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Sims (1973] proved the existence and uniqueness of the sporadic group Ly

predicted by Lyons [1972] through the computer-aided construction of a

presentation whieh, unfortunateLy, is rather cumbersome and does not

lead to an insight into the strueture of the group.

Meanwhile, much -more information on Ly has 'become available.

Kantor [1981] found a Tits geometry for Ly,wh'ich is "almost" a building.

Meyer, 'Neutsch and Parker [1985] gave the -absolute minimal representa­

t;on of Ly (111-dimensional over FS). Later, ,WiL~on [1984,1985] eompiled

the list of all maximal subgroups in Ly. His i'nvestigation uses the

minimaL representation explieitLy, while the verification of the latter

depends on Sims' presentation. For that reason, it -would be of 'great

interest to have a simpler existente and uniqueness proof.

Inspired by Kantor's results, -we -were led to the idea of giving a more

symmetr i c presentat ion for Ly by mak i ng use of i ts beaut i'ful geometry.

Its properties almost immediately follow from simple eonsiderations of

several subgroups, suth as GZ(5) or 2~A11.

Dur relations are shown to be fulfilled by eertain generators ("roots")

of the Lyons group, and most probably they define Ly itself.

The whole reasoning is carried through without invoking any deep theo­

rems or teehnicalities.

The geometrie spirit of our presentation renders this possible. It is a

first step towards an understanding of the Lyons group.
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We say a group h is of Ly type if it has the 'foLlowing properties:

(1) h is simple;

(2) h contains an involution z with Ch(z) ; 2A A11 .

Lyons (1972) shows that a group fulfiLling (1) and (2) is of order

( 1 . 1 ) 876ILyl =2 .3 .5 .7.11.31.37.67

and that it contains a unique conjugacy class of subgroups·; GZ(S).

Let Ao be one of them and B a Borel subgroup of Ao' ;.e. a 5-Sylow

normalizer.

lhen B is also a Borel group in h.

Furthermore, let T ; 42 be a (maximal) torus in B, No and N its norma­

lizers in !I. and A, respectively, and W = N IT and ,W = N/T the corres-o 0 0

ponding -Weyl groups.

From the theory of Chevalley groups, cf. e.g. Carter [1972], ,we deduce

(1 .2)

whiLe Kantor (1981) shows

(1 .3)

A proper subgroup of A or Ao which contains a Borel group .will be called

parabolic.

Kantor [1981) has shown that h contains exactly three conjugacy classes

of maximal parabolic groups. They can be associated with the points P,

lines Land planes F of a Tits geometry with the Buekenhout diagram

(1 .4)
0-----------0-----2-----0
555
P L F

1+4 3G
2

(S) 5 :45
6

5 .SL
3

(S)

Two objects (points, lines or planes) are called incident with each

other if their intersection (as groups) ;5 parabolic.

The apartment A(T) associated with T is the set of all objects fixed by
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T. A(T) is a subgeometry with Buekenhout diagram

<,1 . S) 60-----------0-----------0
111

and. may be represented (Kantor [1981]) by a simpliciaL compLex A of

dimension 2:

1c -------- 2a -------- 1b

,", ,", ,",
" ',,' ',,' "

4a -------- 3b -------- 4c -------- 3a

,", I", ,", ,",
" '"I ',,' ',,' "

1b _L 2c -------- 1a -------- 2b -------- 1c

" ,", ,", ,", "',,' ',,' ',,' ',,'
3a -------- 4b -------- 3e -------- 4a

" ,", ,", "',,' ',,' ',,'
1e -------- 2a -------- 1b

F i g. 1

Here the 0-, 1-, 2-simpLiees correspond to the 12 points, 36 Lines, 24

pLanes of the apartment, respectiveLy.

The ~eyL group W;; S4xS3 acts as S4 on the numbers {1,2,3,4) and as 53

on the letters {a,b,c).

In analogy to Chevalley theory we now define the roet groups assoeiated

with T as the greups X obeying the conditions:

(1) X ~ (F S'+) ; S;

(2) T ~ N(X).

It foLlows from the known structure of CLy(SS) (Lyons (1972]) that aLL

reot groups must be generated by SA-eLements.

Sinee CLy(SA) - S1+4:(2 A A
6

) does not contain a Klein four group,

CT(X) ;; 4.

The A-normalizer of a SA-group is a line. Thus there is a natural

bijeetion between the root groups and the lines in A(T).

The extension of T with the commutator subgroup
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(1 .6)

of ~ splits, so there is a unique eLement k of orde~ 3 in N which

corresponds.to the WeyL eLement (abc) and centraLizes T. In fact (Lyons

[1972]),

(1 .7)

with

(1 .8)

CA(T) = T x K

K =<k:>

Furthermore, there is a set of 16 compLements of T in T:A4 . These groups

are evidentLy conjugate under T, so ,we may eLect an arbitrary one of

them and denote it by O.

n is generated by 4 eLements w. ( 1 ~ i ~ 4 ) which correspond to the,
1200

- rotations with centres in the points ,whose names contain the

number i.

Each wi is uniqueLy"deterrnined by the choice of n andthe corresponding

Weyt permutation, namely

(1 "9) w --> (234)·
1 '

W2 --> (143); W3 --> (124); w4 --> (132) in W

The group

(1.10) <wo •k> = n x K,

(one of just 16 compLernents of T in N' = T:W' ; 42:(A4 XA 3» is represen­

ted as a reguLar permutation group on the root groups XL'

This aLLows to specify a set of 36 generators ("roots") for each of the

36 XL.

We are free to take any generator for one of them, e.g. X(1a,2b). CaLl

it x(1a,2b). Then appLy 0 x K te this roet te define the remaining ones.

A compLete system of 36 roet eLements generated in this way wiLL be

caLled a standard (roet) system.
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Without restriction of generality,we rnay assume - that the following

relations hoLd (the exact 'exponents depend on the choice of x(1a,2b),

but this clearLy d6~s not matter, since alL aLLowed possibiLities are

eqwivaLent because they Lead to the same group):

It wiLL be convenie-nt _ to define an orientation of the lines in A

according to the rules

(1.11) a -> b, b -> C, e --> a

Now we eonsider a point P i~ A.

The 6 Lines ineident with P form a eompLete set of Long roots -for the

stabilizer A(P) of P, isomorphie to the Cheval\,ey group GZ(S), ·while -the

short roots are given by the sides of the (small) hexagon with centre P

spanned by the Long roots.
xWe denote the Long and short roots by L. and K. (i E F7), respectiveLy,

1 1

in the folLowing manner:

F i g. 2

P.
1

= 1,2,4 (squares in F7 ) and fromwhere L. points from P to P. for
1 1

to P for i =3,5,6 (non-squares).

The 12 racts in fig. 2 foLLow each other in the same order as they da in

the standard G2 root system.

Then the nontrivial ChevaLley reLations are

(1.12) [L . , L
Z

. J
4

= L3i1 1

(1.13) [K.,K3 ·J
3= L2i1 1
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(1 . 14).

(1.15)

[K.,KZ·J
1 1

[K.,L
4

"·J
1 1

(1 . 16)
4 4

[L.,K3 ·J = KS·L3 ·K.LZ·
1 1 1 1 1 1

combined with the information that for all E {1,Z,4} the mappings

(1.17)

and

(1.18)

K.
1

L.
1

==>

==> I ~
1
"1

K • ==>
-1

L . ==>
-1

1
4

1
3

; I

; I
are isomorphisms from <K.,K .> and <L.,L .> onto SLZ(S).

1 -1 1 -1

lt shouLd be noted that our relations differ sLightLy from those

deseribed, e.g., in Humphreys [197SJ. This is due to our more symmetrie

ehoice of the roots whieh is more convenient in the context of the Lyons

group.

For later reference, we construct an explicit G2 (S) raot system in the

7-dimensionaL minimaL representation over FS ("reduced octave" algebra =
"septime R aLgebra with the skew-symmetric product given by

(1.19)

and the cyclicalLy permuted formuLas).

Up to conjugacy in G2(S), our matrices are uniquely determined:

(1.20) =
1 .
. 1 •.•.•
· .1.31.
· •. 1 ...
· .2.1.1
• • t.t •• 12
· ..... 31

=

6

1 .
.1 •. 21 •
· .1 i ...
• J.. It 2.
• if. 11 ..

:~:?:~i
=

1 .
.13 1
.211 .
. • "li' 3

: : : : . i i'
.... ;<: ••



1 ••.••• 1 •.•. 3. 1 i i ... ä
.1 •• 1i; : ~ 1: ~ . :• .1. • : 1t1!: : .

(1 .21 ) L6
• •• 1 1 . ~ . LS = : 1: ~ ~~ : L

3 = : : ~ ~i: ~......
· .2. ~ 1" .2.1.1. · ~ ••• 1 i
· • .• 11 • ....• 1 · .....
~ ~. ~ : . : ~ 1

1
: " 2 ~ ~11'~~3

3.1. 1 ~ • ".3 ... " • "12 •••
(1.22) K1 = ..... i . 2 ·K = • •• 121. K

4 = • • 31 3 ...
• .... i 2 ·~:e~i:

........
• .2. t 1 ~2:i~~i'• • .• ..1 ! ...... "

~ I· i· .. ~1~:123 ~14·~~~
• .1." 3. .. • 3 ••• i · 11 ~ .••

(1 .23) K6 = ~~i~i·~ KS = · •. 12" . K
3 = •• 31

31
1

." . 31 .• ..... .
· .2 .• i .. • 3.1.1. 2. ••• 1" .
· ••• 311 2. 1 ..... .2. ..... 1

Conjugat ion wi th n x K mereLy permutes the roets (iWi thout exponents).

Beeause of this fact, alL standard sy~tems are equivaLent and lead to

the same set of reLations.

The Lines in A(T) form 3 paraLLel eLasses of 12 Lines eaeh. Every

paraLLeL eLass spLits into 2 eonnected eomponents .ealLed (great) eire­

Les.

A special Line pair is a pair (L,L') of Lines which are eontained in a

great eireLe and either have one point in eommon ("Long" pair) or are

mutuaL antipodes ("short" pair). The reason tor this notation is that

short and Lang speciaL pairs form opposite pairs of short and Long

roots, respectively, in a eertain G2(S) subgroup.

Since two opposite Long root groups in G2(5) have the same centraLizer

in T, this must aLso be true for aLL 6 Lines in a great eircLe.

The eentraLizer of an arbitrary T-invoLution z in the A(T)-point P

contains 4 roots in eaeh paraLLeL eLass. Thus the group <IT> generated by

a paraLLeL eLass n is a subgroup of H = CA(Z) ; 2A A1,.-
Let H = H/<z> ; A11 .

As aLL subgroups isomorphie to 4
2 are eonjugate in H we may assume

without restrietion that

(1.24) T = T/<z> = «1234)(S678),(1234)(8765»

-In H cr H exactLy 12 groups ; 5 exist which are normaLized by T or T.

Except for apermutation of the letters: {1,2,3,4,5,6,7,8,9,X,E} normaLi-
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zing T onLy the foLLowing correspondence between the roots end the

permutations in ~ is aLLowed by the ChevaLLey ~eLations for the points:

o --(E5867)-- 0 --(98576)-- 0

o'--(9413Z)--'o"--(X1423)--"o'--(E413Z)--'o

o"--(X5867)--"o"--(EB576)--'o'--(95867)--"o'--(XB576)--'0

"o"--(91423)--"o"--(X413Z)--"o'--(E1423)--'o'

·o"----(E5867)--·o"--(98576)--"o"

Fig. 3

It is obvious that these roots generate 2A A11 .
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The results of section 1 lead us to the definition of a group r as

follows:

r is generated by 36 elements xL' bijectively· associ.ated with the lines

L in A (f,ig. 1), The defining relations of rare

(1) C(P)-relations for every point P in A;

(2) S(IT)-relations for each parallel cLass n in A.

Here C(P) is the set of ChevaLLey reLations of GZ(S) (cf. section 1)

while Sen) is an arbitrary system of defining relations for 2~A11' Best

suited for our purpose are the Schur relations:

(2.1) t~ = 1, ( 1 :; ~ 9 )

(2.2)

(2.3)

2
(t .. t.) = Z

, J

2z = 1

( 1 ~ i,j ~ 9 " j

where the generator t. corresponds to the permutation (iXE).,
We are now able to translate between the two sets of generators of 2A A

11
(here x(P,Q) is the root eLement which beLongs to the Line connecting

the points P and Q):

(2.4) -1 -1 -1t 9 = x(3c,4a).x(4b,3c) .x(3a,4b).x(4a,3b) .x(3a,4b).x(4b,3c).x(3c,4a)

(2.S) -1 2 -2
t

1 = x(3a 4b) .t
9

.x(3a,4b) t
2

= x ( 3a , 4b ) . t 9 . x ( 3a , 4b )

(2.6) -1 -2 2t
3 = x(3a,4b).t

9
·x(3a,4b) t 4 = x(3a,4b) .t

9
.x(3a 4b)

(2.7) -1 2 -2
t = x(1a,2b) .t

9
.x(1a,2b) t

6 = x(1a,2b) .t
9

.x(1a,2b)
5"

(2.8) -1 -2 2
t = x(1a,2b).t

9
·x(1a,2b) t g = x(1a,2b) .t

9
.x(1a,2b)7

The reverse transformations are:

(2.9) x(3a,4b)

9

x(1a,2b)



(2 , 10) x(4b , 3c )

(2,11) x'(3c ,4a)

( 2 , 12) x(48 , 3b )

( 2 . 13) x ( 3b , 4c )

(2.14) x(4c,3a)

= t-1 t t-1 t t1 ' 4' 2 . 3' 1

x(2b,1c)

x(1c,2a)

x(2a,1b)

x(1b,2c)

x(2c,1a)

= t-1 t 't-1 t tS.. 8' 6 ' 7· 5

= t-1 t t-1 t t8 . 5· 7 ' 6' 8

Sy the main resuLt of Meyer / Neutsch 1 Parker [1985) the Lyons group

possesses a 111-dimensionaL irreducible representation over FS' In this

we can easily identify 36 eLements which generate Ly and s8tisfy aLL

relations defining r.

Hence we have

(a) The Lyons group is a homomorphic image of r;

(b) r has a 111-dimensional nontrivial representation over FS '

Let us now consider the following subconfigurations of A in fig. 1:

0-----0
{I " {I "

o-----P-----o
" 11 " 11

0-----0

Fig. 4.a

0-----0-----0
11 '\

o--L-o
\\ I'

0-----0-----0

Fig. 4.b Fig. 4,c

The subgroups of r generated by the Lines in fig. 4.a; 4.b; 4.c (respec­

t;veLy) are called r(p); f(L); r(F).

For any set {O,O·, ... } of objects we define r(O,o·, ... ) as the intersec-

10



· tion of the groups feO), feO'),

With the above notation ~e have

Thg2r.~m 1~

(a) f(P) - G2 (S);

(b) r(L) - 51+4 : (2 ..... A
6

);

(c) f( F) 3- 5 .SL
3

(S).

The Lines in the foLLowing configurations (omitting ·the dotted Li'nes):

(a) :

(b) :

(c) :

(d):

(e):

0-----0

o
/ / \ \

0--:---0

0-----0-----0

·0: ... :0·
0":'---":'0":'---":'0

0-----0-----0

'0":'---":'0·

0":'---":'0":'---":'0

(f): great circLe

(g): paraLLeL class

generate groups which are isomorphie to:

(a) :

(b) :

5·,

11



_- (c) : 51+4".,

(d): 2"A .
6'

(e): Sx(Z"A6);

(t) : 2"A .7'

~ g) : 2"A11 ·

r(p) is a homomorphic image of G2(S)

Carter [1972]. theorem 12.1.1), so

ErQQ! Ql lh~Qc~m~ 1 ~~g ?~

(1a): Due to the C(P)-reLations,

(using a theorem of Steinberg. cf.

norma-we need only show that 51
+

4 is

r(p) is ; GZ(S) or ; 1.

In the Latter case a root group in r(p) and hence aLso in r(p') for a

neighbouring point P' of P wouLd be trivial, so r(p') = 1, .too. This

leads to r = 1. contradicting Lemma 1.

(2g): Because of the S(ß)-relations, <ß> is a homomorphic image of

2"A11 • so is ; 2"A11 , A11 or 1, OnLy the first possibility is in confor­

mity with (1a). since a long special line pair generates SL2(S) ; Z"A
S

.

The remaining statements in theorem 2 now follow immediately trom (1a)

and (29).

(1b): Since (Zc) and (2d) hoLd.

Lized by 2"A6 , This folLows from (1a). applied to the two points inci­

dent with L.

(1c): AnalogousLy to (1b). we conclude with the help of (2b) that the

three Lines incident with F generate anormal subgroup r (F) ; 53 of
o

r(F).

The images in r(F)/ro(F) of the root subgroups in r(F) fuLfill aLL of

the Chevalley relations for the group SL
3

(S) (which is defined by these

relations) if we map them 8S folLows:

===>

12



F i g. 5

SL3(5) is simple, and according ~o (2c) not all of the images can be-
. 3

trivial; 'thus r(F) ~ 5 .SL3(5). This extension does not split, 's i nce

r(F) contains a 5-Sylow subgroup of G2(5) and therefore elements of

order 25. This establishes theorems 1 and 2.

We now define for an arbitrary (long or short) special line pair L,L'

the groups TLL , and QLL' as fellows:

Let TLL , be the common normalizer of the root groups Land L' and QLL'

the set normalizer of {L,L'} in <L,L'> ; SL
2

(5).

Furthermore , for each great ci rc le K and each parallel system n ·we

introduce the abbreviations

TK =< T
LL

, L,L' special line pair in K >

QK =< QLL' L,L' special li ne pair in K >

Tn = < TLL , L,L' special li ne pair in n >

Qn = < QLL' L,L' special l i ~e pair in TI >

(2.15)

(2.16)

(2.17)

(2.18)

as well as

(2.19)

(2.20)

T =< TLL .

Q =< QLL'

L,L' special line pair>

L,L' special line pair>

and for any point P:

(2.21) TC?) = < TLL , : L,L' special line pair in rC?) >

Of course, TCP) is the standard torus in r(p) - GZ(S).

\.Je then have



(a) For eaeh spec,i aL Line pair L,L' in the great .eirele-i< is TLL , =TK - 4',

(b) for every parallel elass ß is Trr ;;; 4x2;

'(e) for all points P is T(P) = T ~ 42 .

f[QQ!,;.

(a) and (b) follow from an easy ealeulation in <ß> ~ 2A A11 . Trivially,

we have T(P) ~ T. With (a) we deduee ~pr every great eirele K with an

arbitrary but fixed P that TK ~ T(P). Since <TK> = T, we get (c).

(a) For all special line pairs L,L': QLL' = N<L,L·>(T LL ,) ~ QS' the

quaternion group of order 8; the intersection of T with QLL' is

TLL' ;
(b) T is anormal subgroup of Q;

(c) each element q of Q permutes the lines of A, inducing an automor­

phism of A as a simplicial complex;

(d) the image of this action is the fuLL automorphism group S4xS3 of A.

E!:QQ!':'

The first part of (a) is immediate since <L,L'> ~ SL2(S). The second

part can be verified in r(p) for an appropriate point P.

In this r(p) we aLso see that QLL' normaLizes T(P) =T, thus the same

hoLds true for Q =<QLL'>' Furthermore, each TLL , is contained in QLL"

hence in Q; so T = <T LL ,> is a s~bgroup of Q. This proves (b).

Let q be an eLement of QLL" If q is contained in TLL , < T, (c) hoLds

triviaLLy. If q is in QLL.\TLL " q induces apermutation of the groups

of order 5 which are normaLized by T in each of the groups r(p) and <ß>

where P is any point with L,L' < r(p) and ß the paraLleL system eontai­

ning Land L'. 8ut aLL these groups of order 5 are root groups.

From the C(p')-reLations for appropriate points P' we find that the 16

remaining roots are aLso permuted. Inspection of the permutations gene­

rated by Q easiLy leads to (c) and (d).

14



Let TI be a paraLLeL cLass and P a point in A. The group H =<TI> is

= 2A A11 by theorem 2.g. ,We denote the unique involution in ZeH) by z.

We now prove

Since aLL pairs (TI,P) are equivaLent under Q (theorem 4.d), ,we may

restriet ourseLves to the ease P = 1a and n = paraLlel system of fig. 3.

Then Hand r(p) obviousLy contain the 4 roots x(1a,Zb), x(Ze,1a),

x(3b,4c), x(4b,3c) which generate a group SLZ(S)ySLZ(S) ; 2A CA SXA S) of

index Z in Cf(P)(Z) ; (1/Z).ZA CS SxS S). This group ;s enLarged by T­

T < Hand T < f(P) because of theorem'3.c - to the fulL centraLizer of z

in f(P). As z is in the centre of H, the intersection of Hand r(p) is a

subgroup of Cf(P)(Z); hence the proposition.

We want to cons;der severaL groups ,which are defined ?ymmetrieaLLy 'with

res.pect to the apartment A(T).

Let

(3.1)

(3.2)

and

(3.3)

u, = r(1a,1b,1c)

U
3

=r(3a,3b,3c)

Uz = r(2a,2b,2c)

U4 =f(4a,4b,4c)

It wiLL be convenient to have a systematic notation for the cireLes,

parallel systems and corresponding 2 A A1 ,-subgroups in f:

We denote the circle containing the points with numbers

15

and by K.•
1 J



and the paraLLeL system consisting of ~ij and KkL by nij . kL .

The corresponding T-invoLution wiLL 'be caLled z .. kL' and we set
1 J •

H •. kL = <TI •• kL>·
1 J . 1 J •

Hence the torus eLements z12.34' z13.24' z14.23 are canonicaLLy asso­
eiated ·with the doubLe transpositions in the symmetrie group 54' ,whiLe

the circLes K12 , K13, K14 , K23 , K24 , K34 beLong to the transpositions of

54·

Let us now investigate the groups U. ( 1 ~, ~ 4 ) and U:

(a) U1 - U2 ~ U3 ~ U4 ~ U3(3);

(b) U' = U; U/Z(U) ~ U4(3) ; O~(3); Z(U) ~ ,4x32 .

E~22i~

We define

(3.4) 4 2 (132) ina = x(4b,3c) xC3b,4c) ==> H12 . 34

(3.5) b = x(4b,3c)1 x(3b,4c)3 ==> (143) in H12 . 34

(3.6) c = x(4b,2c)1 x (2b,4c)3 ==> (124) in H13 . 24

(3.7) r = x(1a,2b)1 x(2a,1b)3 ==> (568) in H12 . 34

r(1a), f(1b), f(1c) contain the 2A A
5
-groups <x(3b,4c),x(4b,3c»,

<x(3c,4a),x(4c,3a», <x(3a,4b),x(4a,3b» of H12 . 34 , aeting on the sets

{1,2,3,4,X}, {1,2,3,4,E}, {1,2,3,4,9}, respeetiveLy.

Their intersection, the 2A A4-group on {1,2,3,4}, is thus contained in

r(1a,1b,1c) =U1 .

ObviousLy, anaLogous resuLts for H'3.24 and H14 . 23 hoLd.

Hence, by (3.4),(3.5),(3.6),

(3.8) <a,b,t> ~ U1 = rC1a,1b,1c) ~ r(1a)
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In r(1a) we easily verify - see-(1.20), ... ,(1.23)·- ·that

(3.9) a
3 = b

3 = e
3 = 1

(3.10) aba = bab, aea = eae, beb = cbc

(3.11)

These relations form a presentation of the finite simple group U3(3),

cf. Aschbacher and Hall (1973].

5inee <a,b',e> is nontrivial, ,we deduce

(3.12)

By inspection of the maximal subgroups of G2(S) ,we are Left ,with three

candidates for U" namely<a,b,c> ~ U3(3), Nr(1a)«a,b,e»; G2(2) and

r(1a) ;: G
2

(S).

by theorem 5, , C
U1

(z12.34) is the interseetion of U1 and H12 . 34 ,

henee Cu, (z12.34) = <a,b,T> ;: 45 4 ,

But,

GZ(2) and GZ(S) do not contain involution centralizers of this form, so

(3.13) U, = <a,b,t> - U3 (3)

Sinee U" UZ' U3 , U4 are conjugate to each other under Q, (a) follows.

rand c are both eontained in r(3a) where we immediately establish the

relations

(3.'4) rcr =cre

while in H'2.34 ;: 2A A11 the elements a and b evidently commute with r:

(3.15) ra = ar, rb = br

By a result of Asthbaeher and Hall (1973] the relations (3.9),(3.10),

(3.11),(3.14),(3.15) form a presentation of the full Schur cover of the

finite simple group U4(3) ;: 06(3), so with the abbreviation

(3.16) Uo =<a,b,c,r>
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we get Cbeeause U4~3) is simpLe and Uo ~ 1)

C3.17) U • = U
o 0'

U IZCU ) ; U
4

(3)
o 0

and ZCUo) is a faetor of the Schur muLtipLier 12x3 - 4x32 of U
4

(3).

To eompLete the proof of' our theorem it remains to show that Uo '= U.

First we have a,b,e 8 U, ~ U and r E U3 ~ U, so Uo ~ U.

The reverse inequaLity amounts to Ui ~ Uo tor aLL i E {',2,3,4).

CLearLy this is true tor U, =<a,b,e>.

The interseetion of U
1

and U3 eontains the torus T asweLL as e.

Sinee <e,T> ~ 4S4 is maximaL in U3 and eentraLizes z13.24' ·whiLe r E U3
does not, we get

C3.18)

Let now = 2 or 4. The interseetions of U. with U, and u3 sre different
1

maximaL subgroups C~ 4S4 ) of U. ~ U
3

(3) and theretore they together
1

generate U.. Sinee they are eent's i ned in <U"U3> ~ Uo' this eompLetes
1

the proof of the required equaLity

(3.19) U = <a"b,e,r>

at the same time estabLishing the theorem.

Having chosen a suitabLe unitary basis, the matrices in SU4(3) eorres­

ponding to the eLements a,b,c,r are found to be

C3.20)

(3.21)

a =

c =

1 0 0 0
0 1 0 0
0 0 1-i -1+i
0 0 1+i 1·+-;

1 0 0 0
0 1- i 0 -1+i
0 0 1 0
0 1+i 0 1+i

b :::

r :::

1 0 0 0
0 1 0 0
0 0 1-i 1-;
0 0 -1-; 1+;

1+; -1-; 0 0
1-; 1-i 0 0
0 0 1 0
0 0 0 1

where i isa square root of -1.

The matrices in SO~(3) are given by

(3.22) a :::

1
1
....

: . i i 22
· . 2112
· • 1212
· . 1111

18

b :::::

1
1
....

: . i i i i
· . 2121
· . 2112
· . 2211



(3.23) c =
\ i: : \ ~
.. 1 i ..
~ ~: . i ~
21 .• 11
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r =
1

1
, ...

: . i 222
.. 1121
.. 1112
.. 1211



~~ Ihg bY2D§ gr:QY~ ~2 E hQ!!!Q!!!Qr:~b.if im~g~ Q! r

We now define eLements a,b,c,d,x in r by

(4.1) 4 2a = T.x(3b,4c) .x(4b,3c)

(4.2) b Z= x(3b,4e)

(4.3) 3c = x(4b,2e)

(4.4) d 3= x(1a,2b).x(Zc,1a) .x(1a,2b)

(4.5) x = x(3b,4e).x(4b,3e).x(3b,4c).T' .x(4a,3b).x(3b,4c)3. x(4a,3b)

where T and T' are the torus eLements

(4.6)

(4.7)

T = x(4b,Zc).x(Zb,4c)4. x(4b,Zc)Z.x(Zb,4C)2

4 2 2
T = x(1a,4b) .x(4c,1a).x(1a,4b) .x(4c,1a)

The images a,b,c,d,x of a,b,c,d,x in the 111-dimensionaL representation

(cf. Lemma 1) obey aLL of the reLations of Sims (1973], and hence they

generate the Lyons group.

Furthermore,

(4.8)

wh i Le

(4.9)

Therefore

<a,b,c,d>

<a,b,e,d> f(1a) Gz(S)

(4.10) <a,b,e,d> = r(1a)

x E Q by Theorem 4.c permutes the 36 root groups and corresponds to the

automorphism (12)(34).(ac) of the apartment.

<a,b,c,d,x> contains the 12 raot groups in r(1a) and, e. g.,
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(4.11) X(1a,2b)x = X(1b,2c)

Because of the ChevaLLey reLations these 13 root groups generate r.
This shows the vaLidity of

(a) <a,b,c,d,x> = f;

(b) Ly is a homomorphic image of f.

To prove a reLation in any subgroup 6 of f which is isomorphie to its

image 6 in the representation, it is sufficient to check this reLation

for the appropriate 111-dimensionaL FS-matrices.

In particuLar this hoLds true for the Sims reLations which are expressed

in eLements of 6 aLone.

·We may appLy this to the f~lLowing three subgroups:

(4.12) 6 x = f(1a) - GZ(S)=

(4.13) 6c = H1Z . 34 - Z~A11=

(4.14) 6 d = < f(2c,1a) T > - 5'+4:4S
6,

The isomorphisms 6
x

- 6
x

and 6 c - 6
c

have been verified in Theorems 1.a

and 2.c, respectiveLy.

öd ; 6d foLlows immediateLy from Theorem Z.e and the fact that alL root

groups are normaLized by T.

These arguments suffice to prove the vaLidity of alL Sims relations

except three.

We believe that the remaining relations also follow from our presenta­

tion, but we have not yet been abLe to show this.
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The goal of this paper is to construet a root system for the Lyons group

Ly in analogy to those of the Chevalley groups.

We make ample use of geometrie properti~s of Ly.

It is shown that the eonstruction can be earried out in a fashion nearly

identieaL to the methods of Chevalley theory employed to study the Tits

buiLdings of the groups of Lie type (G2(S) < Ly shouLd be eonsidered as

a prototype).

We are eonfident that simiLar ideas can be appLied to ether (aLL ?)

sporadie groups as ·weLL, perhaps in the long run leading to an under­

standing of these peeuLiar structures.

Ceneerning the geometry of the Lyons group itseLf, more information may

be gained by a earefuL study of the 111-dimensienal minimal representa­

tion over FS '

Some initiaL resuLts in that direetion have been obtained.

We hope to present them - together with a proof of the isomorphism of

the group r (defined in sec. 2) with Ly - in the near -future.

We are deepLy indebted to Prof. Dr. Joachim Neubüser (RWTH Aachen) and

his coLLaborators who suppLied us in a most generous way with informa­

tions on severaL finite groups, character tabLes etc.

Without their friendly support and eneouragement this investigation

couLd not have been carried through.
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