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On a result of Levin and Fainleib involving
multiplicative functions

Pieter Moree

Abstract

Let f be a multiplicative function that is constant, on average, in prime ar
guments. B. V. Levin and A. S. Fainleib derived in 1967 by a bootstrapping
method not involving complex analysis an expression for Ln<x f(n), under
some further conditions on f. In tbis note we prove a slightly weaker version of
their result under rather more transparent conditions on f.

1 Introduction

An arithmetic function f, that is a function f : N --+ C, is said to be multiplicative if
f(ab) = f(a)f(b) for all coprime natural numbers a and b. It is said to be completely
multiplicative if f(ab) = f(a)f(b) for all natural numbers a and b. Throughout we
will assurne that f : N --+ R2:o. In their classical work [5) Levin and Fainleib gave an
elementary method (a method not involving complex analysis) to deal with sums of
multiplicative functions constant on average in prime arguments. A. Selberg [13, pp.
183-185] discovered a short elegant method to do so as weIl, however it is severely
limited in both powerfulness and generality [8]. Since 1967 no other elementary
method of comparible gencrality has been found improving on that of Levin and
Fainleib.

The main result of [5] reads as follows:

Theorem 1 [5, Theorem 2.1.1)
Let f : N --+ lR2:0 be a multiplicative function satisfying the conditions

L Af(n) = rlogx + B + h(x), '
n~x n

h(x) = o(1og--Y x),

f f(~T) --+ 0 as p --+ 00,

T=l P

rr (1 + f(p) + f(~2) + ...) = O(lo~ x),
p<x P P
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where A, B, I > °and r > 0, are constants. Then, for E > 0,

L f(n) = L av logT-V x + O€(logA-l-,+€ x)
n<x n O<v<T+,+l-A- -

and, for A > 0,

(5)

L f(n)n>'-l = x>' L bv logT-l-v X + O€(X>'logA-l-,+€ x), (6)
n~x O~v<T+I-A

where bo = aor/A > O.

Here Af denotes the Von Mangoldt function associated to thc function f (see §2).
The letter p is exclusively used to denote primes. The proofs given by Levin and
Fainleib are rather succinct. A. G. Postnikov [12, §4.11], however, gave in somewhat
more detail an account of their method for a particular multiplicative function, b(n),
the characteristic function of the set of integers that can be represented as a surn of
two squares. His proof is easily extended to a proof of Theorem 1 in the case that
the estimate h(x) = O(log-I x) holds for every I'

Unfortunately the conditions of Theorem 1 are, certainly for the non-specialist in
multiplicative functions, not so easy to check. The purpose of this note is to prove
the following 'consumer friendly' version of Theorem 1. (As usual Li(x) denotes the
logarithmic integral.)

Theorem 2 Let f : N --+ lR2::0 be a multiplicative function satisfying

and

L f (p) = r Li(x) + 0 (I ~I ),
p<x og x

where T > 0 and I > °are fixed, then, for E > 0,

L f(n) = L av logT-V x + O€(logT-l-'"Y+€ x),
n~x n O~v<'"Y+l

and, for A > 0,

(7)

(8)

(9)

:E f(n)n>'-l = x>' L bv logT-l-~ X+ O€(x>'logT-l-'"Y+€ x), (10)
n~x O~V<I

where bo = aoT / A > O. In case f is completely multiplicative, condition (7) can be
weakened to:

(11)
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The price that has to be paid for this consumer friendliness is a slight loss of generality.
For a better understanding some remarks to this result have to be made. I can do
no better here than to refer the reader to the remarks (A), (B) and (C) following
[11, Theorem IIIJ. A further remark is that the method of Levin and Fainleib has an
analytic 'equivalent'. This is the so called Selberg-Delange method (see [15, Ch. 5]
for an introductory account). Theorem 1 'corresponds' to Theorems 3 and 5 of [15,
Ch. 5J taken together (these results have, like Theorem 1, conditions that are not so
easy to check in a giyen case). The analytic methods have their roots in the proof of
Landau [4J of the estimate

xE b(n) r"V Cy'1OgX'
n~x ogx

with c > 0 a constant, which he obtained using contour integration of a certain L
sedes (see [3, pp. 61-63] for a more leisurely account). It was folklore that this result
could be extended to what we following 1. S. Luthar [6] will call an asymptotic series
in the sense of Poincare:

'"' x al a2 ak 1
Li b(n) = y'1OgX(ao+ -I- + -1-2- + ... + -I-k- + Ok( g-+1 )),
n~x og X og X og X og x 10 x

where k ;::: 1 is arbitrary (already the last sentence of Landau's paper seems to hint at
this possibility). The proof of this folkore result was written down by J.-P. Serre [14]
for the larger dass of so called Frobenian multiplicative functions. These functions
were considered subsequently hy R. W. K. Odoni in aseries of papers (see [10] for a
survey).

As to the structure of this paper; in §2 the function Af is studied, so as to pave
the way for the proof of Theorem 2 in §3. Finally in §4 the paper of Serre mentioned
above and a paper of K. Wiertelak [17J are reconsidered in the light of Theorem 2.

To avoid notation like bO,lO , b1,IO , b2,10 ,' •. , the notation aa, al, ... and bo, b1l ••• is
used to denote sequences of generic constants. At each occurrence the elements of
these sequences may have a different value. Instead of O(R(x)), (x --+ 00), always
just O(R(x)) is heing written.

I'd like to thank Prof. Fainleib for informing me about his recent work on multi
plicative functions and Prof. Moroz for bringing me into contact with Prof. Fainleib.
This paper owes much to an unpublished manuscript kindly sent to me by Prof. Hal
berstam [2J.

2 On the Von Mangoldt function associated to a
multiplicative function

A very important role in the method of Levin and Fainleib is played hy an arithmetic
function associated to the multiplicative function under consideration, which is similar
to the Von Mangoldt function. Recall that the Von Mangoldt function is defined by
A(n) = 0 if n is not a prime power exceeding one and A(pT) = logp otherwise.
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Note that logn = Edln A(d). Given a multiplicative function j, we implicitly define a
function Af by

n
f(n) log n = :E j( "d)Af(d).

dln

If 1 denotes the function that is 1 in every integer, then clearly Al = A. We will now
argue that AI is a Von Mangoldt function in the sense that it only lives on prime
powers. Recall that L,(8) = En j(n)n-8

• Then -LJ(8) = E n j(n)(logn)n-S and so
-LJ(8)/L,(8) = EnA,(n)n-s. Using L/(8) = TIp (l + j(p)p-S + j(p2)p-2S + .. '), we
find

:E(-log(l + f(p)p-S + j(p2)p-2s + ...))'
p

logp(j(p)p-S + 2j(p2)p-2s + 3j(p3)p-3s + ...)
= ~ (1 + f(p)p-8 + f(p2)p-2s + ...)

- :E:EAfCt)·
p j pJ

Hence the assertion follows. It now follows from (12) that

j(n) logn = :E j( n. )A/(pi).
piln P'

Using (13) and induction we find:

Proposition 1 We have

where
C,(p) = !(p),

and cf(pr) is defined recursively for r > 1 by

r-l

cf(pr) = r J(pr) - :E c,([l)!(pr-j
).

j=l

(13)

(14)

(15)

(16)

For a function ! that is completely multiplicative the behaviour of cf(pr) is particu
larly simple; we have c,(pr) = j(PY. Again this is easily proved by induction. This
suggests that for arbitrary multiplicative functions one can factor out a completely
multiplicative function.

Proposition 2 Suppose f(n) = g(n)h(n), where 9 is multiplicative and h is com
pletely multiplicative. Then A f (n) = Ag (n) h(n).

Proof: Note that f is multiplicative. We are done if we show that c,(pr) =
cg(pr)h(pY, for all prime powers. Onee again we proeeed by induetion. For r = 1 the
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assertion is true by (15). Suppose it is true for r = 1,· . ·,8 - 1 (8 ~ 2). Then, using
(16),

,,-1

cf(pS
) - sg(p")h(p)S - L Cf(rJ)g(p,,-j)h(p)S-j

j;;;l

,,-1

- sg(pß)h(p)S - L cg(pl)g(ps-j)h(p)"
j;;;l

cg(pS)h(pY· •

Proposition 3 Suppose that I is multiplicative and satisfies II (n) I ::; 1. Then

Proof: We prove by induction that ICf(pr)1 ::; 2r -1. The result then follows from
(14). For r = 0 and r = 1 the inequality clearly holds. Also, for r ~ 2,

r-l

lCf(pT)1 ::; r + L(2j
- 1) = 2r

- 1. •
j=1

Lemma 1 Suppose that I is multiplicative and satisfies (7). Then

Proof: Consider the multiplicative function g(n) = l(n)(clc2)-D(n), where as
usual O(n) = Lpalln 1. Notice that Ig(n)1 ::; 1. Bince (CIC2)D(n) is completely multi
plicative Proposition 2 can be invoked to deduce that Af (pr) = Ag(pr) (Cl C2y. Propo
sition 3 yields IAg(pr)1 ::; (2T

- 1) logp. Thus the lemma follows.•
To a multiplicative function I satisfying (7) we associate a function 10 as folIows.

Let S be the set consisting of 1 and the natural numbers having no prime factor less
than Po. Now put fo(n) = f(n) if n is in Sand fo(n) = 0 otherwise. Notice that 10
is a multiplicative function. We say 10 is the companion of f. Some of the reas:ons for
introducing this notion will become apparent from the proof of the next lemma.

Lemma 2 Suppose f is multiplicative and satisfies (7) and (8). Let 10 be the com
panion 0/ f. Then

L Afo(n) = T logx + B fo + O(log-' x),
n~::z: n

where B fo is a constant.

Proof: Clearly if f satisfies (7) and (8), so does its companion. We have, using
Lemma 1,
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Hence

= B+O( L IO~p)
p>..;X P

= B + O(X- I
/

2
),

for sorne constant B. Using (14) and (15) it now follows that

L Afo(n) _ L fo(p) logp + L A/o(pr)
n<x n p<x P p,r~2 pr

- - pr:5;z

= L fo(p) logp + B + O(X- I / 2 ),

p<x P
- T log X + Bio + 0 (log-I x) l

where the last step follows from (8) on applying Abel summation.•
Remark. For future reference we note that from the positivity of fand the above
proof it follows that

(17)

For completeness we give two further results on AI. They are not needed for the
sequel.

Proposition 4 Let fand 9 be arithmetic functions. Let (f*9)(n) = Edln f (d)9(n/ d) .
Then Af*g = AI + Ag.

Proof: As is well-known, LI*g = L/Lg. So

_ Lj*g(8) __ Lj(8) _ L~(s)

L/*g(8) - L f (8) Lg(s)'

thus
L A/.g(n) = 'E Af(n) + 'E Ag(n) ,
n n' n n' n nS

hence the result follows on cOlnparing the coefficients of n-S on both sides.•

Proposition 5 Let f be multiplicative. Then

r ( 1)m-1
Af(n) = r logp L - L J(pk l

) ••• J(pkm
),

m;;;;l m kl +k2+.+km ;;;;r

ij n = pr and 0 otherwise, or altematively,

(_1)ll+'"+lr- 1 (LI + ... + L )
A/(n) = r logp L r J(p)h J(p2)l'J ... f(pr)lr,

h+2l2+'"+rlr;;;;r lt + ... + Lr LI !L2! •• ·Lr !

ij n = pr and 0 otherwise, where the ki run through the natural numbers and the Li
through the non-negative integers.
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Proof: For a proof of the first part of the assertion, see [5, Lemma 1.1.2]. The
deduction of the latter part from the first is an easy combinatorial exercise left to the
interested reader. •

3 Proof of Theorem 2

In this section we will prove Theorem 2. We will need a rough upper bound for
Lm<x f(n)/n that is given in the next proposition. (Actually it is quite sharp as
comparison with (9) shows that it is off by a constant only for those f satisfying the
conditions of Theorem 2.)

Proposition 6 Suppase that f is a multiplicative Junction satisJying (7) and

" f(p) = r_
x
_ + O( x ),f<'x log x log x(log log x )1+f

fOT same E > O. Then

E J(n) :::; rr (1 + J(p) + J(~2) + ...) = o(1og7" x).
n:::;x n p~x p p

(18)

(19)

Proof: We have

(20)

where the implied constant does not depend on p. So

< TI (1 + J(p) + J(p2) + ...) « 11 (1 + J(p) + O(2..))
p~x p r p~x p r

« exp{E J(p) + O(l)} « exp{r log log x + O(l)} « 10g7" x,
p~x P

where we use that Lp<x J(p) / p = T log log x + 0 (1), whieh follows from (7) on using
Abel summation, and the fact that

{OO dt

12 t log t(log log t)1+f

converges.•
Suppose J is a multiplicative function satisfying (7). Let Jo denote its companion.

The outline of the proof is as follows: we show that 10 satisfies (1), (2), (3) and (4).
Thus by Theorem 1 we find an estimate for Ln<x fo(n)/n. Then we use an idea of
Odoni [11] to derive from this the required estimate (9) for Ln<x I(n)/n. By Abel
summation the estimate (10) follows from (9). I should like to aCid that all elemen
tary approaches known to me leading to results similar to Theorem 1, proceed by
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estimating L:n~x f(n)/n before L:n:5x f(n)n>"-l, ;\ > O.

Prool 01 Theorem 2. By Lemma 2 it follows that (1) and (2) bold for 10. That
(3) is satisfied follows from inequality (20). By Proposition 6 inequality (4) is satis
fied with A = T. (As we will see later A cannot be chosen to be smaller than T, which
would yield a sharper result.) Thus by Theorem 1 we find that

L lo(n) = L av log7"-V x + o(logT-l-'Y+E x),
n:5x n O:5v<l+'Y

(21)

where ao > O. Next we establish (21) with 10 replaced by f. Every integer n > 1
can be expressed uniquely as n = bk with k the largest divisor of n that is in S.
Since (b, k) = 1, f(n) = f(b)fo(k), and therefore, if we reserve the letter b for natural
numbers not having prime numbers ~ Po,

To deal with the sums involving L:b I(b)/b we use:

Proposition 7 Suppose f is multiplicative and satisfies (7). Put Q = log C2/ log 2.
Then

L f(b) = O(yCl log1T(po) y).
b:5y

Proof: Notice that f(n) ~ c~(n)~(n), where w(n) and O(n) denote the number
of different respectively tbe total number of prime factors of n. It follows that f(b) ~

c~(Po) ~(b). Using that n(b) ~ log b/ log 2 we find j (b) = 0 (ba). In combination with
the trivial estimateL:b:5v 1 = o (log1r(po) y), the estimate folIows.•

Corollary 1 Let j ~ O. Ey Abel summation applied to the inequality of Proposition
7 we find that for arbitrary j ~ 0, L:b j(b) log! b/b is convergent, to B j say, and

L f(b) logJ b = O(yO-llog1T(po)+j y).
b>v b

Put 84 = xO- 1 log1r(Po) x. By (22), (21) and Corollary 1
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L j (b) L a
v

logT-V (~) +O(L f(b) IOgT-l-,+f (~))
b:5z b 0:5 v<,+1 b b:5z b b

+ L f~b) L fOik ) + 0(84 ),

z<b:5x/po k:5x/b

81 + 0(82) + 0(83) + 0(84 ), (22)

say, where the parameter z satisfying log z / log x = 0 (1), will be chosen later. Now,
using Corollary 1,

81 = L av L (-l)j logT-V-i X(T -: v) L j(b) log! b + O(logT-l-, x).
0:5v<,+1 0:5i<,-v+l ) b:5z b

~ logll"(po)+i z
- x L avlogT

-
V x + +O(ZO-1 L.J logT-I-V X L .)

O:5v<, 0:5v<I+, 0:5j<,-v+l log1 x

x L bv logT
-

l - v X + O(za-l logll"(Po) z logT-l x) + O(1ogT-l-, x).
O$v<,+1

Notice that

Finally we deal with 83 . We have

j(b) x j(b) ( )
83 « L -logT(-) « logT x L - « logT xzO

-
l logll" Po Z.

z<b$x/po b b b>z b

Taking z = log~x in (22) leads to (9) with ao > O. (As logz/Iogx = 0(1), we are
allowed to make this choice of z.) We have

Using that for arbitrary s ~ 1, sEN and A, a E R, A > 0,

10
2: ..\-1 a d x..\ I a { a ~ bs - l O( 1 )}t log t t = , og x 1 - AI + -2- + ... + s-1 + -I-s- ,

2 A og x log x log x og x

the inequality (10) is deduced with bo = aaT / A > O.
To prove Theorem 2 in the case j is completely multiplicative it is not necessary

to make use of the companion of f. All we need to do is to check that (1), (2), (3) and
(4) are satisfied for j and invoke Theorem 1. For completely multiplicative functions
j life is easier in that we know Af(pT) explicitly;

(23)
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Going through the proof of Lemma 2, we find, on making use of (23), (8) and (11),
that

L Af(n) =Tlogx+Bf +O(log-1'x).
n:::;x n

Thus (1) and (2) are satisfied. For p > x the inequality

holds. Thus (11) implies that E~2 f(pY /pr -+ 0 as p -+ 00. But then we also have
L~l f(pY /pr -+ 0 as p -+ 00 and hence (3) is satisfied. We leave it to the reader to
check that if f is a completely multiplicative function satisfying (11) and (18), then
(19) holds (cf. the proof of Proposition 6). Thus (4) is satisfied with A = T .•

Remark. By (9), (19) and ao > 0 the choice A = T in (4) is best possible for Inulti
plicative and completely multiplicative functions satisfying the conditions of Theorem
2.

4 Some applications of Theorem 2

In the introduction it was remarked that using complex analysis it can be shown that
Ln<x b(n) has an asynlptotic series in the sense of Poincare. We leave it to the reader
to check that this result can be also obtained using Theorem 2. The function b(n) is
olle of many interesting multiplicative functions arising in arithmetic that satisfy the
conditions of Theorem 2. In the remainder of this section a paper of Serre and a paper
of Wiertelak will be reconsidered in the light of Theorem 2. This might convince the
sceptic reader of the usefulness of Theorem 2.

In the beautiful paper [14] Serre proves, using contour integration and properties of
certain L-functions, a folklore result similar to Theorem 2. He then proceeds by giving
numerous examples, for the greater part involving Fourier coefficients of cusp forms.
I will formulate the main result of [14] and then show that it immediately follows
from Theorem 2 and a sufficiently strong form of Chebotarev's density theorem.

A set of primes P is called Frobenius of density 0, if there exists a finite Galois
extension !(/Q and a subset H of G := Gal(K/Q) such that

1. H is stable under conjugation;

2. IHI/IGI = 8;

3. for every prime p, with at most finitely many exceptions, one has pEP if and
only if ap(K/Q) E H, where ap(K/Q) denotes the Frobenius map of p in G
(defined modulo conjugation in case p does not divide the discriminant of K).

A set of integers S is said to be multiplicative if for aU coprime integers m and
n , mn E S if aod only if m, n E S. (Notice that the characteristic function of a
multiplicative set is a Inultiplicative function.)
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Theorem 3 [14, Theoreme 2.8]
Suppose that Visa multiplicative set and that the set 0/ primes appearing in V is

Frobenius 0/ density eS, where 0 < eS < 1. Then V(x), the counting function 0/ the
elements in V not exceeding x has an asymptotic expansion in the sense 0/ Poincare
with main term cx 10gO-1 x, C > O.

On taking f to be the characteristic function of V in Theorem 2 and using the Cheb

otarev density theorem with error O(e-CVlogX) (see e.g. [1, Satz 4]), Theorem 3
results.

Next we reconsider a paper of Wiertelak [16]. Let a, a =I 0, ±1, and m be inte
gers. Denote by ordm(a) the multiplicative order of a(mod m). Put N(x, n, a) for the
number of integers ffi, 1 ::; m ::; x, (m, a) = 1, for which (ordm(a), n) = 1. By [16,
Theorem 1J the estimate

L 1 = rLi(x) + 0 ((log 103
g X)4),

p$:l:, pfa log x
(ardp(a),n)l:II

(24)

(25)

where 0 < r < 1 and the implied constant depends at most on a and n, holds. In [17]
Wiertelak proves that, for f > 0,

x X
N(x, n, a) = c 1-7" + O( i-o-t: ),

log x 10 x

for some c > 0, thus improving substantiallyon the result of Odoni [9], who proved
that N(x, n, a) r"V CI log7"-l x. Wiertelak proves (25) by checking, making use of (24),
that the conditions ofTheorem 1 are satisfied for the function f(rn), with f(m) = 1 for
those m satisfying both (m, a) = 1 and (ordm(a), n) = 1 and f(rn) = 0 for the other
m. This requires several pages. Noticing that f(rn) is multiplicative, (25) immediately
follows from (24) and Theorem 2, however.

Remark. It would be interesting to extend Theorem 2 to functions f : G -t IR2:0,
where G is a free arithmetical semigroup (see e.g. [12, p. 92] or [7, p. 85] for a
definition). A partial result in this direction was proved in [7] (Theorem 4.2).
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