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Sims {19731 proved the existence and uniqueness of the sporadic group Ly
predicted by Lyons [1972] through the computer—aided-construction of a
presentation which, unfortunately, iﬁ rather cumbersome and does not
lead to an insight into the structure of the group.

Meanwhile, much ‘more information on Ly has ‘become available.

Kantor [1981] found a Tits geometry for Ly Which is "almost™ a building.
Meyer, Neutsch and Parker [1985) gave the absolute minimal representa-
tion of Ly (111-dimensional over FS). Later, Wilson [1984,1985) compiled
the Llist of all maximal subgroups in Ly. His investigation uses the
minimal representation explicitly, while the verification of the latter
depends on Sims’ presentation. Ffor that reason, it would be of ‘great
interest to have a simpler existence and uniqueness proof.

Inspired by Kantor’'s results, we were Led to the idea of giving a more
symmetric presentation for Ly by making use of %ts beautiful geometry.
Its properties almost immediately foliLow from simple considerations of
several subgroups, such as GZ(S) or 2“A11.
Cur retations are shown to be fulfilled by certain generators ("roots™)
of the Lyons group, and most probably they define Ly itself.

The whole reasoning is carried through without invoking any deep theo-
rems or technicalities.

The geometric spirit of our presentation renders this possible. It is a

first step towards an understanding of the Lyons group.



1. Relations in a group of Ly type
We say a group A is of Ly type if it has the following properties:

(1) A is simple;

~

{(2) A contains an involution z with CA(z) = 2“A11.

Lyons [1972) shows that a group fulfilling (1) and (2) is of order

8 6

a.n Lyt = 28.37.5%.7.11.31.37.67

and that it contains a unique conjugacy class of subgroups £ 62(5).
Let Ao be one of them and B a Borel subgroup of Ao' i.e. a 5-Sylow
normalizer,

then B is also a Borel group in A.

furthermore, Llet T 2 42 be a (maximal) torus in B, No and N its norma-
tizers in AO and A, respectively, and wo = No/T and W = N/T the corres-
ponding Weyl groups.

From the theory of Chevalley groups, cf. e.g. Carter [1972], we deduce

(1.2) Wy 2 Dgp I S5xS,

while Kantor [1981] shows

(1.3 W = SAXSS

A proper subgroup of A or “o which contains a Borel group will be called
parabolic.

Kantor [1981] has shown that A contains exactly three conjugacy classes
of maximal parabolic groups. They can be associated with the points P,

lines L and planes F of a Tits geometry with the Buekenhout diagram

0 0 ] o}
(1.4) 5 5 5
P L F
1+4 3
GZ(S) 5 .Lsé 5 .SLS(S)

Two objects (points, Llines or planes) are ctalled incident with each
other if their intersection (as groups) is parabolic.

The apartment A(T) associated with T is the set of all objects fixed by



T. A(T) is a subgeometry with Buekenhout diagréﬁ

. (1.5 0 o] o o}

1 1 1

and - may be represented (Kantor [1981]) by a simplicial complex A of

dimension 2:

Fig. 1

Here the D~, 1-, 2-simplices correspond to the 12 points, 36 Lines, 24
planes of the apartment, respectively.

The Weyl group W Z SAKS3 acts as Sa on the numbers {1,2,3,4} and as 33
on the letters {a,b,c}.

In analogy to Chevalley theory we now define the root groups associated
with T as the groups X obeying the conditions:

() X 2 (Fg,+) £ 5;

(2) T 8 NOX).

It follows from the known structure of CLY(SB) (Lyons [1972]) that all
root groups must be generated by 5A-elements.

Since C Y(SA) z 51+L:(2“A ) does not contain a Klein four group,

L 6
CT(X) 4.

ne

The A-normalizer of a 5A-group is a Line. Thus there 1is a natural
bijection between the root groups and the lines in A(T).

The extension of T with the commutator subgroup



1.6 W' = A xA

of W splits, so there is a unique element k of order 3 in N which
corresponds to the Weyl element (abc) and centralizes T. 1In fact (Lyons
(19721,

1.7 CA(T) = T x K
with
(1.8 K = <k>

Furthermore, there is é set of 16 complements of T in T:A,. These groups
are evidently conjugate under T, s0 we may elect an arbitrary one of
them and deriote it by 8.

 is generated by 4 elements W ( 1 & 37 &4 ) which correspond to  the
120° - rotations with centres in the points .whose names contain the
number .

Each w; is uniquely determined by the choice of § and the corresponding
Weyl permutation, namely

1.9 Wy ~=> (234); Wy —=> (143); Wy —=> (124); W, —=> (132) in W

The group

1.10) <wi,k> = 1 x K & AA X A3

(one of just 16 complements of T in N = T:W" = 42:(ALxA3)) is represen-
ted as a regular permutation group on the root groups XL.

This allows to specify a set of 36 generators ("roots”) for each of the
36 X_ -

We are free to take any generator for one of them, e.g. X(1a,2b). Call
it x(1a,2b). Then apply @ x K to this root to define the remaining ones.
A complete system of 36 root elements generated in this way will be

called a standard (root) system.



Without restriction of generality we may assume - that the following
relations hold (the exact exponents depend on the choice of x(1a;2b),
but this clearly dbgs not matter, since all allowed possibilities are
equivalent because they lead to the same groupl:

It will be convenient. to define an orientation of the Lines in A

according to the rules
1.11) a —->0b, b —-> ¢, c —> a

Now we consider a point P in A.

The &6 Lines incident with P form a complete set of'Long roots for the
stabilizer A(P) of P, isomorphic to the Chevalley group G,(5), while the
short roots are given by the sides of the (small) hexagon with centre P

spanned by the long roots.
X

7). respectively,

We denote the long and short roots by Li and Ki (i efF

in the following manner:

Fig. 2

where Li points from P to Pi for i = 1,2,4 (squares in F?) and from Pi
to P for i = 3,5,6 (non-squares).

The 12 roots in fig. 2 follow each other in the same order as they do in
the standard 62 root system.

Then the nontrivial Chevalley relations are

_ 4
(1.12) [Li'LZi] = L3i
(1.13 (K. K, .1 = L3
) i34 2i



3 K3 LZ

(1.14) [K,.K,.0 = Ly KoLy
L b .
(1.15) [K L3 = LoiKaileiKas
_ .
(1.16) (L. Kgid = Ko LgKiLo

combined with the information that for all i € {1,2,4)} the mappings

. 11 __ 1.
(A0 = |1 7| <= | i
and i

. 11 _ 1.
(1.18) L, => | ' | L == ' 1 I

are isomorphisms from <K;.K_;> and <L;.L_;> onto SL2(5).

It should be noted that our relations differ slightly from those
described, e.g., in Humphreys [1975]. This is due to our more symmetric
choice of the roots which is more convenient in the context of the Lyons
group.

For Later reference, we construct an explicit GZ(S) rgot system in  the

7-dimensional minimal representation over F_ ("reduced octave” algebra =
p

5
"septime™ algebra with the skew-symmetric product given by

(1.19) €ip1°€i42 = ei+4

and the cyclically permuted formulas).

Up to conjugacy in GZ(S), our matrices are uniquely determined:

1,..... 1,..... 1.,.....

i.0... 31 id; i

3 O cedgls 21ill

120 Ly = | sty Ly = | is:11%: Ly = | oothgt
w..iz woali t

31 |y Lol i - 1




e n e 1 .
| gl I T |
(.21t = | atins Lg = .| 110510 Le = | 2%
L.2,,1% .2.1.1 . 1
D T S I i DD
P S 1,1. 2 1 .12
_ :%1§i51 R RSO | e
e IR vt 1 IO It 11 N B i Pt
M- 1'S 1 I 26 DS
b4 8- 1l:128 114213
(1.23) Kk, = | Bi;s;e; K. = diset K. = | 3%
' 6 o148 5 3.3 3 IR L
L..311 2.1...% L2.%..1

Conjugation with @ x K merely permutes the roots (without exponents).
Because of this fact, all standard systems are equivalent and lead to
the same set of relations.

The Lines in A(T) form 3 parallel classes of 12 Lines each. Every
parallel class splits into 2 connected components called (great) circ-
Lles.

A speciai Line pair is a pair (L,L") of Lines which are contained in a
great circle and either have one point in common ("long™ pair) or are
mutual antipodes ("short”™ pair). The reason for this notation is that
short and Llong special pairs form opposite pairs of short and Llong
roots, respectively, in a certain 62(5) subgroup.

Since two opposite Long root groups in GZ(S) have the sam? centralizer
in T, this must also be true for all 6 Lines in a great circle.

The centralizer of an arbitrary T-involution 2 in the A(T)-point P
contains & roots in each parallel class. Thus the group <HO> generated by
a parallel class 1 is a subgroup of H = CA(z) z 2“A11.

Let H = H/<z> =2 A11. >
As all subgroups isomorphic to 4 are conjugate in H we may assume

Wwithout restriction that

(1.264) T = T/<z> = <(1234)(5678),(1234)(8765)>

~

In H or H exactly 12 groups = 5 exist which are normatized by T or T.

Except for a permutation of the letters {1,2,3,4,5,6,7,8,9,X,E} normali-



zing T only the following correspondence between the roots and the
permutations in H is allowed by the Chevalley reLations.for the ﬁoints:
.o.——(Essé?)——-o_-—(985?6)——-5'
'o:;;(9L132);;:o:;;(X1A23);;:o:;;(EA132);;:o_
o:;;(X586?);;:o:;;(585?6);;:0:L;(9586?);;:o:;;(XBS?é);:io
.'o:;;(91423);;:o:;;(x4132);;:o:;;(E1423);;:o'_

0" ——(E5867)~-"0"-—(98576)——"0"
Fig. 3

It is obvious that these roots generate 2*A11.



2. Definition and simple geometric properties of the group I'

The results of section 1 Lead us to the definitjon of a group T as
follows: | -

' is generated by 36 elements X\ s bijectively associated with the Lines
L in A (fig. 1). The defining relations of T are ’

(1) C(P)-relations for every point P in A;

(2) S{l)-relations for each parallel class T in A.

Here C(P) is the set of Chevalley relations of GZ(S) (cf. section 1)

while S(II) is an arbitrary system of defining relations for 2“A11. Best
suited for our purpose are the Schur relations:
3 .
2.1 to = 1 (1384749
(2.2) (ti'tj)z =z (1 8£41,j89 ; i=«3)
(2.3 22 =1

where the generator t. corresponds to the permutation (3iXE).
We are now able to transilate between the two sets of generators of 2"A11
(here x(P,Q) is the root element which belongs to the Line connecting

the points P and Q):

(2.4) tg = X (3c,ba).x(4b,3¢)” . x(3a,4b) .x(4ha,30) . x(3a,4b) . x(bb,3c) . x(3c, bad |
_ -1 _ 2 -2
(2.5 t1 = x(3a,4bh) .tg.x(3a,4b) t2 = x(3a,4b) .tq.x(3a,Ab>
_ -1 _ -2 2
(2.6) t. = x(3a,4b).t..x(3a,4b) t = x(3a,6b) .t _.x(3a,4b)
3 9 4 9
2.7 t. = x(1a,20>" 7 t..x(1a,2b) t. = x(1a,2b)%.t_.x(1a,2b) "2
5 9 6 9
(2.8) t, = x(1a,2b) .t..x(1a,2b) " t. = x(1a,25)"% t..x(1a,2b)°
. 7 ' “to- I 8 ) “tg- .
The reverse transformations are:
(2.9) x(3a,4b) = to .t V.t . to .t t..t x(1a,2b) = t- .tV et et t
: ‘ Yo -ty Yttty Tty ‘ 9 %5 ‘g ity tytgetg



(2.10) x(4b,3c) = t2't4‘t
: _ 1

(2.11) x(3¢,4a) = t, ita'

(2.12) x(6a,3b) = tol.t]

’ ! ¢ 4

(2.13) x(3b,4c) = t3. 1.t
_ .1

(2.14) x(4c,33) = tL .t1.

_ -1 -1
x(2b,1¢c) = tb'ts'ts_"? t6
x(1¢6,28) = to . to. .t 5.t

. 5 -tg-tg -t7-ts

I -1
x(2a,1b) = 1)t .t 100t
X(1b,2¢) = to.te.to . t, . to!

, 7-t5-tg -ty -ty
x(2c,1a) = LI LI

By the main result of Meyer / Neutsch / Parker [1985] the Lyons group

possesses a 111~-dimensional irreducible representation over FS' In this

we can easily identify 36 elements which generate Ly and satisfy all

relations defining T.

Hence we have

Lemma 1:

(a) The Lyons group is a homomorphic image of T;

(b) T has a 111-dimensional nontrivial representation over FS'

Let us now consider the following subconfigurations of A in fig. 1:

Om===707====0
/ \
OT—L_70
\ /
O=——w- O===r o]
Fig. 4.b

\oi——-lo/
\\ //
o
Fig. &4.c

The subgroups of T generated by the lines in fig. 4.a; &4.b; 4.c (respec~-
tively) are called T(P); T(L); T(F).

For any set {0,0°,...) of objects we define T(0,0°,...) as the intersec-

10



“tion of the groups T(0), I(0"),

With the above notation we have

~
[+1]

~
-1
~
arl
~

I

= 65(5);

1

~~
o
"~
-
—
o
ne

+o. (onp Y
57772 ;

(¢) TC(F) = S3.SL_(5).

Theorem 2:

(a): o————= 0
o
(b): // \\
O=====0
7\
/
(c): A
N/
0
o———== o————- o
(d): ‘ol 0]
Q=———=0=———=0
o-———- o——-—- 0
(e): ‘os--—=0"
O-=——=0-———=0
f): great circle
(g): parallel class

generate groups which are isomorphic to:

(a): 5,

(b): 53;

11



o s1*e, . B

2 (d): 2 Aé;
(e): Sx(Z*Ab);
(f): 2“A7;

(g) ZAA11

(1a): Due to the C(P)-relations, T(P) is a homomorphic image of GZ(S)
(using a theorem of Steinberg, cf. Carter [1972], theorem 12.1.1), so
r(pP> is = GZ(S) or = 1.

In the Latter case a root group in T'(P) and hence alsc in I'(P") for a
neighbouring point P' of P would be trivial, so I'(P’) =1, too. This
leads to T = 1, contradicting Lemma 1.

(2g): Because of the S()-relations, <I> is a homomorphic image of
2“A11, SO i5 = 2“A11, Ayq or 1. Only the first possibility is in confor-
mity with (1a), since a Long special Lline pair generates SLZ(S) = ZAAS.
The remaining statements in theorem 2 now follow immediately from (1a)
and (2g).

(1b): Since (2c) and (2d)> hold, we need only show that 51+4 is norma-
Lized by 2“A6. This foLLouslfrom (1a), applied to the two points inci-
dent with L.

(1c): Analogously to (i1b), we conclude with the help of (2b) that the
three Lines incident with F generate a normal subgroup FO(F) = S3 of
T(F).

The images in r(F)/FO(F5 of the root subgroups in T(F) fulfill alLl of
the Chevalley relations for the group SL3(S) (which is defined by these

relations) if we map them as follows:

\ / \ 7 o A/
o, ———--= o ===> Q ~—a--,0,-—A—— 0
‘o g/ B/ \e
\ 7/ / \
0 o] 0

12



Fig. 5

SL3(S) is simple, and according to (Z2c¢) not all of the images can be
trivial; ‘thus T(F) g 53.SL3(S). This extension does not split, since
T(F) contains a 5-Sylow subgroup of GZ(S) and therefore elements of

order 25. This establishes theorems 1 and 2.

We now define for an arbitrary (long or short) special Line pair L,L’
the groups TLL' gnd Q - as follows:

Let TLL'
the set normalizer of {L,L"} in <L,L'> = SL,(5).

2
Furthermore, for each great circle K and each parallel system II .we

be the common normalizer of the root groups L and L' and QLL'

introduce the abbreviations

(2.15) TK =< TLL' sLL special Line pair in K >
) - < : . . . ..
(2.16) QK QLL' L,L° special Line pair in K >
(2.17) Tn =< TLL' : L,L" special Line pair in Il >
(2.18) Qn = < QLL' : L,L° special Lipe pair in 1 >
as well as
(2.19) T =< TLL' : L,L° special Lline pair >
2.200 Q=< QLL' : L,L° special Lline pair >

and for any point P:

(2.21) T(P) = < T |+ :L,L" special Line pair in T'(P) >

0f course, T(P) is the standard torus in T(P) = GZ(S).

we then have

13



- Theorem 3:

(a) For each spetial Line pair L,L" in the great .circle.K is T =T 4;

(b) for every paEaLLeL ctass T is T, = 4x2;

‘(¢) for all points P is T(P) =T = 42.

(a) and (b) follow from an easy calculation in <> = 2"A4,. Trivially,
we have T(P) & T. With (a) we deduce for every great circle K with an

arbitrary but fixed P that L S T(P). Since <Tg> = T, we get (¢).

Theorem 4:

(a) For atll special Lline pairs L,L": QLL’ = N<L,L'>(TLL') = 08, the
quaternion group of order 8; the intersection of T with QLL' is
ITRE

(b) T is a normal subgroup of Q;
(c) each element q of @ permutes the Lines of A, inducing an automor-
phism of A as a simplicial complex;

(d> the image of this action is the full automorphism group Skxs3 of A.

The first part of (a) is immediate since <L,L"> = SL2(S). The second
part can be verified in T'(P) for an appropriate point P,

In this T(P) we also see that @ normalizes T(P) = T, thus the same

LL’
holds true for Q = <QLL.>. Furthermore, each TLL' is contained in QLL"
hence in Q; so T = <TLL'> is a subgroup of Q. This proves (b).
Let g be an element of QLL" If q is contained in TLL' < T, (¢)> holds
trivially. If q is in QLL'\TLL" q induces a permutation of the groups

of order 5 which are normalized by T in each of the groups I'(P) and <i>
where P is any point with L,L° < T(P) and NI the parallel system contai-
ning L and L°. But all these groups of order 5 are root groups.

From the C(P')-relations for appropriate points P’ we find that the 16
remaining roots are also permuted. Inspection of the permutations gene-

rated by Q@ easily leads to (c¢) and (d).

14



3. Some geometric subgroups of T

Let T be a parallel class and P a point in A. The group H = <JI> is

= 2"A11 by theorem 2.g. We denote the unique involution in Z(H) by z.

wWe now prove

Theorem 5:

The intersection of H and T'(P) is Cr(P)(Z) = (1/2>.2 (Ssxss).

Since all pairs (,P) are equivalent under @ <(theorem &4.d), we may
restrict ourselves to the case P = 1a and 1 = parallel system of fig. 3.
Then H and T(P) obviously contain the & roots x{1a,2b), x(2¢c,1a),

x(3b,4c), x(4b,3c) which generate a group SL5(5)ySLo(5) = ZA(ASxAS) of

index 2 in CF(P)(Z) = (1/2).2*(85x85). This group is enlarged by T -
T <Hand T < T(P) because of theorem 3.c - to the full centralizer of z
in T(P). As z is in the centre of H, the intersection of H and T'(P) is a

subgroup of Cr(p)(z); hence the proposition.

We want to consider several groups which are defined symmetrically with

respect to the apartment A(T).

Let
(2.1 Upg = r'(la,1b,1¢) U2 = I'(2a,2b,2¢)
(3.2) U3 = I'(3a,3b,3c) U& = T'(43,4b,4C)
and

(2.3 U = <U1,U2,U3,U4>

It will be convenient to have a systematic notation for the <circles,

parallel systems and corresponding 2“A11-subgroups inT:

We denote the c¢irclte containing the points with numbers i and j by Kij

15
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The corresponding T-involution will be called zij K and we set

and the parallel system consisting of Kij and K

Hijoel © Tl

Hence the torus elements Z92 34+ 29324 294 23 2TE canonically asso-

ciated with the double transpositions in the symmetric group $ while

4

the circles K belong to the transpositions of

SL'

12¢ Razr Kqge Koze Kour K3y
Let us now investigate the groups Ui (1 &£ 7 &4 ) and U:

Theorem 6:

g Uy 2 U, = U3(3);

32U,
(b U = U; U/ZCU) £ U (3) E 0,(3); ZW) S 4x3°.

Proof:

We define

(3.6>  a = xthb,30)%x(3b,4c)° ==> (132)  in H

. ’ ‘ 12.34

_ 1 3 . .

(3.5) b = x(4b,3c) x(3b,4c) ==> (143)  in Hy, <,
_ 1 3 . X

(3.6) € = x(4b,2¢) x(2b,4c) | ==3> (126)  in Hyo o,
_ 1 3 - )

(3.7) r = x(1a,2b) x(2a,1b) ==> (568) in H12_3a

rcla), T(ib), T(ic) contain the 27Ac-groups  <x(3b,4c),x(4b,3c)>,
<x(3¢,4a),x(4c,3a)>, <x(3a,4b),x(4a,3b)> of H12 34
{1,2,3,4,X3, {1,2,3,4,E}, {1,2,3,4,9}, respectively.

acting on the sets

Their intersection, the ZAAa-group on {1,2,3,4}, 1is thus contained in
I'(1a,1b,1¢) = u,.
Obviously, analogous results for H13_2a and H14.23 hold.
Hence, by (3.4),(3.5),(3.6),

(3.8) <a,b,c> £ U; = T'(1a,1b,1c) & F1a)

16



In T(1a) we easily verify - see-(1.20),...,(1.23)-~ ‘that

(3.9 a3 3 3

"
o
H
o
1
—_—

(3.1 aba = bab, aca = cac, bcb = cbc
3.1 aPcab = c-1abc-1; b2 1p2 = ¢3!

These relations form a presentation of the finite simple group Ug(3J,
cf. Aschbacher and Hall [1973].

Since <a,b,c> is nontrivial, we deduce

(3.12) U3(3) Z <a,b,c> & U1v$ rcia) ¢ GZ(S)

By inspection of the maximal subgroups of 62(5)1ue are left with three

candidates for U (<a,b,c>) = 62(2) and
T'{1a) = GZ(S).

namely <a,b,c> = U3(3),

10 Nrcra)

But, by theorem 5, CU1(Z12.34) is the intersection of U, and H;5 %,

hence CU1(Z12.34) = <a,b,T> = LSL.

62(2) and GZ(S) do not contain involution centralizers of this form, so

it

(3.13) U1 = <a,b,t> = U3(3)

Since U are conjugate to each other under @, (a) foltows.

11 Uzr U3- Utb
r and ¢ are both contained in I'(3a) where we immediately establish the

relations

(3.14) r3 =1, rcr = Cre

while in Hio 34 F ZAA11 the elements a and b evidently commute with r:

(3.15) ra = ar, rb = br

By & result of Aschbacher and Hall [1973] the relations (3.9),(3.10),

(3.11),¢3.14),¢3.15) f{form a presentation of the full Schur cover of the
finite simple group UA(S) = 02(3), so with the abbreviation

(3.16) U0 = <a,b,c,r>

17



we get (because U, (3) is simple and Uy = 1)
(3.17) v =uU, U /Zv ) =z U, (3

° o 0 o [A
and Z(UO) is a factor of the Schur multiplier 12x3 2 Ax32 of U‘(3).
To complete the proof of our theorem it remains to show that Uo-= u.
1 i Uandr ¢ U3 S U, so Uo s u.
The reverse inequality amounts to Ui S U0 for all i £ {1,2,3,4)}.

First we have a,b,c € U

Clearly this is true for U1 = <a,b,c>.
The intersection of U1 and U3 contains the torus T as well as c.

while r e u

Since <¢,T> = LS4 is maximal in U3 and centralizes 2,3 540 3

does not, we get

(3.18) U, = <¢,T,r> & U
3 o)

Let now 1 = 2 or 4, The intersections of Ui with U1 and U3 are different
maximal subgroups (2 LS&) of Ui = U3(3) and therefore they together
generate Ui' Since they are contained in <U1,U3> S Uo' this completes

the proof of the required equality
(3.19) U = <a,b,c,r>

at the same time establishing the theorem.
Having chosen a suitable unitary basis, the matrices in SU,(3) corres-
ponding to the elements a,b,c,r are found to be

1 0 0 0 1 0 o] 0
_ o 1 0 0 ) o 1 0 o0
3.200 2= 1 5 0 - -1ei PEl 0 0 1-i -
0 0 1+1 141 0 0 1=  A+i
] 0 0 0 1+1 -1-3 O 0
_ 0  1-i 0 -1+i _ 1-i 1-i 0 O
(3.21) c = 0 0 1 0 r = 0 0 1 0
0 1+ 0 1+3 0 0 0 1
where i is a square root of -1.
The matrices in 80;(3) are given by
Yoo Yoo
TLiigs CLiiii
(3.22) a = ‘2112 b = ‘71zl
1111 S2211
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(3.23)
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4, The Lyons group as @ homomorphic image of T

We now define elements a,b,c,d,x in T by

(4.1  a = T1.x(3b,400%. x4b,30)°

4.2) b = x(3b,4c)?

4.3 ¢ = x(b,20)°

(L.4) d = x(1a,2b).x(2c,1a)3.x(1a,2b)

(4.5)  x = x(3b,4c).x(4b,3¢).x(3b,4¢).T" .x(4a,3b) . x(3b,4c) . x(4a,3b)

where 1 and 1° are the torus elements

(4.6 1T = x(4b,2c).x(2b,4c)%. x(4b,2¢)%. x(2b,4c)2

L.7) T = x(1a,¢b)a.x(4c,1a).x(1a,4b)2.x(ac,1a)2

The images a,b,c,d,x of a,b,c,d,x in the 111-dimensional representation
(cf. Lemma 1) obey all of the relations of Sims (19731, and hence they
generate the Lyons group.

Furthermore,

(4.8) <a,b,c,d> = 62(5)

while

(4.9) <a,b,c,d> & T(la) 2 6,(5)
Therefore

.10 <a,b,c,d> = TI(1a)

x € Q by Theorem 4.c permutes the 36 root groups and corresponds to the
automorphism (12)(34).(ac) of the apartment.

<a,b,c,d,x> contains the 12 root groups in I'(la) and, e. g.,

20



4.11) X(1a,200% = X(1b,2¢)

Because of the Chevalley relations these 13 root groups generate T.

This shows the validity of

Theorem 7:

(a) <a,b,c,d,x> = T;

(b) Ly is a homomorphic image of T.

Remark:

To prove a relation in any subgroup & of T which is isomorphic to its
image & in the representation, it is sufficient to check this relation

for the appropriate 111-dimensional FS—matrices.
In particular this holds true for the Sims relations which are expressed

in elements of & alone.

‘We may apply this to the fQ(LOuing three subgroups:

4L.12)

=2
11

rdiay £ 6,(5

X = P
(4.13) B, = Mo o3, T 2%
(4.14) by = <T,a8) , T> 2 51“‘;1.56

Ax and Ac = Bc have been verified in Theorems 1.a

ne

The isomorphisms Ax
and 2.c, respectively.

Ad = ;d follows immediately from Theorem 2.e and the fact that all root
groups are normalized by T.

These arguments suffice to prove the validity of all Sims relations
except three,

We belijeve that the remaining relations also follow from our presenta-

tion, but we have not yet been able to show this.
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The goal of this paper is to construct a root system for the Lyons group
Ly in analogy to those of the Chevalley groups.

We make ample use of geometric properties of Ly.

It is shown that the construction can be carried out in a fashion nearly
identical to the methods of Chevalley theory employed to study the Tits
buildings of the groups of Lie type (62(5) < Ly should be considered as
a prototype).

We are confident that similar ideas can be applied to other (all 7)
sporadic groups as well, perhaps in the long run Leading to an under-
standing of these peculiar structures.

Concerning the geometry of the Lyons group itself, more information may
be gained by a careful study of the 111-dimensional minimal representa-
tion over FS'

Some initial results in that direction have been obtained.

We hope to present them - together with a proof of the isomorphism of

the group I' (defined in sec. 2) Wwith Ly - in the near ‘future.
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