dimension of the Mumford-Tate group.
2. On the other hand, let $\mathrm{H}_{\mathrm{et}}^{\mathrm{n}}:=\mathrm{H}_{\mathrm{et}}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{Q}}, \mathrm{Q}_{\mathrm{p}}\right)$ denote the $\mathrm{n} \underline{\text { th }} \mathrm{p}$-adic étale cohomology group of
$\mathrm{X}_{\overline{\mathbb{Q}}}$, where $\mathbb{Q}$ stands for the complex algebraic closure of $\mathbb{Q}$.
Let us choose an embedding $\gamma$ of $\overline{\mathbb{Q}}$ into the field $\mathbb{C}_{\mathrm{p}}=\frac{\hat{\mathbb{Q}}}{\mathrm{p}}$. The successive works of Fontaine, Messing and Faltings [FM] [Fa] managed to construct a canonical isomorphism of filtered $\operatorname{Gal}\left(\mathbb{\Phi}_{\mathrm{p}} / Q_{\mathrm{p}}\right)$-modules:

$$
\mathrm{H}_{\mathrm{DR}}^{\mathrm{n}} \otimes_{\mathrm{Q}} \mathrm{~B}_{\mathrm{DR}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{et}}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{C}_{\mathrm{p}}}, \mathbb{Q}_{\mathrm{p}}\right) \otimes_{\mathbf{Q}_{\mathrm{p}}} \mathrm{~B}_{\mathrm{DR}},
$$

where $B_{D R}$ denotes the quotient field of the universal pro-infinitesimal thickening of $\mathbb{C}_{\mathrm{p}}$. Via Artin's comparison theorem and the theorem of proper base change for étale cohomology (applied to $\gamma$ ) [SGA 4] III, this supplies us with an isomorphism

$$
\mathscr{\rho}_{\gamma}: \mathrm{H}_{\mathrm{DR}}^{\mathrm{n}} \otimes_{\mathrm{Q}} \mathrm{~B}_{\mathrm{DR}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{et}}^{\mathrm{n}} \otimes_{\mathrm{Q}_{\mathrm{p}}} \mathrm{~B}_{\mathrm{DR}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{B}}^{\mathrm{n}} \otimes_{\mathrm{Q}} \mathrm{~B}_{\mathrm{DR}} .
$$

The entries in $\mathrm{B}_{\mathrm{DR}}$ of a matrix of $\boldsymbol{\rho}_{\gamma}$ w.r.t. some bases of $\mathrm{H}_{\mathrm{DR}}^{\mathrm{n}}, \mathrm{H}_{\mathrm{B}}^{\mathrm{n}}$ are called ( $\gamma$ )-p-adic periods.
Fontaine asked whether the analog of Grothendieck's conjecture for $p$-adic periods holds true. The answer turns out to be negative; indeed, we shall prove:

Proposition 1. Let X be the elliptic modular curve $\mathrm{X}_{0}(11)$, and $\mathrm{n}=1, \mathrm{p}=11$. There are two choices of $\gamma$ for which the transcendence degree of the extension of $Q$ generated by the respective p -adic periods differ.

Nevertheless, one can still ask in general whether the property holds true for "sufficiently general" $\gamma$. This would be a consequence of a standard conjecture on "geometric p-adic representations":

Proposition 2. Let G be the image of $\mathrm{Gal}(\mathbb{Q} / \mathrm{Q}) \longrightarrow \mathrm{GL}\left(\mathrm{H}_{\mathrm{et}}^{\mathrm{n}}\right) \simeq \mathrm{GL}\left(\mathrm{H}_{\mathrm{B}}^{\mathrm{n}}\right) \mid Q_{\mathrm{p}}$. Assume that the rational Zariski closure of G in $\mathrm{GL}\left(\mathrm{H}_{\mathrm{B}}^{\mathrm{n}}\right)$ contains the Mumford-Tate group. Then for "sufficiently general" $\gamma$, the transcendence degree of the extension of $\mathbf{Q}$ generated by the p -adic periods is not smaller than the dimension of the Mumford-Tate group; if moreover $n=1$, there is equality.
3. Let us next turn to p -adic Betti lattices of the second kind, the construction of which it modelled on the following pattern. Let us assume that over some finite extension $E$ of $Q$ in $\mathbb{C}_{p}$, $\mathrm{X}_{\mathrm{E}}$ acquires semi-stable reduction, i.e. admits locally a model over the valuation ring of the p-adic completion $K$ of $E$, which is smooth over the scheme defined by an equation $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}=$ some uniformizing parameter of K . In this situation Hyodo and Kato showed the
existence of a semi-stable structure on $\mathrm{H}_{\mathrm{DR}}^{\mathrm{n}}$ (as was conjectured by Jannsen and Fontaine): namely an isocrystal ( $\mathrm{H}_{0}, \varphi$ ) endowed with a nilpotent endomorphism N satisfying $\mathrm{N} \varphi=\mathrm{p} \varphi \mathrm{N}$, together with an isomorphism $\mathrm{H}_{\mathrm{DR}}^{\mathrm{n}}{ }_{\mathrm{E}} \mathrm{K} \xrightarrow{\sim} \mathrm{H}_{0}{ }^{\otimes}{ }_{\mathrm{K}}{ }^{0} \mathrm{~K}$ depending on the choice of a branch $\beta$ of the p -adic logarithm on $\mathrm{K}^{\mathbf{x}}$ (here $\mathrm{K}^{0}$ denotes the maximal absolutely unramified subfield of K ).
On the other side, one can sometimes use the combinatorics of the intersection graph of the reduction to provide lattices, well-behaved under $\varphi$, in suitable twited graded (w.r.t. the "p-adic monodromy" $N$ ) forms of $H_{D R}^{n}$, and then use $\varphi$ in order to lift them to $H_{D R}^{n}$. For instance, this works pretty well when $\mathrm{X}_{\mathrm{E}}=\mathrm{A}$ is an Abelian variety with multiplicative reduction at p .
4. Before we describe this situation, let us remind the classical situation ( $\mathrm{E} \subset \mathbb{C}$ ): $\mathrm{A}(\mathbb{C})$ is a complex torus $\mathbb{C}^{\mathbb{g}} / \mathrm{L}$, where L is a lattice of rank 2 g ; furthermore $H_{D R}^{1} \otimes \mathbb{C} \simeq \operatorname{Hom}(L, \mathbb{C})$. Composition with a suitably normalized exponential map yields the Jacobi parametrization:
$A(\mathbb{C}) \simeq \mathbb{C}^{\mathbf{x g}} / \mathrm{M}$ where M is a lattice of rank $g$; thus $L$ appears as an extension of $M$ by $2 \mathrm{i} \pi \mathrm{M}^{\prime \mathrm{V}}$, where $\mathrm{M}^{\prime}$ denotes the character group of $\mathbb{C}^{\times g}$. The bilinear map on M , say q , obtained by composing any "polarization" $\mathrm{M}^{\prime} \longrightarrow \mathrm{M}$ with the bilinear map $\mathrm{M} \times \mathrm{M}^{\prime} \longrightarrow \mathbb{G}_{\mathrm{m}}$ (the multiplicative group) describing $M \longrightarrow \mathbb{C}^{\times g}$, enjoys the following property: $-\log |q|$ is a scalar product.
Similarly, at any place of multiplicative reduction above p , there is the Tate parametrization:
$A\left(\mathbb{C}_{p}\right) \simeq \mathbb{C}_{p}^{x g} / M$ where $M$ is again a lattice of rank $g$; there is an analogous bilinear map $\mathrm{q}^{\prime}$ on M such that $-\log |\mathrm{q}|_{\mathrm{p}}$ is a scalar product.
Using the semi-stable structure, we construct the "p-adic" lattice $L_{\beta}$ of rank 2 g , formed of $\varphi$-invariants and depending on $\beta$, which sits in an exact sequence like L (in this new context, $2 \mathrm{i} \pi$ has to be understood as a generator of $\mathbb{Z}_{\mathrm{p}}(1)$ inside $\mathrm{B}_{\mathrm{DR}}$ ).
Setting $\quad \mathrm{K}_{\mathrm{HT}}:=\mathrm{K}\left[2 \mathrm{i} \pi,(2 \mathrm{i} \pi)^{-1}\right]$, we have moreover a canonical isomorphism: $\rho_{\beta}: \mathrm{H}_{\mathrm{DR}}^{1}{ }_{\mathrm{E}} \mathrm{K}_{\mathrm{HT}} \xrightarrow{\sim} \operatorname{Hom}_{Z^{\prime}}\left(\mathrm{L}_{\beta^{\prime}} \mathrm{K}_{\mathrm{HT}}\right)$.
5. We call the entries in $\mathrm{K}_{\mathrm{HT}}$ of a matrix of $\mathscr{P}_{\beta}$ w.r.t. some basis of $\mathrm{H}_{\mathrm{DR}}^{1}, \mathrm{~L}_{\beta}, "(\beta)$-p-adic periods". We may now state a more rigid p -adic transcendence conjecture:

Conjecture 1: for suitable choice of $\beta$, the transcendence degree of the extension of E generated by the $\beta-\mathrm{p}$-adic periods equals the dimension of the Mumford-Tate group of $\mathrm{H}_{\mathrm{B}}^{1}$.

This conjecture splits into two parts:
We first prove the inequality $\operatorname{tr}^{\operatorname{deg}} \mathrm{E}_{\mathrm{E}} \mathrm{E}\left[\mathscr{P}_{\beta}\right] \leq \operatorname{dim}$ M.T. under some extra hypothesis ( ${ }^{*}$ ) (theorem 3); this amounts to showing the rationality of Hodge classes w.r.t. $\mathrm{L}_{\beta}$. (The hypothesis $\left(^{*}\right)$ concerns the Shimura variety associated to $A$, but we think it is unnecessary, or even always satisfied). On the other side, we use G-function methods to prove inequalities of the type "boundary $\operatorname{tr} . \operatorname{deg}_{\mathrm{E}} \mathrm{E}\left[\mathscr{P}_{\beta}\right] \geq \operatorname{dim}$ M.T." refering to polynomial relations of bounded degree between periods (theorems 4 and 5).
Roughly speaking, this is made possible because, when A varies in a degenerating family defined over E , the $\beta$ - p -adic periods involve the $\beta$-logarithm and p -adic evaluations of Taylor series with coefficients in E , whose complex evaluations give the usual periods (theorem 2).
6. The previous considerations suggest the possibility of a purely p-adic definition of (absolute) Hodge classes on A.

Conjecture 2: Let $E^{\prime}$ be any extension of E , and let $\xi$ be a mixed tensor on $H_{D R}^{1} \otimes \mathrm{E}^{\prime}$ lying in the 0 -step of the Hodge filtration. Then $\xi$ is an absolute Hodge class (i.e. rational w.r.t. L for every $\mathrm{E}^{\prime} \longrightarrow \mathbb{C}$ ) if and only if $\boldsymbol{\xi}$ is rational w.r.t. $\mathrm{L}_{\beta}$ for every $\mathrm{E}^{\prime} \longleftrightarrow \mathbb{C}_{p}$ and every branch $\beta$ of the p -adic logarithm.

I The p-adic comparison isomorphic
II Hodge classes
III Covanishing cycles and the monodromy filtration
IV Frobenius and the p-adic Betti lattice
V p-Adic lattice and Hodge classes

Convention: In this text, a smooth separated commutative group scheme will be called semi-abelian if each each fiber is an extension of an abelian variety by a torus.

Acknowledgements: I first thank the organizers of the Trento conference for inviting me to such a nice congress. This article was written out during a stay at the Max-Planck-Institut at Bon, partially supported by the Humboldt Stiftung; I thank both institutions heartily. The paper benefited very much from several conversations with W. Messing, J.M. Fontaine and especially J.P. Wintenberger.

## I. The p-adic comparison isomorphism

1. The "Barsotti rings" $\mathrm{B}_{\mathrm{DR}}$ and $\mathrm{B}_{\text {cris }}$

Let $K$ be a $p$-adic field, i.e. a finite extension of $\mathbb{Q}_{p}$ with valuation $v \mid p$. Let $K^{0}$, resp. $\bar{K}, \mathbb{C}_{p}$ denote the maximal nonramified extension of $\mathbb{Q}_{p}$ inside $K$, resp. an algebraic closure of $K$, and its completion. Let $R, R^{0}, R, \mathbb{R}_{p}$ denote the respective rings of integers, and let $\mathscr{g}$ denote the Galois group $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$. Fontaine has constructed a universal p-adic pro-infinitesimal thickening of $\mathbb{C}_{\mathrm{p}}$, see e.g. [F1] [F2].
It is denoted by $\mathrm{B}_{\mathrm{DR}}^{+}$and can be constructed as follows.
Let us consider the Witt ring $W$ of the perfection $\lim \bar{R} / \mathrm{p} \bar{R}$ of the residual ring $\bar{R} / \mathrm{p} \bar{R}$. It

$$
\underset{x \rightarrow x}{\leftarrow} p
$$

sits in an exact sequence $0 \longrightarrow \mathrm{~F}^{1} \longrightarrow \mathrm{~W} \longrightarrow \mathbb{R}_{\mathrm{p}} \longrightarrow 0$, where the ring homomorphism is defined by the diagram:


This provides a continuous surjective homomorphism $\mathrm{B}_{\mathrm{DR}}^{+} \longrightarrow \mathbb{C}_{\mathrm{p}}$, where $\mathrm{B}_{\mathrm{DR}}^{+}$denotes the $\mathrm{F}^{1}$-adic completion of $\mathrm{W}\left[\frac{1}{\mathrm{p}}\right]$. The fraction field $\mathrm{B}_{\mathrm{DR}}$ of $\mathrm{B}_{\mathrm{DR}}^{+}$is a $\overline{\mathrm{K}}[\mathscr{y}]$-module, endowed with the $\mathrm{F}^{1}$-adic (called Hodge) filtration F , and $\mathrm{Gr}_{\mathrm{F}} \mathrm{B}_{\mathrm{DR}} \underset{\mathrm{r} \in \mathbb{I}}{\sim} \mathbb{C}_{\mathrm{p}}$ (r) (Tate twists).

On the other hand, there is a universal PD-thickening of $\mathbb{C}_{\mathrm{p}}$, denoted by $\mathrm{B}_{\mathrm{cris}}^{+}$. It is obtained by inverting $p$ in the $p$-adic completion of the subalgebra of $W\left[\frac{1}{p}\right]$ generated by the $\frac{p^{n}}{n}$ 's . For instance, if $\quad \epsilon=\left(\epsilon_{0}, \epsilon_{1}, \ldots\right) \quad$ is $\quad$ a generator of $\quad \mathbb{Z}_{p}(1)=\lim _{\longleftarrow} \mu_{p}(\bar{K})$, $t_{p}:=\log [\epsilon]=\sum \frac{(-)^{n-1}([\epsilon]-1)^{n}}{\mathrm{n}} \in \mathrm{B}_{\mathrm{c} \text { ris }}^{+}$. The Frobenius $\varphi$ of W then extends to
$\mathrm{B}_{\text {cris }}=\mathrm{B}_{\mathrm{cris}}^{+}\left[\frac{1}{\mathrm{t}_{\mathrm{p}}}\right] \quad\left(\varphi \mathrm{t}_{\mathrm{p}}=\mathrm{pt}_{\mathrm{p}}\right)$ and commutes with the $\mathscr{y}$-action. Moreover $\mathrm{B}_{\text {cris }}{ }_{\mathrm{K}}^{0}{ }_{0} \mathrm{~K}$ imbeds into $B_{D R}$.

## 2. The comparison theorem for Abelian varieties

Let $A=A_{K}$ be an Abelian variety over $K$. According to Fontaine-Messing [F1] [FM], there is a canonical isomorphism of filtered $\mathscr{g}$-modules:

$$
\text { F.M. : } \mathrm{H}_{\mathrm{DR}}^{*}(\mathrm{~A}) \underset{\mathrm{K}}{\mathrm{~B}_{\mathrm{DR}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{et}}^{*}\left(\mathrm{~A}_{\overline{\mathrm{K}}}, \mathrm{Q}_{\mathrm{p}}\right) \otimes_{Q_{\mathrm{p}}} \mathrm{~B}_{\mathrm{DR}} .}
$$

In particular $\mathrm{H}_{\mathrm{DR}}^{*}$ can be recovered from $\mathrm{H}_{\mathrm{et}}^{*}$ as the space of $\mathscr{g}$-invariants in the R.H.S. This isomorphism can be reformulated as a pairing:

$$
\mathrm{H}_{\mathrm{DR}}^{1}(\mathrm{~A}) \otimes \mathrm{T}_{\mathrm{p}}\left(\mathrm{~A}_{\overline{\mathrm{K}}}\right) \longrightarrow \mathrm{B}_{\mathrm{DR}} .
$$

[Faltings and Wintenberger have generalized this pairing to the relative case [W]; the relative $\mathrm{H}_{\mathrm{DR}}^{*}$ and $\mathrm{B}_{\mathrm{DR}}$ are endowed with connections and the relative comparison isomorphism is horizontal.]
In order to describe part of this pairing in down-to-earth terms, let us assume that $A$ has semi-stable reduction, i.e. extends to a semi-abelian scheme $A_{R}$ over $R$. (By a fundamental result of Grothendieck this always happens after replacing $K$ by a finite extension). Let $\hat{A}_{R}$ be the formal group attached to $A_{R}$; then $T_{p}\left(\hat{A}_{R}\right)(\bar{K})$ is the "fixed part" of $T_{p}\left(A_{\bar{K}}\right)$ [G2]. Now the restricted pairing $H_{D R}^{1}(\mathrm{~A}) \otimes \mathrm{T}_{\mathrm{p}}\left(\hat{\mathrm{A}}_{\mathrm{R}}\right)(\overline{\mathrm{K}}) \longrightarrow \mathrm{B}_{\text {cris }}{\underset{K}{0}}^{\otimes} \mathrm{K}$ is easily described as follows:
a) It factorizes through the quotient $H_{D R}^{1}\left(\hat{A}_{R}\right)_{K} \otimes T_{p}\left(\hat{A}_{R}\right)(\bar{K})$.
b) Using the formal Poincaré lemma, write any $\omega \in H_{D R}^{1}\left(\hat{A}_{R}\right)_{K}$ in the form $\omega=d f$, $f \in O_{\hat{A}_{K}}$.
c) For any $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right) \in T_{p}\left(\hat{\mathrm{~A}}_{\mathrm{R}}\right)(\overline{\mathrm{R}})=\mathrm{T}_{\mathrm{p}}\left(\hat{\mathrm{A}}_{\mathrm{R}}\right)(\overline{\mathrm{K}})$, lift every $\gamma_{\mathrm{n}} \in \overline{\mathrm{R}}$ to $\tilde{\gamma}_{\mathrm{n}} \in \mathrm{B}_{\text {cris }}$.
d) The coupling constant $\langle\omega, \gamma\rangle \in \mathrm{B}_{\text {cris }}{ }_{K_{0}^{0}}^{\otimes} K$ is then given by $\lim _{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{f}\left(\tilde{\gamma}_{\mathrm{n}}\right)$. See [Co].
3. The crystalline and semi-stable structures
a) Let us first assume that $A$ has good reduction, i.e. extends to an Abelian scheme $A_{R}$ over
$R$, and let us denote the special fiber of $A_{R}$ by $\mathcal{A}$. In this case $H_{D R}^{*}(A)$ carries a natural $\mathrm{K}^{0}$-structure, namely $\mathrm{H}_{0}^{*}:=\mathrm{H}_{\text {cris }}^{*}\left(\mathcal{X} / \mathrm{R}^{0}\right){\underset{R}{0}}_{\otimes} \mathrm{K}^{0}$; moreover this $\mathrm{K}^{0}$-space is a crystal: it is canonically endowed with a semi-linear "Frobenius" isomorphism $\varphi$. The Fontaine-Messing isomorphism is then induced by an isomorphism of filtered $\varphi$ - and $\varphi$-modules:

$$
\mathrm{H}_{0}^{*}{\underset{\mathrm{~K}}{ }}_{\otimes}^{\otimes} \mathrm{B}_{\mathrm{cris}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{et}}^{*}\left(\mathrm{~A}_{\overline{\mathrm{K}}}, Q_{\mathrm{p}}\right) \otimes_{Q_{\mathrm{p}}} \mathrm{~B}_{\text {cris }}
$$

In particular $\mathrm{H}_{\mathrm{et}}^{*}$ can be recovered from $\mathrm{H}_{0}^{*}$ as the space of $\varphi$-invariants in the $\mathrm{F}^{0}$-subspace of the L.H.S.
b) If contrawise A has bad reduction, let us use Grothendieck's theorem to reduce to the case of semi-stable reduction. [Jannsen had the idea that there is still a fine structure on $H_{D R}^{*}$, involving some "monodromy operator", and such that $H_{e t}^{*}$ could be recovered in a similar way as in the good reduction case [J]. Fontaine then formulated a precise conjecture and proved it in the case of Abelian varieties]. The result is [F2]:

Choose a branch $\beta$ of the v-adic logarithm. Then
$\mathrm{b}_{1}$ ) there exists a canonical $\mathrm{K}^{0}$-structure $\mathrm{H}_{0}^{*}$ on $\mathrm{H}_{\mathrm{DR}}^{*}(\mathrm{~A})$, endowed with a nilpotent endomorphism $\mathrm{N} ; \mathrm{N}=0$ iff A has good reduction.
$\left.\mathrm{b}_{2}\right) \quad \mathrm{H}_{0}^{*}$ is naturally endowed with a semi-linear "Frobenius" $\varphi=\varphi_{\beta}$, related to N by means of the formula: $\mathrm{N} \varphi=\mathrm{p} \varphi \mathrm{N}$.
$\mathrm{b}_{3}$ ) there exists $\mathrm{u}_{\beta} \in \mathrm{B}_{\mathrm{DR}}$ such that $\mathrm{B}_{\mathrm{ss}}:=\mathrm{B}_{\text {cris }}\left[\mathrm{u}_{\beta}\right]$ is $\varphi$-stable, and such that $\mathrm{N}=\mathrm{d} / \mathrm{du}_{\beta}$ and the extension of $\varphi$ to $\mathrm{B}_{\mathrm{ss}}$ given by $\varphi \mathrm{u}_{\beta}=\mathrm{pu}_{\beta}$ commute with the $\mathscr{g}$-action.
$\mathrm{b}_{4}$ ) the p -adic comparison isomorphism is induced by an isomorphism of filtered $\mathrm{K}^{0}(\mathscr{g})$-modules compatible with $\varphi$ and N :

$$
\mathrm{H}_{0}^{*}{\underset{\mathrm{~K}}{0}}_{\otimes}^{\mathrm{B}_{\mathrm{ss}}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{et}}^{*}\left(\mathrm{~A}_{\overline{\mathrm{K}}}\right) \otimes_{Q_{\mathrm{p}}} \mathrm{~B}_{\mathrm{ss}} .
$$

In particular $\mathrm{H}_{\mathrm{et}}^{*}$ can be recovered from $\mathrm{H}_{0}^{*}$ as the space $\left[\mathrm{F}^{0}\left(\mathrm{H}_{\mathrm{et}}^{*} \otimes \mathrm{~B}_{\mathrm{ss}}\right)\right]^{\varphi=1, \mathrm{~N}=0}$. For a concrete description of the semi-stable structure due to Raynaud, see below III 4, IV 1 and [R2].

## 4. Rigid 1-motives and Fontaine's LOG

In the study of the comparison isomorphism, it is useful to embed Abelian varieties into the bigger category of 1 -motives [D1].
a) Recall that a smooth 1-motive [ $\underline{M} \xrightarrow{\psi} \underline{G}$ ] on a scheme $S$ consists in
i) an étale sheaf $\underline{M}$ locally defined by a free abelian group of finite rank
ii) a semi-abelian scheme $\underline{G}$ over $S$
iii) a morphism $\psi: \underline{\mathrm{M}} \longrightarrow \underline{\mathrm{G}}$.

For each prime p , one attaches to [ $\underline{\mathrm{M}} \xrightarrow{\psi} \underline{\mathrm{G}}$ ] a (Barsotti-Tate) p -divisible group, and its étale cohomology (= étale realization of [ $\underline{M} \xrightarrow{\psi} \underline{G}]$ ).
On the other hand, the universal vectorial extension $\underline{\mathbf{M}} \longrightarrow \underline{\mathrm{G}}^{4}$ of $\underline{\mathrm{M}} \longrightarrow \underline{\mathrm{G}}$ provides the De Rham realization $\quad H_{D R}^{1}[\underline{M} \longrightarrow \underline{G}]:=\underline{\text { Colie }} \underline{G}^{\natural}$, with its Hodge filtration $\mathrm{F}^{1} \mathrm{H}_{\mathrm{DR}}^{1}=\underline{\text { Colie }} \underline{\mathrm{G}}$.
b) There is a notion of duality for 1 -motives. We shall only consider symmetrizable 1 -motives, i.e. 1 -motives isogeneous to their duals (the isogeny inducing a polarization of the Abelian quotient of $\underline{G}$ ). This amounts to giving
i) a polarized Abelian scheme ( $\underline{A}, \underline{\lambda}$ ) over $S$
ii) a morphism $\chi ; \underline{M} \longrightarrow \underline{A}$, where $\underline{M}$ is an étale sheaf of lattices; let $\chi^{\vee}=\lambda \circ \chi$
iii) a symmetric trivialization of the inverse image by $\left(\chi, \chi^{\vee}\right)$ of the Poincaré biextension of $\underline{A} \times \underline{A}^{\prime}$.
c) It is convenient to view 1-motives as complexes in degree $(-1,0): \underline{-1} \underline{\mathbf{M}} \longrightarrow \stackrel{0}{\underline{G}}$. When $\mathrm{S}=\operatorname{Spec} \mathrm{K}, \mathrm{K}=\mathrm{p}$-adic field, it is more convenient, according to Raynaud [R2], to identify 1 -motives which are quasi-isomorphic in the rigid analytic category; for instance, if A is isomorphic to the rigid quotient $G / M$, we consider $A($ or $[0 \longrightarrow A]$ ) and $[M \longrightarrow G]$ as two incarnations of the same rigid 1-motive.
Indeed, the associated p-divisible groups, resp. filtered De Rham realizations, are isomorphic; furthermore this isomorphism is compatible with the Fontaine-Messing comparison isomorphism, which extends to the case of 1 -motives (its semi-stable refinement also extends to this case (Fontaine-Raynaud)).
d) Let us illustrate this in the simple case $\left[\mathbb{Z} \xrightarrow{\psi} \mathbb{G}_{m}\right.$ ] (when $q$ is not a unit in $K$, this is

$$
1 \longmapsto q
$$

the 1 -motive attached to the Tate curve $\mathrm{K}^{\mathrm{x}} / \mathrm{q}$ II ). The Tate module sits in an exact sequence

$$
0 \longrightarrow \mathbb{Z}_{\mathrm{p}}(1) \longrightarrow \mathrm{T}_{\mathrm{p}} \longrightarrow \mathrm{q}^{I} \otimes_{\mathbb{Z}} \mathbb{Z}_{\mathrm{p}} \longrightarrow 0
$$

Let $t_{p}$ be a generator of $\mathbb{Z}_{p}(1)$, and let $u_{p} \in T_{p}$ lift $q$. Let moreover $\mu$ be a generator of the character group $X\left(\mathbb{G}_{\mathrm{m}}\right)$, so that $\mathrm{d} \mu / 1+\mu$ generates the $\mathrm{K}-$ space $\Omega_{\mathbb{G}_{\mathrm{m}}}^{1}$. At last let us repre-
sent $u_{p}$ by a sequence $\left(q, q_{1}, \ldots\right)$ with $q_{n+1}^{p}=q_{n}$, and let $\tilde{q}_{n}$ lift $q_{n}$ in $B D_{D R}$. The $p$-adic periods of $\left[\mathbb{Z} \xrightarrow{\psi} \mathbb{G}_{\mathrm{m}}\right]$ are given by:

$$
\begin{aligned}
& \left\langle\mathrm{t}_{\mathrm{p}}, \mathrm{~d} \mu / 1+\mu>= \pm \mathrm{t}_{\mathrm{p}} \text { in } \mathrm{B}_{\mathrm{DR}}\right. \\
& <\mathrm{u}_{\mathrm{p}}, \mathrm{~d} \mu / 1+\mu>=\lim _{\mathrm{n}} \log {\underset{\mathrm{q}}{\mathrm{n}}}^{\mathrm{p}^{\mathrm{n}}} / \mathrm{q}
\end{aligned}
$$

By abuse language, one denotes this limit by LOG $q$; its class $\bmod \mathbb{Z}_{p}(1)$ depends only on $q$. If one requires more rigidity, one may embed $K$ into $\mathbb{C}$ somehow, and choose $u_{p}$ in the $\mathbb{Z}$-lattice given by the Betti realization of the corresponding complex 1 -motive; LOG $q$ is then defined up to addition by $\Pi \mathrm{t}_{\mathrm{p}}$, as in the classical case.
e) More generally, let us consider a 1 -motive $[\underline{M} \xrightarrow{\psi} T$ ], where $T$ is a torus. In this case the universal extension splits canonically: $G^{\boldsymbol{q}}=T \times \operatorname{Fom}\left(\mathrm{M}, \mathbb{G}_{\mathrm{a}}\right)^{v}$; this induces a canonical splitting of the Hodge filtration: $H_{D R}^{1}[\underline{M} \longrightarrow T]=F^{1} \oplus \operatorname{Hom}(\underline{M}, K)$. On the other hand, let $M^{\prime}$ denote the character group of $T$ and $q: M \times M^{\prime} \longrightarrow \mathbb{G}_{m}$ the bilinear form induced by $\psi$. Again the étale cohomology sits in an extension

$$
0 \longrightarrow \operatorname{Hom}\left(\mathrm{M}, \mathrm{Q}_{\mathrm{p}}\right) \longrightarrow \mathrm{H}_{\mathrm{et}}^{1}[\mathrm{M} \longrightarrow \mathrm{~T}] \longrightarrow \mathrm{M}^{\prime} \otimes_{I} \mathbb{Q}_{\mathrm{p}}(-1) \longrightarrow 0
$$

Now assume that M and $\mathrm{M}^{\prime}$ are constant.
Let $\left(\mathrm{m}_{\mathrm{i}}^{v}\right)$ denote a basis of $\operatorname{Hom}(\mathrm{M}, \mathbb{I})$ as well as its images in $\mathrm{H}_{\mathrm{et}}^{1}$ and $\mathrm{H}_{\mathrm{DR}}^{1}$ resp.; let $\left(\mu_{\mathrm{j}}\right)$ denote a basis of $\mathrm{M}^{\prime}$, let $\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}$ be the corresponding basis in $\mathrm{F}^{1}$, and let $\tilde{\mu}_{\mathrm{j}}$ lift $\mu_{\mathrm{j}} / \mathrm{t}_{\mathrm{p}}$ inside $\mathrm{H}_{\text {et }}^{1}$. At last, let $\left(\mathrm{m}_{\mathrm{i}}\right)$ denote the basis of M dual to $\left(\mathrm{m}_{\mathrm{i}}^{\mathrm{v}}\right)$, and set $q_{i j}=q\left(m_{i}, \mu_{j}\right)$. Then in the bases of $H_{D R}^{1}$ (resp. $H_{\text {et }}^{1}$ ) given by $\left\{d \mu_{j} / 1+\mu_{j} ; \mathrm{m}_{\mathrm{j}}^{\mathrm{v}}\right\}$ (resp. $\left\{\tilde{\mu}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}^{v}\right\}$ ), the matrix of the comparison isomorphism takes the shape:


This completes the description of this isomorphism for
any Abelian variety with split multiplicative reduction.

## II. Hodge classes.

1. The complex setting.
a) Let $E$ be a field embeddable into $\mathbb{C}$, and let $A_{E}$ be an Abelian variety over $E$. An element $\xi \in F^{0}\left[H_{D R}^{1}\left(A_{E}\right)^{\otimes_{n}} \otimes H_{D R}^{1}\left(A_{E}\right)^{v_{n}}\right]=F^{0}\left[\text { End } H_{D R}^{1}\left(A_{E}\right)\right]^{\otimes_{n}}$ (for any $n$ ) is called a Hodge class if its image in $\left[E n H_{B}^{1}\left(A_{\mathbb{C}}, \mathbb{C}\right)\right]^{\theta_{n}}$ lies in the rational subspace $\left[\text { End } H_{B}^{1}\left(A_{\mathbb{C}}, \mathbb{Q}\right)\right]^{\otimes_{n}}$. By Deligne's theorem on absolute Hodge cycles $\left[D_{2}\right]$, this definition does not depend on the chosen embedding $\mathrm{E} \longrightarrow \mathbb{C}$. Moreover, after a preliminary finite extension of $\mathbf{E}$, one gets no more Hodge class by further extending $E$. It follows that the connected component of identity of the Hodge group of $\mathrm{A}_{\mathrm{E}}$ (which is by definition the algebraic subgroup of $\mathrm{GL}\left[\mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathrm{E}}\right)\right]$ which fixes the Hodge classes) is an E -form of the Mumford-Tate group of $H_{B}^{1}\left(A_{\mathbb{C}}, Q\right)$. It is known that the Hodge group is a classical reductive group.
b) Let us fix an embedding $\iota: \mathrm{E} \longrightarrow \mathbb{C}$. For any E -algebra $\mathrm{E}^{\prime}$, the $\mathrm{E}^{\prime}$-linear bijections $H_{D R}^{1}\left(A_{E}\right) \otimes_{E} E^{\prime} \xrightarrow{\sim} H_{B}^{1}\left(A_{E} \otimes_{\iota} \mathbb{C}, \mathbb{Q}\right) \otimes_{Q} E^{\prime} \quad$ which preserve Hodge classes form the set of $\mathrm{E}^{\prime}$-valued points of a E -torsor $\mathrm{P}_{\iota}$ under the Hodge group; for $\mathrm{E}^{\prime}=\mathbb{C}$, one has a canonical point $\mathscr{P}_{\iota}$ given by "integration of differential forms of second kind".

Lemma 1: the torsor $P_{\iota}$ is irreducible.
Indeed, there exists a finite Galois extension $E^{\prime}$ of $E$ such that the Hodge group of $A_{E^{\prime}}$ is connected; hence the associated torsor $\mathrm{P}_{\iota}^{\prime}$ is geometrically irreducible. But via the isomorphism $\mathrm{H}_{\mathrm{DR}}^{*}\left(\mathrm{~A}_{\mathrm{E}}\right) \otimes_{\mathrm{E}} \mathrm{E}^{\prime}=\mathrm{H}_{\mathrm{DR}}^{*}\left(\mathrm{~A}_{\mathrm{E}^{\prime}}\right)$, a Hodge class on $\mathrm{A}_{\mathrm{E}}$ is just a Hodge class on $\mathrm{A}_{\mathrm{E}^{\prime}}$ which is fixed by Gal( $\left.E^{\prime} / E\right)$. Therefore $P_{\iota}$ is the Zariski closure of $P_{\iota}^{\prime}$ over $E$, and is irreducible.

Conjecture (Grothendieck): if E is algebraic over $\mathbb{Q}, \mathscr{P}_{\iota}$ is a (Weil) generic point of $\mathrm{P}_{\iota}$ (over E) .

Thanks to the irreducibility lemma, this amounts to say that the transcendence degree over $Q$ of the periods equals the dimension of the Mumford-Tate group (here, "periods" means entries of a matrix of $\mathscr{P}_{\iota}$ w.r.t. bases of $\left.H_{D R}^{1}\left(A_{E}\right), H_{B}^{1}\left(A_{\mathbb{C}}, \mathbb{Q}\right)\right)$. [This deep problem is solved only for Abelian varieties isogeneous to some power of an elliptic curve with complex multiplication (Chudnovsky).

The conjecture can also be formulated as follows: every polynomial relation between periods, with coefficients in E, comes from Hodge classes. A major result in transcendence theory establishes this for linear relations (Wüstholz); the only Hodge classes which appear in this context are classes of endomorphisms.]

## 2. Behaviour under the p-adic comparison isomorphism

Assume now that $E$ is a number field; let $v \mid p$ be a finite place of $E$, and $K=E_{v}$ be the completion of $\mathbf{E}$ w.r.t. $\mathbf{v} ; \overline{\mathrm{E}}$ denotes the algebraic closure of $\mathbf{E}$ in $\bar{K}$.

Let us choose an embedding $\gamma: \overline{\mathrm{K}} \hookrightarrow \mathbb{C}$ and denote by $\iota$ its restriction to K.

At last, let $\mathscr{\mathscr { P }}_{\gamma}: \mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathrm{E}}\right) \otimes_{\mathrm{E}} \mathrm{B}_{\mathrm{DR}} \xrightarrow{\sim} \mathrm{H}_{\mathrm{B}}^{1}\left(\mathrm{~A}_{\mathrm{E}}{ }_{\iota} \boldsymbol{\otimes}_{\boldsymbol{C}}, \mathbb{Q}\right) \otimes_{\mathbb{Q}} \mathrm{B}_{\mathrm{DR}} \quad$ denote the composed isomorphism:

$$
\begin{aligned}
& H_{D R}^{1}\left(A_{E}\right) \otimes_{E} B_{D R} \xrightarrow{\sim} H_{D R}^{1}\left(A_{K}\right) \otimes_{K} B_{D R} \xrightarrow{\stackrel{F . M}{\sim}} H_{e t}^{1}\left(A_{E}\right) \otimes_{Q_{p}} B_{D R} \\
& \xrightarrow{\sim} H_{e t}^{1}\left(A_{\bar{E}}\right) \otimes_{Q_{p}} B_{D R} \xrightarrow{\sim} H_{B}^{1}\left(A_{\bar{E}}^{\otimes_{\gamma}} \mathbb{C}, Q\right) \otimes_{Q} B_{D R} \\
& \xrightarrow{\sim} H_{B}^{1}\left(A_{E} \otimes_{\iota} \mathbb{C}, \mathbb{Q}\right) \otimes_{Q} B_{D R}
\end{aligned}
$$

Blasius-Ogus [Bl] and independently Wintenberger have recently proved the following striking result:

Theorem 1. For every $\gamma$ above $\iota, \mathscr{D}_{\gamma}$ is a $\mathrm{B}_{\mathrm{DR}}$-valued point of $\mathrm{P}_{\iota}$.
[The Wintenberger proof uses the relative comparison isomorphism while the Blasius-Ogus proof uses Faltings's comparison theorem applied to smooth compactifications of "total spaces" of Abelian schemes]. With the notation of I 3, it follows formally that Hodge classes lie in $\left(\text { End } H_{0}^{1}\right)^{\otimes n}$, are Frobenius-invariant and killed by $N$.

In view of this theorem, it is natural to ask whether the p-adic analog of Grothendieck's conjecture holds, namely whether $\mathscr{\rho}_{\gamma}$ is a (Weil) generic point of $P_{\iota}$ over $K$. [After I communicated the counterexample in prop. 3 to Fontaine, he suggested the following:]

Conjecture 4: for "sufficiently general" $\gamma$ above $\iota, \mathscr{D}_{\boldsymbol{\gamma}}$ is a (Weil) generic point of $\mathrm{P}_{\iota}$ over K .

See below, § 4.

## 3. Proof of proposition 1 .

In this example $E=\mathbb{Q}$, and $A_{Q}$ is the elliptic curve $X_{0}(11)$. For $p=11, A_{Q_{p}}$ is a Tate curve $Q_{p}^{x} / q^{I}, \quad q \in p \mathbb{Z}_{p}$. With the notations of $I 4 b$, consider the exact sequence
 that $t_{p} \wedge u_{p}$ is a $\mathbb{Z}$-generator of the image of $\stackrel{2}{\wedge} H_{1}\left(A_{\bar{Q}} \otimes_{\gamma} \mathbb{C}, \mathbb{Z}\right)$ in $\stackrel{2}{\wedge} T_{p}\left(A_{\bar{Q}}\right)$ for some fixed $\gamma: \bar{Q} \longrightarrow \mathbb{C}$; this determines $t_{p}$ up to sign. Let moreover $\nu$ be a unit in $\mathbb{Z}_{\mathrm{p}}$ such that $\omega:=\frac{1}{\nu} \frac{\mathrm{~d} \mu}{1+\mu}$. belongs to the rational subspace $\Omega_{\mathrm{A}_{Q}}^{1}$ of $\Omega_{\mathrm{A}_{Q_{p}}}^{1}$. According to I 4b, we then have:

$$
\left\langle\nu \mathrm{t}_{\mathrm{p}}, \omega\right\rangle= \pm \mathrm{t}_{\mathrm{p}}
$$

Now let $g \in \operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$; changing $\gamma$ into $\gamma \circ \mathrm{g}$ modifies the Betti lattice inside $\mathrm{T}_{\mathrm{p}}$ via the formula:
where $g^{*}$ denotes the image of $g$ under the group homomorphism

$$
\operatorname{Gal}(\mathbb{Q} / \mathbb{Q}) \longrightarrow \mathrm{GL}\left(\mathrm{~T}_{\mathrm{p}}\right) .
$$

But in our case, this homomorphism is surjective, according to Serre [S 1]. In particular, there exists some $g \in \operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$, with $\operatorname{det}^{*}{ }^{*}=1$, and such that $\nu \mathrm{t}_{\mathrm{p}} \in \mathrm{T}_{\mathrm{p}}$ lies in the Betti lattice $H_{1}\left(\mathrm{~A}_{\overline{\mathbb{Q}}}{ }^{\otimes_{\gamma \circ g}} \mathbb{C}, \mathbb{Z}\right) ;$ since $\operatorname{det} \mathrm{g}^{*}=1$, changing $\gamma$ to $\gamma \circ \mathrm{g}$ preserves $\mathrm{t}_{\mathrm{p}}$.

It then follows from the relation $\left\langle\nu t_{p}, \omega\right\rangle= \pm t_{p}$ that the Zariski closure of $\mathscr{P}_{\gamma}$ og over $Q$ is contained in a hypersurface of P . On the other hand, it follows from Serre's result and the next lemma that for some other $\gamma^{\prime}: \mathbb{Q} \longrightarrow \mathbb{C}$, the Zariski closure of $\mathscr{P}_{\gamma^{\prime}}$ over $\mathbb{Q}$ is the full torsor P.
4. Proof of proposition 2 (Abelian case).

We prove the following variant for an Abelian variety $\mathrm{A}_{\mathrm{E}}$ over a number field E [Proposition 2 itself is proved in the same way with only minor modifications involving simple general facts
about absolute Hodge cycles contained in the beginning of [] J .

Let us fix $\gamma_{0}: \overline{\mathrm{E}} \longrightarrow \mathbb{C}$ and denote by $\mathrm{H}_{\gamma_{0}}^{1}$ the rational structure $\mathrm{H}_{\mathrm{B}}^{1}\left(\mathrm{~A}{ }_{\mathrm{E}}{ }^{\boldsymbol{\otimes}} \boldsymbol{\gamma}_{0} \mathbb{C}, \mathbb{Q}\right)$ inside $H_{e t}^{1}\left(A_{\bar{E}}, Q_{p}\right)=H_{e t}^{1}\left(A_{\bar{K}}, Q_{p}\right)$ (for $\bar{E}=$ algebraic closure of $E$ in $\bar{K}$, where $K=E_{v}, v \mid p$ ). The Galois representation $H_{e t}^{1}\left(A_{\bar{E}}, Q_{p}\right)$ is described by a homomorphism :
$\operatorname{Gal}(\overline{\mathrm{E}} / \mathrm{E}) \longrightarrow \operatorname{GL}\left(\mathrm{H}_{\gamma_{0}}^{1}\right)\left(\mathbb{Q}_{\mathrm{p}}\right)$.

Let us denote by $\mathrm{G}_{\gamma_{0}}$ the Zariski closure of the image of $\operatorname{Gal}(\overline{\mathrm{E}} / \mathrm{E})$ over $\mathbb{Q}$, which is the smallest algebraic subgroup of $\mathrm{GL}\left(\mathrm{H}_{\gamma_{0}}^{1}\right)$ whose group of p -adic points contains the image of $\operatorname{Gal}(\overline{\mathrm{E}} / \mathrm{E})$.

Conjecture 5: the Mumford-Tate group of $\mathrm{H}_{\gamma_{0}}^{1}$ is the connected component of identity in $\mathrm{G}_{\boldsymbol{\gamma}_{0}}$.
[One easily checks that the truth of this conjecture does not depend on the choice of $\gamma_{0}$; on the other side, the fact that the Mumford-Tate group contains $G_{\gamma_{0}}^{0}$ is a theorem of Borovoi [Bo]]. This conjecture is a weak form of the well-known conjecture of Mumford-Serre-Tate (replace $Q$ by $Q_{p}$ in the statement).

Proposition 2': Conjecture 5 implies conjecture 4.

Proof: let ${\underset{\mathscr{S}}{\gamma_{0}}}_{\mathrm{E}}^{\text {( }}$ denote the Zariski closure of $\mathscr{\rho}_{\gamma_{0}}$ over $\quad$, inside the torsor $\mathrm{P}=\mathrm{P}_{\iota}\left(\iota=\gamma_{0 \mid \mathrm{E}}\right) ;$ let $\mathrm{G}_{\gamma_{0}}^{\alpha}$ denote any connected component of $\mathrm{G}_{\gamma_{0}}$. For any $\mathrm{g}_{\alpha} \in \mathrm{G}_{\gamma_{0}}^{\alpha}\left(\mathbb{Q}_{\mathrm{p}}\right)$, let

$$
\psi_{\mathrm{g}_{\alpha}}: \operatorname{Spec} \mathrm{B}_{\mathrm{DR}} \longrightarrow \operatorname{Spec} \mathrm{E}\left[\mathscr{\mathscr { D }}_{\gamma_{0}}\right] \times \operatorname{Spec} \mathbb{Q}_{\mathrm{p}} \longrightarrow \overline{\mathscr{D}}_{\gamma}^{\mathrm{E}} \times \mathrm{G}_{\gamma_{0} \mid \mathrm{E}}^{\alpha}
$$

be the composed morphism of affine schemes given by $\left(\mathscr{I}_{\gamma_{0}}, \mathrm{~g}_{\alpha}\right)$.

From lemma 1 and conjecture 5 , it follows that $G_{\gamma_{0} \mid E}=U_{G} G_{\gamma_{0} \mid E}^{\alpha}$ acts transitively on $P$, and that $\mathrm{Q} \cdot \mathrm{G}_{\gamma_{0} \mid \mathrm{E}}^{\boldsymbol{\alpha}}=\mathrm{P}$ for any non-empty E -subscheme Q of P . We can now make the expression "sufficiently general $\gamma$ " (in conjecture 4) precise: it means "any $\gamma$ of the form $\gamma=\gamma_{0} \circ \mathrm{~g}_{\alpha}$ where $\mathrm{g}_{\alpha} \in \operatorname{Im} \operatorname{Gal}(\mathrm{E} / \mathrm{E})$ is such that $\psi_{\mathrm{g}_{\alpha}}$ maps to the generic point"; indeed for
these embeddings $\gamma$,

$$
\overline{\mathscr{P}}_{\gamma}^{\mathrm{E}}={\overline{\mathscr{P}}{\gamma_{0}} \cdot \mathrm{~g}_{\alpha}}^{\mathrm{E}}={\overline{\mathscr{P}} \gamma_{0}}^{\mathrm{E}} \cdot\left({\overline{\mathrm{~g}_{\alpha}}}^{\mathbb{Q}}\right)_{\mid \mathrm{E}}=\overline{\mathscr{P}_{\gamma_{0}}} \mathrm{E} \cdot \mathrm{G}_{\gamma_{0} \mid \mathrm{E}}^{\alpha}=\mathrm{P}
$$

It remains to prove the existence of (uncountably many) such $g_{\alpha}$. To this aim, let us remark that there are only countably many subvarieties of $\mathrm{G}_{\gamma_{0} \mid \mathrm{E}\left(\mathscr{\rho}_{\gamma_{0}}\right)}^{\alpha}$; we denote them by $\mathrm{Q}_{\mathrm{n}}$, $n \in \mathbb{N}$. Hence there exist linear subspaces $\prod$ of End $H_{\gamma_{0}}^{1} \otimes Q_{p}$, of codimension $\operatorname{dim} P-1$,
 being outside the countable subset $\underset{\mathrm{n}}{\mathrm{U}}\rceil\left\lceil\cap \mathrm{G}_{\gamma_{0}}^{\alpha}\left(Q_{\mathrm{p}}\right) \cap \mathrm{Q}_{\mathrm{n}}\right.$ then satisfies the required property $\overline{\mathrm{g}}_{\alpha}^{\mathrm{E}\left(\mathscr{P}_{\gamma_{0}}\right)}{ }^{\text {( }}=\mathrm{G}_{\gamma_{0} \mid \mathrm{E}\left(\mathscr{P}_{\gamma_{0}}\right) .}$.

## III. Covanishing cycles and the monodromy filtration.

1. Covanishing cycles.
a) Let again $A$ be an Abelian variety of dimension $g$ over the $p$-adic field $K$, with semi-stable reduction. For any finite extension $K^{\prime}$ of $K$, let $A_{K}^{r i g}$ denote the associated rigid analytic variety ("Abeloid variety") over $K^{\prime}$.

The (Čech) cohomology $H^{1}\left(\mathrm{~A}_{\mathrm{K}^{\prime}}^{\mathrm{rig}}, \mathbb{I}\right)$ of the constant sheaf $\mathbb{I I}$ on $\mathrm{A}_{\mathrm{K}}^{\mathrm{r} i \mathrm{~g}}$ can be interpreted as the group of Galois covers of $\mathrm{A}_{\mathrm{K}^{\prime}}^{\mathrm{r}} \mathrm{g}$ with group $\mathbb{Z}\left[\mathrm{R}_{1}\right]$ [U].

For reasons which will soon be clear, we denote this group by $\underline{M}^{\mathbf{V}}\left(\mathrm{K}^{\prime}\right)$. One defines this way an etale sheaf $\underline{M}$ on Spec $K$, described by the $\mathscr{G}$-module $M^{\vee}:=\underline{M}^{\vee}(\bar{K})$; points of the lattice $\mathrm{M}^{\vee}$ will be called (integral) covanishing cycles.
b) In order to understand the geometrical meaning of $\mathrm{M}^{\mathbf{v}}$, let us consider the Raynaud extension $G$ (resp. $G^{\prime}$ ) of $A$ (resp. of the dual Abelian variety $A^{\prime}$ ):

$G$ is an extension of an Abelian variety $B$ by an unramified torus $T$ of dimension $r \leq g$ (lifting the torus part of the semi-stable reduction of $A$ ), and $A$ (resp. $A_{\mathbb{C}_{p}}$ ) is the rigid analytic quotient of $G$ (resp. $\quad G_{\mathbb{C}_{p}}$ ) by the lattice $\underline{M}(K)$ of $K$-characters (resp. the lattice $M:=\underline{M}(\bar{K})$ of characters) of $T^{\prime}$; and symmetrically for $G^{\prime} \ldots$

This description of $\mathrm{A}_{\mathbb{C}_{p}}$ shows that $\mathrm{M}^{\mathbf{v}}$ is the dual of M ; in particular the (finite) $\mathscr{G}$-action is unramified (since $\mathrm{T}^{\mathrm{p}}$ is). [In Berkovich's astonishing theory of analytic spaces, one associates with $A$ some pathwise connected locally simply connected topological space $A^{\text {an }} ; \underline{M}(K)$ should
then appear as its fundamental group in the ordinary topological sense [Be]].
c) Composing the morphisms
[where GAGR denotes the functor studied by Kiehl [K]], yields a natural injection of $\mathbb{Z}_{\mathrm{p}}[\mathscr{G}]$-modules:

$$
\iota_{\mathrm{et}}: \mathrm{M}^{\vee} \otimes_{\mathbb{Z}} \mathbb{Z}_{\mathrm{p}} \hookrightarrow \mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\overline{\mathrm{K}}} ; \mathbb{I}_{\mathrm{p}}\right)
$$

d) On the other side, the lattice $\underline{\mathrm{M}}^{\vee}(\mathrm{K})$ is naturally isomorphic to the group of rigid analytic homomorphisms from $\mathbb{G}_{m}$ to $A^{\prime}\left[R_{1}\right]$, see also $[B L]$ for the variant over $\mathbb{C}_{p}$.

Composing the morphisms

$$
\begin{gathered}
\operatorname{Hom}_{\text {rig }}\left(\mathbb{G}_{\mathrm{m}}, \mathrm{~A}^{\prime}\right) \xrightarrow{\text { pull-back }} \operatorname{Hom}\left(\mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}^{\prime \text { rig }}\right), \mathrm{H}_{\mathrm{DR}}^{1}\left(\mathbb{G}_{\mathrm{m}}^{\mathrm{rig}}\right)\right) \\
\stackrel{\text { duality }}{\longrightarrow} \mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}^{\text {nig }}\right) \xrightarrow{\text { GAGR }} H_{\mathrm{DR}}^{1}\left(\mathrm{~A}^{\prime \prime}\right)
\end{gathered}
$$

yields a natural embedding:

$$
\iota_{\mathrm{DR}}: \underline{\mathrm{M}}^{\mathrm{v}}(\mathrm{~K}) \otimes_{\mathbb{Z}} \mathrm{K} \hookrightarrow \mathrm{H}_{\mathrm{DR}}^{1}(\mathrm{~A})
$$

[Le Stum [1S] interprets the image of ${ }^{{ }^{\prime}} \mathrm{DR}$ as follows. By means of some compactification $\overline{\mathrm{A}}$ of the semi-abelian group scheme $A_{R}$ over $R$ extending $A$, there is the notion of strict neighborhood in $\bar{A}_{K}^{r i g}$ of the formal completion $\hat{A}$. For any $O_{\mathrm{A}}$ rig-module $\mathscr{F}$, set $\mathrm{j}^{+} \mathscr{F}=\underset{\lim _{\rightarrow}}{\operatorname{j}}{\lambda^{*}} \mathrm{j}_{\lambda}{ }^{*} \mathscr{F}$, where $\mathrm{j}_{\lambda}$ runs over all embeddings of strict neighborhoods of $\hat{\mathrm{A}}$ inside $A^{\text {rig }} ; \mathrm{j}^{+}$is an exact functor, and there is a canonical epimorphism $\mathscr{F} \longrightarrow \mathrm{j}^{+} \mathrm{F}[\mathrm{B}]$. Define the covanishing complex by $\phi:=\operatorname{Ker}\left(\Omega \dot{\mathrm{A}}\right.$ rig $\left.\longrightarrow \mathrm{j}^{+} \Omega_{\dot{\mathrm{A}} \text { rig }}\right)$, which gives rise to a long exact sequence

$$
\longrightarrow \mathbb{H}^{\mathrm{n}}\left(\mathrm{~A}^{\mathrm{rig}}, \phi\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}^{\mathrm{n}}(\mathrm{~A}) \longrightarrow \mathrm{H}_{\mathrm{rig}}^{\mathrm{n}}(\tilde{\mathrm{~A}}) \longrightarrow
$$

involving Berthelot's rigid cohomology of the special fiber $\mathbb{A}$. The group $\mathbb{H}^{1}\left(\mathrm{~A}^{\text {rig }}, \phi\right)$ can then be
identified with $\operatorname{Im}{ }^{\prime}{ }_{\mathrm{DR}}$; this justifies the label "covanishing cycles" by analogy with the complex case.]
e) It turns out that the maps $\iota_{\text {et }}$ and ${ }^{\prime}$ DR are compatible with the Fontaine-Messing isomorphism; More precisely:

Proposition 3: the following triangle is commutative:


Proof: let us introduce the Raynaud realization $[\underline{M} \longrightarrow G]$ of the (rigid) 1-motive $A$.

The map $\iota_{\text {et }}$ can be identified with the natural injection of $\mathscr{y}$-modules : $\operatorname{Hom}\left(\underline{\mathrm{M}}(\mathrm{K}), \mathrm{Q}_{\mathrm{p}}\right) \longrightarrow \mathrm{H}_{\mathrm{et}}^{1}[\underline{\mathrm{M}} \longrightarrow \mathrm{G}]$.

On the other side, getting rid of double duality, one easily sees that ${ }^{\prime}$ DR can be identified with the natural embedding $\operatorname{Hom}(\underline{M}(K), K) \hookrightarrow H_{D R}^{1}[\underline{M} \longrightarrow G]$, see also [1S] 6.7. The required commutativity then follows from the fact that F.M. is tautological for the quotient 1 -motive $[\underline{M}(K) \longrightarrow 1]$ (whose associated $p$-divisible group is $\left.\cong\left(\mathbb{Q}_{p} / I_{p}\right)^{n}\right)$.
¢) An orientation of $\mathbb{C}_{p}$ is an embedding of $\mu_{p} \infty\left(\mathbb{C}_{p}\right)=\mathbb{Z}_{p}(1)$ into $\mathbb{C}^{\times}$; this amounts to the choice of a generator $t_{p}$ of the $\mathbb{Z}_{p}$-module $\mathbb{Z}_{p}(1)$ up to sign, [a further orientation of $\mathbb{C}$ itself would fix the sign], or else to the choice of an embedding of Abelian groups $X_{*}\left(\mathbb{G}_{\mathrm{m}}\right) \longrightarrow \mathrm{T}_{\mathrm{p}}\left(\mathbb{G}_{\mathrm{m}}\right)\left(=\mathbb{Z}_{\mathrm{p}}(1)\right)$.

By using an orientation of $\mathbb{C}_{\mathrm{p}}$ and duality, we get from c ) an injection:

$$
\mathrm{j}_{\mathrm{et}}: \mathrm{M}^{\prime v}(1):=\mathrm{M}^{\prime v} \otimes \mathrm{X}_{*}\left(\mathbb{G}_{\mathrm{m}}\right) \longrightarrow \mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\overline{\mathrm{K}}}^{\prime}, \mathbb{Z}_{\mathrm{p}}\right) \otimes \mathrm{T}_{\mathrm{p}}\left(\mathbb{G}_{\mathrm{m}}\right) \simeq \mathrm{T}_{\mathrm{p}}\left(\mathrm{~A}_{\overline{\mathrm{K}}}\right)
$$

Using the Raynaud 1-motive $[M \longrightarrow G]$ over $\bar{K}$, it is then clear that the Fontaine-Messing pairing between $H_{D R}^{1}$ and $M^{\prime v}(1)$ takes its values in $K^{\prime} t_{p}$ for some finite unramified extension $K^{\prime}$ of $K$ (even in $K_{p}$ if the torus part of the semi-stable reduction $\AA$ splits).
2. Raynaud extensions and the $q$-matrix.

Let $\mathrm{f}: \underline{\mathrm{A}} \longrightarrow \mathrm{S}$ be a semi-abelian scheme with proper generic fiber, S being an affine normal connected noetherian scheme; we put $\mathrm{S}=\operatorname{Spec} \mathscr{R}, \mathscr{K}=\operatorname{Frac} \mathscr{R}$.
a) Let us first assume that $\mathscr{R}$ is complete w.r.t. some ideal I (we set $\mathrm{S}_{0}:=\operatorname{Spec} \mathscr{R} / \mathrm{I}$ ), and that the rank $r$ of the toric part $T_{0}$ of $A_{0}=\underline{A} \times S_{0}$ is constant.

One constructs the Raynaud extension over $\mathscr{R}$ [CF] II, $0 \longrightarrow \mathrm{~T} \longrightarrow \underline{\mathrm{G}} \longrightarrow \mathrm{B} \longrightarrow 0$, where $T$ lifts $T_{0}$ and $\underline{B}$ is an Abelian scheme. There is also the Raynaud extension $0 \longrightarrow \mathrm{~T}^{\prime} \longrightarrow \underline{\mathrm{G}}^{\prime} \longrightarrow \underline{\mathrm{B}}^{\prime} \longrightarrow 0$ attached to the dual Abelian scheme $\underline{\mathrm{A}}^{\prime}$, and $\underline{\mathrm{B}}^{\prime}$ is the dual of $\underline{B}$; moreover $\mathrm{rk} T=\mathrm{rk} \mathrm{T}^{\prime}=\mathrm{r}$. These extensions arise via push-out from morphisms of fppf sheaves

$$
\begin{aligned}
& \underline{M} \longrightarrow \underline{B}, \text { where } \underline{M}=\underline{X}^{*}\left(T^{\prime}\right) \quad \text { (character groups). } \\
& \underline{M}^{\prime} \longrightarrow \underline{B}^{\prime} \quad \underline{M}^{\prime}=\underline{X}^{*}(T)
\end{aligned}
$$

The objects $\underline{G}, T, \underline{M}, \underline{B}\left(\operatorname{resp} . \underline{G}^{\prime}, \ldots\right)$ are functorial in $\underline{A}\left(\right.$ resp. $\left.\underline{A}^{\prime}\right)$.
b) Replacing $S$ by some open dense subset $U$, the Faltings construction (using an auxiliary ample line bundle $\mathscr{L}$ on $G_{\mathscr{G}}$ [CF] II 5.1), or methods of rigid analytic geometry ( $\mathrm{BL}_{1}$ ] with less generality), provide a trivialization q (independent of $\mathscr{L}$ [CF] III 7.2) of the $\mathbb{G}_{\mathrm{m}}$-biextension of $\underline{M} \times \underline{\mathrm{M}}^{\prime}$ obtained as inverse image of the Poincaré biextension of $\underline{\mathrm{B}} \times \underline{B}^{\prime}$; this amounts to giving a lifting $\underline{M}_{U} \longrightarrow \underline{G}_{U}$ of $\underline{M} \longrightarrow \underline{B} \quad$ (whence a smooth 1 -motive [ $\underline{M} \xrightarrow{\psi} \underline{G}]$ on $U$ ). When $T_{0}$ splits, so that $\underline{M}=M$ and $\underline{M}^{\prime}=M^{\prime}$ are constant, one can use some basis $\left\{\left(\mathrm{m}_{\mathrm{i}}, \mu_{\mathrm{j}}\right)\right\}$ of $\mathrm{M} \times \mathrm{M}^{\prime}$ in order to express the bilinear form $\mathrm{q}: \mathrm{M} \times \mathrm{M}^{\prime} \longrightarrow \mathbb{G}_{\mathrm{m}, \mathrm{U}}$ by a matrix with entries $\mathrm{q}_{\mathrm{ij}} \in \mathscr{E}^{\times}$. [If moreover $\underline{A}$ is principally polarizable, such a polarization induces an isomorphism $\mathrm{M} \cong \mathrm{M}^{\prime}$, and then $\mathrm{q}: \mathrm{M} \otimes \mathrm{M} \longrightarrow \mathscr{H}^{\mathrm{x}}$ is symmetric. In the literature on Abeloid varieties, the associated q-matrix is often referred to as the "period matrix"; however this terminology conflicts with the Fontaine-Messing theory, but some precise relation will be exhibited in IV].
c) In order to understand the complex counterpart, we replace $S$ by $\Delta^{n}$, where $\Delta$ denotes the unit disk in $\mathbb{C}$. Assume that the restriction of f to the inverse image of $\mathrm{S}^{*}=\Delta^{*} \mathrm{n}$ is proper, where $\Delta^{*}$ stands for the punctured $\Delta$.

The kernel $\underline{\Lambda}$ of the exponential map exp: Lie $\underline{A} / S \longrightarrow \underline{A}$ is a sheaf of lattices extending the
local system $\left\{\mathrm{H}_{1}\left(\mathrm{~A}_{\mathrm{s}}, \mathbb{I}\right)\right\}_{\mathrm{s} \in \mathrm{S}}{ }^{*}$. The (unique) extension in $\underline{\Lambda}$ of the fiber of $\underline{\Lambda}$ over 0 is a local system $\underline{N}$ of rank $2 g-r$. Via $\exp$ (which factorizes through $\underline{N}$ ), $\underline{A}$ becomes a quotient of the semi-abelian family $\underline{G}=(\underline{\text { Lie }} \underline{A} / S) / \underline{N}: \underline{A}=\underline{G} / \underline{M}$, where $\underline{M}$ denotes the sheaf of lattices $\underline{\Lambda} / \underline{N}$ (which degenerates at 0 ).

This supplies us with a (complex analytic) smooth symmetrizable 1-motive [ $\mathrm{M} \longrightarrow \underline{\mathrm{G}}]$ over $S^{*}$. Both the Betti realizations $H_{B}^{1}$ and the De Rham realizations $H_{D R}^{1}$ (endowed with the Hodge filtration) of $\underline{A}$ and $[\underline{M} \longrightarrow \underline{G}]$ are canonically isomorphic. However, one may not identify these "1-motives" because the weight filtrations differ, see below § 4.
d) We now start with the following global situation:
$S_{1}$ is an affine variety over a field $E$ of characteristic $0 ; 0$ is a smooth rational point of $S_{1}$, and $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ are local coordinates around 0 ;
$\mathrm{f}_{1}: \underline{\mathrm{A}}_{1} \longrightarrow \mathrm{~S}_{1}$ is a semi-Abelian scheme, proper outside the divisor $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}=0$, and the toric rank is constant on this divisor.

Because $f_{1}$ is of finite presentation, it arises by base change from a semi-abelian scheme $\tilde{\mathrm{I}}_{1}: \underline{\tilde{A}}_{1} \longrightarrow \tilde{S}_{1}$ (where $\tilde{E}$ is a sub- $\mathbb{Z}$-algebra of $E$ of finite presentation), with the same E
properties as $\mathrm{f}_{1}$. If we put $\boldsymbol{R}=\tilde{E}\left[\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]\right], \mathrm{S}=\operatorname{Spec} \mathscr{R}$ (the completion of $\widetilde{S}_{1}$ at 0 ), $I=\left(x_{1} x_{2} \ldots x_{n}\right), f=\tilde{f}_{1 / S}$, we are in the situation a) b). Moreover, the open subscheme $U$ may be defined by the condition $x_{1} x_{2} \ldots x_{n} \neq 0$. It follows that the entries $q_{i j}$ of the $q$-matrix belong to $\tilde{E}\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\frac{1}{x_{1} x_{2} \cdots x_{n}}\right]$.
e) Assume moreover that $E$ is a number field, with ring of integers $\mathcal{O}_{\mathrm{E}}$. Then $\hat{E}$ can be chosen in the form $O_{E}\left[\frac{1}{\nu}\right]$, where $\nu$ is a product of distinct prime numbers. Thus for every finite place $v$ of $E$ not dividing $\nu$, the $q_{i j}$ entries are meromorphic functions on $\Delta_{v}^{n}$, analytic on $\Delta_{v}^{*}{ }_{\mathrm{n}}\left(\Delta_{\mathrm{v}}\right.$, resp. $\Delta_{\mathrm{v}}^{*}$ denotes the v -adic "open" unit disk, resp. punctured unit disk), and bounded away from 0 . On the other hand, one can also see (using construction $c$ )) that the $q_{i j}$ 's define meromorphic functions on some complex polydisk centered at 0 .
[Remark: following [C], an element $y$ of $E\left[\left[x_{1}, \ldots, x_{n}\right]\right.$ ] is said to be globally bounded if $\mathrm{y} \in \mathrm{O}_{\mathrm{E}}\left[\frac{1}{\nu}\right]\left[\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]\right]$ for some $\nu$, and if y has non-zero radius of convergence at every place of E . (Such series form a regular noetherian ring with residue field E , and the filtered
union of these rings over all finite extensions of $E$, is strictly henselian). One can show that the
 $v$-adic radius of converge is not 0 for any $v \mid \nu$. Using the compactification of Siegel modular stacks over $\mathbb{I}$, one can find a semi-abelian extension of $\mathcal{I}_{1}$ over an $\mathcal{O}_{\mathrm{E}}$-model of some covering of $\widetilde{S}_{1}$, and afterwards, one has to use the 2-step construction of [CF] III 10 to keep track of the possible variation of the torus rank of the reduction, after replacing the divisor $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}=0$ by $\left.\nu x_{1} \ldots x_{n}=0\right]$.
b) Lemma 2. If $v \nmid \nu$, then the entries of the $q$-matrix are units w.r.t. the $v$-adic Gauss norm.

Proof (sketch): let $\mathscr{E}$ denote the completion of the quotient field of $\mathscr{R}=\tilde{E}\left[\left[\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right]\right]$ w.r.t. the $v$-adic Gauss norm $\left|\left.\right|_{\text {Gauss }}\right.$ ( $=$ "sup" norm on $\mathscr{R}$ ). Because $v$ is discrete, so is $\left|\left.\right|_{\text {Gauss }}\right.$ by Gauss' lemma, hence $\mathscr{E}$ is a complete discretely valued field of unequal characteristics.

By construction of the Raynaud extension, the Barsotti-Tate groups associated to $\underline{\mathbf{A}} / \mathscr{E}$ resp. to the 1 -motive $[\underline{\mathrm{M}} / \mathscr{E} \xrightarrow{\psi} \underline{\mathrm{G}} / \mathscr{E}] \quad$ coincide. It follows that Grothendieck's monodromy pairing associated to $\underline{\mathrm{A}} / \mathscr{E}$ is induced by the pairing $\mathrm{M} \times \mathrm{M}^{\prime} \longrightarrow \mathscr{E}^{\mathbf{x}} \longrightarrow \mathbb{I}$ given by the valuation of the q-matrix w.r.t. | $\left.\right|_{\text {Gauss }}$. Since $\underline{A} / \mathscr{E}$ has good reduction modulo the valuation ideal of $\mathscr{E}$ (indeed its reduction is the generic fiber of the reduction of $\underline{A}$ modulo $\mathbf{v}$, which is proper when $\mathrm{v} \nmid \nu)$, this pairing has to be trivial:

$$
\left|q_{i j}\right|_{G a u s s}=1
$$

g) An example: let us consider the Legendre elliptic pencil with parameter $x=\lambda$, given by the affine equation

$$
\mathrm{v}^{2}=\mathrm{u}(\mathrm{u}-1)(\mathrm{u}-\mathrm{x})
$$

Here one can choose $E=\mathbb{Z}\left[\frac{1}{2}\right]$, and one has the explicit formulae:

$$
\begin{gathered}
16 q=x(1-x)^{-1} e^{-G / F} \\
x=16 q\left(\prod_{m=1}^{\infty}\left(1+q^{2 m}\right)\left(1+q^{2 m-1}\right)^{-1}\right)^{8},
\end{gathered}
$$

$$
\begin{aligned}
& \text { where } F=\sum_{m=0}^{\infty}\left(\left(\frac{1}{2}\right)_{m} / m!\right)^{2} x^{m} \\
& G=2 \sum_{m=1}^{\infty}\left(\left(\frac{1}{2}\right)_{m} / m!\right)^{2}\left(\sum_{\ell=1}^{\infty} \frac{1}{\ell}\right) x^{m} .
\end{aligned}
$$

This example is studied thoroughly in [Dw].

## 3. Vanishing periods.

a) Let us take up the situation 2d again, and assume that E is contained in the p-adic field $K$, with $\mathbb{E} C R$. Assume also that the torus part of the semi-stable reduction splits.

As before, we then have our constant sheaves of lattices $\underline{M}=M, \underline{M}^{\prime}=M$ on the $v$-adic unit polydisk $\Delta_{v}^{n}$; let $\left\{\mu_{i}\right\}$ be a basis of $M^{\prime}$, and let $\left\{\mu_{\mathrm{i}}^{\prime}\right\}$ be the image of the dual basis of $\mathrm{M}^{\prime \mathrm{v}}(1)$ under $\mathrm{j}_{\mathrm{et}}$ (defined up to sign, see III 1 g ).

On the other hand, we have the relative De Rham cohomology sheaf $\mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathrm{S}^{*}\right)$ which admits a canonical locally free extension to S (where the Gauss-Manin connection acquires a logarithmic singularity with nilpotent residue); in fact this extension is free because $S$ is local, and we denote by $\left\{\omega_{j}\right\}$ a basis of global sections. We are aiming to give some analytic recipe to compute the Fontaine-Messing "vanishing periods" $\frac{1}{\mathrm{t}_{\mathrm{p}}}<\mu_{\mathrm{i}}^{\prime}, \omega_{\mathrm{j}}(\mathrm{s})>$ of the fiber $\underline{\mathrm{A}}_{1}(\mathrm{~s}), \mathrm{s} \in \Delta_{\mathrm{v}}{ }^{*} \mathrm{n}$, see III 1f.
b) Let us express the composed morphism

$$
H_{D R}^{1}\left(\underline{A} / S^{*}\right)^{\operatorname{can}} \longrightarrow H_{D R}^{1}(\underline{\hat{A}} / \hat{\mathrm{S}}) \longrightarrow \mathrm{H}_{\mathrm{DR}}^{1}(\hat{\mathrm{~T}})_{\hat{S}} \simeq M^{\prime} \otimes \sigma_{S}
$$

(roof $=$ formal completion) in terms of the bases $\omega_{\mathrm{j}}$, $\mathrm{d} \mu_{\mathrm{i}} / 1+\mu_{\mathrm{i}}$. We get a ( $2 \mathrm{~g}, \mathrm{r}$ )-matrix $\left(\omega_{\mathrm{ij}}\right)$ with entries in $\mathscr{A}=\tilde{E}\left[\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]\right]$.

Lemma 3. For any $s \in \Delta_{v}^{* n}$, one has the relation $\omega_{\mathrm{ij}}(\mathrm{s})= \pm \frac{1}{t_{\mathrm{p}}}<\mu_{\mathrm{i}}^{\prime}, \omega_{\mathrm{j}}(\mathrm{s})>$. Moreover $\omega_{\mathrm{ij}}$ is a bounded solution of the Gauss-Manin partial differential equations on $\Delta^{n}$.

Proof: the first assertion is easily proved by considering Raynaud's incarnation $[\mathrm{M}(\mathrm{s}) \longrightarrow \underline{\mathrm{G}}(\mathrm{s})$ ] of the rigid 1 -motive associated to $\underline{A}_{1}(s)$, together with the trivial computation of Fontaine-Messing periods of the split torus $\mathrm{T}=\underline{\mathrm{T}}(\mathrm{s}):\left\langle\mu_{\mathrm{i}}^{\prime}, \mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}\right\rangle= \pm \delta_{\mathrm{ij}} \mathrm{t} \mathrm{p}$. The second
assertion follows from the horizontality of the map $H_{D R}^{1}\left(\underline{A} / S^{*}\right)^{\text {can }} \longrightarrow H_{D R}^{1}(\hat{A} / \hat{S})$ w.r.t. the Gauss-Manin connections $\boldsymbol{\nabla}$, and the fact that $\mathrm{M}^{\boldsymbol{\prime}}$ is formed of horizontal sections of $H_{D R}^{1}(\hat{T})_{\widehat{S}}$ (see also [vM]).
c) Let $\underset{\omega}{\sim}$ denote a uniformizing parameter of R . We modify slightly the setting of 2 . d) by assuming that $f_{1}$ extends to a semi-abelian scheme $\tilde{f}: \underline{A}^{\sim}{ }_{\text {Spec }} R \cap E \longrightarrow \tilde{S}$, proper outside the divisor $\tilde{\omega} \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}=0$, and with constant split toral part on this divisor. Again, the $\omega_{i j}$ 's converge on $\Delta_{v}^{n}$, and for every point $s \in S_{1}^{*}(E) \cap \Delta_{v}^{* n}$, the $v$-adic evaluation of $\omega_{i j}$ at s may be interpreted as in lemma 3 (if furthermore $E$ is a number field, the $\omega_{\mathrm{ij}}$ 's are in fact globally bounded series). We next look for complex interpretation.
d) Let $\iota: \mathrm{E} \hookrightarrow \mathbb{C}$ be a complex embedding. We now assume that $\mathrm{s} \in \mathrm{S}_{1}^{*}(\mathrm{E})$ satisfies the following property: $\widetilde{S}(\mathbb{C})$ should contain the polydisk of radius $\left|x_{i}(s)\right|$ (to insure the convergence of the analytic solutions of Gauss-Manin in this polydisk).

By specializing to $s$, construction $2 c$ provides an embedding: $\iota_{B}: M^{v} \longleftrightarrow H_{B}^{1}\left(A_{s} \otimes_{\iota} \mathbb{C}, I I\right)$, where $A_{s}:=\underline{A}_{1}(s)$. Dually, we also have an embedding:

$$
\mathrm{j}_{\mathrm{B}}: \mathrm{M}^{\prime \mathrm{v}}(1)=2 \mathrm{i} \pi \mathrm{M}^{\prime \mathrm{v}} \longleftrightarrow \mathrm{H}_{1 \mathrm{~B}}\left(\mathrm{~A}_{\mathrm{s}, \mathbb{C}}, \mathbb{I}\right)
$$

In addition to the orientation of $\mathbb{C}_{p}$, we choose an orientation of $\mathbb{C}$; this eliminates all ambiguities of signs, and allows to identify $\mathrm{j}_{\mathrm{B}}\left(\mu_{\mathrm{j}}^{\mathrm{v}}(1)\right)$ with $\mu_{\mathrm{j}}^{\prime}$.

Proposition 4. The following diagram is commutative:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\mathrm{s}, \mathrm{~K}}, Q_{\mathrm{p}}\right) \xrightarrow{\iota_{\mathrm{et}} \mathrm{M}^{\mathrm{v}} \mathrm{H}_{\mathrm{B}}^{1}\left(\mathrm{~A}_{\mathrm{s}, \mathrm{C}}, \mathbb{I}\right)} \\
& \text { F.M. }{ }^{-1} \downarrow \\
& \underset{\underset{\mathrm{DR}}{\mathrm{v}-\text { adic }}}{\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{~A}_{\mathrm{s}}\right) \otimes_{\mathrm{DR}}} \underset{\sim}{\mathrm{~B}_{\mathrm{D}}} \\
& \| \mathscr{P}_{\iota}^{1} \\
& \mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathrm{s}}\right) \otimes_{\mathrm{E}} \mathbb{C} \\
& \text { evaluation } H_{D R}^{1}\left(\underline{A} / S^{*}\right)^{\nabla} \text { complex evaluation }
\end{aligned}
$$

In particular (by duality), the complex evaluation of $\omega_{\mathrm{ij}}$ at s gives the "usual" period $\frac{1}{2 \mathrm{i} \pi}<\mu_{\mathrm{i}}^{\prime}, \omega_{\mathrm{j}}(\mathrm{s})>$.

$M^{\mathbf{v}}=\Gamma \underline{M}^{\mathbf{v}} \longleftrightarrow \Gamma \mathrm{H}_{\mathrm{DR}}^{1}[\underline{\mathrm{M}} \xrightarrow{\psi} \underline{\mathrm{G}}] / \mathrm{S}^{*}=\Gamma \mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathrm{S}^{*}\right.$ ) (or equivalently, when $\mathrm{n}=1$, by the analog of $\iota_{D R}$ in the rigid analytic category over the discretely valued field $\mathrm{E}((\mathrm{x}))$ ).

Then the commutativity on the L.H.S. is essentially the content of prop. 3; the commutativity on the R.H.S. follows immediately from the definition of $\varepsilon_{B}$ (details are left to the reader).

This proposition suggests the following open question: assume that $E$ is a number field, and denote by $\bar{E}$ its algebraic closure of $E$ inside $\mathbb{C}_{p}$. Does there exist $\gamma: \bar{E} \longrightarrow \mathbb{C}$ above $\iota$ such that the following diagrams commute?

(We leave it as an exercise to answer positively, when $A_{E}$ is an elliptic curve, with help of $\left[\mathrm{S}_{2}\right]$ ).
4. The monodromy filtration.
a) In $\left[\mathrm{G}_{2}\right]$, Grothendieck constructs and studies thoroughly a 3-step filtration on $\mathrm{T}_{\mathrm{p}}\left(\mathrm{A}_{\overline{\mathrm{K}}}\right)$, the "monodromy filtration" (here, we turn back to the setting of section 1)). By duality, we get a filtration $\mathrm{W}_{\mathrm{et}}$ on $\mathrm{H}_{\mathrm{et}}^{1}$; it turns out that this filtration is the natural weight filtration on the $\mathrm{H}_{\mathrm{et}}^{1}$ of Raynaud's incarnation of the associated rigid 1-motive, loc. cit. § 14.
b) According to the semi-stable philosophy (motivated by higher dimensional motives), it should be natural to handle the monodromy business on the De Rham realization. The monodromy filtration $\mathrm{W}_{-1}=0, \mathrm{~W}_{0} \simeq \underline{\mathrm{M}}^{\mathbf{v}}(\mathrm{K}) \underset{\mathbb{Z}}{\otimes} \mathrm{K}, \mathrm{W}_{2}=\mathrm{H}_{\mathrm{DR}}^{1}, \mathrm{Gr}_{2}^{\mathrm{W}} \simeq \underline{\mathrm{M}}^{\prime}(\mathrm{K}) \underset{\mathbb{Z}}{\otimes} \mathrm{K}$, is the canonical filtration associated with the nilpotent operator of level 2 defined by:

where the arrow at the bottom $\underline{M}^{\prime}(\mathrm{K}) \longrightarrow \underline{\mathrm{M}}^{\mathbf{V}}(\mathrm{K})$ is the map induced by opposite of Grothendieck's monodromy pairing: $v(q): M \otimes M^{\prime} \xrightarrow{q} \mathbb{G}_{m} \mid K^{n r} \xrightarrow{v} \mathbb{Z} \quad(v=$ valuation), ibid (we change the sign because we work on $\mathrm{H}_{\mathrm{DR}}^{1}$, not on the covariant $\mathrm{H}_{1 \mathrm{DR}}$ ). Assume moreover that $\quad \mathrm{M}=\underline{\mathrm{M}}(\mathrm{K})$. Then the cokernel of the map $\mathrm{M}^{\prime} \longrightarrow \mathrm{M}^{\mathbf{V}}$ inducing $\mu$ is canonically isomorphic to the group of connected components of the special fiber of the Néron model A, see [CF] III 8.1. The weight filtrations W and $\mathrm{W}_{\text {et }}$ are related via F.-M.:
$\underline{\text { Lemma 4 }}$ (for $M=\underline{M}(K)$ ): $\mathrm{Gr}_{0}^{\mathrm{W}} \oplus \mathrm{Gr}_{2}^{\mathrm{W}}(1) \xrightarrow{\sim}\left(\mathrm{Gr}_{0}^{\mathrm{W}_{\mathrm{et}}} \oplus \mathrm{Gr}_{2}^{\mathrm{W}_{\mathrm{et}}}\right) \underset{\mathbb{Q}_{\mathrm{p}}}{\otimes} \mathrm{K}$.
In case $A$ is a Jacobian variety, there is moreover a Picard-Lefschetz formula (loc. cit. § 12), where ${ }^{\iota}$ et $\left(M^{\mathbf{v}}\right)$ appears once again as the module of covanishing cycles.
c) Like the Raynaud extension, the operator $N$ admits a complex analog (which is well-known). In the situation 2 c ), let $\mathrm{D}_{\mathrm{j}}=\Delta^{\mathrm{j}-1} \times\{0\} \times \Delta^{\mathrm{n}-\mathrm{j}} C \Delta^{\mathrm{n}}$ be the $\mathrm{j}^{\text {th }}$ divisor "at infinity". For any $s \in \Delta^{*} n$, there is a monodromy action "around $D_{j}^{n}: M_{j}^{\infty} \in G L\left(H_{1}\left(A_{s}, \mathbb{Z}\right)\right)$, which is unipotent of level 2. Set $N_{j}^{\infty}:=\frac{1}{2 i \pi} \log ^{t}\left(M_{j}^{\infty}\right)^{-1} \in$ End $H^{1}\left(A_{s} \mathbb{C}\right)$. These nilpotent operators are constant on $\Delta^{* n}$, and can be computed on the limit fiber by: $N_{j}^{\infty}=-\operatorname{Res}_{D_{j}} \nabla$ (the opposite of the residue at $\mathrm{D}_{\mathrm{j}}$ of the Gauss-Manin connection).

Under the identification $H^{1}\left(A_{s}, Q\right) \simeq H_{B}^{1}[\underline{M}(s) \longrightarrow \underline{G}(s)] \otimes Q$, the "monodromy" filtration on the L.H.S. associated with $\mathrm{N}_{\mathrm{j}}^{\infty}$ is just the standard weight filtration on the R.H.S. [D1].
d) One can mimic the construction a) over any complete discretely valued ring instead of $K$, e.g. over $\mathscr{R}=\tilde{\mathrm{E}}[[\mathrm{x}]], \mathrm{I}=(\mathrm{x})$, in the situation 3 d ), with $\mathrm{n}=1$; We denote by $\mathrm{N}^{\text {for }} \in$ End $\mathrm{H}_{\mathrm{DR}}^{1}\left[\underline{A} / \mathscr{R}\left[\frac{1}{\mathrm{x}}\right]\right]$ the nilpotent endomorphism obtained this way.

Next, we wish to compare $\mathrm{N}, \mathrm{N}^{\text {for }}$ and $\mathrm{N}^{\infty}$.

Let us consider a double embedding $\underset{\sum_{\mathbb{C}}}{\sim}{ }_{\mathbb{C}}^{R}$ and let $s \in S_{1}(E)$. Assume that $|\times(s)|_{v}<1$ and that $S_{1}(\mathbb{C})$ contains the disk of radius $|\times(s)|_{2}$.

At last, set $\left.\mathrm{A}_{\mathrm{s}}=\underline{\mathrm{A}_{( }} \mathbf{s}\right)$.
Proposition 5. In this situation, the complex evaluation of $N^{\text {for }}$ at $s$ is $N^{\infty} \in \operatorname{End} H_{D R}^{1}\left(A_{s} \otimes \mathbb{C}\right) \simeq \operatorname{End} H^{1}\left(A_{s, \mathbb{C}} \mathbb{C}\right)$; the v-adic evaluation of $N^{\text {for }}$ at $s$ is $v(x(s)) N \in \operatorname{End} H_{D R}^{1}\left(A_{s} \otimes K\right)$.

Proof: the complex fact is well-known. The $v$-adic assertion relies on the equality $\mathrm{v}\left(\mathrm{q}_{\mathrm{ij}}(\mathrm{s})\right)=\left(\operatorname{val}_{\mathrm{x}} \mathrm{q}_{\mathrm{ij}}\right) \cdot \mathrm{v}(\mathrm{x}(\mathrm{s}))$, which follows immediately from lemma 2.
[Remarks: $d_{1}$ ) if we only assume that $\underline{A}^{\sim} \longrightarrow \widetilde{S}_{1}$ is proper outside $\tilde{\omega} \mathbf{x}=0$ (instead of $x=0$ ), the monodromy filtrations corresponding to $N_{(s)}^{\text {for }}$ and $N=N_{s}$ still coincide at the limit.
$\mathrm{d}_{2}$ ) A quite general definition of N is given in [CF] III 10.]

## IV. Frobenius and the p-adic Betti lattice.

## 1. Semi-stable Frobenius.

We take up again the situation I 3b), and explain a construction of the Frobenius semi-linear endomorphism $\varphi_{\beta}$ (due to Raynaud $\left[\mathrm{R}_{2}\right]$ ).
a) Let $\beta$ denote a branch of the logarithm on $\mathrm{K}^{\mathrm{X}}$. This amounts to the choice of some uniformizing parameter of $R$, say $\tilde{\omega}$, characterized (up to a root of unity) by the fact that $\beta: K^{\mathbf{x}} \simeq \tilde{\omega}^{\bar{I}} \times(\mathrm{R} / \tilde{\omega} \mathrm{R})^{\mathbf{x}} \times(1+\tilde{\omega} \mathrm{R}) \longrightarrow \mathrm{K}$ factorizes through $1+{ }_{\omega} \mathrm{R} \mathrm{R}$.
b) Let A be an Abelian variety over $K$ with semi-stable reduction, and let [ $\underline{M} \xrightarrow{\psi} G$ ] the Raynaud realization of the associated rigid 1-motive ( $G$ sits in an extension $0 \longrightarrow \mathrm{~T} \longrightarrow \mathrm{G} \longrightarrow \mathrm{B} \longrightarrow 0$, and $\psi$ is described by $\mathrm{q}: \underline{\mathrm{M}} \times \underline{\mathrm{M}}^{\prime} \longrightarrow \mathbb{G}_{\mathrm{m}}$ ).
Let us factorize $q=\tilde{\omega}^{\sim}(\mathrm{q}) \cdot q^{0}$, so that $q^{0}: \underline{M} \times \underline{M}^{\prime} \longrightarrow \mathbb{G}_{m}$ extends over $R$. This amounts to a factorization $\psi=\chi_{\tilde{\omega}} \cdot \psi^{0}$, where $\chi_{\tilde{\omega}}: \underline{M} \longrightarrow T=\underline{H o m}\left(M^{\prime}, \mathbb{G}_{\mathrm{m}}\right)$ is induced by $\underset{\omega}{\sim} \mathrm{v}(\mathrm{q})$ and $\psi^{0}: \underline{\mathrm{M}} \longrightarrow \mathrm{G}$ extends over R (we use the same notation $\psi^{0}$ for this extension). Because T is a torus, the universal ( $\left.\underset{\sim}{\mathrm{M}}, \chi_{\omega}\right)$-equivariant vectorial extension of T splits canonically, which yields a canonical isomorphism of (Hodge) filtered K -vector spaces:

$$
\Delta_{\beta}: \mathrm{H}_{\mathrm{DR}}^{1}\left[\underline{\mathrm{M}} \xrightarrow{\psi^{0}} \mathrm{G}\right] / \mathrm{R} \otimes_{\mathrm{R}} \mathrm{~K} \xrightarrow{\sim} \mathrm{H}_{\mathrm{DR}}^{1}[\underline{\mathrm{M}} \xrightarrow{\psi} \mathrm{G}]=\mathrm{H}_{\mathrm{DR}}^{1}(\mathrm{~A}) .
$$

For two uniformizing parameters $\tilde{\omega}_{1}, \tilde{\omega}_{2}$, the map $\Delta_{\beta_{1}}, \Delta_{\beta_{2}}$ are related by:
(i) $\Delta_{\beta_{2}} \Delta_{\beta_{1}}^{-1}=\exp \left(-\log \tilde{\omega}_{2} / \tilde{\omega}_{1} \cdot N\right)$, where $N$ is the operator defined in the previous section.
[Note the similarity with the definition of the canonical extension in the theory of regular connections, and also with [CF] III 9].
c) Let BT denote the Barsotti-Tate group attached to the reduction mod. $\tilde{\omega}$ of $\left[\underline{M} \xrightarrow{\psi^{0}} \mathrm{G}\right] / \mathrm{R}{ }^{(1)}$, and let $\mathrm{H}_{\text {crys } / K^{1}}$ denote the $K^{0}$-space obtained by inverting p in its
${ }^{(1)}$ Remember that the Barsotti-Tate group attached to [ $\left.\underline{M} \xrightarrow{\psi^{0}} \mathrm{G}\right] / \mathrm{R}$ is given by the image of $\psi^{0}$ under the connecting homomorphism $\operatorname{Hom}\left(\underline{\mathbf{M}},{ }_{p^{n}} G\right) \longrightarrow \operatorname{Ext}\left(\underline{M},{ }_{p^{n}}{ }^{G}\right)$ associated with the exact sequence $0 \longrightarrow \mathrm{p}^{\mathrm{G}} \longrightarrow \mathrm{G} \xrightarrow{\mathrm{p}^{n}} \mathrm{G} \longrightarrow 0$.
first crystalline cohomology group with coefficients in $R^{0}$. Up to isogeny, BT splits into the sum
 follows that $H_{\text {crys } / K^{0}}^{1}$ does not depend on $\tilde{\omega}$; in fact, it depends only on $A_{R} \otimes R / \tilde{\omega}^{2} R$, which determines $\left.\mathrm{G}_{\mathrm{R}}^{\otimes} \mathrm{R} / \tilde{\omega}^{2} \mathrm{R}.\right]$

The $\mathrm{K}^{0}$-structure $\mathrm{H}_{0}^{1}$ mentioned in I $3 \mathrm{~b}_{1}$ ) is just the image of $\mathrm{H}_{\mathrm{crys} / \mathrm{K}^{1}}$ under $\Delta_{\beta}$ inside $\mathrm{H}_{\mathrm{DR}}^{1}(\mathrm{~A})$; the element $\mathrm{u}_{\beta}$ is $\mathrm{u}_{\beta}:=-$ LOG $\underset{\omega}{\sim}$ (defined up to translation by $\mathbb{I}_{\mathrm{p}}(1) \subset \mathrm{B}_{\mathrm{cris}}^{+}$).

By transport of structure, the $\sigma$-semi-linear Frobenius on $\mathrm{H}_{\text {crys }}^{1} / \mathrm{K}^{0}$ provides the $\sigma$-semi-linear endomorphism $\varphi=\varphi_{\beta}$ on $H_{0}^{1}\left(\sigma=\right.$ Frobenius on $\left.K^{0}\right)$. Using (i), one gets the following relation:

$$
\begin{equation*}
\varphi_{\beta_{2}} \circ \varphi_{\beta_{1}}^{-1}=\exp \left(-\frac{1}{\mathrm{p}} \log \left(\tilde{\omega}_{2} / \tilde{\omega}_{1}\right)^{\mathrm{p}-\sigma} \cdot \mathrm{N}\right) \tag{ii}
\end{equation*}
$$

From the functoriality of Raynaud extensions $G$ and of the rigid analytic isomorphisms $\mathrm{G}^{\text {rig }} / \mathrm{M}=\mathrm{A}^{\text {rig }}$, it follows that the semi-stable structure $\left(\mathrm{H}_{0}^{1}, \varphi, \mathrm{~N}\right)$ is functorial in A .
e) That construction of Raynaud may be extended to the relative situation III 2, i.e. over $\Re=\tilde{\omega}$ - adically complete noetherian normal $\mathrm{R}^{0}$-algebra.

Let $U C \operatorname{Spec} \mathscr{A}$ be as in loc. cit., and let us choose a lifting $\sigma \in$ End $U$ of the char. $p$ Frobenius. By analogy with step c), we can construct, locally for the "loose" topology on U, a horizontal morphism $\phi_{\beta}(\sigma): \sigma^{*} \mathrm{H}_{\mathrm{DR}}^{1}(\underline{\mathrm{~A}} / \mathrm{U}) \longrightarrow \mathrm{H}_{\mathrm{DR}}^{1}(\underline{\mathrm{~A}} / \mathrm{U})$; furthermore, this morphism "stabilizes" $\underline{M}_{\mathrm{U}}^{\mathbf{V}}$, and it can be globally defined there. [This is the "stability of vanishing cycles" mentioned in [Dw]; indeed, when say $\mathscr{R}=\mathrm{R} \widehat{[\stackrel{\sim}{\omega} \mathrm{X}}], \sigma: \mathrm{x} \longmapsto \mathrm{x}, \phi_{\beta}$ is nothing but the analytic Dwork-Frobenius mapping].

If A is the fiber $\underline{\mathrm{A}}(\mathrm{s})$ of $\underline{\mathrm{A}}$ at some point $\mathrm{s} \in \mathrm{U}$ fixed under $\sigma$, we recover $\phi_{\beta}(\sigma)=\varphi_{\beta}$.
2. Construction of $\mathrm{H}_{\beta}^{1}(\underline{\mathrm{~A}})$.

From now onwards, we shall assume that A has multiplicative reduction.
a) With our previous notations, we then obtain the following consequences:
$a_{1}$ ): $\quad \mathrm{G}=\mathrm{T}, \mathrm{r}=\mathrm{g}$,
$a_{2}$ ): the Hodge filtration splits canonically:

$$
\mathrm{H}_{\mathrm{DR}}^{1}=\left(\underline{\mathrm{M}}^{\mathrm{v}}(\mathrm{~K}) \otimes_{\mathbb{I}} \mathrm{K}\right) \oplus \mathrm{F}^{1}
$$

$a_{3}$ ): the monodromy filtration consists of only two steps:

$$
\begin{aligned}
& \mathrm{Gr}^{\mathrm{W}_{\mathrm{et}}^{\mathrm{H}_{\mathrm{et}}^{1}} \simeq\left(\mathrm{M}^{\mathrm{v}} \otimes_{\mathbb{Z}} Q_{\mathrm{p}}\right) \oplus\left(\mathrm{M}^{\prime} \otimes_{\mathbb{Z}} Q_{\mathrm{p}}(-1)\right)\left(\text { via } \iota_{\mathrm{et}} \text { and } j_{\mathrm{et}}\right),} \\
& \mathrm{Gr}^{\mathrm{W}_{\mathrm{H}_{\mathrm{DR}}}^{1} \simeq\left(\mathrm{M}^{\mathrm{v}}(\mathrm{~K}) \otimes_{\mathbb{Z}} \mathrm{K}\right) \oplus\left(\underline{\mathrm{M}}^{\prime}(\mathrm{K}) \otimes_{\mathbb{Z}} \mathrm{K}\right),}
\end{aligned}
$$

(these isomorphisms being compatible via F.M., by prop. 3 and its dual) $\underline{M}^{\mathbf{V}}(\mathrm{K}) \otimes_{\mathbb{I}} \mathrm{K}=\operatorname{Ker} \mathrm{N}$, and $\mathrm{F}^{1}$ projects onto $\underline{M}^{\prime}(\mathrm{K}) \otimes_{\boldsymbol{I}} \mathrm{K} \quad$ (this isomorphic projection being given by $\mathrm{F}^{1}=$ Colie $A^{\text {rig }} \simeq$ Colie $T^{\text {rig }} \xrightarrow{\sim} \underline{M}^{\prime}(K) \otimes_{\mathbb{Z}} K$ ).
$\mathrm{a}_{4}$ ): the Fontaine-Messing isomorphism F.M. is described in I 4 c ).
b) The splitting of BT (up to isogeny) reflects on $\mathrm{H}_{0}^{1}$, and translates into an isomorphism:

$$
\Sigma_{\beta}: \mathrm{Gr}^{\mathrm{W}_{\mathrm{H}_{0}}^{1} \xrightarrow{\sim} \mathrm{H}_{0}^{1}}
$$

( $\varphi$ acts trivially on $\mathrm{Gr}_{0}=\underline{\mathrm{M}}^{\mathbf{v}}(\mathrm{K}) \underset{\mathbb{Z}}{\otimes} \mathrm{K}^{0}$, and by multiplication by p on the image of $\left.\mathrm{Gr}_{1}=\underline{\mathrm{M}}^{\prime}(\mathrm{K}) \underset{\mathbb{Z}}{\otimes} \mathrm{K}^{0}\right)$.

Let us now choose an orientation of $\mathbb{C}_{\mathrm{p}}$ (see III 1f): $\mathbb{Z}(-1):=\mathrm{X}^{*}\left(\mathbb{G}_{\mathrm{m}}\right) \hookrightarrow \mathbb{Z} \mathrm{t}_{\mathrm{p}}^{-1} \mathrm{CB} \mathrm{B}_{\mathrm{DR}}$, and let us consider the etale lattice $\underline{\Lambda}:=\underline{\mathrm{M}}^{\mathbf{V}} \oplus \underline{\mathrm{M}}^{\prime}(-1)$, and let $\Lambda:=\underline{\Lambda}(\overline{\mathrm{K}})=\underline{\Lambda}(\overline{\mathrm{R}})=\underline{\Lambda}\left(\mathrm{K}^{\mathrm{nr}}\right)$, where $\mathrm{K}^{\mathrm{nr}}$ denotes the maximal subfield of $\overline{\mathrm{K}}$ non ramified over K .

Using $\Sigma_{\beta}$ and the orientation, we can embed $\Lambda$ into $H_{D R}^{1}{ }_{K}^{\otimes} K^{n r}\left[\frac{1}{t_{p}}\right] C H_{D R}^{1}{ }_{K}^{\otimes} B_{D R}$, and we call p -adic Betti lattice its image, which we denote by $\mathrm{H}_{\beta}^{1}$ [This is the dual of the lattice $\mathrm{L}_{\beta}$ mentioned in the introduction. The introduction of $t_{p}$, the " $p$-adic $2 i \pi$ ", is motivated by the fact that the complex Betti lattice (in the setting III 4 c ) is stable under $2 \mathrm{i} \pi \mathrm{N}_{\infty}$, not $\mathrm{N}_{\infty}$ ].

We thus get a tautological isomorphism:

$$
\mathscr{\beta}_{\beta}: \mathrm{H}_{\mathrm{DR}}^{1}{ }_{\mathrm{K}}^{\otimes} \mathrm{K}^{\mathrm{nr}}\left[\mathrm{t}_{\mathrm{p}}\right] \xrightarrow{\sim} \mathrm{H}_{\boldsymbol{Z}}^{1} \otimes \mathrm{~K}^{\mathrm{nr}}\left[\mathrm{t}_{\mathrm{p}}\right]
$$

where in fact $\mathrm{K}^{\mathrm{nr}}$ could be replaced by some finite extension of K , or else by K itself if T is split.

From formulae (i) (ii), it follows:

$$
\begin{equation*}
\mathrm{H}_{\beta_{2}}^{1}=\exp \left(-\log \tilde{\omega}_{2} / \tilde{\omega}_{1} \cdot \mathrm{~N}\right) \cdot \mathrm{H}_{\beta_{1}}^{1} . \tag{iii}
\end{equation*}
$$

From the very construction of $\mathrm{H}_{\beta}^{1}$ and the formula $\varphi t_{\mathrm{p}}=\mathrm{p} t_{\mathrm{p}}$, we get:
Lemma 5: The lattice $H_{\beta}^{1}$ spans the $Q_{\mathrm{p}}$-space of $\varphi_{\beta}$-invariants in $\mathrm{H}_{\mathrm{DR}}^{1}{ }_{\mathrm{K}}^{\otimes} \mathrm{K}^{\mathrm{nr}}\left[\mathrm{t}_{\mathrm{p}}\right]$.
Remark: the image of $\mathscr{\mathscr { \beta }}_{\beta}^{-1} \mathrm{H}_{\beta}^{1}$ under F.M. does not lie in $\mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}, \mathrm{Q}_{\mathrm{p}}\right)$; compare with lemma 4.
c) Let us now describe the complex analog of $\Sigma_{\beta}: \Lambda \longrightarrow H_{\beta}^{1}$. So let $A_{\mathbb{C}}$ be a complex Abelian variety in Jacobi form $\mathrm{T}_{\mathbb{C}} / \mathrm{M}$ (the quotient being alternatively described by $\mathrm{q}: \mathrm{M} \otimes \mathrm{M}^{\prime} \longrightarrow \mathbb{C}^{\mathbf{x}}$, where $\mathrm{M}^{\prime}=\mathrm{X}^{*}\left(\mathrm{~T}_{\mathbb{C}}\right)$ ). Let us orient $\mathbb{C}$, and choose a branch $\beta_{\infty}$ of the complex logarithm, and compose with $q: M \otimes M^{\prime} \xrightarrow{\beta_{\infty} \circ q} \mathbb{C}$. We get an embedding $\mathrm{M} \hookrightarrow \mathrm{M}^{\prime \mathbf{v}} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \operatorname{Lie} \mathrm{T}_{\mathbb{C}} \simeq \mathrm{H}_{1 \mathrm{~B}}\left(\mathrm{~A}_{\mathbb{C}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{R}$ which factorizes through $\mathrm{H}_{1 \mathrm{~B}}\left(\mathrm{~A}_{\mathbb{C}}, \mathbb{Z}\right)$. This in turn provides an isomorphism $\Sigma_{\beta_{\infty}}: \Lambda=M^{\mathbf{v}} \oplus M^{\prime}(-1)=M^{v} \oplus \frac{1}{2 i \pi} M^{\prime} \xrightarrow{\sim} H_{B}^{1}\left(A_{\mathbb{C}}, \mathbb{C l}\right)$ (the injectivity is a consequence of the Riemann condition $\left.\operatorname{Re} \beta_{\infty}(\mathrm{q})<0\right)$.
[d) One can imitate the construction of the p-adic lattice in the case of an Abelian variety B with ordinary good reduction over $K=K_{0}$. Over $\widehat{K^{\mathrm{nr}}}$ indeed, the Barsotti-Tate group $\mathrm{B}(\mathrm{p})=\underset{\mathrm{p}^{\mathrm{n}}}{\lim }{ }^{\mathrm{B}}$ becomes isomorphic to the B.-T. group associated to a 1 -motive $[\mathrm{M} \xrightarrow{\psi} \mathrm{T}]$, where $\psi$ is given by the Serre-Tate parameters [K]. However, in contrast to the multiplicative reduction case, the lattice $\simeq M^{\mathbf{v}} \oplus M^{\prime}(-1)$ obtained in this way is not functorial, as is easily seen from the case of complex multiplication ( $\psi=1$ ).
e) The construction of Frobenius generalizes easily to the case of 1 -motives. This allows to construct p-adic Betti lattices for 1 -motives whose Abelian part has multiplicative reduction. We shall not pursue this generalization any further here.]
3. Computation of periods.
a) We shall compute the matrix of the restriction of $\mathcal{D}_{\beta}$ to $\mathrm{F}^{1} \mathrm{H}_{\mathrm{DR}}^{1}$ w.r.t. the bases $\left\{\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{g}}$ in $\mathrm{F}^{1},\left\{\mu_{\mathrm{i}}^{n}=\Sigma_{\beta}\left(\mu_{\mathrm{i}}(-1)\right), \mathrm{m}_{\mathrm{i}}^{\mathrm{V}}\right\}_{\mathrm{i}=1}^{\mathrm{g}}$ in $\mathrm{H}_{\beta}^{1}$, assuming that T splits over K . In other words, we compute half of the $(\beta)-\mathrm{p}$-adic period matrix.

Proposition 6. Let $q_{i j}=q\left(m_{i}, \mu_{j}\right)$, as in I 4 c$)$. The following identity holds in $H_{D R}^{1}\left(A_{K}\right) \otimes_{K} K\left[t_{p}\right]:$

$$
\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}=\mathrm{t}_{\mathrm{p}} \mu_{\mathrm{j}}^{\prime \prime}+\sum_{\mathrm{i}=1}^{\mathrm{g}} \beta\left(\mathrm{q}_{\mathrm{ij}}\right) \mathrm{m}_{\mathrm{i}}^{\mathbf{v}}
$$

b) Proof: it relies on a deformation argument. First of all, one may replace $M$ by a sublattice of finite index, such that $\mathrm{q} \equiv{\underset{\omega}{\omega}}^{\sim}{ }^{\mathrm{v}}(\mathrm{q}) \mathrm{q}^{0}$ with $\mathrm{q}^{0} \equiv 1 \bmod \stackrel{\sim}{\omega}$ (in this situation BT splits actually, not only up to isogeny). Let us consider the analytic deformation $\left[M \xrightarrow{\underline{\Psi}=X_{\tilde{\omega}} \cdot \underline{\Psi}^{0}} T\right]$ of $\left[\mathrm{M} \xrightarrow{\Psi=\mathrm{X}_{\underset{\omega}{ }} \cdot \Psi^{0}} \mathrm{~T}\right]$ over $\boldsymbol{R}=\mathrm{R}\left[\left[\xi_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right]\right]_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{g}} \quad \delta_{\mathrm{ij}}=$ Kronecker symbol , $\underline{\Psi}^{0}$ being given by the matrix $\xi_{i j}$ (so that $[\mathrm{M} \xrightarrow{\psi} \mathrm{T}]$ arise as the fiber at $\xi_{\mathrm{ij}}=\mathrm{q}_{\mathrm{ij}}^{0}$ ). For the fiber at $\xi_{\mathrm{ij}}=\delta_{\mathrm{ij}}:\left[\mathrm{M} \xrightarrow{\chi_{\nu}^{\omega}} \mathrm{T}\right]$, the $\mathrm{F}^{1} \mathrm{H}_{\mathrm{DR}}^{1}$ coincides with $\Sigma_{\beta}\left(\mathrm{Gr}_{1} \mathrm{~W}_{\mathrm{H}}{ }_{\mathrm{DR}}^{1}\right)$; more precisely $\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}=\mathrm{t}_{\mathrm{p}} \mu_{\mathrm{j}}^{\prime \prime}$, at $\xi_{\mathrm{ij}}=\delta_{\mathrm{ij}}$. . By definition of the Kodaira-Spencer mapping K.S. (see e.g. [CF] III. 9), one deduces that

$$
\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}=\mathrm{t}_{\mathrm{p}} \mu_{\mathrm{j}}^{n}+\left(\int_{\xi_{\mathrm{ij}}=\delta_{\mathrm{ij}}}^{\mathrm{q}_{\mathrm{i}}^{0}} \text { K.S. }\right) \mathrm{m}_{\mathrm{i}}^{\mathrm{v}}, \text { at } \xi_{\mathrm{ij}}=\mathrm{q}_{\mathrm{ij}}^{0} .
$$

But in our bases, K.S. is expressed by the matrix $\mathrm{d} \xi_{\mathrm{ij}} / \xi_{\mathrm{ij}}$ (see [Ka], or [CF] ibid, where there is a minus sign because of a slightly different convention). One concludes by noticing that $\log \mathrm{q}_{\mathrm{ij}}^{0}=\beta\left(\mathrm{q}_{\mathrm{ij}}\right)$.
c) One could also argue as follows, using F.M.: it follows from 2 a 3) that $\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}$ may be expressed in the form ${ }_{t_{p}} \mu_{\mathrm{j}}^{n}+\Sigma \beta_{\mathrm{ij}} \mathrm{m}_{\mathrm{i}}^{\mathbf{v}}, \beta_{\mathrm{ij}} \in \mathrm{K}$; furthermore, these coefficients $\beta_{\mathrm{ij}}$ are uniquely determined by the property that $\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}-\Sigma \beta_{\mathrm{ij}} \mathrm{m}_{\mathrm{i}}^{\mathrm{V}}$ lies in $\mathrm{H}_{0}^{1}{ }_{\mathrm{K}^{0}}^{\otimes} \mathrm{B}_{\text {ss }}$ and is multiplied by p under $\varphi_{\mathrm{p}}$. Let us show that $\beta_{\mathrm{ij}}=\beta\left(\mathrm{q}_{\mathrm{ij}}\right)$ satisfies this property: by I 4 c ), we have

$$
\begin{gathered}
\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}=\mathrm{t}_{\mathrm{p}} \mathrm{FH}^{-1}\left(\tilde{\mu}_{\mathrm{j}}\right)+\Sigma \operatorname{LOG}\left(\mathrm{q}_{\mathrm{ij}}\right) \mathrm{m}_{\mathrm{i}}^{\mathbf{v}}, \text { so that } \\
\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}-\Sigma \beta_{\mathrm{ij}} \mathrm{~m}_{\mathrm{i}}^{\mathbf{v}}=\Sigma\left(\operatorname{LOG}\left(\mathrm{q}_{\mathrm{ij}}\right)-\beta\left(\mathrm{q}_{\mathrm{ij}}\right)\right) \mathrm{m}_{\mathrm{i}}^{\mathbf{v}}+\mathrm{t}_{\mathrm{p}} \mathrm{FM}^{-1}\left(\tilde{\mu}_{\mathrm{j}}\right) .
\end{gathered}
$$

Because $\tilde{\mu}_{\mathrm{i}} \in \mathrm{H}_{\mathrm{et}}^{1}, \mathrm{t}_{\mathrm{p}} \mathrm{FM}^{-1}\left(\tilde{\mu}_{\mathrm{j}}\right) \in\left(\mathrm{H}_{0}^{1} \otimes \mathrm{~B}_{\mathrm{ss}}\right)^{\varphi=\mathrm{p}}$, and we conclude by the following:

Lemma 6: let $c \in K^{\mathbf{X}}$. Then "the" element LOG $c-\beta c$ of $B_{s s}$ is multiplied by $p$ under the Frobenius $\varphi_{\beta}$.

Proof: let us write $c=\sim_{\omega}^{\sim}(c) c^{0}$, so that LOG $c-\beta c=-v(c) u_{\beta}+\operatorname{LOG~c}{ }^{0}-\log c^{0}$. Now LOG $c^{0}-\log c^{0}=-\log \lim \left(\tilde{c}_{n}\right)^{p^{n}}$ in $B_{c \text { ris }}^{+}$, where $\tilde{c}_{n}$ is any lifting of $c_{n}=\left(c^{0}\right)^{p^{-n}} \epsilon \bar{R}$. Let $\quad c_{n}^{\prime}=\left(\ldots c_{n+1}, c_{n}\right) \in \lim \bar{R} \quad$, and let $\tilde{c}_{n}$ be the Teichmüller representative $\underset{\mathrm{x} \mapsto \mathrm{x}}{ }$
$\left[c_{n}^{\prime}\right] \in W(\lim \bar{R}) \quad$ We have $\quad\left[c_{n}^{\prime}\right]^{\varphi}=\left[c_{n}^{\prime p}\right]=\left[c_{n-1}^{\prime}\right]=\tilde{c}_{n-1} \quad$, whence $\left(\lim \tilde{\mathrm{c}}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}}\right)^{\varphi}=\left(\lim \tilde{\mathrm{c}}_{\mathrm{n}}^{\mathrm{p}}\right)^{\mathrm{p}}$. It remains only to take logarithms and remind that $\varphi_{\beta}{ }_{\beta}=\mathrm{pu}_{\beta}$.
d) Let us examine the complex counterpart, as in 2 c). The lattice
 follows that the canonical lifting $\tilde{m}_{i}$ of $m_{i}$ inside $F^{0} H_{1 D R}\left(A_{\mathbb{C}}\right)$ is given by $\tilde{m}_{i}=m_{i}-\frac{1}{2 i \pi} \Sigma \beta_{\infty}\left(q_{i j}\right) \mu_{i}^{\prime} \quad\left(\right.$ we set $\quad \mu_{i}^{\prime}=\left({ }^{\mathrm{t}} \Sigma_{\beta_{\infty}}\right)^{-1}\left(\mu_{\mathrm{i}}^{\mathrm{v}}(1)\right)$, and $\left.\quad \mu_{\mathrm{j}}^{\prime \prime}=\Sigma_{\beta_{\infty}}\left(\mu_{\mathrm{j}}(1)\right)\right)$. By orthogonality $\left(\mathrm{F}^{1} \mathrm{H}_{\mathrm{DR}}^{1}=\left(\mathrm{F}_{0} \mathrm{H}_{1 \mathrm{DR}}\right)^{\perp}\right)$, we obtain:

Proposition 7: the following identity holds in $\mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathbb{C}}\right)$ :

$$
\mathrm{d} \mu_{\mathrm{j}} / 1+\mu_{\mathrm{j}}=2 \mathrm{i} \pi \mu_{\mathrm{j}}^{\prime \prime}+\Sigma \beta_{\infty}\left(\mathrm{q}_{\mathrm{ij}}\right) \mathrm{m}_{\mathrm{i}}^{\mathrm{V}}
$$

[The compatibility (resp. analogy) between prop. 6 and formula (iii) resp. prop. 7., is a good test for having got the right signs. Although $\mu_{j}^{n}$ is defined quite differently in the p-adic, resp. complex case, the exterior derivative of the coefficients of $\mathrm{m}_{\mathrm{i}}^{\mathrm{V}}$ 's describes in both cases the Kodaira-Spencer mapping.]

## 4. Periods in the relative case, and Dwork's p-adic cycles.

a) Let us consider the relative situation as in 1 . d with $\mathrm{r}=\mathrm{g}$; U being subject to be the complement of divisor with normal crossings $\tilde{\sim}_{\omega} \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}=0$. We set $\mathscr{R}=\mathrm{R}\left[\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]\right]$, and we denote by $\mathscr{H}$ the K-algebra generated by $\mathscr{R}\left[\frac{1}{\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}}\right]$ and $(\beta)$-logarithms of non-zero elements of $\mathscr{R}\left[\frac{1}{\mathrm{x}_{1} \cdots \mathrm{x}_{\mathrm{n}}}\right]$. The construction of $\mathrm{H}_{\beta}^{1}$ can be transposed to this relative setting: We use "the" relative Frobenius $\phi_{\beta}(\sigma)$ to construct an embedding

$$
\underline{\Lambda} \xrightarrow{\sim} \underline{H}_{\beta, \sigma}^{1} \subseteq \mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathscr{f}\left[\mathrm{t}_{\mathrm{p}}\right]\right)
$$

such that $\left.\phi_{\beta}(\sigma)\right|_{\operatorname{Im} \underline{\Lambda}}=\sigma_{*}$. Of course, when $\sigma \mathrm{s}=\mathrm{s}$, we recover $\underline{\mathrm{H}}_{\beta, \sigma}^{1}(\mathrm{~s})=\mathrm{H}_{\beta}^{1}$.
Because $\phi_{\beta}(\sigma)$ is horizontal, so is $\underline{H}_{\beta, \sigma}^{1}$ (it is locally constant w.r.t. the loose topology), and we get:

Lemma 7: $\mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathscr{f}\left[\mathrm{t}_{\mathrm{p}}\right]\right)^{\nabla}=\underline{\mathrm{H}}_{\beta, \sigma}^{1}{ }_{\mathbb{Z}} \mathrm{K}\left[\mathrm{t}_{\mathrm{p}}\right]$.
b) In order to interpret the lattice $\underline{H}_{\beta, \sigma}^{1}$ (for $\mathrm{n}=1, \phi: \mathrm{x} \longmapsto \mathrm{x}^{\mathrm{p}}$ ) in terms of Dwork's p -adic cycles $[\mathrm{Dw}]$, one forgets about $\mathrm{t}_{\mathrm{p}}$ (or better, one specializes $\mathrm{t}_{\mathrm{p}}$ to $1: \mathrm{K}\left[\mathrm{t}_{\mathrm{p}}\right] \longrightarrow \mathrm{K}$, $\underline{H}_{\beta}^{1}, \sigma \simeq \underline{\mathrm{M}}^{\mathrm{V}} \oplus \underline{\mathrm{M}}^{\prime}$ ). Let us for instance take back the example III 2 g (Legendre). For $K=\mathbb{Q}_{\mathrm{p}}(\sqrt{-1})(\mathrm{p} \neq 2)$, we have $\mathbf{M}=\underline{\mathbf{M}}(\mathrm{K})$, with base m . Setting $\mathrm{v}=\mathrm{uw}$, the period of the differential of the first kind $\omega=\frac{d u}{2 v}$ for the covanishing cycle $\mathrm{m}^{v}$ at $\mathrm{x}=0$ is given by the residue of $\frac{d u}{2 u w}=\frac{d w}{w^{2}+1}$ at one of the two points above $u=0$ on the rational curve $w^{2}=u-1$; namely, this is $\frac{\sqrt{-1}}{2}$.

Let $\mu$ be the basis of $M^{\prime}=\underline{M}^{\prime}(K)$ lifted to $H_{\beta}^{1}$, such that $q=q(m, \mu)$ is given by the formula displayed in III 2.g. Then after specializing $t_{p}$ to 1 , the matrix of $\mathscr{P}_{\beta}$ in terms of the bases $\omega, \omega^{\prime}=\nabla\left(\mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}\right) \omega$ is
$\frac{\sqrt{-1}}{2}\left[\begin{array}{ll}F & x \dot{F} \\ F \cdot \log q & x(F \log q) \\ =F \log x-\log 16+\ldots & =1+x \dot{F} \log x+\ldots\end{array}\right] \quad\left(\right.$ with determinant $\left.(4 x(x-1))^{-1}\right)$.
Here "log" is standing for the branch $\beta$, and $\dot{\mathrm{F}}$ for $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}$.

In fact, Dwork prefers to get rid of the constants $\log 16$ and $\frac{\sqrt{-1}}{2}$, by changing the basis $\left\{\mu, \mathrm{m}^{\mathrm{v}}\right\}$ into $-2 \sqrt{-1}\left\{\mu+(\log 16) \mathrm{m}^{\mathrm{v}}, \mathrm{m}^{\mathrm{V}}\right\}$. In this new basis, the entries of the period matrix lie in $\mathbb{Q}[[x]][[\log x]]$, and the matrix of $\phi_{\beta}\left(x \longmapsto x^{p}\right)$ becomes $(-1)^{\frac{p-1}{2}}\left[\begin{array}{ll}p & 0 \\ \log 16^{1-p} & 1\end{array}\right]$ see [Dw] 8. 11 .
c) In section 3, we computed periods of one-forms of the first kind. The "horizontality lemma" 7 then allows to obtain other periods by taking derivatives; still, we have to show that, in the multiplicative reduction case, any one-form of the second kind is the Gauss-Manin derivative of some one-form of the first kind. In other words:

Lemma 8. Let us consider a relative situation, as in III 2 c or 2 d . If $\mathrm{r}=\mathrm{g}$, then for any $\mathrm{k}=1, \ldots, \mathrm{n}$, the smallest $O_{\mathrm{S}}\left[\nabla\left(\mathrm{x}_{\mathrm{k}} \partial / \partial \mathrm{x}^{\mathrm{k}}\right)\right]$-submodule of $\mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathrm{S}^{*}\right)$ containing $\mathrm{F}^{1}$ is $H_{D R}^{1}\left(\underline{\mathrm{~A}} / \mathrm{S}^{*}\right)$.

Indeed, this amounts to the surjectivity of K.S., which follows from the invertibility of its residue at $x_{k}=0$; this follows in turn from the fact that this residue $\left(\mathrm{F}^{1}\right)_{0}^{\mathrm{can}} \simeq \underline{\mathrm{M}}^{\prime}(\mathscr{K}) \otimes \mathrm{E} \notin\left(\mathrm{H}_{\mathrm{DR}}^{1} / \mathrm{F}^{1}\right)_{0}^{\mathrm{can}} \simeq \underline{\mathrm{M}}^{\mathrm{v}}(\mathscr{F}) \otimes \mathrm{E}$ is induced by the non-degenerate pairing $\operatorname{val}\left(\mathrm{x}_{\mathrm{k}}\right) \circ \mathrm{q}$. In the situation of III 3 a ) b), we can now complete the analytic description of the period matrix: take a basis $\omega_{j}$ of the canonical extension of $H_{D R}^{1}\left(\underline{A} / S^{*}\right)$ in the form $\left\{\begin{array}{l}\omega_{j} \in F^{1} \\ \omega_{j+g}=\nabla\left(x_{k} \partial / \partial x_{k}\right) \omega_{j}\end{array} j=1, \ldots g\right.$.

Lemma 9. The matrix of $\mathscr{S}_{\beta}$ w.r.t. the bases $\left\{\omega_{j}\right\},\left\{\mu_{i}^{\prime \prime}, \mathrm{m}_{\mathrm{i}}\right\}$ has the form:

$$
\left[\begin{array}{ll} 
\pm t_{p} \omega_{i j}(s) & { }^{ \pm t_{p}}\left(x_{k} \partial / \partial x_{k} \omega_{i j}\right)(s) \\
\omega_{i j}(s) \log q_{i j}(s) & \left(x_{k} \partial / \partial x_{k}\left(\omega_{i j} \log q_{i j}\right)\right)(s)
\end{array}\right]\left(\text { for } A=\underline{A}_{1}(s)\right)
$$

d) We are now in position to state the main result of this section IV, relating p -adic and complex Betti lattices.

Data: $\quad d_{1}$ ): a field $E$, doubly embedded $E^{\boldsymbol{\sim}} \mathbb{\mathcal { S }}_{K}^{\mathbb{C}}$; orientations of $\mathbb{C}$ and $\mathbb{C}_{p}$. A branch $\beta$ (resp. $\beta_{\infty}$ ) of the logarithm on $\mathrm{K}^{\mathbf{X}}$ (resp. on $\mathbb{C}^{\mathbf{X}}$ ) ; a uniformizing parameter $\tilde{\omega}$ such that $\beta(\tilde{\omega})=0$.
$\mathrm{d}_{2}$ ): an affine curve $\mathrm{S}_{1}$ over E ; a smooth point $0 \in \mathrm{~S}_{1}(\mathrm{E})$, and a local parameter $x$ around 0 ; a regular model $S_{1}$ of $S_{1}$ over $E \cap R$.
$d_{3}$ ): a semi-abelian scheme $f: \underline{A} \longrightarrow \widetilde{S}_{1}$, proper outside the divisor $\tilde{\sim} \mathbb{X}=0$, and given by a split torus on this divisor. To f, one attaches as before the constant sheaf of lattices $\Lambda=M^{v} \oplus M^{\prime}(-1)$ (outside $x=0$ ), and the bilinear form $q: M \otimes M^{\prime} \longrightarrow \mathbb{G}_{m}$ (outside $\tilde{\omega} \mathrm{x}=0$ ). Taking bases of M , resp. $\mathrm{M}^{\prime}$, one may expand the entries of a matrix of q into Laurent series: $q_{i j}=\eta_{i j}{ }^{n^{i}}{ }_{i j}$ h. h.o.t., and consider the double homomorphism from the E-algebra

$\left.\mathrm{d}_{4}\right):$ a simply connected open neighborhood of 0 in $\mathrm{S}_{\mathbb{C}}$, say $\mathscr{U}$; over $\mathscr{U} \backslash 0, \Lambda$ is identified with the graded form (w.r.t. the local monodromy $N_{\infty}$ ) of $R^{1} f_{*}^{a n} \mathbb{Z}$.
$\mathrm{d}_{5}$ ): a point $\mathrm{s} \in \mathrm{S}_{1}(\mathrm{E})$ such that $\mathrm{s} \in \mathscr{U}$ and $|\mathrm{x}(\mathrm{s})|_{\mathrm{v}}<1$ (from this last condition, it follows that the fiber $\underline{A}(s)$ has multiplicative reduction $\bmod \tilde{\omega})$.

Combining the previous lemma with propositions 4,6 , and 7 , we obtain:
Theorem 2. The following diagram is commutative:

(In the example III $2 \mathrm{~g}, \mathrm{E}_{1}$ is just $\mathbb{Q}(\sqrt{-1})[\mathrm{t}]$, and the parameter $\mathrm{x}=\lambda$ should be replaced by $x=16 \lambda$ ).

## V. p-Adic lattice and Hodge classes.

1. Rationality of Hodge classes.
a) Let $A_{E}$ be an Abelian variety over a number field $E$. Let $v$ be a finite place of $E$ where $A_{E}$ has multiplicative reduction, and let $K=E_{V}$ denote the completion.

Conjecture 6. Let $\xi \in\left(\text { End } H_{D R}^{1}\left(A_{E}\right)\right)^{\otimes_{n}}$ be some Hodge class ${ }^{(1)}$. Then for every branch $\beta$ of the logarithm on $K^{\mathbf{x}}$, the image of $\xi$ under $\mathscr{\rho}_{\beta}$ lies in the rational subspace $\left(\text { End } H_{\beta, \mathbb{Q}}^{1}\right)^{\otimes_{n}}$, where $H_{\beta, Q}^{1}:=H_{\beta}^{1} \otimes_{\mathbb{Z}} \mathbb{Q}$. (For instance, this holds if $n=1$ just by functoriality of $H_{\beta}^{1}$ ).
b) Let $\iota: E \hookrightarrow \mathbb{C}$ and let Sh be the connected Shimura variety associated to the Hodge structure $H_{B}^{1}\left(A_{E} \otimes_{\iota} \mathbb{C}, \mathbb{I}\right)$ and to some (odd prime-to-p) $N$-level-structure; Sh descends to an algebraic variety over some finite extension $E^{\prime}$ of $E$, and $A_{E^{\prime}}$ is the fiber of an Abelian scheme $\underline{A} \longrightarrow S h$ at some point $s \in \operatorname{Sh}\left(E^{\prime}\right)$. In terms of Siegel's modular schemes $A_{g, N}$ [CF] IV, we have a commutative diagram

where the superscript - denotes suitable projective toroidal compactifications, see [H].

In fact $\underline{A} \longrightarrow$ Sh extends to a semi-abelian scheme over a normal projective model $\widetilde{\text { Sh }}$ of $\overline{S h}$ over $O_{E^{\prime}}$ (namely $\widetilde{\mathrm{Sh}}=$ normalization of the schematic adherence of Sh in $\bar{A}_{\mathrm{g}, \mathrm{N}^{\otimes}}{ }_{\mathbb{Z}}\left[\frac{1}{\mathbf{N}^{\prime}} \zeta_{\mathrm{N}}\right]^{\left.\boldsymbol{O}^{\prime}\right)}$.
(1) Some authors prefer to look at Hodge classes in the more general twisted tensor spaces $\left(\mathrm{H}_{\mathrm{B}}^{1}\right)^{\boldsymbol{\otimes m}_{1}} \otimes\left(\mathrm{H}_{\mathrm{B}}^{1} \mathrm{v}^{\otimes}\right)^{\mathrm{m}_{2}}\left(\mathrm{~m}_{3}\right)$. However such spaces contain Hodge classes only if $\mathrm{m}_{1}+\mathrm{m}_{2}$ is even (in fact if $\mathrm{m}_{1}-\mathrm{m}_{2}=2 \mathrm{~m}_{3}$ ), and any polarization then provides an isomorphism of
rational Hodge structures $H_{B}^{1}{ }^{\otimes m_{1}} \otimes\left(H_{B}^{1 v}\right)^{m_{2}}\left(m_{3}\right) \simeq\left(\right.$ End $\left.H_{B}^{1}\right){ }^{\otimes \frac{m_{1}+m_{2}}{2}}$. In particular, these extra Hodge classes do not change the Hodge group.

We consider the following condition:
(*) There exists a zero-dimensional cusp in Sh, say 0 , such that 0 and $s$ have the same reduction mod. the maximal ideal of $\mathrm{R}^{\prime}$. In fancy terms, this means that any Abelian variety with multiplicative reduction in characteristic $p$ should also degenerate multiplicatively (in characteristic 0 ) inside the family "of Hodge type" that it defines [M].

Remark: condition ( $*$ ) should follow from Gerritzen classification [Ge] of endomorphism rings of rigid analytic tori (which is the same in equal or unequal characteristics), in the special case of Shimura families of $\mathrm{p}_{\mathrm{EL}}{ }^{- \text {type }}$ [Sh] (i.e. characterized by endomorphisms).

Theorem 3. Conjecture 6 follows from (*).

Proof: by definition of the Shimura variety, and by the theory of absolute Hodge classes $\left[\mathrm{D}_{2}\right]$, $\xi=\xi(\mathrm{s})$ is the fiber at s of a global horizontal section $\xi \in \Gamma\left(\text { End } \mathrm{H}_{\mathrm{DR}}^{1}(\underline{\mathrm{~A}} / \mathrm{Sh})^{\otimes \mathrm{n}}\right)^{\boldsymbol{\nabla}}$.

Let $S_{1}$ be an algebraic curve on $\overline{S h}$, joining 0 and $s$, and smooth at 0 ; let $x$ be a local parameter around 0 , with $|x(s)|_{v}<1$. Then because 0 is a 0 -dimensional cusp, $\underline{A}$ degenerates multiplicatively at 0 and we are in the situation where theorem 2 applies.

The $\beta$-periods of $\xi$ admit an expansion in the form $\sum_{\ell}^{n} \alpha_{\ell} \log ^{\ell} x$, with $\alpha_{0} \in E^{\prime}[[x]]$, $\alpha_{\ell} \in \mathrm{E}_{1}^{\prime}[[\mathrm{x}]]$, whose complex evaluation (w.r.t $\iota: \mathrm{E}^{\prime} \longleftrightarrow \mathbb{C}$ ) gives the corresponding complex period of $\xi$, according to theorem 2. Since $\xi$ is a global horizontal section and a Hodge class at $s$, the complex periods are rational constants: $\alpha_{\ell}=0$ for $\ell>1$, and $\alpha_{0} \in \mathbb{Q}$. Thus the $\beta$-periods of $\xi=\xi(\mathrm{s})$ are rational numbers.

Remark: it follows (inconditionally) from theorem 1 and Fontaine' semi-stable theorem that the image of $\xi$ under $\mathscr{D}_{\beta}$ lies in $\left(\text { End } H_{\beta}^{1}\right)^{\boldsymbol{N n}^{n}} \otimes_{\mathbb{I}} Q_{\mathrm{p}}$.

## 2. p-Adic Hodge classes.

Let $E^{\prime}$ be some finitely generated extension of $E$. We define a p-adic Hodge class on $A_{E^{\prime}}$ to be any element $\xi$ of $\mathrm{F}^{0}$ (end $\mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathrm{E}^{\prime}}\right)^{\otimes_{\mathrm{n}}}$ ) such that for every E -embedding of $\mathrm{E}^{\prime}$ into any finite extension $K^{\prime}$ of $K$, and for every branch $\beta$ of the logarithm on $K^{\prime X}$, the image of $\boldsymbol{\xi}$ under $\mathscr{P}_{\beta}$ lies in the rational subspace $\left(E n d H_{\beta, Q}^{1}\right)^{\theta_{n}}$. Conjecture 6 predicts that any Hodge class is a p-adic Hodge class, and conjecture 2 would identify the two notions.

Proposition 8: if E is algebraically closed in $\mathrm{E}^{\prime}$, then any p-adic Hodge class $\xi$ comes from (End $\left.H_{D R}^{1}\left(A_{E}\right)\right)^{\otimes_{n}}$, and is sent into $\left[\left(\text { End } H_{e t}^{1}\right)^{\otimes_{n}}\right]^{\&}$ by F.M.

Proof: the first assertion follows Deligne's proof in the complex case $\left[\mathrm{D}_{2}\right]$. To prove the second one, we remark that $\xi \in \mathrm{F}^{0}\left[\left(\text { End } \mathrm{H}_{0}^{1}\right)^{\otimes \mathrm{n}}\right]^{\varphi=1}$; moreover, by changing $\beta$ continuously, the lattice $H_{\beta}^{1}$ is moved by $\exp (-\log u . N), u \in R^{\mathbf{X}}$. Since $\boldsymbol{\xi}$ has to remain rational w.r.t. all these lattices, we deduce that $\mathrm{N} \xi=0$, and we conclude by Fontaine semi-stable theorem.

Remark: it is essential to take all E-embedding $E^{\prime} \longleftrightarrow K$ into account; for instance, $\mathrm{m}^{\mathrm{v}} \in \mathrm{F}^{0} \mathrm{H}_{\mathrm{DR}}^{1}\left(\mathrm{~A}_{\mathrm{E}^{\prime}}\right)$ for $\mathrm{E}^{\prime}=\mathrm{K}$, and $\mathrm{m}^{\mathrm{v}} \in \mathrm{H}_{\beta}^{1}, \mathrm{FM}\left(\mathrm{m}^{\mathrm{v}}\right) \in\left(\mathrm{H}_{\mathrm{et}}^{1}\right)^{\mathscr{g}}$, but it is highly probable that $\mathrm{m}^{\mathrm{V}}$ is not defined over $\mathrm{E} \cap \mathrm{K}$.
3. A p-adic period conjecture.

For any $E$-algebra $E^{\prime}$, the $E^{\prime}$-linear bijections $H_{D R}^{1}\left(A_{E}\right) \otimes_{E} E^{\prime} \xrightarrow{\sim}\left(H_{\beta, Q}^{1}\right) \otimes_{Q} E^{\prime}$ which preserve p -adic Hodge classes form the set of $\mathrm{E}^{\prime}$-valued points of an irreducible E -torsor $\mathrm{P}_{\beta}$ under the "p-adic Hodge group" of $A_{E}$ (which is by definition the algebraic subgroup of GL $H_{D R}^{1}\left(A_{E}\right)$ which fixes the $p$-adic Hodge classes; conjecture 2 would identify this group with the Hodge group). One has a canonical $\mathrm{K}\left[\mathrm{t}_{\mathrm{p}}\right]$-valued point of $\mathrm{P}_{\beta}$ given by $\mathscr{\rho}_{\beta}$. A variant of conjecture 1 may be stated as follows:

Conjecture 1': for sufficiently general $\beta, \mathscr{D}_{\beta}$ is a (Weil) generic point of $\mathrm{P}_{\beta}$.
The next section will offer two partial positive answers.
4. Period relations of bounded degree.
a) We denote by $\mathrm{E}\left[\mathscr{\rho}_{\beta_{\mathrm{v}}}\right]_{\leq \delta}$ the quotient of the polynomial ring in $4 \mathrm{~g}^{2}$ indeterminates over E by the ideal generated by relations of degree $\leq \delta$ among $\left(\beta_{\mathrm{v}}\right)-\mathrm{p}$-adic periods $(\mathrm{v} \mid \mathrm{p})$. Hence for sufficiently large $\delta$, there is a natural embedding $\operatorname{Spec} \mathrm{E}\left[\mathscr{P}_{\boldsymbol{\beta}_{\mathrm{v}}}\right] \leq{ }_{\leq} \subset \mathrm{P}_{\beta_{\mathrm{v}}}$. The same construction works simultaneously at several places of multiplicative reduction: $\mathrm{E}\left[\left(\mathscr{S}_{\beta_{\mathbf{v}}}\right)_{\mathbf{v} \in \mathrm{V}}\right]_{\leq \delta} \subset \prod_{\mathbf{v}} \mathrm{E}_{\mathbf{v}}\left[\mathrm{t}_{\mathbf{p}}\right]$, and we have projections $\operatorname{Spec} \mathrm{E}\left[\left(\mathscr{S}_{\beta_{\mathbf{v}}}\right)_{\mathbf{v} \in \mathrm{V}}\right]_{\leq \delta} \longrightarrow \mathrm{P}_{\beta_{\mathbf{v}}}$.
b) Assume that $A_{E}$ is the fiber at $s \in S_{1}(E)$ of a semi-abelian scheme $A \longrightarrow S_{1}$ over an affine curve $S_{1} / \operatorname{Spec} E$, proper outside some smooth point $0 \in S_{1}(E)$, and degenerating to a split torus at this point. Let x be a local parameter around 0 , and let $\delta \gg 0$.

We lay down an extra normalization hypothesis:
(**) the entries of the q-matrix expand $q_{i j}=\eta_{i j} x^{n_{i j}}+\ldots$ where $\eta_{i j}$ are roots of unity (this is the case in example III 2 g ), if we set $\mathrm{x}=16 \lambda$ and $\mathrm{E}=\mathbb{Q}(\sqrt{-1})$ ).

In these circumstances, we have the following two results:

Theorem 4. Assume that $|x(s)|_{v}$ is sufficiently small - w.r. to $\delta$ - so that in particular $\mathrm{A}_{\mathrm{E}}=\underline{\mathrm{A}}(\mathrm{s})$ has multiplicative reduction at v . Let us choose $\beta=\beta_{\mathrm{v}}$ such that $\beta(\mathrm{x}(\mathrm{s}))=0$.

Then $\operatorname{Spec} \mathrm{E}\left[\mathscr{P}_{\beta}\right]_{\leq \delta}=\mathrm{P}_{\beta}$, and moreover any p -adic Hodge class on $\mathrm{A}_{\mathrm{E}}$ is a Hodge class.
Theorem 5. Assume that $\underline{A} \longrightarrow S_{1}$ extends to a semi-abelian scheme over some regular model of $S_{1}$ over $\mathcal{O}_{E}$, proper outside the divisor $\nu x=0, \nu \in \mathbb{N}$. Let $V(s)$ denote the finite set of finite places $v$ of $E$ where $|x(s)|_{V}<|\nu|_{v}$ (so that $\underline{A}(s)$ has multiplicative reduction at $\mathrm{v} \in \mathrm{V})$. Let us choose $\beta_{\mathrm{v}}$ such that $\beta_{\mathrm{v}}(\mathrm{x}(\mathrm{s}))=0, \quad \mathrm{v} \in \mathrm{V}(\mathrm{s})$, and let $\varepsilon>0$. If for every $\iota: \mathrm{E} \hookrightarrow \mathbb{C},|\mathrm{x}(\mathrm{s})|_{\iota} \geq \varepsilon$, then the projections $\operatorname{Spec} \mathrm{E}\left[\left(\mathscr{P}_{\beta_{\mathrm{v}}}\right)_{\mathrm{v} \in \mathrm{V}}\right]_{\leq \delta} \longrightarrow \mathrm{P}_{\beta_{\mathrm{v}}}$ are surjective, except possibly if $s$ belong to a certain finite exceptional set (depending on $\delta, \varepsilon$ ).
c) In fact, the proof shows a little bit more: one can replace $\mathrm{P}_{\boldsymbol{\beta}_{\mathrm{v}}}$ in the statements by the specialization at $s$ of the $S_{1}$-torsor formed of isomorphisms $H_{D R}^{1}\left(\underline{A} / S_{1}^{*}\right) \otimes ? \longrightarrow \underline{H}_{\beta}^{1} \otimes ?$ preserving global horizontal classes; this makes sense because any such class is automatically a $O_{*}$-linear combination of relative Hodge classes, in virtue of:
$\mathrm{S}_{1}$
Proposition 9 (Mustafin). On an Abelian scheme $\underline{A} \longrightarrow S_{1}^{*}$ degenerating to a torus at $0 \in \mathrm{~S}_{1} \backslash \mathrm{~S}_{1}^{*}$, any element $\xi$ of $\Gamma\left(\text { End } \mathrm{H}_{\mathrm{DR}}^{1}\left(\underline{\mathrm{~A}} / \mathrm{S}_{1}^{*}\right)^{\otimes n}\right)^{\nabla}$ is a linear combination of relative Hodge cycles.

See e.g. [A] IX 3.2. The argument given in the course of proving theorem 3 then shows that $\xi$ is also a linear combination of relative p-adic Hodge cycles.
d) We thus have to show that any relation (resp. "global relation" for theorem 5) of degree $\leq \delta$ with coefficients in E between $(\beta)$-periods of $\underline{A}(\mathrm{~s})$ is the specialization at $s$ of some relation of degree $\leq \delta$ with coefficients in $\mathrm{E}[\mathrm{x}]$ between the relative $\beta_{\mathrm{v}}$-periods (which belong to $E\left[t_{p}, \log x\right][[x]]$ in virtue of $(* *)$ and lemma 9$)$.

Because $\mathrm{t}_{\mathrm{p}}$ is transcendental over $\mathrm{E}_{\mathbf{v}}$, and $\beta_{\mathbf{v}}\left(\eta_{\mathrm{ij}} \mathbf{x}^{\mathrm{n}_{\mathrm{ij}}}(\mathrm{s})\right)=0$, it suffices to replace in this
statement $\beta_{\mathrm{v}}$-periods by the v -adic evaluations of the $G$-functions $\omega_{\mathrm{ij}}, \omega_{\mathrm{ij}}^{\prime}, \quad \omega_{\mathrm{ij}} \log \mathrm{q}_{\mathrm{ij}}^{1}$, $\left(\omega_{\mathrm{ij}} \log q_{\mathrm{ij}}^{1}\right)^{\prime}$, where $q_{\mathrm{ij}}^{1}=\frac{1}{\eta_{\mathrm{ij}}} \mathrm{q}_{\mathrm{ij}} \mathrm{x}^{-\mathrm{n}_{\mathrm{ij}}}=1+\ldots$

This can be now deduced from standard results in G-function theory [A] VII thm. 4.3, resp. 5.2. See also, ibid IX for more details about the proof of a (complex) analogous statement.

## References

[A] André Y.; G-functions and Geometry, Aspects of Mathematics E13, Vieweg 1988.
[Be] Berkovich V.G.; Spectral theory and analytic geometry over non-archimedean fields II. Preprint IHES 1987.
[B] Berthelot P.; Cohomologie rigide, to appear in the "Astérisque" series.
[Bo] Borovoi, M.; On the action of the Galois group on rational cohomology classes of type (p.p) of Abelian varieties, Mat. Sbornik 94 (1974) $\mathbf{n}^{\circ} 4,649-652$ (Russian).
[BL] Bosch S., Lütkebohmert W.; stable reduction and Uniformization of Abelian varieties II, Inv. Math. 78, 257-297 (1984).
[Bl 1] Bosch S., Lütkebohmert W.; Degenerating Abelian Varieties, preprint Münster 1988.
[CF] Chai C.L., Faltings G.; Semiabelian degeneration and compactification of Siegel modular spaces. Forthcoming book (1990).
[C] Christol G.; Globally bounded solutions of differential equations, to appear in Proc. of the Tokyo conference on analytic number theory.
[Cn] Coleman R.; The universal vectorial bi-extension, preprint Berkeley 1989.
[Co] Colmez P.; Périodes des variétés abéliennes de type CM, preprint Bonn 1987.
[ $\mathrm{D}_{1}$ ] Deligne P.; Théorie de Hodge III, IHES Publ. Math. $\mathrm{N}^{\circ} 44$ (1974), 5-78.
[ $\mathrm{D}_{2}$ ] Deligne P.; Hodge cycles on Abelian varieties, in Lecture Notes in Math. 900 Springer-Verlag 1982 (notes by J. Milne).
[Dw] Dwork B.; p-adic cycles, IHES Publ. Math. $\mathrm{N}^{\circ} 37$ (1969), 27-116.
[Fa] Faltings G.; preprint Princeton on the "De Rham conjecture" 1989.
[ $\mathrm{F}_{1}$ ] Fontaine J.M.; Sur certains types de représentations p-adiques du groupe de Galois d'un corps local, construction d'un anneau de Barsotti-Tate, Ann. of Math. 115, (1982), 529-577.
[ $\mathrm{F}_{2}$ ] Fontaine J.M.; contribution to the proc. of IHES seminar 88 on "p-adic periods".
[F.M.] Fontaine J.M.; Messing W.; p-adic periods and p-adic etale cohomology, Contemporary mathematics, Vol. 67 AMS (1985), 179-207.
[Ge] Gerritzen L.; On multiplication algebras of Riemann matrices, Math. Ann. 194 (1971), 109-122.
[G1] Grothendieck A.; On the De Rham cohomology of algebraic varieties, IHES Publ. Math. 29 (1966) (especially footnote 10).
[G $\mathrm{G}_{2}$ ] Grothendieck A.; Modèles de Néron et monodromie, exp. IX, SGA 7, in Lecture Notes in Math. 288 Springer-Verlag 1970.
[ $\mathrm{G}_{3}$ ] Grothendieck A.; Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, $\mathrm{n}^{\circ} 45$, Presses de l'Université de Montréal 1974.
[H] Harris J.; Fonctorial properties of toroidial compactifications of locally symmetric varieties. Proc. London Math. Soc. (3) 59 (1989), 1-22.
[Ka] Katz N.; Serre-Tate local moduli, in Surfaces Algébriques, exposé 5 bis, Springer LNM 868 (1981), 138-202.
[K] Kiehl R.; Die De Rham Kohomologie algebraischer Mannigfaltigkeiten über einem bewerteten Körper. IHES Publ. Math. 33 (1967), 5-20.
[1S] Le Stum B.; Cohomologie rigide et variétés abéliennes, thèse Univ. Rennes 1985.
[M] Mumford D.; Families of Abelian varieties, Algebraic groups and Discontinuous subgroup, Proc. Symp. Pure Math. vol. 9, AMS, Providence R.I. (1966), 347-351.
[Mu] Mustafin G.A.; Families of Algebraic varieties and invariant cycles, Math. USSR Izvestiya Vol 27 (1986) $\mathrm{n}^{\circ} 2$, 251-278.
[O] Ogus A.; Contribution to this conference.
[ $\mathrm{R}_{1}$ ] Raynaud M.; Variétés abéliennes et géométrie rigide. Actes du congrès international de Nice 1970, t.1, 473-477.
[ $\mathrm{R}_{2}$ ] Raynaud M.; Contribution to the proc. of IHES seminar 88 on " p -adic periods".
[S $\mathrm{S}_{1}$ ] Serre J.P.; Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inv. Math., 15, 1972, 259-331.
[S $2_{2}$ ] Serre J.P.; Abelian $\ell$-adic representations and elliptic curves. Benjamin, New-York, 1968.
[SGA4] Artin M., Grothendieck A., Verdier J.-L.; Théorie des topos et cohomologie étale des schémas, t. 3, LNM 269 Springer Verlag (1972).
[SR] Shimura G.; On analytic families of polarized abelian varieties and automorphic functions, Annals of Math. 78 (1963), 149.
[St] Steenbrink J.; Limits of Hodge structures, Inv. Math. 31 (1975/76), 229-257.
[T] Tate J.; p-divisible groups. Proc. of a Conf. on local fields. Springer Verlag (1967).
[U] Ullrich P.; Rigid analytic covering maps. Proc. of the Conf. on p-adic analysis, Hengelhoef (1986), 159-171.
[vM] Van der Marel B.; thesis Rijksuniversiteit Groningen 1987.
[W] Wintenberger J.P.; p-adic Hodge theory for families of abelian varieties, preprint 1989.

