Max-Planck-Institut für Mathematik Bonn

On some free algebras of orthogonal modular forms
by

Haowu Wang
Brandon Williams

Max-Planck-Institut für Mathematik
Preprint Series 2020 (16)

On some free algebras of orthogonal modular forms

Haowu Wang
Brandon Williams

Max-Planck-Institut für Mathematik Vivatsgasse 7
53111 Bonn
Germany

Fachbereich Mathematik
Technische Universität Darmstadt
64289 Darmstadt
Germany

ON SOME FREE ALGEBRAS OF ORTHOGONAL MODULAR FORMS

HAOWU WANG AND BRANDON WILLIAMS

Abstract

For 25 orthogonal groups of signature $(2, n)$ related to the root lattices $A_{1}, 2 A_{1}, 3 A_{1}$, $4 A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, D_{4}, D_{5}, D_{6}, D_{7}, D_{8}, E_{6}, E_{7}$, we prove that the algebras of modular forms on symmetric domains of type IV are freely generated by the additive lifts of some special Jacobi forms. The proof is universal and elementary.

1. Introduction

It is an interesting problem to determine the structure of the algebras of automorphic forms on symmetric domains \mathcal{D} of dimension greater than 2 . The simplest possible structure is that of a free algebra, but free algebras of modular forms are relatively rare. In general, the algebra of modular forms $M_{*}(\Gamma)$ for a congruence group Γ acting on \mathcal{D} is freely generated if and only if the Satake-Baily-Borel compactification $(\mathcal{D} / \Gamma)^{*}$ is a weighted projective space. Equivalently, if \mathcal{A} denotes the affine cone over \mathcal{D}, then $M_{*}(\Gamma)$ is free if and only if $(\mathcal{A} / \Gamma)^{*}$ is nonsingular. It is known, for example, that algebras of modular forms for orthogonal groups of signature $(2, n)$ never satisfy this condition when $n>10$ [SV17]. There is a classification of free algebras of Hilbert modular forms in [Stu19], which shows that the free algebras of modular forms for orthogonal groups of signature $(2,2)$ are very rare.

The first example of such an algebra was found by Igusa, who proved in [Igu62] that the algebra of even-weight Siegel modular forms of genus 2 is freely generated by forms of weights 4, 6, 10, 12. Siegel modular forms of genus 2 can be realized as modular forms for the orthogonal group $\mathrm{O}(2,3)$. After Igusa, several other authors constructed free algebras of $\mathrm{O}(2, n)$-modular forms, e.g. [AI05, Aok00, DK03, DK06, Klo05, Kri05, Woi18] using the theory of modular forms and [FH00, FS07, HU14, Vin10, Vin13, Vin18] using more geometric methods. As a continuation of this type of work, in this paper we prove that the spaces of modular forms for 25 orthogonal groups are free algebras in a universal way. Our approach is new and gives a general rule to characterize the weights of generators.
1.1. Orthogonal modular forms. Orthogonal modular forms are automorphic forms on symmetric domains of type IV for orthogonal groups of signature $(2, n)$. Let M be an even lattice of signature ($2, n$) with $n \geq 3$ and M^{\vee} be its dual lattice. The Hermitian symmetric domain of type IV is defined as

$$
\mathcal{D}(M)=\{[\mathcal{Z}] \in \mathbb{P}(M \otimes \mathbb{C}):(\mathcal{Z}, \mathcal{Z})=0,(\mathcal{Z}, \overline{\mathcal{Z}})>0\}^{+}
$$

where the symbol + means that we choose one of the two connected components. Let $\mathrm{O}^{+}(M)<$ $\mathrm{O}(M)$ be the subgroup preserving the component $\mathcal{D}(M)$.
Definition 1.1. Let Γ be a finite index subgroup of $\mathrm{O}^{+}(M)$. A modular form of weight $k \in \mathbb{N}$ for Γ is a holomorphic function on the affine cone

$$
\mathcal{A}(M)=\{\mathcal{Z} \in M \otimes \mathbb{C}:[\mathcal{Z}] \in \mathcal{D}(M))\}
$$

Date: March 12, 2020.
2010 Mathematics Subject Classification. 11F50,11F55.
Key words and phrases. Symmetric domains of type IV, modular forms on orthogonal groups, Jacobi forms, root systems, free algebras.
of $\mathcal{D}(M)$ satisfying

$$
\begin{aligned}
& F(t \mathcal{Z})=t^{-k} F(\mathcal{Z}), \quad \forall t \in \mathbb{C}^{*}, \\
& F(g \mathcal{Z})=F(\mathcal{Z}), \quad \forall g \in \Gamma .
\end{aligned}
$$

The space of modular forms of weight k is a finite-dimensional complex vector space and we denote it by $M_{k}(\Gamma)$. We know from [BB66] that the graded algebra

$$
M_{*}(\Gamma)=\bigoplus_{k=0}^{\infty} M_{k}(\Gamma)
$$

is finitely generated over \mathbb{C}. Moreover, the projective variety $\operatorname{Proj}\left(M_{*}(\Gamma)\right)$ coincides with $(\mathcal{D}(M) / \Gamma)^{*}$ which is the Satake-Baily-Borel compactification of $\mathcal{D}(M) / \Gamma$. In particular, if $M_{*}(\Gamma)$ is a free algebra generated by $n+1$ forms of weights $k_{1}, k_{2}, \ldots, k_{n+1}$, then $(\mathcal{D}(M) / \Gamma)^{*}$ is a weighted projective space with weights $\left(k_{1}, k_{2}, \ldots, k_{n+1}\right)$.
1.2. Main results. We focus on the particular case $M=\mathrm{I}_{2,2} \oplus L(-1)$, where $\mathrm{II}_{2,2}=\mathrm{I}_{1,1} \oplus \mathrm{II}_{1,1}$, $\mathrm{II}_{1,1}$ is a hyperbolic plane, and L is an even positive definite lattice. Let $\widetilde{\mathrm{O}}^{+}(M)$ denote the discriminant kernel, which is the kernel of the natural homomorphism $\mathrm{O}^{+}(M) \rightarrow \mathrm{O}\left(M^{\vee} / M\right)$.

We assume that $\widetilde{\mathrm{O}}^{+}(M)<\Gamma$. At the standard one-dimensional cusp determined by $\mathrm{I}_{2,2}$, the symmetric space $\mathcal{D}(M)$ can be realized as the tube domain

$$
\mathcal{H}(L)=\{Z=(\tau, \mathfrak{z}, \omega) \in \mathbb{H} \times(L \otimes \mathbb{C}) \times \mathbb{H}:(\operatorname{Im} Z, \operatorname{Im} Z)>0\},
$$

where $(\operatorname{Im} Z, \operatorname{Im} Z)=2 \operatorname{Im} \tau \operatorname{Im} \omega-(\operatorname{Im} \mathfrak{z}, \operatorname{Im} \mathfrak{z})_{L}$. We consider the Fourier expansion of orthogonal modular forms on the above tube domain. The Fourier-Jacobi coefficients are in fact holomorphic Jacobi forms associated to the lattice L (see e.x. [CG13] for the theory of Jacobi forms in many variables). We notice that there is a nice structure result due to Wirthmüller about Jacobi forms. Wirthmüller [Wir92] proved that the spaces of weak Jacobi forms invariant under the Weyl group are free algebras for all irreducible root systems except E_{8}. This type of Jacobi forms is called Weyl invariant Jacobi forms. Let R be an irreducible root system of rank r and not of type E_{8}. Let L_{R} and $W(R)$ denote the generated root lattice and the Weyl group. When L_{R} is an odd lattice, we equip L_{R} with the normalized bilinear form $2(\cdot, \cdot)$ rescaled by 2 . The spaces of Weyl invariant weak Jacobi forms of type R is freely generated by $r+1$ forms ϕ_{j} over the ring of $\mathrm{SL}_{2}(\mathbb{Z})$ modular forms. We denote the weight and index of ϕ_{j} by $-k_{j}$ and m_{j} for $1 \leq j \leq r+1$. In view of the relation between Jacobi forms and orthogonal modular forms linked by the Fourier-Jacobi expansion, we guess that there should be some connection between free algebras of Jacobi forms and orthogonal modular forms. Our main result is the following theorem which illuminates the mysterious connection.

Theorem 1.2. Let R be a root system of type $A_{r}(1 \leq r \leq 7), B_{r}(2 \leq r \leq 4), D_{r}(4 \leq r \leq 8)$, $C_{r}(3 \leq r \leq 8), G_{2}, F_{4}, E_{6}$, or E_{7}. We define $\Gamma_{R}<\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus L_{R}(-1)\right)$ as the subgroup generated by $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus L_{R}(-1)\right)$ and $W(R)$. Then the graded algebra $M_{*}\left(\Gamma_{R}\right)$ is freely generated by $r+3$ forms of weights 4,6 , and $-k_{j}+12 m_{j}, 1 \leq j \leq r+1$.

The groups Γ_{R} and the weights of generators are listed in Theorem 5.9. We explain the proof of the theorem. Firstly, the Fourier-Jacobi coefficients of any modular form for Γ_{R} are Weyl invariant holomorphic Jacobi forms of type R. Suppose there exist the following $r+3$ modular forms for Γ_{R} :
(a) Two modular forms \widetilde{E}_{4} and \widetilde{E}_{6} of weights 4 and 6 whose first Fourier-Jacobi coefficients are respectively the Eisenstein series E_{4} and E_{6} on $\mathrm{SL}_{2}(\mathbb{Z})$;
(b) $r+1$ modular forms $\Phi_{j} \in M_{-k_{j}+12 m_{j}}\left(\Gamma_{R}\right)$ whose first nonzero Fourier-Jacobi coefficients are $\Delta^{m_{j}} \phi_{j}$ in their $m_{j}^{\text {th }}$ term, where Δ is the normalized cusp form of weight 12 on $\mathrm{SL}_{2}(\mathbb{Z})$.

Then we can kill the first Fourier-Jacobi coefficients of a given modular form by a polynomial combination of the above $r+3$ functions. If the first n Fourier-Jacobi coefficients of a modular form are zero (for a certain n which depends on the structure of the ring of weak Jacobi forms) then it is identically zero. We use this to conclude that the space $M_{*}\left(\Gamma_{R}\right)$ is generated by the above $r+3$ functions and hence a free algebra. We are able to construct the modular forms of the above form for all root systems listed in the theorem. This completes the proof.

Some cases of Theorem 1.2 are already known. The A_{1} case is Igusa's result. The A_{2} and B_{2} cases were first proved in [DK03, DK06] in the context of Hermitian modular forms. The B_{3} and C_{3} cases were proved in [FH00] and in [Klo05] by different methods. The B_{4} case was studied in [Kri11]. The B_{n}-tower was also considered systematically in [Woi18]. Krieg [Kri05] worked out the D_{4} case in the context of quaternionic modular forms. Making use of the interpretation of orthogonal modular varieties as moduli spaces of lattice polarized K3 surfaces, Vinberg determined the structure of orthogonal modular forms for the D_{n}-tower in [Vin10, Vin18], but Vinberg does not construct generators. In this paper we prove that the additive lifts of Jacobi Eisenstein series are generators in the most complicated cases D_{8}, E_{6}, and E_{7}. To the authors' knowledge the cases $A_{4}, A_{5}, A_{6}, A_{7}, E_{6}, E_{7}$ are new.

As a direct consequence, we obtain the modularity of formal Fourier-Jacobi expansions for all cases in our theorem (see Corollary 4.4). This property is useful to prove that certain arithmetic generating series are modular forms and is known to hold for Siegel modular forms [BR15]. For orthogonal modular forms it was previously only known in the A_{1} case (see [Aok00]).

The layout of this paper is as follows. In $\S 2$ we introduce Weyl invariant Jacobi forms and recall Wirthmüller's theorem. In $\S 3$ we estimate the upper bound of the dimension of orthogonal modular forms using Jacobi forms. In $\S 4$ we explain why the existence of modular forms of types (a) and (b) implies the above theorem. The existence of the desired modular forms is proved in $\S 5$, which completes the proof of our main theorem.

2. Weyl invariant Jacobi forms

In this section we introduce Weyl invariant Jacobi forms and Wirthmüller's structure result. Let R be an irreducible root system of rank r. The classification of R is as follows (see [Bou60])

$$
A_{n}(n \geq 1), \quad B_{n}(n \geq 2), \quad C_{n}(n \geq 3), \quad D_{n}(n \geq 4), \quad E_{6}, \quad E_{7}, \quad E_{8}, \quad G_{2}, \quad F_{4} .
$$

Let L_{R} and $W(R)$ be the root lattice and Weyl group generated by R respectively. When L_{R} is an odd lattice, we rescale its bilinear form by 2 . Thus L_{R} is always an even positive definite lattice and we denote its (rescaled) bilinear form by $\langle\cdot, \cdot\rangle$.

Weyl invariant Jacobi forms are Jacobi forms of lattice index that are invariant under the action of the Weyl group of R on the abelian variable. These Jacobi forms appear in the Fourier-Jacobi expansions of orthogonal modular forms. We refer to [Gri94, CG13] for the theory.

Definition 2.1. Let $\varphi: \mathbb{H} \times\left(L_{R} \otimes \mathbb{C}\right) \rightarrow \mathbb{C}$ be a holomorphic function and $k \in \mathbb{Z}, t \in \mathbb{N}$. If φ satisfies the following properties

$$
\begin{aligned}
& \varphi(\tau, \sigma(\mathfrak{z}))=\varphi(\tau, \mathfrak{z}), \quad \sigma \in W(R), \\
& \varphi(\tau, \mathfrak{z}+x \tau+y)=\exp (-t \pi i[\langle x, x\rangle \tau+2\langle x, \mathfrak{z}\rangle]) \varphi(\tau, \mathfrak{z}), \quad x, y \in L_{R}, \\
& \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{\mathfrak{z}}{c \tau+d}\right)=(c \tau+d)^{k} \exp \left(t \pi i \frac{c\langle\mathfrak{z}, \mathfrak{z}\rangle}{c \tau+d}\right) \varphi(\tau, \mathfrak{z}), \quad\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}),
\end{aligned}
$$

and if its Fourier expansion takes the form

$$
\varphi(\tau, \mathfrak{z})=\sum_{n=0}^{\infty} \sum_{\ell \in L_{R}^{V}} f(n, \ell) e^{2 \pi i(n \tau+\langle\ell, \mathfrak{z}\rangle)},
$$

then φ is called a $W(R)$-invariant weak Jacobi form of weight k and index t. If $f(n, \ell)=0$ whenever $2 n t-\langle\ell, \ell\rangle<0$, then φ is called a $W(R)$-invariant holomorphic Jacobi form. We denote by $J_{k, L_{R}, t}^{\mathrm{w}, W(R)}$ and $J_{k, L_{R}, t}^{W(R)}$ the vector spaces of $W(R)$-invariant weak and holomorphic Jacobi forms of weight k and index t, respectively.

We introduce some notations appearing in Wirthmüller's theorem. The dual root system of R is defined as

$$
R^{\vee}=\left\{r^{\vee}: r \in R\right\},
$$

where $r^{\vee}=\frac{2}{(r, r)} r$ is the coroot of r. Let $\widetilde{\alpha}$ denote the highest root of R^{\vee}. All $W(R)$-invariant weak Jacobi forms form a bigraded ring graded by weight and index

$$
J_{*, L_{R}, *}^{\mathrm{w}, W(R)}=\bigoplus_{t \in \mathbb{N}} \bigoplus_{k \in \mathbb{Z}} J_{k, L_{R}, t}^{\mathrm{w}, W(R)}
$$

Let $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ be the graded ring of modular forms for $\mathrm{SL}_{2}(\mathbb{Z})$. In 1992, Wirthmüller proved the following theorem.
Theorem 2.2 (see Theorem 3.6 in [Wir92]). If $R \neq E_{8}$, then $J_{*, L_{R}, *}^{\mathrm{w}, W(R)}$ over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is freely generated by $r+1 W(R)$-invariant weak Jacobi forms of weight $-k_{j}$ and index m_{j}

$$
\phi_{-k_{j}, R, m_{j}}(\tau, \mathfrak{z}), \quad 1 \leq j \leq r+1 .
$$

Apart from $\left(k_{1}, m_{1}\right)=(0,1)$, the indices m_{j} are the coefficients of $\widetilde{\alpha}^{\vee}$ written as a linear combination of the simple roots of R. The integers k_{j} are the degrees of the generators of the ring of $W(R)$-invariant polynomials, namely the exponents of the Weyl group $W(R)$ increased by 1 .

We formulate the weights and indices of these generators in Table 1. The generators for root systems of types A_{n}, B_{n} and D_{4} were constructed in [Ber99]. The construction of generators for root systems E_{6} and E_{7} was given in [Sak19]. We refer to [AG19] for the generators of type D_{n} with $1 \leq n \leq 8$. We remark that it was proved in [Wan18] that $J_{*, E_{8}, *}^{\mathrm{w}, W\left(E_{8}\right)}$ is not a polynomial algebra.

Table 1. Weights and indices of generators of Weyl invariant weak Jacobi forms ($B_{n}: n \geq 2, C_{n}: n \geq 3, D_{n}: n \geq 4$)

R	$L(R)$	$W(R)$	$\left(k_{j}, m_{j}\right)$
A_{n}	A_{n}	$W\left(A_{n}\right)$	$(0,1),(s, 1): 2 \leq s \leq n+1$
B_{n}	$n A_{1}$	$\mathrm{O}\left(n A_{1}\right)$	$(2 s, 1): 0 \leq s \leq n$
C_{n}	D_{n}	$W\left(C_{n}\right)$	$(0,1),(2,1),(4,1),(2 s, 2): 3 \leq s \leq n$
D_{n}	D_{n}	$W\left(D_{n}\right)$	$(0,1),(2,1),(4,1),(n, 1),(2 s, 2): 3 \leq s \leq n-1$
E_{6}	E_{6}	$W\left(E_{6}\right)$	$(0,1),(2,1),(5,1),(6,2),(8,2),(9,2),(12,3)$
E_{7}	E_{7}	$W\left(E_{7}\right)$	$(0,1),(2,1),(6,2),(8,2),(10,2),(12,3),(14,3),(18,4)$
G_{2}	A_{2}	$\mathrm{O}\left(A_{2}\right)$	$(0,1),(2,1),(6,2)$
F_{4}	D_{4}	$\mathrm{O}\left(D_{4}\right)$	$(0,1),(2,1),(6,2),(8,2),(12,3)$

3. An upper bound of the dimension of orthogonal modular forms

In [Aok00], Aoki estimated the dimension of Siegel modular forms of genus 2 using the theory of classical Jacobi forms due to Eichler and Zagier [EZ85]. We extend his idea to the general case of orthogonal modular forms. We give an upper bound of the dimension of orthogonal modular forms in terms of the dimensions of Jacobi forms, which will be used later.

Let $M=\mathrm{II}_{2,2} \oplus L(-1)$ and $\Gamma=\left\langle\widetilde{\mathrm{O}}^{+}(M), W\right\rangle$, where W is a subgroup of $\mathrm{O}(L)$ containing $\widetilde{\mathrm{O}}(L)$. Let F be a modular form of weight k with respect to Γ with the trivial character. We consider its Fourier and Fourier-Jacobi expansions

$$
\begin{aligned}
F(\tau, \mathfrak{z}, \omega) & =\sum_{\substack{n, m \in \mathbb{N}, \ell \in L^{\vee} \\
2 m m-(\ell, \ell) \geq 0}} f(n, \ell, m) q^{n} \zeta^{\ell} \xi^{m} \\
& =\sum_{m=0}^{\infty} \phi_{m}(\tau, \mathfrak{z}) \xi^{m}
\end{aligned}
$$

where $q=\exp (2 \pi i \tau), \zeta^{\ell}=\exp (2 \pi i(\ell, \mathfrak{z})), \xi=\exp (2 \pi i \omega)$. Then $\phi_{m} \in J_{k, L, m}^{W}$, i.e. ϕ_{m} is a W invariant holomorphic Jacobi form of weight k and index m associated to the lattice L. Moreover, we have the symmetric relation

$$
f(n, \ell, m)=f(m, \ell, n), \quad \forall(n, \ell, m) \in \mathbb{N} \oplus L^{\vee} \oplus \mathbb{N}
$$

For $r \geq 1$, we define

$$
M_{k}(\Gamma)\left(\xi^{r}\right)=\left\{F \in M_{k}(\Gamma): \phi_{m}=0, \text { for all } m<r\right\}
$$

and

$$
J_{k, L, m}^{W}\left(q^{r}\right)=\left\{\phi \in J_{k, L, m}^{W}: \phi=O\left(q^{r}\right)\right\},
$$

here $\phi=O\left(q^{r}\right)$ means that its Fourier coefficients $f(n, \ell)=0$ for all $n<r$ and $\ell \in L^{\vee}$. For convenience, we also set $M_{k}(\Gamma)\left(\xi^{0}\right)=M_{k}(\Gamma)$ and $J_{k, L, m}^{W}\left(q^{0}\right)=J_{k, L, m}^{W}$.

It is easy to check that the following sequence is exact:

$$
0 \longrightarrow M_{k}(\Gamma)\left(\xi^{r+1}\right) \longrightarrow M_{k}(\Gamma)\left(\xi^{r}\right) \xrightarrow{P_{r}} J_{k, L, r}^{W}\left(q^{r}\right),
$$

where the map P_{r} sends F to its Fourier-Jacobi coefficient ϕ_{r}. From this, we deduce the inequality

$$
\operatorname{dim} M_{k}(\Gamma)\left(\xi^{r}\right)-\operatorname{dim} M_{k}(\Gamma)\left(\xi^{r+1}\right) \leq \operatorname{dim} J_{k, L, r}^{W}\left(q^{r}\right)
$$

Since $\operatorname{dim} M_{k}(\Gamma)<\infty$, it follows that $M_{k}(\Gamma)\left(\xi^{r}\right)=\{0\}$ for sufficiently large r. If $\phi \in J_{k, L, m}^{W}\left(q^{r}\right)$, then ϕ / Δ^{r} is a weak Jacobi form of weight $k-12 r$ and index m. It follows that

$$
\operatorname{dim} J_{k, L, m}^{W}\left(q^{r}\right) \leq \operatorname{dim} J_{k-12 r, L, m}^{\mathrm{w}, W} .
$$

We then deduce

$$
\begin{equation*}
\operatorname{dim} M_{k}(\Gamma) \leq \sum_{r=0}^{\infty} \operatorname{dim} J_{k, L, r}^{W}\left(q^{r}\right) \leq \sum_{r=0}^{\infty} \operatorname{dim} J_{k-12 r, L, r}^{\mathrm{w}, W} \tag{3.1}
\end{equation*}
$$

In some particular cases, the last sum in (3.1) is a finite sum. More precisely, if there exists a positive constant δ less than 12 such that the Jacobi forms associated to L satisfy the condition

$$
\begin{equation*}
J_{k, L, m}^{\mathrm{w}, W}=\{0\} \quad \text { if } \quad k<-\delta m \tag{3.2}
\end{equation*}
$$

then (3.1) can be improved as follows:

$$
\begin{equation*}
\operatorname{dim} M_{k}(\Gamma) \leq \sum_{r=0}^{\frac{k}{12-\delta}} \operatorname{dim} J_{k-12 r, L, r}^{\mathrm{w}, W} \tag{3.3}
\end{equation*}
$$

It is enough to check this condition on a system of generators for $J_{*, L, *}^{\mathrm{w}, W}$. For example, by Table 1, we can take $\delta=5$ in the case of $W\left(E_{7}\right)$-invariant Jacobi forms.

4. The shape of generators of free algebras

In this section, we introduce a universal and elementary method to prove that the space of orthogonal modular forms is a free algebra when the associated bigraded ring of Jacobi forms is free and there exist certain special modular forms (i.e. the modular forms of types (a) and (b) in section 1.2).

Let W be a subgroup of $\mathrm{O}(L)$ containing $\widetilde{\mathrm{O}}(L)$. We assume that the bigraded ring $J_{*, L, *}^{\mathrm{w}, W}$ is freely generated as a $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$-algebra by the forms

$$
\phi_{i}:=\phi_{-k_{i}, m_{i}} \in J_{-k_{i}, L, m_{i}}^{\mathrm{w}, W}, 1 \leq i \leq \operatorname{rank}(L)+1 .
$$

Let $M=\mathrm{I}_{2,2} \oplus L(-1)$ and define the congruence subgroup $\Gamma=\left\langle\widetilde{\mathrm{O}}^{+}(M), W\right\rangle$. We formulate the following assumption.

Assumption 4.1. There exist modular forms $\widetilde{E}_{4}, \widetilde{E}_{6}$ and $\Phi_{i}, 1 \leq i \leq \operatorname{rank}(L)+1$ satisfying the following conditions:
(1) $\widetilde{E}_{4} \in M_{4}(\Gamma)$ and $\widetilde{E}_{6} \in M_{6}(\Gamma)$, and their first Fourier-Jacobi coefficients are respectively the Eisenstein series E_{4} and E_{6} on $\mathrm{SL}_{2}(\mathbb{Z})$.
(2) $\Phi_{i} \in M_{-k_{i}+12 m_{i}}(\Gamma)$ has Fourier-Jacobi expansion

$$
\Phi_{i}=\left(\Delta^{m} \phi_{i}\right) \xi^{m_{i}}+O\left(\xi^{m_{i}+1}\right)
$$

Proposition 4.2. If Assumption 4.1 holds, then $M_{*}(\Gamma)$ is a free algebra over \mathbb{C} generated by \widetilde{E}_{4}, \widetilde{E}_{6} and $\Phi_{i}, 1 \leq i \leq \operatorname{rank}(L)+1$.

Proof. Let $F=\sum_{m=0}^{\infty} f_{m} \xi^{m} \in M_{k}(\Gamma)$. Then $f_{0} \in M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and there exists a polynomial P_{0} over \mathbb{C} in two variables such that $f_{0}=P_{0}\left(E_{4}, E_{6}\right)$. It follows that

$$
F_{1}:=F-P_{0}\left(\widetilde{E}_{4}, \widetilde{E}_{6}\right)=\sum_{m=1}^{\infty} f_{m, 1} \xi^{m} \in M_{k}(\Gamma)\left(\xi^{1}\right),
$$

and $f_{m, 1} \in J_{k, L, m}^{W}(q)$ for $m \geq 1$.
Now let $r \geq 1$ and suppose a form $F_{r}=\sum_{m=r}^{\infty} f_{m, r} \xi^{m} \in M_{k}(\Gamma)\left(\xi^{r}\right)$ is given. Since $f_{r, r} \in$ $J_{k, L, r}^{W}\left(q^{r}\right)$, it follows that $f_{r, r} / \Delta^{r} \in J_{k-12 r, L, r}^{\mathrm{w}, W}$. Therefore there exists a polynomial P_{r} over \mathbb{C} in $\operatorname{rank}(L)+3$ variables such that $f_{r, r}=\Delta^{r} P_{r}\left(E_{4}, E_{6}, \phi_{i}\right)$, which yields

$$
F_{r+1}:=F_{r}-P_{r}\left(\widetilde{E}_{4}, \widetilde{E}_{6}, \Phi_{i}\right)=\sum_{m=r+1}^{\infty} f_{m, r+1} \xi^{m} \in M_{k}(\Gamma)\left(\xi^{r+1}\right),
$$

and $f_{m, r+1} \in J_{k, L, m}^{W}\left(q^{r+1}\right)$ for $m \geq r+1$. Indeed, let

$$
\varphi=E_{4}^{a} E_{6}^{b} \prod_{i=1}^{\operatorname{rank}(L)+1} \phi_{i}^{c_{i}}
$$

be any monomial in P_{r}. By considering the weight and index of φ, we find

$$
4 a+6 b-\sum_{i=1}^{\operatorname{rank}(L)+1} k_{i} c_{i}=k-12 r, \quad \sum_{i=1}^{\operatorname{rank}(L)+1} m_{i} c_{i}=r
$$

We conclude that the first nonzero Fourier-Jacobi coefficient of

$$
\widetilde{E}_{4}^{a} \widetilde{E}_{6}^{b} \prod_{i=1}^{\operatorname{rank}(L)+1} \Phi_{i}^{c_{i}}
$$

is exactly $\Delta^{r} \varphi$. Therefore the $r^{\text {th }}$ Fourier-Jacobi coefficient of F_{r+1} is zero.
The proof follows by induction on r because $M_{k}(\Gamma)\left(\xi^{r}\right)$ is trivial when r is sufficiently large. The algebraic independence of the $r+3$ generators over \mathbb{C} follows from the algebraic independence of the $r+1$ basic weak Jacobi forms over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.

From the above proof, it is easy to derive the following corollary.
Corollary 4.3. Suppose that Assumption 4.1 holds. For any weak Jacobi form $\phi \in J_{k, L, m}^{\mathrm{w}, W}$, there exists a modular form of weight $k+12 m$ for Γ whose first nonzero Fourier-Jacobi coefficient is $\left(\Delta^{m} \phi\right) \cdot \xi^{m}$. Moreover, we have the equality

$$
\operatorname{dim} M_{k}(\Gamma)=\sum_{r=0}^{\infty} \operatorname{dim} J_{k-12 r, L, r}^{\mathrm{w}, W}
$$

In particular, $J_{k-12 r, L, r}^{\mathrm{w}, W}=\{0\}$ for sufficiently large r.
Let k be a positive integer. A formal series of holomorphic Jacobi forms is an element

$$
\Psi(Z)=\sum_{m=0}^{\infty} \psi_{m} \xi^{m} \in \prod_{m=0}^{\infty} J_{k, L, m}^{W}
$$

We call Ψ a formal Fourier-Jacobi expansion of weight k if it satisfies

$$
f_{m}(n, \ell)=f_{n}(m, \ell), \quad m, n \in \mathbb{N}, \ell \in L^{\vee}
$$

where $f_{m}(n, \ell)$ are Fourier coefficients of ψ_{m}. We denote the space of such expansions by $F M_{k}(\Gamma)$. As a direct consequence, we obtain the modularity of formal Fourier-Jacobi expansions:
Corollary 4.4. Suppose that Assumption 4.1 holds. Then $F M_{k}(\Gamma)=M_{k}(\Gamma)$ for any $k \in \mathbb{N}$. In other word, every formal Fourier-Jacobi expansion is convergent on the tube domain $\mathcal{H}(L)$ and defines an orthogonal modular form.
Proof. Firstly, the Fourier-Jacobi expansion of modular forms gives the following injective map

$$
M_{k}(\Gamma) \rightarrow F M_{k}(\Gamma), \quad F \mapsto \text { Fourier-Jacobi expansion of } F
$$

Using a similar argument as in the previous subsection, we get $\operatorname{dim} F M_{k}(\Gamma) \leq \sum_{r=0}^{\infty} \operatorname{dim} J_{k-12 r, L, r}^{\mathrm{w}, W}$. We then prove the surjectivity of the above map by Corollary 4.3.

We remark that the modularity of formal Fourier-Jacobi expansions is known for Siegel modular forms [BR15]. The result of [BR15] is a key step in the proof that certain generating series from arithmetic geometry are in fact modular forms.

5. Free algebras related to root systems

In this section we prove our main theorem. In fact, we show that all cases of Theorem 1.2 satisfy Assumption 4.1. We use the additive (Gritsenko) lift, i.e. the generalization of the Saito-Kurokawa lift to higher-rank lattices, to construct orthogonal modular forms. This sends a holomorphic Jacobi form ϕ of weight k and index 1 associated to a lattice L to a modular form of weight k on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus L(-1)\right)$. If the constant term $f(0,0)$ of ϕ is not zero, then the first Fourier-Jacobi coefficient of the additive lift of ϕ is the $\mathrm{SL}_{2}(\mathbb{Z})$-Eisenstein series of weight k. If $f(0,0)=0$, then the first nonzero Fourier-Jacobi coefficient of the additive lift is ϕ itself. We refer to [Gri94, Theorem 3.1] (or [CG13, Theorem 3.2]) for more details of additive lifts.
5.1. The cases A_{n}, B_{n}, G_{2} and C_{3}. We first consider root systems A_{n} and B_{n}. In these cases, all generators of Weyl invariant Jacobi forms have index 1. Therefore it is easy to construct the desired orthogonal modular forms in Assumption 4.1.
(1) Let $R=B_{n}$ with $2 \leq n \leq 4$. The generated root lattice is the odd lattice \mathbb{Z}^{n}. After rescaling the bilinear form by $2, L_{R}$ becomes the root lattice $n A_{1}$.

It is clear that $W\left(B_{n}\right)=\mathrm{O}\left(n A_{1}\right)$. The natural homomorphism $\mathrm{O}\left(n A_{1}\right) \rightarrow \mathrm{O}\left(n A_{1}^{\vee} / n A_{1}\right)$ is surjective. Recall that $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus n A_{1}\right)$ is the kernel of the surjective homomorphism $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus n A_{1}\right) \rightarrow \mathrm{O}\left(n A_{1}^{\vee} / n A_{1}\right)$. Thus $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus n A_{1}\right)$ is generated by $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus n A_{1}\right)$ and $\mathrm{O}\left(n A_{1}\right)$, which yields $\Gamma_{R}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus n A_{1}(-1)\right)$. This argument holds for all root lattices in Theorem 1.2. This helps us to calculate the groups Γ_{R}.

The Fourier-Jacobi coefficients of modular forms on Γ_{R} are $W\left(B_{n}\right)$-invariant Jacobi forms. We know from Table 1 that $J_{*, n A_{1}, *}^{\mathrm{w}, \mathrm{O}\left(n A_{1}\right)}$ is a polynomial algebra over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and all generators ϕ_{i} have index 1 . The additive lifts of the Jacobi Eisenstein series of weights 4 and 6 give the modular forms $\widetilde{E_{4}}$ and $\widetilde{E_{6}}$. It is easy to check that $\Delta \phi_{i}$ are always holomorphic Jacobi forms. The additive lifts of $\Delta \phi_{i}$ give the modular forms Φ_{i}. Thus Assumption 4.1 is satisfied.
(2) Let $R=A_{n}$ with $1 \leq n \leq 7$. In these cases, $\Gamma_{R}=\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{n}(-1)\right)$ because $W\left(A_{n}\right)$ is contained in the discriminant kernel $\widetilde{\mathrm{O}}\left(A_{n}\right)$. We note here that $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{1}(-1)\right)=$ $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{1}(-1)\right)$. It is known that $J_{*, A_{n}, *}^{\mathrm{w}, W\left(A_{n}\right)}$ is a polynomial algebra over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and all generators have index 1. Similarly, we conclude that Assumption 4.1 holds.
(3) Let $R=G_{2}$. Then $L_{R}=A_{2}, W(R)=\mathrm{O}\left(A_{2}\right)$, and $\Gamma_{R}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{2}(-1)\right)$. The FourierJacobi coefficients of modular forms on $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{2}(-1)\right)$ are $W\left(G_{2}\right)$-invariant Jacobi forms. We know that $J_{*, A_{2}, *}^{\mathrm{w}, \mathrm{O}\left(A_{2}\right)}$ is a polynomial algebra over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and the generators are $\phi_{0, A_{2}, 1}, \phi_{-2, A_{2}, 1}$ and $\phi_{-6, A_{2}, 2}$. We notice that $\phi_{-6, A_{2}, 2}$ can be chosen as $\phi_{-3, A_{2}, 1}^{2}$, where $\phi_{-3, A_{2}, 1}$ is a generator of $J_{*, A_{2}, *}^{\mathrm{w}, W\left(A_{2}\right)}$. Thus the desired modular form Φ_{3} corresponding to $\phi_{-6, A_{2}, 2}$ can be constructed as the square of the additive lift of $\Delta \phi_{-3, A_{2}, 1}$. Therefore Assumption 4.1 is satisfied.
(4) Let $R=C_{3}$. Then $L_{R}=A_{3} \cong D_{3}, W(R)=\mathrm{O}\left(A_{3}\right)$, and $\Gamma_{R}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{3}(-1)\right)$. We know that $J_{*, A_{3}, *}^{\mathrm{w}, \mathrm{O}\left(A_{3}\right)}$ is a polynomial algebra over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ generated by $\phi_{0, A_{3}, 1}, \phi_{-2, A_{3}, 1}$, $\phi_{-6, A_{3}, 2}$ and $\phi_{-4, A_{3}, 1}$. Similarly, $\phi_{-6, A_{3}, 2}$ can be chosen as $\phi_{-3, A_{3}, 1}^{2}$, where $\phi_{-3, A_{3}, 1}$ is a generator of $J_{*, A_{3}, *}^{\mathrm{w}, W\left(A_{3}\right)}$. In a similar way, we prove that Assumption 4.1 holds.
5.2. The cases C_{n}, D_{n}, and F_{4}. Let $4 \leq n \leq 8$. For $R=C_{n}$ or D_{n}, we have $L_{R}=D_{n}$. When $R=F_{4}$, we have $L_{R}=D_{4}$. It is known that $W\left(D_{n}\right)$ is a subgroup of index 2 of $W\left(C_{n}\right)$ and that $W\left(C_{n}\right) / W\left(D_{n}\right)$ is generated by the sign change for an odd number of coordinates of $D_{n} \otimes \mathbb{C}$. It is easy to check that

$$
\begin{aligned}
& \Gamma_{D_{n}}=\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{n}(-1)\right), \quad 4 \leq n \leq 8 \\
& \Gamma_{C_{n}}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{n}(-1)\right), \quad 5 \leq n \leq 8 \\
& \Gamma_{C_{4}}=\mathrm{O}_{1}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right):=\left\langle\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right), \text { odd sign change of coordinates }\right\rangle \\
& \Gamma_{F_{4}}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right)
\end{aligned}
$$

In these cases, the rings of Weyl-invariant Jacobi forms require generators of index larger than 1. There is no direct way to construct the desired modular forms in Assumption 4.1 corresponding to basic Jacobi forms of index larger than 1. To overcome this, we first construct the desired generators for the root system C_{8} and then use the pullback trick to construct the desired generators for other
C_{n}, D_{n} and F_{4}. In order to construct the desired generators for C_{8}, we first prove that the exact dimension of the space of orthogonal modular forms coincides with the upper bound given in $\S 3$ when the weight is low. To prove this, we construct some linearly independent modular forms as polynomials in the additive lifts of Jacobi Eisenstein series, which gives a lower bound for the dimension. We then conclude the existence of the desired generators using an idea similar to Corollary 4.3.
5.2.1. The case C_{8}. We recall that $W\left(C_{8}\right)=\mathrm{O}\left(D_{8}\right)$ and $\Gamma_{C_{8}}=\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{8}(-1)\right)$. There is a wellknown isomorphism between the spaces of Jacobi forms and vector-valued modular forms for the Weil representation of $\mathrm{SL}_{2}(\mathbb{Z})$, which is given by the theta decomposition (see [Gri94, Lemma 2.3]). This isomorphism will be used very often later. We see from the theta decomposition that every Jacobi form of index 1 for D_{8} is automatically invariant under $W\left(D_{8}\right)$, namely $J_{k, D_{8}, 1}=J_{k, D_{8}, 1}^{W\left(D_{8}\right)}$. The additive lift of any $\mathrm{O}\left(D_{8}\right)$-invariant holomorphic Jacobi forms of index 1 for D_{8} will be a modular form on $\Gamma_{C_{8}}$.

The Fourier expansions of $\mathrm{O}\left(D_{8}\right)$-invariant Jacobi Eisenstein series of lattice index D_{8} (i.e. index 1 for D_{8}) are straightforward to compute as follows. The root lattice D_{8} is stably equivalent to the rescaled hyperbolic plane $\mathrm{II}_{1,1}(2)$ in the sense that there are unimodular lattices U_{1}, U_{2} for which $U_{1} \oplus D_{8} \cong U_{2} \oplus \mathrm{II}_{1,1}(2)$, so there is an isomorphism of graded $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$-modules

$$
J_{*, D_{8}, 1} \cong M_{*-4}(\rho)
$$

where $M_{*}(\rho)$ denotes modular forms which transform with respect to the (dual) Weil representation attached to $\mathrm{I}_{1,1}(2)$. We write such modular forms in terms of their components:

$$
F=\left(F_{00}, F_{01}, F_{10}, F_{11}\right) .
$$

By a general result for Weil representations attached to rescaled hyperbolic planes (Proposition 3.4 of [Car12]) there is an isomorphism

$$
M_{*}(\rho) \cong M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \oplus M_{*}\left(\Gamma_{0}(2)\right),
$$

under which a pair of modular forms $f_{1} \in M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right), f_{2} \in M_{k}\left(\Gamma_{0}(2)\right)$ corresponds to the form

$$
F_{00}=\left(f_{1}+f_{2}\right) / 2, F_{01}=\left(f_{1}-f_{2}\right) / 2, F_{10}=\left(\left.f_{2}\right|_{k} S+\left.f_{2}\right|_{k} U\right) / 2, F_{11}=\left(\left.F_{2}\right|_{k} S-\left.F_{2}\right|_{k} U\right) / 2,
$$ where $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 1 \\ 0 & 1\end{array}\right)$.

A Jacobi form in $J_{k, D_{8}, 1}$ is $\mathrm{O}\left(D_{8}\right)$-invariant if and only if the corresponding modular form F has equal components $F_{01}=F_{10}$, and this is true if and only if the forms $\left(f_{1}, f_{2}\right)$ as above satisfy

$$
f_{1}=f_{2}+\left.f_{2}\right|_{k} S+\left.f_{2}\right|_{k} U .
$$

In this way we obtain a natural isomorphism of graded $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$-modules

$$
J_{*, D_{8}, 1}^{\mathrm{O}\left(D_{8}\right)} \cong M_{*-4}\left(\Gamma_{0}(2)\right)
$$

which respects Fourier coefficients (on the right-hand side involving both cusps) and identifies the two $\mathrm{O}\left(D_{8}\right)$-invariant Jacobi Eisenstein series of weights no less than 8 with the usual Eisenstein series for $\Gamma_{0}(2)$.

Unfortunately, the lifts to orthogonal modular forms have unwieldy Fourier expansions (in ten variables) and taking algebraic expressions in them to any significant precision involves an unmanageable number of operations. It is inconvenient to work with these modular forms directly. Our method is to instead restrict these lifts to certain embedded Siegel upper half-spaces which correspond to Grassmannians of sublattices of $\mathrm{I}_{2,2} \oplus D_{8}(-1)$ of signature (2,3). These restrictions (called pullbacks) can be computed without first computing the lifts due to the commutative diagrams

where $v \in D_{8}$ is any nonzero lattice vector of norm m, and e_{v} denotes the map

$$
e_{v}: J_{k, D_{8}, 1} \longrightarrow J_{k, m}, \quad\left(e_{v} f\right)(\tau, z)=f(\tau, z \cdot v),
$$

and where $K(m)$ is the paramodular group of degree two and level m, which is isomorphic to the group $\widetilde{\mathrm{SO}}^{+}\left(\mathrm{II}_{2,2} \oplus\langle-2 m\rangle\right)$. Any algebraic relation among the orthogonal Eisenstein series for D_{8} will be mapped to an algebraic relation among the pullbacks. By making a fortunate choice of v, we hope to find that the pullbacks satisfy no relations in small weight and conclude that the orthogonal Eisenstein series span the whole spaces of modular forms of small weights.

The orthogonal modular variety attached to $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{8}(-1)\right)$ has two zero-dimensional cusps, corresponding to the cosets of D_{8} in its dual lattice which have integer norm modulo the orthogonal group. In particular, for every even $k \geq 8$, we obtain two orthogonal Eisenstein series $\mathcal{E}_{k, 0}$ and $\mathcal{E}_{k, 1}$ (the additive lifts of the Jacobi Eisenstein series) corresponding to the cusps of the zero and nonzero integer-norm cosets of D_{8}, respectively. In addition, we let \mathcal{E}_{4} and \mathcal{E}_{6} be the additive lifts of the holomorphic Jacobi forms which correspond to $1 \in M_{0}\left(\Gamma_{0}(2)\right)$ and $2 E_{2}(\tau)-E_{2}(2 \tau) \in M_{2}\left(\Gamma_{0}(2)\right)$ as above.

Proposition 5.1. The series

$$
\mathcal{E}_{4}, \mathcal{E}_{6}, \mathcal{E}_{8,0}, \mathcal{E}_{8,1}, \mathcal{E}_{10,0}, \mathcal{E}_{10,1}, \mathcal{E}_{12,0}, \mathcal{E}_{12,1}, \mathcal{E}_{14,0}, \mathcal{E}_{16,0}, \mathcal{E}_{18,0}
$$

satisfy no algebraic relations in weights less than 20 .
Proof. We realized the D_{8} lattice concretely as \mathbb{Z}^{8} with bilinear form given by the Cartan matrix

$$
\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 2
\end{array}\right)
$$

and we restricted the Jacobi Eisenstein series to the complex span of the vector

$$
v=(4,2,3,4,1,3,2,4)
$$

of norm 24. (The choice of v is more or less arbitrary; roughly speaking, with larger-norm vectors the computation is more likely to succeed and with smaller-norm vectors the computation is faster, and we look for a balance between the two.) We computed enough Fourier coefficients of the pulled-back Jacobi Eisenstein series $f(\tau, z)=E_{*, *}(\tau, z)$ to identify them uniquely, and used faster methods for Jacobi forms of scalar index to compute their Gritsenko lifts to the paramodular group $K(24)$. Finally we checked by direct computation that the monomials in these lifts are linearly independent in weights up to 20 .

It is important to verify the correctness of this computation: incorrect computations at any step in the above argument are very likely to produce series which are algebraically independent, regardless of whether this is actually the case. To verify that the algorithm is correct, we computed not only the Eisenstein series above, but all Eisenstein series (for both cusps) of weights up to and including 20. We expect, then, to find unique expressions for these additional Eisenstein series in
terms of the generators above. Indeed, our method yields unique expressions for them; for example, we find

$$
\mathcal{E}_{14,0}+\mathcal{E}_{14,1}=1330560 \mathcal{E}_{4}^{2} \mathcal{E}_{6}+2640 \mathcal{E}_{4}\left(E_{10,0}+\mathcal{E}_{10,1}\right)-11088 \mathcal{E}_{6}\left(\mathcal{E}_{8,0}+\mathcal{E}_{8,1}\right)
$$

From the above proposition, we derive a lower bound of $\operatorname{dim} M_{k}\left(\Gamma_{C_{8}}\right)$ for $k \leq 18$. By direct calculation, we find that this lower bound coincides with the upper bound given in §3. As in Corollary 4.3 , when $k \leq 18$, we have

$$
\operatorname{dim} M_{k}\left(\Gamma_{C_{8}}\right)=\sum_{r=0}^{\infty} \operatorname{dim} J_{k-12 r, D_{8}, r}^{\mathrm{w}, \mathrm{O}\left(D_{8}\right)}, \quad k \leq 18 .
$$

Moreover, for any $\phi \in J_{k, D_{8}, m}^{\mathrm{O}\left(D_{8}\right)}\left(q^{m}\right)$ with $k \leq 18$, there exists a modular form of weight k on $\Gamma_{C_{8}}$ whose Fourier-Jacobi expansion begins $\phi \cdot \xi^{m}+O\left(\xi^{m+1}\right)$. This confirms the existence of the modular forms required in Assumption 4.1 for C_{8}. We obtain the following theorem.

Theorem 5.2. The graded algebra of modular forms on $\mathrm{O}^{+}\left(\mathrm{I}_{2,2} \oplus D_{8}(-1)\right)$ is freely generated by the 11 orthogonal Eisenstein series $\mathcal{E}_{4}, \mathcal{E}_{6}, \mathcal{E}_{8,0}, \mathcal{E}_{8,1}, \mathcal{E}_{10,0}, \mathcal{E}_{10,1}, \mathcal{E}_{12,0}, \mathcal{E}_{12,1}, \mathcal{E}_{14,0}, \mathcal{E}_{16,0}, \mathcal{E}_{18,0}$.
5.2.2. The other cases. We have constructed the generators satisfying Assumption 4.1 for the root system C_{8}. We now construct the desired generators for other C_{n}, D_{n} and F_{4} as the pullbacks of the C_{8} generators. We only do this for D_{8} and D_{7} because the other cases are similar. For the root systems C_{8} and D_{8}, we can choose the generators of Weyl invariant Jacobi forms of the following form at the same time

$$
\begin{array}{ll}
D_{8}: & \phi_{0, D_{8}, 1}, \phi_{-2, D_{8}, 1}, \phi_{-4, D_{8}, 1}, \psi_{-8, D_{8}, 1}, \phi_{-6, D_{8}, 2}, \phi_{-8, D_{8}, 2}, \phi_{-10, D_{8}, 2}, \phi_{-12, D_{8}, 2}, \phi_{-14, D_{8}, 2}, \\
C_{8}: & \phi_{0, D_{8}, 1}, \phi_{-2, D_{8}, 1}, \phi_{-4, D_{8}, 1}, \psi_{-8, D_{8}, 1}^{2}, \phi_{-6, D_{8}, 2}, \phi_{-8, D_{8}, 2}, \phi_{-10, D_{8}, 2}, \phi_{-12, D_{8}, 2}, \phi_{-14, D_{8}, 2} .
\end{array}
$$

The choice means that all generators of the shape ϕ are invariant but $\psi_{-8, D_{8}, 1}$ is anti-invariant under the action of the odd sign change of coordinates of $D_{8} \otimes \mathbb{C}$. From the relation of the two kinds of generators, we see at once that Assumption 4.1 holds for root system D_{8}. We then obtain the structure result for modular forms on $\Gamma_{D_{8}}=\widetilde{\mathrm{O}}^{+}\left(\mathrm{I}_{2,2} \oplus D_{8}(-1)\right)$.

The root lattice D_{7} is a sublattice of D_{8}. The generators of index 2 of $W\left(D_{7}\right)$-invariant Jacobi forms can be chosen as the pullbacks of the above $\phi_{-2 k, D_{8}, 2}$. Note that the pullback of $\phi_{-14, D_{8}, 2}$ to D_{7} is equal to the square of the unique $W\left(D_{7}\right)$-invariant weak Jacobi form of weight -7 and index 1 up to a constant, and the pullback of $\psi_{-8, D_{8}, 1}$ to D_{7} is identically zero. The first Fourier-Jacobi coefficient of a pullback of an orthogonal modular form F is equal to the pullback of the first Fourier-Jacobi coefficient of F. We then construct the desired generators corresponding to basic Jacobi forms of index 2 as pullbacks. Thus Assumption 4.1 is satisfied for D_{7}.

We next consider the case of F_{4}. For $W\left(F_{4}\right)$-invariant Jacobi forms, the generators $\varphi_{-8, D_{4}, 2}$ and $\varphi_{-12, D_{4}, 3}$ can be constructed as polynomial combinations of the generators of $W\left(D_{4}\right)$-invariant Jacobi forms. Therefore the corresponding desired modular forms can be constructed as the same polynomial combinations of the basic orthogonal modular forms for D_{4}. Hence Assumption 4.1 holds for F_{4}.
5.3. The case of E_{6}. The root lattice E_{6} has cyclic discriminant group of prime discriminant 3 . We let ρ denote the attached (dual) Weil representation and write out modular forms taking values in ρ in components: $F=\left(F_{0}, F_{1}, F_{2}\right)$. By [BB03] there are isomorphisms in even weight:

$$
J_{2 *, E_{6}, 1}=J_{2 *, E_{6}, 1}^{W\left(E_{6}\right)} \cong M_{2 *-3}(\rho) \cong M_{2 *-3}^{+}\left(\Gamma_{0}(3), \chi\right),
$$

the latter space consisting of modular forms for the quadratic Nebentypus χ whose Fourier expansions are supported on quadratic residues. The latter isomorphism is simply $F \mapsto\left(F_{0}(3 \tau)+\right.$
$\left.F_{1}(3 \tau)+F_{2}(3 \tau)\right) / 3 ;$ its inverse maps $f(\tau)=\sum_{n} c(n) q^{n} \in M_{2 *-3}^{+}\left(\Gamma_{0}(3), \chi\right)$ to

$$
\left(\sum_{n \equiv 0(3)} c(n) q^{n / 3}, \frac{1}{2} \sum_{n \equiv 1(3)} c(n) q^{n / 3}, \frac{1}{2} \sum_{n \equiv 1(3)} c(n) q^{n / 3}\right)
$$

Also, one obtains all even-weight modular forms for ρ (and thus all odd-weight Jacobi forms) through the isomorphism

$$
M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \xrightarrow{\sim} M_{*+4}(\rho), \quad f \mapsto\left(0, f \cdot \eta^{8},-f \cdot \eta^{8}\right),
$$

where $\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ as usual. These observations make it possible to compute quickly with Jacobi forms of index E_{6}.

For even $k \geq 4$ we denote by \mathcal{E}_{k} the orthogonal Eisenstein series, obtained by lifting the Jacobi Eisenstein series (which correspond as above to the usual Eisenstein series in $M_{k-3}^{+}\left(\Gamma_{0}(3)\right.$, $\left.\chi\right)$). Also we let \mathfrak{M}_{7} and \mathfrak{M}_{15} denote the (unique up to scalar multiple) additive lifts in weights 7 and 15, which correspond to 1 and $E_{8}=E_{4}^{2}$ in $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ under the isomorphism

$$
M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \xrightarrow{\sim} M_{*+4}(\rho) \xrightarrow{\sim} J_{*+7, E_{6}, 1}
$$

Proposition 5.3. The series

$$
\mathcal{E}_{4}, \mathcal{E}_{6}, \mathfrak{M}_{7}, \mathcal{E}_{10}, \mathcal{E}_{12}, \mathfrak{M}_{15}, \mathcal{E}_{16}, \mathcal{E}_{18}, \mathcal{E}_{24}
$$

satisfy no algebraic relations in weights less than 40 .
Proof. The argument is essentially the same as the D_{8} lattice. We realized E_{6} as \mathbb{Z}^{6} with quadratic form given by the standard Cartan matrix

$$
\left(\begin{array}{cccccc}
2 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

and evaluated the Jacobi forms above along the line through the norm 12 vector $v=(3,2,0,1,1,1)$ (such that their Gritsenko lifts may naturally be interpreted as paramodular forms of level 12). We found that the monomials in these Gritsenko lifts of weights less than 40 are linearly independent, and verified the correctness of the algorithm by finding the Eisenstein series of weights $8,14,20$ as (unique) polynomials in the generators given above.

Similarly to the case of D_{8}, the above proposition implies that Assumption 4.1 holds for E_{6} so we conclude the following result.
Theorem 5.4. The graded algebra of modular forms on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$ is freely generated by the series $\mathcal{E}_{4}, \mathcal{E}_{6}, \mathfrak{M}_{7}, \mathcal{E}_{10}, \mathcal{E}_{12}, \mathfrak{M}_{15}, \mathcal{E}_{16}, \mathcal{E}_{18}, \mathcal{E}_{24}$.

Gritsenko and Nikulin constructed a cusp form of weight 120 on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$ with the character det in [GN18, Theorem 4.3]. This form was constructed as the quasi-pullback of the Borcherds form on $\mathrm{II}_{2,26}$ (see [Bor98]) and we denote it by $\Phi_{120, E_{6}}$. It is a strongly 2-reflective Borcherds product; namely, its zero divisor is a sum of rational quadratic divisors associated to vectors of norm -1 with multiplicity one:

$$
\operatorname{Div}\left(\Phi_{120, E_{6}}\right)=\sum_{\substack{l \in \mathrm{II}_{2,2} \oplus E_{6}(-1) \\(l, l)=-2}} l^{\perp} .
$$

By [GHS09, Corollary 1.8], $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$ has only one nontrivial character (det) and $\widetilde{\mathrm{SO}^{+}}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$ has no nontrivial characters. It is easy to check that every modular form
on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$ with character det vanishes on the 2-reflective divisor. Thus we have

$$
\begin{equation*}
M_{k}\left(\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right), \operatorname{det}\right)=\Phi_{120, E_{6}} \cdot M_{k-120}\left(\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right) .\right. \tag{5.1}
\end{equation*}
$$

We can also construct $\Phi_{120, E_{6}}$ using the Rankin-Cohen-Ibukiyama type differential operator (see [AI05, Proposition 2.1] for the original version for Siegel modular forms, and [Klo05, Proposition 2.14]) or [DKW19, Proposition 5.6] for the version for orthogonal modular forms). The Rankin-Cohen-Ibukiyama type differential operator of our nine generators gives a modular form of weight 120 with character det, which must equal $\Phi_{120, E_{6}}$ up to a constant.

There is another interesting Borcherds product on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$. We use the invariant version of Borcherds product in the context of Jacobi forms (see [Gri18, Theorem 4.2]). The Borcherds product of the unique $W\left(E_{6}\right)$-invariant weak Jacobi form of weight 0 will give a modular form of weight 45 on $\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$.
5.4. The case of E_{7}. The lattice index E_{7} admits nonzero Jacobi forms only in even weight, and via the theta decomposition one obtains an isomorphism

$$
J_{2 *, E 7,1} \xrightarrow{\sim} M_{2 *-7 / 2}(\rho) \xrightarrow{\sim} M_{2 *-7 / 2}\left(\Gamma_{0}(4)\right),
$$

first to modular forms which transform with respect to the Weil representation ρ attached to the rank-one lattice generated by a vector of norm one, and then to the Kohnen plus spaces of level $\Gamma_{0}(4)$, i.e. modular forms $\sum_{n=0}^{\infty} c(n) q^{n}$ of half-integral weight for which $c(n)=0$ unless $n \equiv 0,1$ $\bmod 4$. The passage to Kohnen's plus space is through the correspondence

$$
\left(\sum_{n \in \mathbb{N}} c(n) q^{n}, \quad \sum_{n \in \mathbb{N}+1 / 4} c(n) q^{n}\right) \in M_{*}(\rho) \leftrightarrow \sum_{n \equiv 0,1(4)} c(n / 4) q^{n} \in M_{*}^{+}\left(\Gamma_{0}(4)\right) .
$$

The Jacobi Eisenstein series of index E_{7} and weight k correspond through the previous paragraph to Cohen's [Coh75] half-integral weight Eisenstein series. In particular their Fourier coefficients are generalized Hurwitz class numbers. We denote by \mathcal{E}_{k} the orthogonal Eisenstein series obtained from these as lifts. (It is convenient to refer to $\theta(\tau)=1+2 q+2 q^{4}+\ldots$ as the Cohen Eisenstein series of weight $1 / 2$, corresponding to the orthogonal form \mathcal{E}_{4}.

Proposition 5.5. The series

$$
\mathcal{E}_{4}, \mathcal{E}_{6}, \mathcal{E}_{10}, \mathcal{E}_{12}, \mathcal{E}_{14}, \mathcal{E}_{16}, \mathcal{E}_{18}, \mathcal{E}_{22}, \mathcal{E}_{24}, \mathcal{E}_{30}
$$

satisfy no algebraic relations in weights less than 40.
Proof. This is the same argument that we used for the root lattices D_{8} and E_{6}. We realize E_{7} as \mathbb{Z}^{7} with Gram matrix

$$
\left(\begin{array}{ccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

and evaluated the Jacobi Eisenstein series in their abelian variable along the line through the norm 12 vector $v=(3,2,0,1,1,1,1)$. We found that the monomials in the resulting Gritsenko lifts of weights less than 40 are linearly independent, and we verified the correctness of the algorithm by actually computing the lifts of all Eisenstein series of weights up to 30 and expressing them (uniquely) through the generators in the claim.

We note that $W\left(E_{7}\right)=\mathrm{O}\left(E_{7}\right)$ and $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)=\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$.
Similarly, we have the following result.

Theorem 5.6. The graded algebra of modular forms on $\mathrm{O}^{+}\left(\mathrm{I}_{2,2} \oplus E_{7}(-1)\right)$ is freely generated by the 10 orthogonal Eisenstein series $\mathcal{E}_{4}, \mathcal{E}_{6}, \mathcal{E}_{10}, \mathcal{E}_{12}, \mathcal{E}_{14}, \mathcal{E}_{16}, \mathcal{E}_{18}, \mathcal{E}_{22}, \mathcal{E}_{24}, \mathcal{E}_{30}$.

Gritsenko and Nikulin also constructed a strongly 2-reflective cusp form of weight 165 on $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$ with the character det in [GN18, Theorem 4.3]. We denote it by $\Phi_{165, E_{7}}$. This form is equal to the Rankin-Cohen-Ibukiyama type differential operator of our ten generators up to a constant.

By [GHS09, Corollary 1.8], $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$ has only one nontrivial character, namely det, and $\mathrm{SO}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$ has no nontrivial characters. Similarly,

$$
\begin{equation*}
M_{k}\left(\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right), \operatorname{det}\right)=\Phi_{165, E_{7}} \cdot M_{k-165}\left(\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)\right) . \tag{5.2}
\end{equation*}
$$

There is also another interesting Borcherds product on $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$. The Borcherds product of the unique $W\left(E_{7}\right)$-invariant weak Jacobi form of weight 0 will give a modular form of weight 44 on $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{7}(-1)\right)$.

We end this paper with two remarks.
Remark 5.7. The approach in the present paper does not apply to the other root systems in Wirthmüller's theorem. The reason is that for other root systems there are some generators ϕ of index 1 of Weyl invariant weak Jacobi forms such that $\Delta \phi$ is not a holomorphic Jacobi form. In these cases the additive lift of $\Delta \phi$ is not holomorphic (see [Bor98, Theorem 14.3]).

Remark 5.8. The bigraded ring of $W\left(E_{8}\right)$-invariant weak Jacobi forms is not a free algebra [Wan18] so the methods of this paper also do not apply to the E_{8}-lattice. However, it was announced in [HU14] that the graded ring of modular forms on $\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus E_{8}(-1)\right)$ is freely generated by forms of weights $4,10,12,16,18,22,24,28,30,36,42$. Assuming the structure result of [HU14], it was shown in [DKW19] that the generators can be constructed as the additive lifts of Jacobi Eisenstein series.

The proof of Theorem 1.2 is finished. We formulate the groups Γ_{R} and the weights of generators in the following theorem. The group $\mathrm{O}_{1}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right)$ is defined in §5.2.
Theorem 5.9. For the arithmetic groups in the tables below, the graded rings of modular forms are free on generators of the given weights.

Table 2: Some free algebras of orthogonal modular forms

Root system	Group	Weights of generators
A_{1}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{1}(-1)\right)$	$4,6,10,12$.
A_{2}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{2}(-1)\right)$	$4,6,9,10,12$.
B_{2}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus 2 A_{1}(-1)\right)$	$4,6,8,10,12$.
G_{2}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{2}(-1)\right)$	$4,6,10,12,18$.
A_{3}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{3}(-1)\right)$	$4,6,8,9,10,12$.
B_{3}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus 3 A_{1}(-1)\right)$	$4,6,6,8,10,12$.
C_{3}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus A_{3}(-1)\right)$	$4,6,8,10,12,18$.
A_{4}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{4}(-1)\right)$	$4,6,7,8,9,10,12$.
B_{4}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus 4 A_{1}(-1)\right)$	$4,4,6,6,8,10,12$.
C_{4}	$\mathrm{O}_{1}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right)$	$4,6,8,10,12,16,18$.
D_{4}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{I}_{2,2} \oplus D_{4}(-1)\right)$	$4,6,8,8,10,12,18$.
F_{4}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{4}(-1)\right)$	$4,6,10,12,16,18,24$.

Table 3: Some free algebras of orthogonal modular forms, continued

Root system	Group	Weights of generators
A_{5}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{5}(-1)\right)$	$4,6,6,7,8,9,10,12$.
C_{5}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{5}(-1)\right)$	$4,6,8,10,12,14,16,18$.
D_{5}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{5}(-1)\right)$	$4,6,7,8,10,12,16,18$.
A_{6}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{6}(-1)\right)$	$4,5,6,6,7,8,9,10,12$.
C_{6}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{6}(-1)\right)$	$4,6,8,10,12,12,14,16,18$.
D_{6}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{6}(-1)\right)$	$4,6,6,8,10,12,14,16,18$.
E_{6}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus E_{6}(-1)\right)$	$4,6,7,10,12,15,16,18,24$.
A_{7}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus A_{7}(-1)\right)$	$4,4,5,6,6,7,8,9,10,12$.
C_{7}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{7}(-1)\right)$	$4,6,8,10,10,12,12,14,16,18$.
D_{7}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{7}(-1)\right)$	$4,5,6,8,10,12,12,14,16,18$.
E_{7}	$\mathrm{O}^{+}\left(\mathrm{I}_{2,2} \oplus E_{7}(-1)\right)$	$4,6,10,12,14,16,18,22,24,30$.
C_{8}	$\mathrm{O}^{+}\left(\mathrm{II}_{2,2} \oplus D_{8}(-1)\right)$	$4,6,8,8,10,10,12,12,14,16,18$.
D_{8}	$\widetilde{\mathrm{O}}^{+}\left(\mathrm{II}_{2,2} \oplus D_{8}(-1)\right)$	$4,4,6,8,10,10,12,12,14,16,18$.

Acknowledgements H. Wang would like to thank Zhiwei Zheng for numerous stimulating discussions on related topics, and he is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. B. Williams is supported by a fellowship of the LOEWE research center "Uniformized Structures in Arithmetic and Geometry". The authors thank Eberhard Freitag, Valery Gritsenko and Aloys Krieg for some comments on our paper.

References

[AG19] D. Adler, V. Gritsenko, The D_{8}-tower of weak Jacobi forms and applications. to appear in J. Geom. Phys. https://doi.org/10.1016/j.geomphys.2020.103616
[AI05] H. Aoki, T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Intern. J. Math. 16:3 (2005), 249-279.
[Aok00] H. Aoki, Estimating Siegel modular forms of genus 2 using Jacobi forms. J. Math. Kyoto Univ. 40-3 (2000), 581-588.
[BB66] W. L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. (2), 84 (1966), 442-528.
[BB03] J. Bruinier, M. Bundschuh, On Borcherds products associated with lattices of prime discriminant. Ramanujan J. 7(1-3) (2003), 49-61.
[Ber99] M. Bertola, Jacobi groups, Jacobi forms and their applications. PhD thesis, SISSA, Trieste, 1999.
[Bor98] R. E. Borcherds, Automorphic forms with singularities on Grassmannians. Invent. Math. 123 (1998), no. 3, 491-562.
[Bou60] N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4,5 et 6.
[BR15] J. H. Bruinier, M. Raum, Kudla's Modularity Conjecture and Formal Fourier-Jacobi Series. Forum of Mathematics, Pi (2015), Vol. 3, e7, 30 pages.
[Car12] S. Carnahan, Generalized moonshine, II: Borcherds products. Duke Math. J. 161(5) (2012), 893-950.
[CG13] F. Cléry, V. Gritsenko, Modular forms of orthogonal type and Jacobi theta-series. Abh. Math. Semin. Univ. Hambg. 83 (2013), 187-217.
[Coh75] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217(3), (1975), 271-285.
[DK03] T. Dern, A. Krieg, Graded rings of Hermitian modular forms of degree 2. Manuscr. Math. 110 (2003), 251-272.
[DK06] T. Dern, A. Krieg, The graded ring of Hermitian modular forms of degree 2 over $\mathbb{Q}(\sqrt{-2})$. J. Number Theory 107 (2004), 241-265.
[DKW19] C. Dieckmann, A. Krieg, M. Woitalla, The graded ring of modular forms on the Cayley half-space of degree two. Ramanujan J. 48 (2019) 385-398.
[EZ85] M. Eichler, D. Zagier, The Theory of Jacobi Forms. Progress in Mathematics, vol. 55. Birkhäuser, Boston, Mass., 1985.
[FH00] E. Freitag, C. F. Hermann, Some modular varieties of low dimension. Adv. Math. 152 (2000) 203-287.
[FS07] E. Freitag, R. Salvati Manni, Some modular varieties of low dimension II. Adv. Math. 214 (2007) 132-145.
[Gri94] V. Gritsenko, Modular forms and moduli spaces of Abelian and K3 surfaces. Algebra i Analiz 6 (1994), 65-102; English translation in St. Petersburg Math. J. 6 (1995), 1179-1208.
[Gri18] V. Gritsenko, Reflective modular forms and their applications. Russian Math. Surveys 73:5 (2018), 797-864.
[GHS09] V. Gritsenko, K. Hulek, G. K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties. J. Algebra 322 (2009), no.2, 463-478.
[GN18] V. Gritsenko, V. V. Nikulin, Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections. Proc. Lond. Math. Soc. (3) 116 (2018), no.3, 485-533.
[HU14] H. Hashimoto, K. Ueda, The ring of modular forms for the even unimodular lattice of signature $(2,10)$. Preprint 2014, arXiv:1406.0332.
[Igu62] J. Igusa, On Siegel modular forms of genus two. Amer. J. Math. 84 (1962), 175-200.
[Klo05] I. Klöcker, Modular forms for the orthogonal group O $(2,5)$. Ph.D. thesis, Aachen (2005).
[Kri05] A. Krieg, The graded ring of quaternionic modular forms of degree 2. Math. Z. 251 (2005) 929-944.
[Kri11] A. Krieg, Another Quaternionic Maass Space. Number Theory. Ramanujan Mathematical Society, Lecture Notes Series, vol. 15, pp. 43-50. International Press, Boston (2011).
[Sak19] K. Sakai, En Jacobi forms and Seiberg-Witten curves. Commun. Number Theory Phys. 13 (2019), no. 1, 53-80.
[Stu19] E. S. Stuken, Free algebras of Hilbert automorphic forms. Funkts. Anal. Prilohzen. 53:1 (2019), 49-66; English transl.: Functional Anal. Appl., 53:1 (2019), 37-50.
[SV17] O. V. Shvartsman, E. B. Vinberg, A criterion of smoothness at infinity for an arithmetic quotient of the future tube. Funkts. Anal. Prilohzen. 51:1 (2017), 40-59; English transl.: Functional Anal. Appl., 51:1 (2017), 32-47.
[Vin10] E. B. Vinberg, Some free algebras of automorphic forms on symmetric domains of type IV. Transform. Groups 15:3 (2010), 701-741.
[Vin13] E. B. Vinberg, On the algebra of Siegel modular forms of genus 2. Trudy Moskov. Mat. Obshch. 74:1, 1-16; English transl.: Trans. Moscow Math. Soc. 74 (2013), 1-13.
[Vin18] E. B. Vinberg, On some free algebras of automorphic forms. Funkts. Anal. Prilohzen. 52:4 (2018), 38-61; English transl.: Functional Anal. Appl., 52:4 (2018), 270-289.
[Wir92] K. Wirthmüller, Root systems and Jacobi forms. Compos. Math. 82 (1992) 293-354.
[Woi18] M. Woitalla, Modular forms for the A_{1}-tower. Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 2, 297-316.
[Wan18] H. Wang, Weyl invariant E8 Jacobi forms. arXiv:1801.08462.
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: haowu.wangmath@gmail.com
Fachbereich Mathematik, Technische Universitat Darmstadt, 64289 Darmstadt, Germany
E-mail address: bwilliams@mathematik.tu-darmstadt.de

