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ABSTRACT. This paper generalizes the fast Fourier transform algorithm to the
computationof Fourier transforms on compact Lie groups. The basic technique
uses factorization of elements in the group and Gel’fand bases to simplify the
computations, and may be extended to treat computation of finitely supported
distributions on the group. Similar transforms may be calculated on homoge-
neous sgpaces; we show that special function propertiea of spherical functions
lead to more efficient algorithms. These results may all be viewed as gener-
alizations of the fast Fourier transform algorithms on the circle, and of the
more recent results about Fourier transforms on finite groups. The techniques
introduced make sense for finite groups, and give a general approach to the
calculation of Fourier transforms on any group.

1. INTRODUCTION

Let (G be a compact Lie group, X a finite subset of G, let R be a finite set of
finite dimensional representations of GG, and let f be a complex valued function on
X. In this paper we shall concern ourselves with the efficient computation of the
finite sums

(1) floy = Flo)x =) f(=)p()
TEX
for all representations p in R. By this we mean explicit computation with respect
to a given set of bases for the representation spaces, V.
We shall also look at several generalizations of (1). We shall replace the factor
p(z) by p(Dz), where Dy is a distribution supported on {z}, and we shall also
consider the sum

(2) fo)o =) 1(D)p(D)

DeD
where D is a set of distributions on G and f is a complex valued function on D.
We consider the analogous problem on homogeneous spaces, and finally comment
on a version of these results for tensor fields on the sphere.

The special case when G in a finite group has been treated in several papers
(1, 2, 3, 4, 6,17, 18, 19] and books [3]. When G in S' or Z/nZ we oblain the fasi
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Fourier transform. D. Healy & J. Driscoll and Dan Rockmore consider $? (7, 8).
Our techniques combine all these methods.

To compute the sum (1) directly using any basis for V, takes |X| dﬁ operations!,
and d,, is the dimension of V. To compute these sums for all p in the set R requires
|X|3°,en d2 operations. A common situation is when the map from the function,

f, on X to the collection of transform {f(p)}pen is one Lo one, so the function, f,
is determined by its transforms. In that case |X| < 3 . d2, so the direct method
takes at least |X|? operalions.

When (' is S', a variant of the fast Fourier transform computes the sums (1)
much more efficiently. If R is the set of irreducible representations of weights
ranging from 0 to |X| — 1, then one may calculate f(p) for all p in R in order
|X|(log|X])? operations. When X is the set of |X|-th roots of unity, the fast
Fourier transform algorithms take |X|log|X| operations. For a discussion of such
algorithms see the papers [5, 8, 20]

The computation of the sums (1) depencls on the set of representations, R, the
set, X, and the bases chosen for the representation spaces. To apply our techniques
we must restrict both the sets X and the bases. We make crucial use of Gel’fand
bases, also called subgroup adapted bases, which behave well under restriction. The
set X is assumed to be a subset of a group product of sets, each of which lies in or
commutes with appropriate subgroups.

Our results are of two main types. First, general theorems concerning the com-
plexity if Fourier transform algorithms, and second, complexity results for specific
groups. To summarize the latter we introduce a notion of the size of an irreducible
representation. Choose any norm on the dual of the Cartan subalgebra of g©where
g is the Lie algebra of G, and for any positive integer, b, let Ry be the set of irre-
ducible unitary representations of G that have highest weighi with norm at most
b. A naive approach top computing (1) at all representations in R takes order
p?4imG snerations. We define subsets of the classical groups, X = X, for which
the calculation of (1) at all representations in Ry may be performed in Gel’fand
basis in order 4™ G+ where v, is given by

K, | SO(n) U(n) SU(n) Spln)
Y(Kn) | |5] n-1 n 3n
For a complete statement, see theorem 5.1.

For rank one homogeneous spaces of classical groups, the situation is even better;
the analogous calculation (see section 7) may be performed in order b3i™ /X (Jog b)2
operations. These results all require the use of adapted bases. We also extend our
results to consider sums over more general distributions, as in (2), and finally we
give a brief note on the expansion of tensor fields on the two-sphere in spherical
harmonics.

The ultimate aim of these algorithms is to give a method for computing Fourier
transforms of functions on the whole group, G. To do this one should relate the
Fourier transform of a function on the group to sums of the form (2}, which are
Fourier transforms of finitely supported distributions. More precisely, if r is a C?
function on (¢ and D 1s a distribution of order n supported on X, then the Fourier
transform of the product distribution 2. may be written as a sum of at most 27

pER

1One operation counts for one complex multiplication together with one complex addition
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sums of the form (2) and hence may be computed by the techniques of this paper,
given values of derivatives of h as initial data.? In the thesis [14] and the paper
{15] it is shown that under suitable conditions on h and D, the transform of h.D
approximates, or is even equal to, the Fourier transform of #. We must be sure that
the sets, X, used in this paper are general enough for us to construct distributions,
D, with the correct properties and supported on X. The construction of D, and
the conditions on D and h for a good approximation are treated in [14] and [15).
It is shown there that the sets X we use in this paper are indeed general enough to
treat the Fourier transforms of functions on the whole group (see lemma 4.3 of the
current paper for a statement of such a result).

Oue can Lthink of the techniques we shall use in a hierarchy, each technique im-
proving on the results of the previous. Most fundamental is the use of Gel’fand
bases or, equivalently, subgroup adapted sets of matrix representations. We intro-
duce these in section 2 and use Schur’s lemma to obtain results about the form of
representation matrices. Next, in section 3, we use factorizations of X into coset
representatives to get results analogous to those of Diaconis and Rockmore [6]. This
gives us our first improvements over naive methods, and we also obtain a result on
products of groups. In section 4, we refine the factorizations, adding more factors,
and use commutativity between these factors and subgroups of G. Schur’s lemma
then simplifies the forms of the matrices involved. This idea is a new ingredient
in the theory of fast Fourier transforms on noncommutative groups and yiclds new
results in both the Lie group and finite group cases.

The techniques described so far work by replacing miatrix additions and multi-
plications in (1) with still more matrix multiplications, but ensuring that the new
matrix multiplications may be performed efficiently. To obtain better algorithms
we work on the level of matrix coefficients. Viewing all the matrix equations ob-
tained by previous techniques as sets of scalar equations gives additional flexibility
in the ordering of factors; a multiple matrix product may be computed using matrix
products in only two ways, right to left of left to right, where as an indexed sum
of products may be computed in an arbitrary order. In section 5 we only develop
this idea enough to prove our {inal results for the classical groups, but these meth-
ods also have a nice combinational formulation in terms of injections of diagrams
into Bratteli diagrams [9] that enables one to write down explicit expressions for
the complexities of the algorithms. A treatment of these combinatorial methods is
given, in the finite group case, in [18].

Homogeneous spaces are treated in general in section 6, using similar techniques
for computing sums of products. Treating the computations on the scalar level
gives the possibility of using special function properties of the matrix coefficients:
For the groups SO(3), SU(2), and the homogeneous spaces SO(n)/SO(n — 1),
SU(n)/SU(n-1), Sp(n)/Sp(n—1) we may express the matrix coefficients in terms
of classical orthogonal polynomials [12, 14]. In section 7 we use the algorithm of
Driscoll and Healy, for computing expansions in such sequences, to improve our
results on homogeneous spaces.

Section 8 treats the original problem of computing the sums (2). We reformulate
our algorithms in the language of distributions and convolutions which allows us to
treat the more general case by the same techniques. In section 9 we briefly indicate

2The sums are of the form (1), with p(z) replaced by p(Dz).
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how our results yield a method for efficiently computing the expansion of tensor
fields on S? in tensor harmonics. (see [10]).

Acknowledgements. | would like to thank Persi Diaconis, Dennis Healy and
Dan Rockmore for their encouragement, help, and advice. Thanks also to the
Harvard math department and the Max-Planck-Institut fur Mathematik in Bonn,
who supported me whilc this paper was written.

2. GEL'FAND BASES AND ADAPTED MATRIX REPRESENTATIONS

A set of bases for a set of finite dimensional representations of G is a set of
Gel’fand bases relative to G, or is G-adapted, if a basis for each representation in
the set is a union of bases for orthogonal irreducible representations making up
that representation, and furthermore the matrix representations corresponding to
occurrences of equivalent irreducible representations in any representations of the
set are equal.

If H 1s a closed subgroup of G then a set of bases for representation in R is
H-adapted, or a set of Gel’fand bases relative to H, if the set of bases is H-adapted
when considered as bases for the set of restrictions of representations in R to H.
Likewise, given a chain of subgroups of (i, one may deline a set of bases for R to
be adapted to the chain, or a set of Gel’fand bases relative to the chain, if it is
adapted to each subgroup n the chain.

Although we will need Gel’fand bases we will usually use an equivalent formula-
tion in terms of matrix representations.

Definition 2,1. Assume (G is a compact Lie group and R is a set of finite dimen-
sional matrix representations of G.

(i) R is said to be G-adapted if there is a set, R, of inequivalent irreducible
matrix representations of GG such that each representation in R is a matrix
direct sum of representations in R¢g. The set Reg is uniquely determined
by R.

(11) Assume H is a closed subgroup of . Then R is said to be }-adapted
il the set of restrictions of representations in R is H-adapted, i.e. R|H is
H-adapted, where R|H = {p|H : p € R}

(111) Let Ry = (RlH)y.

So a set, of matrix representations is H-adapted if its set of restrictions to H may
be constructed from a set of inequivalent irreducible matrix representations of H
by taking matrix direct sums. The connection between sets of Gel’fand bases and
adapted sets of matrix representations is obvious.

Lemma 2.1. (i) The standard bases for an adapted set of matriz representa-
ttons is adapled.
(i1) The sets of matriz representations corresponding to an adapted set of bases
1s adapted.

The two approaches are completely equivalent; definition 2.1 and lemma 2.1
could be used as a definition of Gel’fand bases.

There is a natural way to index Gel’fand bases, which leads to a third definition
of them. Suppose R is a set of representations of G, and Ky, > ... > Ky is a chain
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of closed subgroups of G. Let Ry, be a set of inequivalent, irreducible representa-
tions of K; whose direct sums include representations equivalent to restrictions of
representations of R to K;. We construct a finite category with initial object, C,
and including all the representations in the Rk, and in R as objects. The maps of
this category are generated by maps from C to representations in R g, correspond-
ing to bases of these representations, by maps injecting represeniations in Ry, into
ones in Rg,,, according to chosen direct sum decompositions of representations in
Rk, restricted to K;, and by maps injecting representations in Ry, into repre-
sentations in R according to restrictions of representations in R to K,. Elements
of the Gel’fand bases are then indexed by maps from C to representations in R in
this category; each map indexing the vector which is the image of 1 € C under that
map.

The main advantage of using adapted sets of representations is that they allow
us to relate the form of the representation matrices, p(a), to the properties of the
group element, a. It is immediate {rom the definition that if ¢ is an element of a
subgroup of G and p is a matrix representation adapted to that subgroup, then p(a)
will have block diagonal form according to the decomposition of the restriction of p
into irreducibles. If instead a commutes with all elements of a subgroup of GG then
p(a) will have a block scalar form, provided p is adapted to the subgroup. This is
the content of Schur’s lemma.

Lemma 2.2 (Schur’s Lemma). Assume G is a compact Lie group and K is a
closed subgroup of G. Assume p is a K-adapted representation of G such that
pIR=(C™ Q)& - & (C™ @), where m,...,nr are inequivalent irreducible
matriz representations of K and the action on CMi is trivial so n; occurs in p|K
with multiplicity m;. Then if a is in the centralizer of K, p(a) is of the form

(3) (GLpn,(C)® 14, )&+ @ (GLm, (C) ® l4,,)

Where 1g, 1s the d,; X dy; identity matriz and dy; is the dimension of n;. The
tensor products are tensor products of matrices.

If p is adapted with respect to a subgroup chain and « lies in a subgroup of
the chain as well as commuting with other subgroups in the chain then p(a) will be
block diagonal according to the restriction to one subgroup, and after a permutation
of rows and columns it will be block scalar corresponding to the subgroups that a
commutes with. Block diagonal and block scalar matrices have many zero entries;
this is the main source of the efliciency in our algorithms.

In order to describe the effect of the structure of p(a) on the complexity of matrix
multiplications we introduce some notation. Assume G is a compact Lie group and
H > K are closed subgroups of (. For any representation, p, of G let M (p)
denote the maximum multiplicity of any irreducible representations of A in the
restriction to K of an irreducible representation of H occurring in p|H. For any set
of representations, R, we let M4 (R) denote the maximum of M (p) as p varies
over .

Lemma 2.3, Assume G > H > K are compact Lie groups, p is a represenlation
of G adapted to the chain and a lies in H but commutes with K. Then we may
calculate the matriz product p(a).F where F is any d, x d, matriz in no more than
MG (p)d? scalar multiplications and (M (p) — 1)d? additions.
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Proof. Use Schur’s Lemma to count the nonzero entries of p(a). [

3. REDUCTION TO SUBGROUPS

We shall now adapt a method for computing Fourier transforms on finite groups,
due to Diaconis and Rockmore [6], to the compact Lie group setting. This method
relates the computation of the sums (1) to the computation of similar sums defined
on a subgroup, under the assumption that the set over which we are summing
factors nicely.

To keep track of the number of operations required by our methods we define:

Definition 3.1. Assume G 18 a compact Lie group, X is a finite subset of G and
R 18 a set of finite dimensional matrix representations of G. Let T'x (R) denote the
minimum number of operations required to compute the sums (1) for all p in R for
an arbitrary complex function, f, on X.

Lemma 3.1. Assume X is any subset of the compact Lie group, G and R is a set
of G-adapted matriz representations, then Tx(R) = Tx (Rqg).

Assume G is a compact Lie group, K is a closed subgroup of G,Y is a subset of
G, 7 1s a subset of K, and X = Y.Z. Then provided no two points of Y lie in the
same coset of K, we have

(4) 0, S Y fu(2)elz)

vEY €2
(5) = Y pw)fy(plK)z
yEY

where fy,(z) = f(y.z). If some points of ¥ do lie in the same coset of K then it is
possible that z = y.2 = y/.z' for more than one pair (y,z) in ¥ x Z. [n this case
it is simple to redefine fy(z) so that (4) still holds, by choosing one pair (y, z) for
which £ = y.z for each =, defining f,(z) = f(y.2) for that pair and seiting fy/(2’)
to be zero for all other pairs (¢, 2') with 2 = #/.2'. A similar trick allows us to
define f,(z) so that (4) holds when X is contained in ¥.Z, but not necessarly equal
to ¥Y.Z.

Formula (4) suggests a method of computing f(p). First compute all the trans-
forms fy (p|K)z, then multiply by the matrixes p(y) and sum on Y. When p belongs
to a K-adapted set of matrix representations, 2, the computation of the transforms
at the restricted representations p|K for p in R is equivalent to computing trans-
forms at the set of representations Rg. A simple count of the number of operations
in this algorithm proves lemma 3.2, which is stated after the following definition:

Definition 3.2. Assume R is a set of matrix representations of G, Y is a subset,
of G and K is a closed subgroup of G. Let M(R,Y, K) denote the number of
operations needed to compute 3 .y p(¥) F(y, p) for each p in R, where each F(y, p)
is a d, x d, matrix in spang p(X) = (End V,) .

Lemma 3.2. Assume X C Y.Z., where Z is a subset of K, then

Tx(R) < [Y|T2(R|K) + M(R,Y, K)
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Theorem 3.3. Assume (G is a compact Lie group, K is a closed subgroup of
G, X CY.Z. Where Z C K and R is a K-adapted set of matriz representations of
G, then

Tx(R) < [Y|Tz(Rk) + M(R, Y, K)

There are two keys to effective use of this theorem. The first is to apply it to a
chain of subgroups, and the second is to lower the bound on M(R,Y, K) by using
special properties of the matrices p(y). Before investigating these ideas let’s see
what a straight forward application of theorem 3.3 yields.

Corollary 3.4. Assume G is a compact connected Lie group, K a closed connected
subgroup, Yy, a subset of G with |Y,| of order bdim G=dim K qnd 7 is 4 subset of K with
|Zs| of order 6™ K | Assume Xy, C Y4.Z,. Choose a norm on the dual of the Cartan
subalgebra of g€, and let Ry, be a K - adapted set of irreducible representations of G
all of whose highest reights have norm no greater than b. Then Tx (Ry) has order
bImEEY where «y is the mazimum of dim K and dimG — 3 dim K — 1 rank K.

Proof. Assume p is an irreducible representation of (i and p is an irreducible rep-
resentation of K. then d, is a polynomial of degree 1(dim K —rank G) and d, is a
polynomial of degree i;(dim K —rank I), both considered as functions of the high-
est weight of the representations. We may pick a Cartan subalgebra of € which
embeds as a Cartan subalgebra of g€, and choose norms on the duals of both so that
the highest weights of any representation in (Rp)x has norm no greater than 4. The
maximum size of a block in the block matrix fy(p|K}z is max{d, : p' € {p}}k
which is clearly bounded by a term of order p¥(dim K—renk K) hen pis in Ry.
Therefore

Tx (Rs)

IA

[YITz((Re)x} + M(Rs, Y, K)

IN

izl 3 d+ Y| D di | max{d, : p' € (Ro)x}

PE(Ry)K PER,

the first term has order pdim G+dimK 544 (he second term has order
p2dim G- % dim K = 4 rank K 0

Corollary 3.5. Assume GG is a connecled simple compact Lie group, then T under
the assumptions of corollary 3.4, Tx (Ry) has order b3™ GHY0 where v is asymp-
totic to %dimG as the dimension tends to infinity.

Proof. We need only consider groups with Lie algebras of type A, B, E,or D. I G
has rank » then choose K to be a subgroup of G from the same scries but having

rank the closest integer to r\/g. 0O
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Chains of Subgroups. We can apply theorem 3.3 recursively to a chain of sub-
groups.

Theorem 3.6. Assume G is a Lie group and G = K, > --- > Kg = 1 is a chain of
closed subgroups of G. Assume R is a set of representations adapted to this chain,
and X C Z2,.2,-1.... .2, where Z; C K, then

n
Tx(R) < |Zn ... Z2|T7,(Ri,) + D _|Zn - Zi1|M (R, Zi, Kizi)
i=2

Corollary 3.7. Assume G = Ky is one of the clussical groups SO(n), SU(n),
U(n) or Sp(n),® that X, C Z2....2° where Z° C K, and |Z?| is of order
pdim Ki=dim K1 Lot Ry be a set of representations of K, adapted to the chain
Kn > --- 2 Ko such that the norms of its highest weights are at most b. Then
Tx,(Rs) is of order b4im Kat7n yhere

1 1
Y = dim K, — 3 dim K, _; — 3 rank i,

For any of these series of groups vy, is asymplotic to %dim K, as n tends to infinity.

Proof. Following the same line of argument as the proof of corollary 3.4, we find that
Tx,(Rs) is bounded by a sum of n terms with orders d4m&a+%i for | <4 < n. By
explicit calculation we see that +; is always an increasing function of 7 and therefore
Tx,(Rs) is of order %M Kn+¥n Ty verify that v, is asymptotic to %dim K, we
refer to table 3.1. O

K, dim K, | Number of positive roots Tn
SUm+1) [n?+2n ﬂ"T‘Hl 15712+ %n-{-l
S0(2n + 1) M+ n n? nt+92n

Sp(n) 2n® +n n® n° -+ 2n
SO@2n) | 2n*—n n®—n n‘+n—1
som) || sMt-g] | ttEeilsl

Table 3.1: Fourier tranforms using coset decomposition.

Products. A special case of theorem 3.3 occurs when G = H x K is a direct
product. In that case the irreducible representations of G are tensor products of
irreducible representations of H and K and a matrix product of a matrix represen-
tation of / with one of K is both H and K adapted after a relabelling of rows and
columns.

Theorem 3.8. Assume R, Ra are sets of malriz representations of Hy and H,
respectively and R @ Ry 1s the set of their tensor products. Assume G = Hy x M,y
and X C Z,.Z, where Z; C Hq. Then

Tx (R1 ® Ra) < |22|Tz,(R1) + | Z:1|T2,(R2)

3We define Sp(n) to be set set of n X n quaternionic matrices that are unitary with respect (o
a quaternionic inner product, i.e. A*A = [,
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Proof. Let {vi'} be a basis for V,, and {V4?} be a basis for V,, where p; is a
representation in Rx. Then

[f(m ® pz)z,.zz] = D Sz, 2) (2], o Wea (2ol 2)

v:IQU{‘-U;QngQ ;,ezl,x-aEZ'z
= E (p2(z2) V5, v3?) Z Flz1, z2)p1 (21)v}, v3)

23623 z21€2,

For fixed Z; the inner sum is a transform on H; whereas for fixed p; the outer sum
is a transform as [{o; O

Theorem 3.8 allows us to restrict our consideration to transforms on simple
compact Lie groups, when necessary.

4. SuMs oF ProDUCTS

Theorems 3.3 and 3.6 examine the effect of factoring elements of the set X, on
which we perform our transform, into products where elements came from sub-
groups of (. In the notation of theorem 3.3, we shall now see how factoring the
elements of ¥ improves the bound on M(R,Y, K).

The basic idea is very simple. We start with a set Y C &, a representation p, of
G, which is adapted to a chain of closed subgroups G = K, > ---> Ko =1,and a
d, x d, matrix valued function, F, on Y. We wish to compute the sum

(6) > pw)F ()

yeY

efficiently. By lemma 2.3 we know that if y lies in or commutes with some subgroups
of the chain, then the special structure of the matrix p(y) allows us to perform the
matrix multiplication p(y). F(y) efficiently. If y = a;...a, and each matrix p(a;)
has a special structure, then we can use the equation p(y) = p(a)...p(as) to
calculate p(y).F(y) efliciently.

To quantify this we make the {ollowing definition. Assume a is an element of the
compact Lie group G, and

G=K,> -->2Kp=1

is a chain of subgroups. Let c¢*(a) be the minimum nonnegative integer such that
a lies in Kc+(q) and let ¢™(a) be the maximum number such that a commutes

with all elements of K.-(,y. Now define M(e,p) = M}K‘—Gi({";(p) and M(a,R) =

K . .
MK°+(“' (R) for any representation, p, of GG, or any set of representations, K.

e~ (a)

Lemma 4.1. Assume Y is a sef of words in G. Whose corresponding set of ele-
ments of G is precisely Y. Then the sum (68) may be computed in no more than

(Z J'\/f(a,p)) df,

a

where a ranges over all occurrences of all symbols in words of V.
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Corollary 4.2. Assume (G is a compact Lie group, G = K, > - > Ko = 1 is
a chain of closed subgroups of G, K is a closed subgroup of G and R. is a sel of
matriz representations of G adupted to the subgroup chain. Assume Y C (' and

Y is a set of words in G whose corresponding set of group elements is precisely Y.
Then

(7) M(R,Y,K) < (E M(a, R)) S

PER
where a ranges over all occurrences of all symbols in words of Y.

Proof. Lemma 4.1 and corollary 4.2 both result from a simple count, of the number
and complexity of the matrix products in the sum

> plar) - plam)F(ar .. am)

al...amE}_’

No special technique for simplifying this sum is used. O

The Main Example: Classical Groups. For each of the classical groups we
will now deline sets of elements, X, and sets of representations, Ry, which we shall
use for the rest of the paper. We shall also choose subgroup chains for these groups
and use the results of this section to bound Tx,(Rs) for these choices, assuming
adapted bases for the representations.

The sets X} defined in the examples below are all products of sets of stze O(b)
which are contained in one parameter subgroups of the compact group. TFor the
purposes of our complexity results, the number of points chosen in these factor
sets could be different from the examples, provided it is always O(b). The sets
Ry are chosen according to particular choices of norms on the duals of the Cartan
subalgebras. The choices for these sets can be varied provided there is always
a norm for which Ry is contained in the set of irreducible representations whose
highest weight has norm no greater than . {t is easy to see, by scaling the variable
b, that our results imply the results for these more general sets X and R}

Let Un-1 % U1 be the group of block diagonal unitary matrices with one block
of size n — 1 followed by a block of size 1, and let S(U,,_1 x U;) be the subgroup of
Un—1 x Uy of matrices with determinant 1. Similarly, Sp(n —1} x S,(1) and Sp(n —
1) x U(1) are identified with subgroups of block diagonal quaternionic matrices
in Sp(n). The sets, Xy, we shall construct, come from parametrizations of these
groups analogous to generalized Euler angles.

Define the following one parameter subgroups: let

1r1—2

cosfl  sind
—sinf cos@

ra(f) =

1

where the rotation block appears in columns n — 1 and n, and let 1,(8) be the
diagonal matrix with ones on the diagonal except for ¢*? in the ntt diagonal position.
Define ¢, (0) = t1{—0) - - tn (—0)tn+1(n6), and let u,(8) be the diagonal matrix with
ones except for e/? in the n'® diagonal position, where j is a unit quaternion.



TRANSFORMS ON COMPACT GROUPS 11

The Special Orthogonal Groups. In this case we shall always use the subgroup
chain

(8) SO(n) > 80(n—1)> --- > SO(2) > 1

Assume b is a positive integer. For any n > 2 we let A} be a set of 2b + 1 distinct
points in r2([0,27)) and for 2 < k < n let A be a set of b 4+ 1 distinct. points in
74([0, 7]). We now define the sets X' C SO(n) as follows:

X = A}
Xp = A3 AN

To define Ry, we note that relative to a standard basis for the dual of the Cartan
subalgebra the highest weight my n,...,m,,,, where r = | 2] is the rank of SO(n).
These integers satisfy the relation

Mip 2 2 'mr,n|

and when n is odd m,, > 0. We define R} (up to isomorphism) to be the set of
irreducible representations with highest weight my ,, ..., m; 5, such that |my | <
b. The ‘betweenness’ relations for the restriction of representations from SO(n) to
SO(n—1), see [23], show that the set of representations occurring in the restrictions
of R} to SO(n—1) is precisely R} ~'. Therefore we may choose R to be an adapted
set of matrix representations for the chain, and have (R)som-1) = T\’,L'_l.

The Unitary Groups. We use the subgroup chain
(9) Un) 2 Upoy x U 2 Un=1) 2 - 2 U(i) 2 1

Forn > 2 and 2 < k < n, let A} be a set of 41 distinct points in 7 ([0, %]) For
n>1land 1<k <nlet Bf be aset of 20+ 1 distinct points in tx([0, 27)). Define

X = B
Xpl = BMHLXP CUnxUsy
Xp = (BY---Bp_1A3).X; " C U(n)
Irreducible A representations of U(n) have highest weights, given in a standard
basis by an n tuple of integers my 5, ...,y » such that,
(10) Min 22 My

Irreducible representations of U, x U; are therefore indexed by an n tuple my ,,
..., my 5 satisfying (10), together with an integer rpy; , with indexes a represen-
tation of U(1). We define R} to be the set of irreducible representations of U(n)
for which & > m; , > m,,, > —b, and let 'RQ" be the set of representations of
Up x Uy for which b > myn > mpn > —b and |mup1n] < b, The betweencss
relations for restricting from U(n) to U(n — 1) (as in [23]) show we may choose
matrix representations so that (RP)y,_,xu, = 'R,E_l’l, ('Rg_l'l)u(n_l) c R,
and (RY)y(n_y = R,



12 DAVID K. MASLEN

The special unitary group. We use the subgroup chain

(11) SU(n) > S(Un-1 xU)y2- 285U xUp) >1
For > 2 and 2 < k < n, let A7 be a set of [§] + I distinct points in rx ([0, Z]).
Forn > 1and 1 <k < n, let B} be a set of 2kb+ 1 distinct points in gi ([0, £%)).

Define

X;'] = B%
XP = BP...BR_ AR AR XPTVLCSU(n)
X2 = BRXPCS(Un-y x Uy)

Irreducible representations of SU(n) have highest weights indexed by (n — 1)-tuples
of integers my 5, ... ,Mn_1n, such that

(12) Min 2 2 Mp_1n 2 0

[rreducible representations of S(U, x Ui} are indexed by an (n — 1)-tuple satis-
fying (12) together with an integer, my ,, indexing a representation of the sub-
group ¢gn(R). We let R} be the set of irreducible representations of SU(n) for

which m; , < b, and let ’R.Z'l be the set of irreducible representations of S(U, x
Up) for which my, < b and |mu .| < nb. Il is easy to see [14] that we may
choose these sets to be sets of matrix representations satisfying (R} )sw._,xv,) C

Ry~ Ry sumy = RE, and (RE)su(n-1) = Ry
The Symplectic Groups. We use the subgroup chain
(13) Sp(n) 2 Spln — 1) x Sp(1) 2 Spln— 1) x U(1) 2 Sp(n=1) 2 -2 1

Forn>2and 2 <k < n,let A} be aset of 4 1 distinct points in 7y ([0, 1;-]) For
n>land 1 <k<n,let B,':’l and B,':'z be sets of 2b + 1 points in #x([0, 27)) and
let CP be a set of [4] + 1 points in ux ([0,3]). Define

o= By

Xp? = BHPRCRHIXP! C Sp(n) x Sp(1)

Xp = (BYICTBYAY) .. (BRI CRo BRl A Xy C Sp(n)
Xpt = BuiPtXp € Sp(n) x U(1)

[rreducible representations of Sp(n) are indexed by n-tuples of integers my 5, ...,
™Mp n such that
M2 -2 Mgn >0

Irreducible representations of Sp(n) x Sp(1} and Sp(n) x U(1) indexed by an ir-
reducible representation of Sp(n) together an irreducible representation of Sp(1)
or U(1) respectively, which we index by integers m, and p, respectively; clearly
min < b Also let R} and R:’z be the sets of irreducible representations of
Sp(n) x U(1) and Sp(n) x Sp(1) for which m; , < b and |pn| < b or m, < b respec-
tively. We may choose the irresucible representations with these highest eights to
be matrix representations such that (R})spn—1)xsp() C Re, ('R,Z'z)sp(n) C T\',E’l,

(Ry)spim) = R and (RY)spin—1y = Ry ™"
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Results for the Classical Groups. The rationale for our particular choice of
the sets Ry and X is the following lemma, which shows that function on the set
X, may be used to approximate continuous functions on the group. This result is
not required anywhere in this paper, but it does show that the conditions on sets
of points and representations required for approximating continuous functions are
compatible with these required to use the algorithms we have developed. A proof
is given in [14] and [15] for the SO(n), SU{(n) and Sp(n) cases. The U(n) case is

similar.

Lemma 4.3 ({14, 15]). Assume X and R} are as in one of the ezamples above.
Then for any integer, b, there is a complex function, f . X' — C such that f(p) =
0. When p € R} and p # 1g, and f(lg) = 1, where 15 is the trivial representation.

Before proving complexity results, we require a lemma bounding the multiplicity
of restrictions from subgroups appearing in the examples.

Lemma 4.4. Assume G > Rare two groups appearing in one of the chains (8),
(9), (11) or (13), and the number of steps down the chain from G to K is at least
1 in the (8) case, 2 in the (9), (11) cases or 3 in the (8) case. Let Ry be the set of
representations of G defined in the ezample. Then

(14) MG (Re) < 0(67(9H)

where o(G,K) = Ng — Ng —rank K, and Ng, Nk are the numbers of positive
roots of G and K respectively.

Proof. We first note that if G > H > K are groups from one of the chains and (14)
holds for G|H and G|K, then

ME(Ro) MG (Re)ME((Re) ) {(Ro) |

<
2 O(ba(G,H)+a(H,K)+rankH)

so the result also holds for G|K. Similar reasoning shows that if (14) holds for
G|H x K and also for H{H’, then it holds for G|H’ x K. It clearly holds for G|L.
In addition it is easy to see that if (14) holds for H{H' and K|K’, then it must
also hold for H x K|H' x K'. Taking this all into consideration we see that the
only cases we need verify are SO(n)|{SO(n — 1), U(n)|U(n — 1), SU(n)|S(Un—1 x
U1), Sp(n)|Sp(n — 1) x Sp(1), and Sp(1})U(1). These cases fo[low from the results
in [23]. O

Theorem 4.5. Let K, denote one of the series of groups, SO(n), U(n), SU(n),
or Sp(n). Then using the sets X', R} defined in the main ezample, we have

Tx; (RP) <O (bdim Ka+{dim K,—dim x._1)+a(x..,x.,,,))

Proof. We prove this for SO(n); the proofs for the other series of groups are similar,
First note that [XJ'| = |A43]...|A7] |XP~!|; though we do not need this property,
it does simplify the proof. By theorem 3.6, we have

X P i e
Txp(RE) € 'le;Txan,,Hzlxl’ 1AL AN Kis)
) .
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but by corollary 4.2 and lemma 14,

L,,.M( AL AL K )
Xi|
1 . . . . .
< Tl';' (pezr:i dz) (i—1) |A'2| |A:| ;2?%('/\4?‘_9(73;)
b

< o0 (bdim K;-dim K.-_1+0(K.',Ka_a))

Now, dim K; —dim K1 + o(K;, Ki—2) = i+ ['—;lj — 1 is an increasing function of
i, and T)—;;[sz('i?,g) < O(b). Therefore
b

Txn < |XP|O (bdim Ki—dim K.-_,+a(}(,-,K.-_,))
IS
a

Theorem 4.5 does not make full use of the subgroup chains in the examples—it
only uses the subgroup chain K,, > K,_; > ... > 1. Making complete use of the
chains, (8), (9), (11) or (13), gives slightly better results, which we record in the
following theorem. The proof is almost identical to theorem 4.5 with the exception
of using a finer subgroup chain. Of course, for SO(n) we have already used the full
subgroup chain.

Theorem 4.6. Assume n > 2, then
(i) For U(n) we have Txp(Ry) < 0(b%im Uln)+3n=3)
(ii) For SU(n) we have Txp(Rp) < 0(bdim SUn)+3n-2)
(ili) For Sp(n) we have Txp(R) < O(p4im Sp(n)+6n-6)

5. SCALAR SUMS OF PRODUCTS

We shall now use an adapted basis to look at (1) as a scalar equation relating

elements of the matrix f(p) to sums of products of matrix elements. As scalar
multiplication is commutative, this gives us more flexibility in choosing the order
in which we multiply the matrix elements.

Theorem 5.1. Let K, denote one of the series of groups, SO(n), U(n), SU(n),
or Sp(n). Define the sets X[, R} as in the main ezample of section 4, and let
L denote the subgroup immediately below K, in the chain defined for that series.

Then _
Txp (RP) < O (bdlm K n41+rank K._;+0(L..,K,._;)+0(K.,_l,K.._«,-))

Before proving the theorem, let’s make the statement more explicit. Let
Y(Kn)=1+rank Kn_g+ o(ln, Kn—2) + 0(Kno1, Kn—a).

Then vk, is given by the following table.
K, |SO0(n) U(n) SU(n) Sp(n)
Y{(Kn) 5] n-1 n 3n

In cach of these cases y(K,) is asymptotic to /adim K, where o is % for SO(n),
a is 1 for U(n) and SU(n), and § for Sp(n).
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Proof of theorem 5.1. we shall prove the theorem in detail for SO{n) and then
indicate how the proof generalizes to the other chains of groups. we start by nothing
that

(15) Twp(RE) <

n
) l i i :
< .'? TX:(RE)'}'ZF{WB’[( b:AQP"Ai:SO(I-l))
i=3 1"'b
so we shall first concentrate on bounding M (R}, A3, ... AL, SO(n — 1)), which is
the number of operations required to compute the sum

Z plaz)...plan)F(az...an,p)
a;EAT
2<i<n
in an adapted basis, where F(az...an,p) is a d, x d; matrix in (End V,)so(n-1),
and p is any representation in Rj. An adapted basis for V, is indexed by a chain
of representations (see section 2)

Pn‘ pﬂ*—-l—" ......... -— pzﬁ_o

where p, = p, p; 18 1n Ri and an arrow from p; to p;y; indicates that p; occurs in
the restriction of p;y; to SO(i). We shall indicate such chains of representations
by A, A’ etc. Using Schur’s lemma it is easy to find the form of the matrices p(a;)
in an adapted basis

[P(ﬂi)}A,A' = H ‘SPJ':P} P;u.p.‘-l.pi_,.m—:(a")
jin !

where P} is a scalar function and by convention we always take py = 0,

PirPi=1,Pi 1 Pi-2
m = 0. Similarly,

[F(ag. . .an;p)]A'A, = JPn-:.PL_lFl(p:i—ll . ..,P;,pn_z, ey P23a2,. . ,an)
{or some scalar function Fj. Therefore (5) becomes
(16)
n
> > [H P;.,pi_x,p',-_l,p"._,(af)jl FUPicts 103 Paczs s P23 a2, -, Gn)
Q€AY phy. Py Li=2
2<i<n

where we have the convention that p/,_; = p2_,, pn = p, and wherc the indices
pi, o}, p? satisly the restriction relations of the following diagram

N ;‘\ ........... ‘ psf\ pz\
Pn-1 = Prog =& - p!‘l </ 0
ror21.—2 - - — p%

Diagram 1.
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we shall calculate the sum {16) in n — 1 steps as follows. We calculate functions F;
for 2 < i < n where Fj is given in terms of Fi_; by

(1T} EilPi iy P Paas e PimiiPis e os P2 i1y - -, @)
= D D Prsrt o @) Filpnoy, . an)

ai€AY i _,

The representations appearing as indices in the expression (17) satisfy the relations

"~ pi<. B Pg\
Ph_y € Pog € - pil € pi_,y 0

Diagram 2.

when 2 < ¢ < n— 1. It is easy to see that F, is the sum we wish to compute.
The number of operations we take to calculate the inner sum of (17) for any given
values of @;,...,a, and all allowed values of the representations pj,p_’,-,p_';' € R is

the number of ways of filling in Diagram 2 with representations pj,pg,p;"-' € 'R.{;
subject to the restriction relations represented by the arrows in that diagram. TO
count the number of ways of filling in this diagram, we first choose representations
P21, Piy Pim1, Pi_1, Pi_g subject to the relations

pi = pi-1

2 / ’
2 - — -
o Pi Pi—a 0

Diagram 3.

The arrows of diagram 3 are in one to one correspondence with chains of arrows
in diagram 2%. Given a choice of p2_,, pi, pi-1, pi_1, pi_2, the ways of filling in
these chains of representations are independent and the number of ways of filling
in the chain corresponding to an edge from £ to o in diagram 3 is the multiplicity
Mo (B). Hence the number of operations we take to compute the inner sum given
ai,....an for allowed index values is

(18) ) I M)

2 Cops arrows from o
p“Tl'p“,p'-l to § in diagram 3
PiciPinn

*The chains in diagram 2 that we consider are precisely the maximal chains of arrow such that
each intermediate point in the chain has exactly one arrow entering it and one arrow leaving it
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But M, (pi_1), Mp_ (pi_2), My, (pi_s) and M, (pi_1) are each 1 whenever the
relations of diagram 3 are satisfied. So the number of operations required to calcu-
late F; given F;_| is bounded by

|A?| |A:| Z dp:_ldpi—lnfpz_l(loi—l)
p.’.jl,pa,‘p;-.
Pi-1:Pi-a
O(bn-i-l-lbrank S50(n-1)+rank SO(i)+2rank SO(i—1)+rank SO(i—2) %
xba(SO(n—l),SO(i—1))+N50(,,_1)+N50(,~_,))
— O(bdim 50(n)+rank SO(i))

IA

When { = n diagram 3 becomes

'S S 1\

Pn 1-h pn 2

and the number of operations required to calculate F,;, given F,,_ is

ARl DD dp deu My (pi2)
£rPn—1
P 1Paa

< O(b~i+1pdim SO(n) 1 +rank SO(n=~2)420(50(n=1),50(n~2)))

— O(bdim S0(n)+rank SO(n))
From this we wee that

M(RY, A3 AR, 50(n = 1)) < D O(pFm SO #rank S0y
=2

Substituting this bound into (15) gives

1X;‘ (R?) < zn:O(bdim S0O(n)+rank SO(:’)) — O(bdim SO(n)+rank SO(n))

1=2

This proves the theorem for K, = SO(n). The method of the theorem generalizes
to the other chains of groups transparently (even when the restrictions in the chain
are not multiplicity 1). The complexity is bounded by a sum of terms associated
with different diagrams generalizing diagram 3. The dominant term comes from a
diagram of the form
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PSS g 14\

pﬂ—

where each p is a representation in R, pu—1 is in R271, p/ _, isin RP™? and p2_,
is a representation in (Ry)z,.,. Using (18 this dominant term is easily bounded
by

0 (bdim Kntl+rank Kaoato(Ln, Knoz)+0(Knos .K..-,))

0O

A method for obtaining the functions P; pir .o pi_q 15 given in [13], and in the
=140 1

case of unitary groups explicit expressions are given ([13] p. 395).

6. HOMOGENEOUS SPACES

We shall now consider a problem analogous to the computation of the sum (1)
or of the introduction, but on a homogeneous space.

Assume ¢ is a distribution on the compact Lie group, G, and p is a finite dimen-
sional representation of G. Then defline the Fourier transform of ¢ at p to be ¢(p),

where

(v, ¢(p)v) = (g, (z = (v", p(2)v)))
for any v in V;,, v* in V', and where (, ) denotes either the dual pairing between
Vo and V7 or between functions and distributions. This transform is also denoted
p(). This definition is simply related to the sum (1), for if X is a finite subset of
G, f is a complex function on X, and we define a distribution f5 = 3°_+ f(z)ds,
then using the notation of (1), f = f;.

Assume now that K is a closed subgroup of G. Then we may project functions
on G to functions on G/K by integrating along the fibers of the canonical pro-
jection G — G/K. The dual of this projection defines an injection, ik from
distributions on G/K to distributions on G. If ¥ is a finite subset of G/K and g
is a complex function on Y, then define g5 = 2gev 9()dy, and

g =gy =ic/k(ds)

When R is a set of matrix representations of ¢, we let Ty (R) be the number of
operations required to compute G(p) for all p in R, given any complex function, g
onY. _
Now we shall relate § to a sum with a form we have already met. For any
representation, p, we define VpK to be the set of K-invariant vectors in V,, and let
= fK p(k)dk be the canonical projection from V, onto VPK. we say that pis
class 1 with respect to K if VPK is nonzero, and [or any set ol representations, R,
we let R denote the set of representations in R that are class 1. If f is a complex
function on a finite subset ¥ C &, then we define

(19) oy =F.PE =" plw) [Jw)PF]

yeYy
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When R is a set of matrix representations, we define T (R) to be the number of

operations required to compute fK (p) for all p in R, given any complex function,
S, on Y. The following properties are trivial.

Lemma 6.1. (i) F¥(p) lies in Hom(VX; V).
(i) If p is not class 1 with respect to K, then ) =0. ~
(i) Assume Y is a finite subset of G/K, g is a compler function on Y, Y

15 a sel of cosel representatives for the cosels in Y, and f is the complex
function on'Y defined by f(y) = g(yK) foranyy on Y. Then

alp) = fX(p)

Corollary 6.2. (i) Assume Y is a finite subset of G/ K and Y is a sel of coset
representatives for Y. Then Ty (R) = T (R)
(i) TE(R) = TE(RK).

The sum (19) used to define fX(p) is of the same form as (6) considered in
section 4—simply substitute f(y) PpK for F(y). It is easy to see that the techniques
of section 4 do not give an eflicient way of computing the sum (19), but under the
right conditions on the set, ¥, the techniques of section 5 do give good results.

For each of the classical groups considered in section 4 we define sets ¥, in terms
of the main examples.

(20) SO(n)Y = A7, A"

(21) Un) Y =B}.. . BP_A}.. A"

(22) SU(n)Y =B ...BY_ A}, A"

(23) Sp(n) Yy = (BP*CrBI AS) .. (B2 CR_ B AR)

where the sets AP, BF, CP. B, B}? are defined for each of the series of groups

according to the definitions in section 4. For these subsets of the classical groups
we may use the argument of the proof of theorem 5.1 to bound Tz (RE).
b

Theorem 6.3.

(i) Ty CTU(Rp)
) T Rp)
(i) T,fi&.”"-”‘””(ng)
(iv) TR Ry

O(bIimISOM)/SO(n=1)1+1y

O (b4imIU (0)/ (Wacr x U1y
O(bdim[SU(n)/S(U“_l xU, )]+2)
O(bdim[Sp(n)/(Sp(n~1)xSp(1))]+3)

IAIA A A

Remark. The results stated for SU(n) and Sp(n) are clearly not as good as those
for SO(n) and U(n). This is an indication that the indexing for adapted bases of
class 1 representations implicit in the proof is hot completely appropriate. In the
case of SU(n)/S(Un—1 x U;) we shall give explicit formulae (see section 7) for the
associated spherical functions that allow us to improve this bound. Such formulae
also exist for Sp(n)/(Sp(n — 1) x Sp(1)), though we do not treat this case here.
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Proof of theorem 6.3. As previously mentioned, the proof is simply an adaptation
of the proof of theorem 5.1. We shall present it in the case of SO(n) and then
briefly indicate how to generalize to the other classical groups.

Using the same notation for indexing adapted bases as in 5.1, we see that

[P‘;“O(ﬂ‘l)]!\ A = 0paes 'OJPL-NO

and hence that

(24) [fso(n—l)(p)]mm=6p:_|,0 >3 [Hpgi,p;_,yolg(a,-)} flag...ap)

a;€AT Li=2
2<ign

Only the case pZ_; = 0 is important; in this case the sum (24) is exactly the same
as (16) with pZ_,, ..., p3, ph_1, ..., Py all set to the trivial representation, 0,
and Fi(0,...,0,az2...a,) equal to f(az...a,). Thus we may calculate this sum in
n — | steps by defining

(25)

n
Fi(piy -, p2;i0iq1 .. ap) = Z HP:;,—.pi_l,o,o(ai)Fi—l(Pi—ly C P23 0n)
a;€EAD i=2

Diagram 3, which gives the restriction relations between representations occurring
in the sum becomes

pi € pi_| € -— py

Diagram 4.

So p; and pi_; are class 1 relative to SO(i— 1), SO(7 — 2) respectively. The number
of operations required to obtain F; from F;._; is bounded by

VA Vi S Y
PiE(R{)FOE-

< O(bn—l'+1bdimSO(:‘)/SO(:’—I))
— O(bn) - O(bdimSO(n)/SO(n—1)+1)

Therefore
n
TSO(H_I)('R.E) < O(bdim SO(n)/SO(n—l)+1) - O(bdim SO[n)/S‘O(n—l)+1)
k=2

This proves the result for SO(n)/SO(n — 1). For the other classical groups
the proof is similar. For U(n)/(Un—1 x U1) and SU(n)/S(Un-1 x U;) the most
important diagrams to consider have the same form as diagram 4. For Sp(n) one
should sum over sets in the order: B!, By*', C?; Bp'', BY*, Cp, A2, BY', ...,
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n

n_1- The diagrams corresponding to the dominant terms in the complexity sums
have the form

wlhiere A; is a representation ol Sp(i — 1) x Sp(1) and 0; denotes the trivial repre-
sentation of Sp(j). O

7. FAST TRANSFORMS ON SPHERES

The proof of theorem 6.3 works by factoring the associated spherical functions
of a homogeneous space and then calculating the sum for f%(p) one factor at
a time. For the spaces SO(n)/SO(n — 1), U(n)/U{(n — 1), SU(n}/SU(n ~ 1) and
Sp(n)/Sp(n—1), the associated spherical functions may be written, in a polyspheri-
cal coordinate system, as products of complex exponentials and Jacobi polynomials.
In terms of the proof of theorem 6.3, we will try to use explicit expressions for the
functions P}, .. ;4 to compute the sum (25) efficiently.

We shall develop fast transforms for the associated spherical functions of the
spaces SO(n)/SO(n—1) and SU(n)/SU(n —1). The key to performing fast trans-
forms on these homogeneous spaces is the use of efficient algorithms to project
functions of one variable onto spaces of polynomials. These have been developed
by Driscoll and Healy.

The techniques of Driscoll and Healy rely on the three term recurrence relation
satisfied by a orthogonal polynomial sequence.

Theorem 7.1 (Driscoll, Healy, Rockmore). Assume {®; : 0 < { < n} is a
set of compler functions defined at the points zp,...,2,—1 € C and satisfying a
three term recurrence relation, at these points, of the form &, = (qyz + b))% +
@iy, for Ll <l < n—1, and that f: {0,...,n—1} —s C. Then the following
computations can be completed in O(n(logn)?) operations given a precomputed data
structure of size O(b(logb)?). :

(a) Calculation of the sums Z?z_ol J(@)Pi(z5) for 0 <l <,

(b} Culculation of the sums 2;:01 J(Ndi(z;) for 0 <l < n.

For the proof of this result see [7} and [8], or [16].

Example: The Fast Transform on $°~!. The Gel'fand basis vectors for the
class one representation, Ay o,y of SO(n) relative to SO(n — 1) are determined
by the integers my = my n,...,mq = my 2 which satisfy the constraints

m=my >...>mg > |my

Let us denote the corresponding Gel'fand basis vector by M, and the SO(n — 1)-
invariant basis vector for which my, = m,mn_1 = ... = my = 0, by 0,,. The
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matrix coefficients that appear in the Plancherel formula for $*~! can be written,
with respect to this basis, in the following form

(A¢mo,.)(r2(02). .. .. rn(0r)9)0m, M)

= AY Hsz S 4m;al (cos 8;) sinl™i-11(9;) | &m0

i—lmj— l|

where g can be any clement of SO(n — 1), and C¥ is a Gegenbauer polynomial.

n _ | mail(n—1) y
M= (27 + 1 — 2)
. ; , i — 2
y 12[ 22ms- =4 (m; — [my_1 )} + 2m; — (CEFE + |my-a)
% s VL (m; + |mji_y |+ 5 - 2)

is a normalization constant. A proof of this formula may be found in [21].
Given such an explicit expression for the spherical functions, it is now straight-
forward to improve the algorithm of section 6 for a Fourier transform on S®~1.

Theorem 7.2. Assume that 8g,...,02 2 are points in [0,27), and that for 2 <
k<n,Ook,...,0, are points in [0, 7). Then for any compler funclion, f, defined
on {0,...,2b} x {0,...,b}"~2 the sums

26 b no,
, . §. I R P . S
Z Z f(d2s-- . n) H Cv:i_-lrm:llll(cos ajk-k) Smlmk“ll(gjk.k) etmadiaa

ja=0j3,...,jn=0 k=3
can be computed for all mp,, ... ,ma withb > mj—|mj_,| > 0 for all j, in a total of
O(b"~(logb)?) operations, given a precomputed data structure of size O(b*(log b)?).

Proof. For 2 <1 < n, let us define the partial transform,

26 b
fm”"'m'(j¢+1,---,.’u"n):Z E fl2- vt} %

j2=0j3, LJi=0

+|m . i .
HCT o ll (cos 05, 4) sin™=21(8, ) | ¢i™285a2

Me—[me_,

Then f™2 can be obtained from f, for all |mz| < b, by a normal fast Fourier trans-
form on the ja variable, in 6" ~20(blogb) operations. The Gegenbauer polynomials
satisfy the recurrence relations

" 2(A+m) CA_Q)\—i-m—l A
C'm+l( ) m4 1 m m4+ 1 m—1
so by theorem7.1, we can compute f™2""&+1 for all mpqy,...,mq with & >

m; — |mj_1] > 0, starting with the data f™3: 'm".sinl"“'l(()jhk), by a one variable
polynomial transform, in O(b"~!(logb)?) operations. After n — 2 such steps, we
have computed f™2+ ™= in the desired number of operations. O

Corollary 7.3. Tye""(RE) < O(64™ 5™ (log b)?) = 06"~ (log 4)?)
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Example: The Fast Transform on SU(n)/SU(n — 1). We shall identify
SU(n)/SU(n — 1) with the (2n — 1)-sphere, 5%"~!. The Gel’fand basis vectors
for class one representations of SU(n) relative to SU(n — 1) are determined by
integers my,,...,ma, v, ..., 2, Ay, which satisfy

my2...2me20, v2...2v2>20

mg + v2 > [A1]| and ma + va + A even.

These are related to the m; ; of the section 4 dealing with SU(n), by

Mk = Mg+ Vi, Mag = Vg, oo, Mgk = Vg
mg g = k(mgpr — viat) — (k4 1) (mg — )

for 2<k < n,and my | = M.

Even though we are using Gel’fand bases coming from a chain of subgroups
for SU(n), it is convenient for us to parametrize S**~! using the action of U(n),
and the isomorphism $**~! = U(n)/U(n — 1). This parametrizatation is merely
a notational convenience, and is simply related to one coming from the action of
SU(n), see [14] for an explanation.

In order to write down the associated spherical functions for this homoge-
neous space, let us denote the Gel'fand basis vector corresponding to the integers
My, ...My,Vy,...,v2, A1, by M and the SU(n — 1)-invariant basis vector by 0.
Let T be the standard maximal torus of U(n), let T be the dual group of T°, and let
fij : T — Z be the j-th coordinate function with respect to this basis. Let Tmo,,

be the associated spherical function corresponding to the M, 0, matrix element.
Then,

Twmo, (t.r2(82) .. .10 (0n) ) = ( n — 2 + min{myg, v, }

n—-2

)Aa. 2 x omalt)
1

n
RY: ST A pi—24+B5,A; )
x Hg(cos 0;)* (sin ;)% P (cos 26;)
3=

for t € T, where pp is the element of T defined by

Ajlpm) = (mj —y;) = (mj-1 ~vj_y) for j >3
Aalom) = 50m—vatX)
Ai(em) = é‘(mz—'/z—'\l)
and
k; = min{m; — my_1,v; —v;_1}, for j > 3, ko = ]E(Al + ma + 12)
1= |t o535 hom
By=m;_ 4+, B, = fil((pM)

=2kj1+Aj_14 By, forj>3
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The constant AR, can be written as

(Bj+1—kj+j—2)

1 - A

Ay = |—— T (Bis1+5-1 ]
M 2"‘%11-!)1}1 a* ) (Aj+kj)

J

These formulae are proven in the thesis [14] (see also [12] for the unitary group
case). Note that if 6 > my, vy, then ’/ij(<pM)| <band 0< k; < b, forl <j <
but also that k» > max{—Ay,—Ba, —(42 + B:),0}. Define a subset of 7', by

Ty={peT: |[4;(8) <t for 1 <5 <n).

Theorem 7.4. Assumne xq,...,cx—1 are points on T, such that for any function
h:{0,...,K =1} — C we can compute 3, h(j)é(z;) for all characters, ¢,
of T in Ty in a total time O(b"(logd)?). Assume that for 2 < k < n, we have
chosen points Og i, ... ’OL%JJ‘ in [0,%]. Then for any complex function, f, defined

on{0,..., K =1} x{0,... ,[%J}"_l, the sums

K-1 f%] n

ST Y R dn)em(zs) [T (cos8i) 2 (sin 05, )P PR A cos 265, )

F1=042,..,7,=0 i=2

and ma + vy + Ay even, in a lotal of O(b**~(logb)?) operations.

can be computed forallmy, > ... 2> mo > 0, vy > ... 2 vy > 0, ma 4+ v3 > |Ay],

Proof. We proceed in a similar way to the §*~! case. However, we shall use the
transform variables ¢ = ppm, and ka,... , k,. It is easy to write the variables m;,
v; and Ay in terms of ¢ and the £;, and the calculation of one set of variable from
the other can be performed in a fixed number of operations depending only on
n. To perform the transform, first do an abelian Fourier transform with respect
to the z; transforming to the variable, ¢. By hypothesis, this can be done for
fixed ka,...,kn, in O(b"(logb)?) operations. Do this for all necessary values of
ka,...,k,. Now transform (o the variables ks,...,k, in that order, making use
of the recurrence relations for Jacobi polynomials at each step. The only difficult
step is the transform to ks, the problem being that A; and Ba could be negative.
But, we may restrict k; so that ky > max{—As, ~Bz, ~(A2 + B3),0}, and for
such values of ks, the Jacobi polynomials are well defined and have a nontrivial
recurrence relation. [J

The following corollary and theorem are now immediate.
Corollary 7.5. Tyx Ga () < O(6%™ 5" (log)?) = O(5*"~ (log b)?)
Theorem 7.6. Tys ~~*"(R2) < O(b4m P (log 4)2) = O(6*" ~*(log b)?)

A result analogous to theorem 7.4 for the homogeneous space U(n)/U(n — 1)
has an almost tdentical proof, as the spherical functions for that case difler in only
one factor. A similar argument also works for the space Sp{n)/Sp(n — 1) using the
expression for the spherical functions given on p. 400 [12].
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8. FourlER TRANSFORMS OF DISTRIBUTIONS

Assume D is a finite set of distributions on G, and f : D — C. We now consider
the computation of

(26) foyo = 3 1(D)p(D)

DeD

for all representations, p, in R, where R. 1s a finite set of finite dimensional rcpre-
sentations of G.

The arguments of sections 3, 4, 5, and 6 generalize to this new situation; one
simply replaces group elements, z, by distributions, D, and replaces multiplication
of groups elements by convolution of distributions. We say that a distribution, D,
commutes with a group element, k, if §; * D = D * §;, and we say D commutes
with a subgroup if it commutes with all elements of that subgroup.

Lemma 8.1. Assume D is a distribution on G, K is a closed subgroup of (7, and
p is a finite dimensional representation of G.

(1) If D is in C®°(K)'®, then p(D) is in spang(p(K).
(i1) If D commutes with K, then p(D) commutes with cach element of p(K).

Therefore, when K is a closed subgroup of G, the appropriate replacements for
the two conditions, ‘z is a member of A’ and ‘z commutes with all elements of K,
are ‘D 1s an element of C®°(K)’ ' and ‘D commutes with K.

We now generalize the definitions of Tx (R) and M(R,Y, K} so that the state-
ment of theorems in sections 3-6 remain unchanged when we replace group elements
by distributions. For a set of distributions; D, and a set of matrix representations,
R, of G, we let Tp(R) be the minimum number of operations needed to compute
f(p)p for all pin R, at any given function f: R —+ C. If K is a closed subgroup
of G, we let TH(R) = Tf,.,}(R), where cx is the characteristic distribution of

K. We also let M(R, D, K) denote the number of operations needed to compute

> p(D)-F(D,p)

DeD

at each p in R, where for each p in R and D in D, F(D,p) is a d, x d, matrix in
spang p(K'). The generalization of theorem 3.3 becomes

Theorem 8.2, Assume (' ts a compact Lie group, K is a closed subgroup of G,
D C A+ B where A and B are sets of distributions on G and B C C*®(K)'. Assume
that R is a K-adapted set of matriz representations of G. Then

Tp(R} < |A|Ts(Rk)+ M(R, A, K)

SC™(K) is the space of all distributions on K, and may be embedded in C®(G)’ using the
mapping on distributions induced from the embedding of K in G
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Distributions on the classical groups. In order to complete the translation of
the results on classical groups into this new context, we need to redefine the sets
AR, BE, Cp and B} of the main example, section 4. We now choose all these sets
to be sets of distributions, each with O(b) elements, ans satis{lying the properties
which follow. If we denote the series of classical groups under consideration K,
then we require that all elements of A} arc distributions on K; which commute
with I{;Z,. We also make the following assumptions in each case.

U(n) The elements of B should be distributions on Ux—; x U; that commute
with Uy_,.
SU(n) The elements of B should be distributions on S{Uy x Uy) that commute
with SU(k - 1).
Sp(n) The elements of By*' and By should be distributions on Sp(k — 1) x U,
that commute with Sp(k —1). The elements of C} should be distributions
on Sp(k — 1) x Sp(1) that commute with Sp(k — 1).

Define the sets X}, . ;'i, and Y} as before, but replacing multiplication of group
elements by convolution of distributions. Under these assumptions the following
result holds.

Theorem 8,3, With the new definitions above, the statements of theorem 4.6, Lhe-
orem 5.1 and theorem 6.3 still hold.

In a further generalization, all these theorems can be translated into statements
about countable chains of multi-matrix algebras.

Special functions and distributions. To generalize the results of section 7 we
need to be more careful. The following theorems treat the case of finitely supporied
distributions on the spheres S*~! or §%"-1,

Theorem 8.4. Let D be a linear differential operator on C*((0, 27) x (0, 7)"~2),
let 0,2, ... 00,2 be points in (0,27), and for2 < k < n, let Opi,...,0 % be points
in (0, 7). Then for any complex function, [, defined on {0,...,2b} x {0,...,b}""2
the sums

26 b
ST flredn) X

Ja=0343,...,in=0

k=12

n
x D LH G e (cos ﬂk)sin'"‘*-l'wk)] eimats
;=3

(81'9;71"' 79_1'-;")

can be computed for allmy,, ... ,mg withb > mj—|mj.1] > 0 for all j, in a tolal of
O(b"~Y(logb)*) operations, given a precomputed data structure of size O(b*(log b)?).
In addition, these bounds can be chosen lo depend only on b, n, and the order of

D.

Proof. For clarity let’s look at the case where n = 3 and the order of D 1s 1. In

this case, D has the form D = ay (82, 03) + a2(02, 93)3—3; + aa(0s, 03)8%3, and so the
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sum we need to compute becomes

Y F(i2, 33)[a1 (6522, 055,3) Ao(05s,) + a3(05,2, 05, 3) A1 (054,3)

Jauds
+a3(0,,2, 05,3} A2(65,,3) + a2(0;,,2, 05,,3)im2 As (0, 3)] ™22
where
A0) = —(2|meo|+ D)(sin™al+1 g )c%f'_’;‘,;'ﬂ (cos 6)
Ag(0) = |ma| (sin™a1=1 ) (cos a)c=+' g (c080)
Ag(8) = (sl o)t o ((cost)

The sum (27) splits into 4 sums corresponding to the 4 terms within the large
brackets. By the same arguments as used for theorem 7.2 we see that each of these
four sums may be computed in O(b%(log b)?) operations. In the general case, D has

the form ol
aa
D= Zaa 02,... (30)

where o runs over all mu]tl—mdlcw of order at most the order of D. Hence, if I
denotes the order of D, then using Leibnitz’s rule the sum we need to compute may

be broken up into less than (I + 1)?2' sums, each of which may be computed in
O(b"~!(log b)?) operations.® O

Corollary 8.5. Let Y, be the subset of SO(n) defined by (20), section 6, and
assumne Y is a set consisting of a distribution supported on p for each point, p, of
Y. Then

Ty?(n ”(RH) <O(bd1m5" (logb) ) O(bn—l(logb)ﬂ)

In addition these bounds can be chosen to depend only on b, n, and the mazimum
order of the distributions.

Theorem 8.6. Assume D is a linear differential operator on C®(T' x (0, 7)"~1)
and Zo,... ,zx_1 are points on T such that for any function h : {0,... K —
1} — C we can compute . h(j)¢(z;) for all characters, ¢, of T in Ty in a
lotal time O(b™(logh)?). Assume that for 2 < k < n, we have chosen points
ok, - - ’BL%JJ‘ in (0,%). Then for any complex function, [, defined on {0,... K~
1} x {0,...,[5]}*"!, the sums

k-1 |3}

o St i)

F1=0ja,... ,ja=0

x D |om(z;,) [J(cos 0:) (sin 05)% P{7*+ P54 (cos 20,—)]
1=2

(51'1191'3.9:“-91'-:.'4)

5For the purposes of calculating transforms of finitely supported distributions, as corollary 8.5,
. . al . P
it suffices to consider the case where D = a(6s,... ,Gn)-(g—laﬁ. In this case the sum splits into at

most 2! other sums.
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can be computed for allmy, > ...2 me 20, vy > ... 2 12 2 0, ma+ v > [N,
and my + vo + A even, in a total of O(b*"~!(log b)?) operations. This bound can
be chosen to depend only on b, n, and the order of D.

Proof. The proof here follows the same ideas as that for the $” transform. One
simply evaluates the derivatives using Leibnitz’s rule to get a collection of sums,
each of which may be calculated in O(b**~!(logb)?) operations. This is possible

because (PP = Lk +a+ g+ )PEHPY O

Corollary 8.7. Let Y* B} be the subset of SU(n) used in corollary 7.5, and as-
sume V' is a set consisting of a distribution supported on p for each point, p, of
Y .By. Then

Tyd " TI(RY) < O™ (log b)?) = O(6*"}(log 8)?)

In addition these bounds can be chosen to depend only on b, n, and the mazimum
order of the distributions.

9. FAST TRANSFORMS ON HOMOGENEOUS VECTOR BUNDLES OVER S2

Monopole Harmonics. Let 7, be the representation of SO(2) of weight n, and

let E, be the subbundle of (TS?'C)@"Iﬂl isomorphic to SO(3) x._ C.
Define

wy = (dB — isin 0dy)

Sl

W =

)

we  ifn>0
Wy = ifn=240.
®(" ifn<0.

S

Then is is clear that wy is a section of £, defined everywhere except at the poles,
and that @, = w_,. For any C® function, f, on S? define

Dy(fwn) =

—l(fwn) =

[(B —ncot0)f]wnit

[0 I S

[(B+ncotb)f] wa-

where B = 5‘% + i;irlTo'E%r and B = 5% - is‘irlﬁ'?a%' Calculating using B, it is
straightforward to see that

D_l = I-)+1 = _D:‘l—l

Dy Dy = 5(A—n(n+1)

Dy DY, (A= (n—1)n)

B2 — D] —

on I'®(E,), where D = (D*), ( )* is the formal pre-Hilbert space adjoint, and
()t is the usual veclor space adjoint. A is the —1 times the Casimir operator for
the regular representation in E,. Set Di to be Df‘i'_] when k > 0, and DZ¥ when
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k < 0. Dy is |k|-th order and generates the space of invariant, differential operators
from I'®(E,) to [ (Ey,1«) as a bimodule over the algebras of invariant differential
operators on [ (E,) and T°(E, 44)".

We use these invariant differential operators to construct a basis for the space of
square integrable sections L?(E,), from the spherical harmonic basis for functions
on the sphere. If { > |m| are integers, then define

Yim = Aim CEH™ (cos 0) (sin 0) 1 eime

[m]

1 2 |m| [+ |m|
- !
Alm - 2|m|+1 ! ( |m| ) / ( 9 |m|

which differs form the usual normalization by a factor of #™. Using the formula for
D3, Dy we see that

where

(Dn},lm) Dn}]!m - H l+ 1 k(k+ 1)) = C.lﬂ

and hence that for fixed n, the set of all sections, ¥, = VIE'TD" Yim where [ > [n|
i

and [ > |m|, forms a complete orthonormal set in L*(E,). These sections are called
the monopole harmonics.

Assume 8, ... ,0,—y are points in (0,7), @g,...,pw—2 are in [0,2x), and for
each j, k we have a vector, vjx = ajr.wn(f;, @r) in the fibre, Enl(g; 4, of En over
the point of $? with coordinates (8;, ¢x). Then

(28) Z( (05, 1), v3x) =

z ajk [(BonYim) (05, ;)]

o] /—cn

where B, = (B— (n— 1)cotd) ... (B —cotf)B, forn > 0, and B_,, = Bn. lbis
clear from theorem 8.4 of the previous section that this sum can be computed for
all {,m with b> 1> |n| and ! > |m| in a total time O(b*(log b)?).

An alternative approach to computing the sum (28) is to write the section ¥,
directly as a linear combination of sections of the form (sin 6’)'"'3;,,,, Wwy. This
approach to the problem is explored in [10].
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