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GRADED FROBENIUS CLUSTER CATEGORIES

JAN E. GRABOWSKI AND MATTHEW PRESSLAND

Abstract. Recently the first author studied multi-gradings for generalised cluster categories,
these being 2-Calabi–Yau triangulated categories with a choice of cluster-tilting object. The
grading on the category corresponds to a grading on the cluster algebra without coefficients
categorified by the cluster category and hence knowledge of one of these structures can help us
study the other.

In this work, we extend the above to certain Frobenius categories that categorify cluster
algebras with coefficients. We interpret the grading K-theoretically and prove similar results to
the triangulated case, in particular obtaining that degrees are additive on exact sequences.

We show that the categories of Buan, Iyama, Reiten and Scott, some of which were used by
Geiß, Leclerc and Schröer to categorify cells in partial flag varieties, and those of Jensen, King
and Su, categorifying Grassmannians, are examples of graded Frobenius cluster categories.

1. Introduction

Gradings for cluster algebras have been introduced in various ways by a number of authors
and for a number of purposes. The evolution of the notion started with the foundational work
of Fomin and Zelevinsky [FZ02], who consider Zn-gradings where n is precisely the rank of the
cluster algebra.

We continue here the study of gradings in cluster algebra theory. In [Gra15] the first author
examined the natural starting case of finite type cluster algebras without coefficients. A complete
classification of the gradings that occur was given and it was observed that the gradings so
obtained were all balanced, that is, there exist bijections between the set of variables of degree d
and those of degree −d.

This phenomenon was explained by means of graded generalised cluster categories, where—
following [DG14]—by generalised cluster category we mean a 2-Calabi–Yau triangulated category
C with a basic cluster-tilting object T . The definition made in [Gra15] associates an integer vector
(the multi-degree) to an object in the category in such a way that the vectors are additive on
distinguished triangles and transform naturally under mutation. This is done via the key fact
that every object in a generalised cluster category has a well-defined associated integer vector-
valued datum called the index with respect to T ; in order to satisfy the aforementioned two
properties, degrees are necessarily linear functions of the index.

The categorical approach has the advantage that it encapsulates the global cluster combina-
torics, or more accurately the set of indices does. Another consequence is an explanation for the
observed balanced gradings in finite type: the auto-equivalence of the cluster category given by
the shift functor induces an automorphism of the set of cluster variables that reverses signs of
degrees. Hence any cluster algebra admitting a (triangulated) cluster categorification necessarily
has all its gradings being balanced, for example finite type or, more generally, acyclic cluster
algebras having no coefficients.

Our main goal is to provide a version of the above in the Frobenius, i.e. exact category, setting,
similarly to the triangulated one. A Frobenius category is exact with enough projective objects
and enough injective objects, and these classes coincide. From work of Fu and Keller [FK10] and
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2 JAN E. GRABOWSKI AND MATTHEW PRESSLAND

the second author [Pre15], we have a definition of a Frobenius cluster category and objects in
such a category also have indices.

From this we may proceed along similar lines to [Gra15] to define gradings and degrees, except
that we elect to work in a more basis-free way by working K-theoretically and with the associated
Euler form. We prove the foundational properties of gradings for Frobenius cluster categories:
that degrees are compatible with taking the cluster character, that they are additive on exact
sequences and that they are compatible with mutation.

Furthermore, we prove an analogue of a result of Palu [Pal09] in which we show that the
space of gradings for a graded Frobenius cluster category E is closely related to the Grothendieck
group, namely that the former is isomorphic to HomZ(K0(E),Z). This enables one to show that
some categorical datum is a grading by seeing that it respects exact sequences, and conversely
that from the cluster algebra categorified by E we may deduce information about K0(E). We
exhibit this on examples, notably the categories of Buan, Iyama, Reiten and Scott [BIRS09]
corresponding to Weyl group elements, also studied by Geiß, Leclerc and Schröer [GLS08] in the
context of categorifying cells in partial flag varieties.

The homogeneous coordinate rings of Grassmannians are an example of particular importance
in this area. They admit a graded cluster algebra structure but beyond the small number of
cases when this structure is of finite type, little is known about the cluster variables. A first
step towards a better understanding is to describe how the degrees of the cluster variables
are distributed: are the degrees unbounded? does every natural number occur as a degree? are
there finitely many or infinitely many variables in each occurring degree? By using the Frobenius
cluster categorification of Jensen, King and Su [JKS16] and the grading framework here, we can
hope to begin to examine these questions.

Acknowledgements. The work herein was begun during a research visit of the second author
to Lancaster University, funded by EPSRC grant EP/M001148/1.

The second author would like to thank Paul Balmer, Andrew Hubery, Alastair King and Sondre
Kvamme for useful conversations, and acknowledge financial support from Sonderforschungsbere-
ich 701 at Universität Bielefeld, and from the Max-Planck-Gesellschaft.

2. Preliminaries

The construction of a cluster algebra of geometric type from an initial seed (x,B), due to
Fomin and Zelevinsky [FZ02], is now well-known. Here x is a transcendence base for a certain
field of fractions of a polynomial ring and B is a skew-symmetrizable integer matrix; in the
skew-symmetric case B is often replaced by the quiver Q = Q(B) it defines in the natural way.

We refer the reader who is unfamiliar with this construction to the survey of Keller [Kel10]
and the books of Marsh [Mar14] and of Gekhtman, Shapiro and Vainshtein [GSV10] for an
introduction to the topic and summaries of the main related results in this area.

We set some notation for later use. For k a mutable index, set

b+k = −ek +
∑
bik>0

bikei and

b−k = −ek −
∑
bik<0

bikei,

where the vector ei ∈ Zr (r being the number of rows of B) is the ith standard basis vector.
Note that the kth row of B may be recovered as Bk = b+k − b

−
k .

Then given a cluster x = (x1, . . . , xr) and exchange matrix B, the exchange relation for
mutation in the direction k is given by

x′k = xb
+
k + xb

−
k ,
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where for a = (a1, . . . , ar) we set

xa =
r∏
i=1

xaii .

Later we will briefly discuss cluster algebras with coefficients (also called frozen variables).
That is, we designate some of the elements of the initial cluster to be mutable (i.e. we are
allowed to mutate these) and the remainder to be non-mutable. We will also talk about the
corresponding indices for the variables as being mutable or not. The rank of the cluster algebra
is the number of mutable variables in a cluster; we will refer to the total number of variables,
mutable and not, as the cardinality of the cluster.

We will retain the usual convention that B will be a matrix with rows indexed by the initial
cluster variables and columns indexed by the mutable initial cluster variables. We use the
notation Bt for the transpose of B.

Throughout, for simplicity, we will assume that all algebras and categories are defined over C.
All modules are left modules.

2.1. Multi-graded seeds, cluster algebras and cluster categories. The natural definition
for a multi-graded seed is as follows.

Definition 2.1. A multi-graded seed is a triple (x,B,G) such that

(a) (x = (x1, . . . , xr), B) is a seed of cardinality r, and
(b) G is an r ×m integer matrix such that BtG = 0.

From now on, we use the term “graded” to encompass multi-graded; if the context is unclear,
we will say Zm-graded.

The above data defines deg
G

(xi) = Gi (the ith row of G) and this can be extended to rational
expressions in the generators xi in the obvious way. We can also mutate our grading, and
repeated mutation propagates a grading on an initial seed to every cluster variable and hence to
the associated cluster algebra, as condition (b) in the definition of a grading ensures that every
exchange relation is homogeneous. Hence we obtain the following well-known result, given in
various forms in the literature.

Proposition 2.2. The cluster algebra A(x,B,G) associated to an initial graded seed (x,B,G),
with G an r ×m integer matrix, is a Zm-graded algebra. Every cluster variable of A(x,B,G) is
homogeneous with respect to this grading. �

We refer the reader to [Gra15] for a more detailed discussion of the above and further results
regarding the existence of gradings, relationships between gradings and a study of gradings for
cluster algebras of finite type with no coefficients.

2.2. Graded triangulated cluster categories. Our interest here is in generalising the cate-
gorical parts of [Gra15]. In order to motivate what will follow for the Frobenius setting, we give
the key definitions and statements from the triangulated case, without proofs as these may be
found in [Gra15].

Definition 2.3 ([DG14]). Let C be a triangulated 2-Calabi–Yau category with suspension functor
Σ and let T ∈ C be a basic cluster-tilting object. We will call the pair (C, T ) a generalised cluster
category.

Write T = T1 ⊕ · · · ⊕ Tr. Setting Λ = EndC(T )op, the functor1 F = C(T,−) : C → mod Λ
induces an equivalence C/add(ΣT )→ mod Λ. We may also define an exchange matrix associated
to T by

(BT )ij = dim Ext1
Λ(Si, Sj)− dim Ext1

Λ(Sj , Si).

1This functor is replaced by E = FΣ in [DG14], [Gra15]; we use F here, as in [FK10], for greater compatibility
with the Frobenius case.
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Here the Si = FTi/ radFTi, i = 1, . . . , r are the simple Λ-modules. Thus, if the Gabriel quiver
of the algebra Λ has no loops or 2-cycles, BT is its corresponding skew-symmetric matrix.

For each X ∈ C there exists a distinguished triangle

r⊕
i=1

T
m(i,X)
i →

r⊕
i=1

T
p(i,X)
i → X → Σ

(
r⊕
i=1

T
m(i,X)
i

)
Define the index of X with respect to T , denoted indT (X), to be the integer vector with

indT (X)i = p(i,X) −m(i,X). By [Pal08, §2.1], indT (X) is well-defined and we have a cluster
character

CT? : Obj(C)→ C[x±1
1 , . . . , x±1

r ]

X 7→ xindT (X)
∑
e

χ(Gre(FΣX))xBT ·e

Here Gre(FΣX) is the quiver Grassmannian of Λ-submodules of FΣX of dimension vector e
and χ is the topological Euler characteristic. We also use the same monomial notation xa as
previously.

We recall that for any cluster-tilting object U of C such that the quiver of EndC(U)op has
no loops or 2-cycles, and for any indecomposable summand Uk of U , there exists a unique
indecomposable object U∗k 6∼= Uk such that U∗ = (U/Uk)⊕ U∗k is again cluster-tilting, and there
are non-split triangles

U∗k →M → Uk → ΣU∗k and Uk →M ′ → U∗k → ΣUk

with M,M ′ ∈ add(U/Uk). In the generality of our setting, this is due to Iyama and Yoshino
[IY08].

The natural definition of a graded generalised cluster category is then the following.

Definition 2.4 ([Gra15, Definition 5.2]). Let (C, T ) be a generalised cluster category and let G
be an r×m integer matrix such that BTG = 0. We call the tuple (C, T,G) a graded generalised
cluster category.

Note that BT is skew-symmetric, so we may suppress taking the transpose in the equation
BTG = 0.

Definition 2.5 ([Gra15, Definition 5.3]). Let (C, T,G) be a graded generalised cluster category.
For any X ∈ C, we define deg

G
(X) = indT (X)G.

The main results about graded generalised cluster categories are summarised in the following
Proposition, the most significant of these being (ii).

Proposition 2.6 ([Gra15, §5]). Let (C, T,G) be a graded generalised cluster category.

(i) For all X ∈ C, deg
G

(X) is equal to the degree of CTX ∈ C[x±1
1 , . . . , x±1

r ] where the latter

is Zm-graded by deg
G

(xi) = Gi (the ith row of G).

(ii) For any distinguished triangle X → Y → Z → ΣX of C, we have

deg
G

(Y ) = deg
G

(X) + deg
G

(Z).

(iii) The degree deg
G

is compatible with mutation in the sense that for every cluster-tilting
object U of C with indecomposable summand Uk we have

deg
G

(U∗k ) = deg
G

(M)− deg
G

(Uk) = deg
G

(M ′)− deg
G

(Uk),

where U∗k , M and M ′ are as in the above description of mutation in C.
(iv) The space of gradings for a generalised cluster category (C, T ) may be identified with the

Grothendieck group K0(C) of C as a triangulated category.
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(v) For each X ∈ C, deg
G

(ΣX) = −deg
G

(X). That is, for each d ∈ Zd, the shift automor-
phism Σ on C induces a bijection between the objects of C of degree d and those of degree
−d. �

Part (iii) of the preceding proposition shows how to mutate the data of G when mutating the
cluster-tilting object T , to obtain a new matrix compatible with the exchange matrix of the new
cluster-tilting object, and defining the same grading on the cluster algebra.

However, we may obtain an even stronger conclusion from part (iv), since this provides a
“base-point free” definition of a grading, depending only on the category C and not on the
cluster-tilting object T . Read differently, this shows that if (C, T,G) is a graded generalised
cluster category, then for any cluster-tilting object T ′ ∈ C, there is a unique matrix G′ such that
(C, T ′, G′) is a graded generalised cluster category and deg

G
(X) = deg

G′
(X) for all X ∈ C. We

will explain this in more detail below in the case of Frobenius categories.

3. Graded Frobenius cluster categories

In this section, we provide the main technical underpinnings for the Frobenius version of the
above theory, in which we consider exact categories rather than triangulated ones. Background
on exact categories, and homological algebra in them, can be found in Bühler’s survey [Büh10].

An exact category E is called a Frobenius category if it has enough projective objects and
enough injective objects, and these two classes of objects coincide. A typical example of such
a category is the category of modules over a self-injective algebra. More generally, if B is a
Noetherian algebra with finite left and right injective dimension as a module over itself (otherwise
known as an Iwanaga–Gorenstein algebra), the category

GP(B) = {X ∈ modB : ExtiB(X,B) = 0, i > 0},

is Frobenius [Buc86]. (Here GP(B) is equipped with the exact structure in which the exact
sequences are precisely those that are exact when considered in the abelian category modB.)
The initials “GP” are chosen for “Gorenstein projective”.

Given a Frobenius category E , its stable category E is formed by taking the quotient of E by
the ideal of morphisms factoring through a projective-injective object. By a famous result of
Happel [Hap88, Theorem 2.6], E is a triangulated category with shift functor Ω−1, where Ω−1X
is defined by the existence of an exact sequence

0→ X → Q→ Ω−1X → 0

in which Q is injective. The distinguished triangles of E are isomorphic to those of the form

X → Y → Z → Ω−1X

where

0→ X → Y → Z → 0

is a short exact sequence in E .

Definition 3.1. A Frobenius category E is stably 2-Calabi–Yau if the stable category E is Hom-
finite and there is a functorial duality

D Ext1
E(X,Y ) = Ext1

E(Y,X)

for all X,Y ∈ E .

Remark 3.2. The above definition is somewhat slick—it is equivalent to requiring that E is
2-Calabi–Yau as a triangulated category (that is, that E is Hom-finite and Ω−2 is a Serre functor),
as one might expect.
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Let E be a stably 2-Calabi–Yau Frobenius category with cluster-tilting objects, and assume
that for each cluster-tilting object T ∈ E , the quiver of EndE(T )op has no loops or 2-cycles
incident with the vertices corresponding to non-projective summands of T . In this case, the
cluster-tilting objects of E satisfy a mutation property similar to that in the triangulated case;
see, for example, [BIRS09, Theorem II.1.6]. For any cluster-tilting object U of E and for any Uk
a non-projective indecomposable summand of U , there exists a unique indecomposable object
U∗k 6∼= Uk such that U∗ = (U/Uk)⊕U∗k is again cluster-tilting and there exist non-split sequences

0→ U∗k →M → Uk → 0 and 0→ Uk →M ′ → U∗k → 0

with M,M ′ ∈ add (U/Uk).
In a sense, this is the same mutation property as holds in the 2-Calabi–Yau triangulated

category E ; when U is thought of as an object of E , its indecomposable summands are precisely
the non-projective summands of U in E . Mutating such a summand gives an indecomposable
object U∗k in E . Each object of E isomorphic to U∗k in E is of the form U∗k ⊕ P for some
projective object P and an indecomposable non-projective object U∗k . Moreover, the summand
U∗k is determined up to isomorphism in E by the isomorphism class of U∗k in E , and provides our
desired object of E . The two non-split sequences relating Uk and U∗k may then be obtained by
lifting the corresponding non-split triangles in E .

Fu and Keller [FK10] give the following definition of a cluster character on a stably 2-Calabi–
Yau Frobenius category.

Definition 3.3 ([FK10, Definition 3.1]). Let E be a stably 2-Calabi–Yau Frobenius category,
and let R be a commutative ring. A cluster character on E is a map ϕ on the set of objects of
E , taking values in R, such that

(i) if M ∼= M ′ then ϕM = ϕM ′ ,
(ii) ϕM⊕N = ϕMϕN , and
(iii) if dim Ext1

E(M,N) = 1 (equivalently, dim Ext1
E(N,M) = 1), and

0→M → X → N → 0,

0→ N → Y →M → 0

are non-split sequences, then

ϕMϕN = ϕX + ϕY .

Let E be a stably 2-Calabi–Yau Frobenius category, and assume there exists a cluster-tilting
object T ∈ E . Assume without loss of generality that T is basic, and let T =

⊕n
i=1 Ti be

a decomposition of T into pairwise non-isomorphic indecomposable summands. We number
the summands so that Ti is projective if and only if r < i 6 n. Let Λ = EndE(T )op, and
Λ = EndE(T )op = Λ/ΛeΛ, where e is the idempotent given by projection onto a maximal
projective-injective summand of T .

We assume that Λ is Noetherian, as with this assumption the forms discussed below will be
well-defined. The examples that concern us later will have Noetherian Λ, but we acknowledge
that this assumption is somewhat unsatisfactory, given that it is often difficult to establish.

Fu and Keller [FK10] show that such a T determines a cluster character on E , as we now
explain; while the results of [FK10] are stated in the case that E is Hom-finite, the assumption
that Λ is Noetherian is sufficient providing one is careful to appropriately distinguish between the
two Grothendieck groups K0(mod Λ) and K0(fd Λ) of finitely generated and finite dimensional
Λ-modules respectively.

We write

F = HomE(T,−) : E → mod Λ,

E = Ext1
E(T,−) : E → mod Λ.
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Note that E may also be expressed as HomE(T,Ω
−1(−)), meaning it takes values in mod Λ. For

M ∈ mod Λ and N ∈ fd Λ, we write

<M,N>1 = dim HomΛ(M,N)− dim Ext1
Λ(M,N),

<M,N >3 = dim HomΛ(M,N)− dim Ext1
Λ(M,N) + dim Ext2

Λ(M,N)− dim Ext3
Λ(M,N).

The algebra Λ = EndE(T )op is finite dimensional since E is Hom-finite, so mod Λ ⊆ fd Λ.
Fu and Keller show [FK10, Proposition 3.2] that if M ∈ mod Λ, then < M,N >3 depends
only on the dimension vector (dim HomΛ(Pi,M))ni=1, where the Pi = FTi are a complete set of
indecomposable projective Λ-modules. Thus if v ∈ Zr, we define

<v,N >3 := <M,N>3

for any M ∈ mod Λ with dimension vector v.
Let R = C[x±1

1 , . . . , x±1
n ] be the ring of Laurent polynomials in x1, . . . , xn. Define a map

X → CTX on objects of E , taking values in R, via the formula

CTX =
n∏
i=1

x<FX,Si>1
i

∑
v∈Zr

χ(Grv(EX))
n∏
i=1

x−<v,Si>3
i .

Here, as before, Grv(EX) denotes the projective variety of submodules of EX with dimension
vector v, and χ(Grv(EX)) denotes its Euler characteristic. The modules Si = FTi/ radFTi are
the simple tops of the projective modules Pi. By [FK10, Theorem 3.3], the map X 7→ CTX is a
cluster character, with the property that CTTi = xi.

The cluster-tilting object T also determines an index and coindex for each object X ∈ E . To
see that these quantities are well-defined we will use the following lemma, the proof of which is
included for the convenience of the reader.

Lemma 3.4. Let E be an exact category, and let M,T ∈ E.

(i) If there exists an admissible monomorphism M → T ′ for T ′ ∈ addT , then any left
addT -approximation of M is an admissible monomorphism.

(ii) If there exists an admissible epimorphism T ′ →M for T ′ ∈ addT , then any right addT -
approximation of M is an admissible epimorphism.

Proof: We prove only (i), as (ii) is dual. Pick an admissible monomorphism i : M → T ′ with
T ′ ∈ addT and a left addT -approximation f : M → L. Consider the pushout square

M L

T ′ X

f

i i′

g

As f is a left addT -approximation, there is a map h : L→ T ′ such that the square

M L

T ′ T ′

f

i h

1

commutes, and so by the universal property of pushouts, there is g′ : X → T ′ such that g′g = 1.
Thus g is a split monomorphism, fitting into an exact sequence

0 T ′ X C 0.
g π

It then follows, again by the universal property of pushouts, that πi′ is a cokernel of f . Since i′f =
gi is the composition of two admissible monomorphisms, f is itself an admissible monomorphism
by the obscure axiom [Kel90, A.1], [Büh10, Proposition 2.16]. �
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Given an object X ∈ E , we may pick a minimal right addT -approximation RX → X, where
RX is determined up to isomorphism by X and the existence of such a morphism. Let P → X
be a projective cover of X, which exists since E has enough projectives; this is an admissible
epimorphism by definition, and P ∈ addT since T is cluster-tilting. Thus by Lemma 3.4, the
approximation RX → X is an admissible epimorphism, and so there is an exact sequence

0→ KX → RX → X → 0

in E . Since T is cluster-tilting, KX ∈ addT , and we define indT (X) = [RX ]− [KX ] ∈ K0(addT ).
Dually, any minimal left addT -approximation X → LX fits into an exact sequence

0→ X → LX → CX → 0,

and we define coindT (X) = [LX ]− [CX ] ∈ K0(addT ). It is crucial here that we define indT (X)
and coindT (X) in K0(addT ), where they are usually distinct, rather than in K0(E), where they
are both equal to [X].

We also associate to T the exchange matrix BT given by the first r columns of the antisym-
metrisation of the incidence matrix of the quiver of Λ. By definition, BT has entries

(BT )ij = dim Ext1
Λ(Si, Sj)− dim Ext1

Λ(Sj , Si)

for 1 6 i 6 n and 1 6 j 6 r.

Remark 3.5. By a result of Keller and Reiten [KR07, §4] (see also [Pre15, Theorem 3.4]), mod Λ

has enough 3-Calabi–Yau symmetry for us to deduce that dim ExtkΛ(Si, Sj) = dim Ext3−k
Λ (Sj , Si)

when 1 6 j 6 r. It follows that

(−BT )ij = <Si, Sj>3,

so the matrix of <−,−>3, when restricted to the span of the simple modules in the first entry
and the span of the first r simple modules in the second entry, is given by −BT .

Definition 3.6 (cf. [Pre15, Definition 3.3]). A Frobenius category E is a Frobenius cluster
category if it is Krull–Schmidt, stably 2-Calabi–Yau and satisfies gldim(EndE(T )op) 6 3 for all
cluster-tilting objects T ∈ E , of which there is at least one.

Note that a Frobenius cluster category E need not be Hom-finite, but the stable category E
must be, since this is part of the definition of 2-Calabi–Yau.

Let E be a Frobenius cluster category. Let T =
⊕n

i=1 Ti ∈ E be a basic cluster-tilting object,
where each Ti is indecomposable and is projective-injective if and only if i > r, let Λ = EndE(T )op

be its endomorphism algebra, and let Λ = EndE(T )op be its stable endomorphism algebra. We

continue to write F = E(T,−) = HomE(T,−) : E → mod Λ and E = Ext1
E(T,−) : E → mod Λ.

Since E is Hom-finite, Λ is a finite dimensional algebra.
The Krull–Schmidt property for E is equivalent to E being idempotent complete and having

the property that the endomorphism algebra A of any object is a semiperfect ring [Kra15, Corol-
lary 4.4], meaning there are a complete set {ei : i ∈ I} of pairwise orthogonal idempotents of
A such that eiAei is local for each i ∈ I. For many representation-theoretic purposes, semiper-
fect K-algebras behave in much the same way as finite dimensional ones; for example, if A is
semiperfect then the quotient A/ radA is semi-simple, and its idempotents lift to A. For more
background on semiperfect rings, see, for example, Anderson and Fuller [AF74, Chapter 27].

For us, a key property of a semiperfect ring A is that the A-modules Aei/ radAei (respectively,
their projective covers Aei) form a complete set of finite-dimensional simple A-modules (respec-
tively indecomposable projective A-modules) up to isomorphism [AF74, Proposition 27.10]. As
we will require this later, we include being Krull–Schmidt in our definition of a Frobenius clus-
ter category, noting that other work in this area—notably [Pre15]—requires only idempotent
completeness.
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Since Λ is Noetherian and gldim Λ 6 3, the Euler form

<M,N>e =
∑
i>0

(−1)i dim ExtiΛ(M,N)

is well-defined as a map K0(mod Λ) × K0(fd Λ) → Z, and coincides with the form < −,− >3

introduced earlier.
One can show by via taking projective resolutions that the classes [Pi] of indecomposable

projective Λ-modules span K0(mod Λ). Moreover, since <Pi, Sj >e = δij , any x ∈ K0(mod Λ)
has a unique expression

x =
n∑
i=1

<x, Si>e[Pi]

as a linear combination of the [Pi], and so these classes in fact freely generate K0(mod Λ).
Recall from the definition of the index that if X ∈ E , there is an exact sequence

0→ KX → RX → X → 0

in which KX and RX lie in addT . Since E vanishes on addT , the functor F takes the above
sequence to a projective resolution

0→ FKX → FRX → FX → 0

of FX in mod Λ. Thus FX has projective dimension at most 1, and so<FX,−>1 = <FX,−>e.
We can therefore rewrite the cluster character of X as

CTX =
n∏
i=1

x<FX,Si>e
i

∑
v∈Zr

χ(Grv(EX))
n∏
i=1

x−<v,Si>e
i .

We now proceed to defining gradings for Frobenius cluster categories. We can follow the same
approach as in the triangulated case, using the index. However, by [FK10], we have the following
expansion of the index in terms of the classes of the indecomposable summands of T :

indT (X) =
n∑
i=1

<FX,Si>e[Ti] ∈ K0(addT ).

Since Ext1
Λ(T, T ) = 0, there are no non-split exact sequences in addT , and so K0(addT ) is

freely generated by the [Ti]. For the same reason, the functor F is exact when restricted to
addT , and so induces a map F∗ : K0(addT ) → K0(mod Λ), which takes [Ti] to [Pi], and so is
an isomorphism. Applying this isomorphism to the above formula, we obtain F∗(indT (X)) =∑
<FX,Si>e[Pi] = [FX].
From this we see that if we wish to work concretely with matrix and vector entries, the

index can be computed explicitly. For the general theory, however, the equivalent K-theoretic
expression is cleaner and so we shall phrase our definition of grading in those terms, the above
observation showing us that this is equivalent to the approach in [Gra15].

Thus we arrive at the following definition of a graded Frobenius cluster category, exactly
analogous to Definitions 2.4 and 2.5 in the triangulated case.

Definition 3.7. Let E be a Frobenius cluster category and T a cluster-tilting object of E . Write
Λ = EndE(T )op. We say that G = (G1, . . . , Gm) ∈ K0(fd Λ)m is a grading for E if <M,Gj>e = 0
for all M ∈ mod Λ and all 1 6 j 6 m. We call (E , T,G) a graded Frobenius cluster category.

Definition 3.8. Let (E , T,G) be a graded Frobenius cluster category. Define deg
G

: E → Zm by

deg
G

(X) = (<FX,Gj>e)
m
j=1 =: <FX,G>e.

We record some straightforward consequences of the above definitions.

Remark 3.9.
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(i) By definition, the components Gj of a grading lie in a subspace of K0(fd Λ), namely that
orthogonal to K0(mod Λ) with respect to the form < , >e.

(ii) Let Gj =
∑n
i=1Gij [Si]. If we write G for the matrix with entries Gij , the grading

condition is equivalent to requiring Bt
TG = 0, by Remark 3.5 and the assumption that Λ

is finite dimensional.
(iii) Since FTi = Pi and <Pi, Sj>e = δij , we may compute

(deg
G

(Ti))j = <FTi, Gj>e = Gij ,

as expected.

The K-theoretic phrasing of the above definition leads us to the following observation.

Lemma 3.10. Let E be Hom-finite, let T ∈ E be a cluster-tilting object with endomorphism
algebra Λ and let V ∈ E be projective-injective. Write F = HomE(T,−). Then [FV ] ∈ K0(fd Λ)
is a grading for E, and deg

[FV ]
(X) = dim HomE(X,V ).

Proof: Letting M ∈ mod Λ, we need to check that <M,FV >e = 0. By the internal Calabi–
Yau property of mod Λ (see Remark 3.5), we may instead check that <FV,M >e = 0. Firstly,
ExtiΛ(FV,M) = 0 for i > 0 since FV is projective.

Recall from above that there is an idempotent e ∈ Λ, given by projecting onto a maximal
projective summand of T , such that Λ = Λ/ΛeΛ. Using this, FV ∈ add Λe by the definition of
e, and HomΛ(Λe,M) = eM = 0 since M is a Λ-module. Hence HomΛ(FV,M) = 0 also, so that
<FV,M>e = <M,FV >e = 0 as required.

By definition, deg
[FV ]

(X) = dim HomΛ(FX,FV ) for X ∈ E . Since T is cluster-tilting, there

is a short exact sequence
0→ T1 → T0 → X → 0

with T0, T1 ∈ addT , to which we may apply HomE(−, V ) to obtain the exact sequence

0→ HomE(X,V )→ HomE(T0, V )→ HomE(T1, V ).

Alternatively, we can apply HomΛ(F−, FV ) to obtain the exact sequence

0→ HomΛ(FX,FV )→ HomΛ(FT0, FV )→ HomΛ(FT1, FV ).

Since F restricts to an equivalence on addT , and V ∈ addT since it is projective-injective,
the right-hand maps in these two exact sequences are isomorphic, yielding an isomorphism
HomE(X,V ) ∼= HomΛ(FX,FV ) of their kernels, from which the result follows. �

This gives us a family of gradings canonically associated to any Hom-finite Frobenius cluster
category; note that in fact we only need FV = HomE(T, V ) ∈ fd Λ, so for some specific Hom-
infinite E and specific V and T the result may still hold.

We will give some more examples of gradings later but first give the main results regarding
graded Frobenius cluster categories, analogous to those in Proposition 2.6 for the triangulated
case. We treat the straightforward parts first.

Proposition 3.11. Let (E , T,G) be a graded Frobenius cluster category.

(i) For all X ∈ E, deg
G

(X) is equal to the degree of CTX ∈ C[x±1
1 , . . . , x±1

n ] where the latter

is Zm-graded by deg
G

(xj) = Gj (the jth column of G).

(ii) For any exact sequence 0→ X → Y → Z → 0 in E, we have

deg
G

(Y ) = deg
G

(X) + deg
G

(Z).

(iii) The degree deg
G

is compatible with mutation in the sense that for every cluster-tilting
object U of E with indecomposable summand Uk we have

deg
G

(U∗k ) = deg
G

(M)− deg
G

(Uk) = deg
G

(M ′)− deg
G

(Uk),
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where U∗k , M and M ′ are as in the above description of mutation in E. It follows that
deg

G
(M) = deg

G
(M ′), which is the categorical version of the claim that all exchange

relations in a graded cluster algebra are homogeneous.

Proof:

(i) As usual, for v ∈ Zn we write xv =
∏n
i=1 x

vi
i . Then if deg

G
xj = Gj , we have

(degxv)j =
n∑
i=1

viGij = <
n∑
i=1

vi[Pi], Gj>e

Each term of CTX may be written in the form form λxv, where

vi = <FX,Si>e −<M,Si>e

for some M ∈ mod Λ, and λ is a constant. It follows that
n∑
i=1

vi[Pi] = [FX]− [M ],

so the degree of xv is

<FX,G>e −<M,G>e = <FX,G>e = deg
G
X,

since <M,G>e = 0 by the definition of a grading. In particular, this is independent of
M , so CTX is homogeneous of degree deg

G
X.

(ii) Applying F to the exact sequence 0→ X → Y → Z → 0 and truncating gives an exact
sequence

0→ FX → FY → FZ →M → 0

for some M ⊆ EX. In particular, M ∈ mod Λ. In K0(mod Λ), we have

[FX] + [FZ] = [FY ] + [M ],

so applying <−, G>e gives

deg
G

(X) + deg
G

(Z) = deg
G

(Y ) +<M,G>e = deg
G

(Y )

since M ∈ mod Λ.
(iii) This follows directly from (ii) applied to the exchange sequences

0→ U∗k →M → Uk → 0 and 0→ Uk →M ′ → U∗k → 0. �

The following theorem is the analogue of Proposition 2.6(iv), concerning the relationship
between gradings and the Grothendieck group of a graded Frobenius cluster category. We restrict
(for the rest of the section) to the case of Z gradings to simplify the notation, but since the results
apply equally well to the components of Zm-gradings, it is straightforward to extend them to the
multi-graded setting.

Theorem 3.12. Let E be a Frobenius cluster category with cluster tilting object T , and let
Λ = EndE(T )op. Then the space of Z-gradings of E, defined above as a subspace of K0(fd Λ), is
isomorphic to HomZ(K0(E),Z), via the map G 7→ deg

G
.

Proof: Let Hb(addE T ) denote the bounded homotopy category of complexes with terms in
addE T , and let HbE-ac(addE T ) denote the full subcategory of E-acyclic complexes. By work
of Palu [Pal09, Lemma 2], there is an exact sequence

0 HbE-ac(addE T ) Hb(addE T ) Db(E) 0,

of triangulated categories, to which we may apply the right exact functor K0 to obtain

K0(HbE-ac(addE T )) K0(Hb(addE T )) K0(Db(E)) 0.
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By [Pal09, Proof of Lemma 9], there is a natural isomorphism K0(HbE-ac(addE T ))
∼→ K0(mod Λ).

Moreover, since T is cluster-tilting, there are no non-split exact sequences in addT , and so
K0(addT ) is freely generated by the indecomposable summands of T . Thus taking the alternat-

ing sum of terms gives an isomorphism K0(Hb(addE T ))
∼→ K0(addE T ) [Ros11].

These isomorphisms induce a commutative diagram

K0(HbE-ac(addE T )) K0(Hb(addE T )) K0(Db(E)) 0

K0(mod Λ) K0(addE T ) K0(E) 0
ϕ

with exact rows. Since the two leftmost vertical maps are isomorphisms, the induced map
K0(Db(E)) → K0(E), which is again given by taking the alternating sum of terms, is also an
isomorphism.

We claim that the map ϕ in the above diagram is given by composing the map from K0(mod Λ)
to K0(mod Λ) induced by the inclusion of categories with the inverse of the isomorphism

F∗ : K0(addE T )
∼→ K0(mod Λ). Since Λ is finite dimensional, the Grothendieck group K0(mod Λ)

is spanned by the classes of the simple Λ-modules Sk for 1 6 k 6 r, so it suffices to check that
ϕ acts on these classes as claimed. Let

0→ U∗k → Yk → Uk → 0 and 0→ Uk → Xk → U∗k → 0

be the exchange sequences associated to the summand Uk of T . Then Sk ∼= Ext1
E(T,Uk) and

there is an exact sequence

0→ FUk → FXk → FYk → FUk → Sk → 0.

From this we see that [Sk] = [FXk]− [FYk] = F∗([Xk]− [Yk]) in K0(mod Λ), and so we want to
show that ϕ[Sk] = [Xk]− [Yk]. On the other hand, [Sk] is the image of the class of the E-acyclic
complex

· · · → 0→ Uk → Xk → Yk → Uk → 0→ · · ·
under Palu’s isomorphism K0(HbE-ac(addE T ))

∼→ K0(mod Λ) (cf. [Pal09, Proof of Theorem 10]),
and the image ϕ[Sk] of this complex in K0(addE T ) is [Xk]− [Yk], as we wanted.

Now applying HomZ(−,Z) to the exact sequence

K0(mod Λ) K0(addE T ) K0(E) 0
ϕ

shows that HomZ(K0(E),Z) is isomorphic to the kernel of ϕt = HomZ(ϕ,Z), which we will show
coincides with the space of gradings. Indeed, we may identify K0(addE T ) with K0(mod Λ) via
F∗, and then use the Euler form to identify HomZ(K0(mod Λ),Z) with K0(fd Λ). Under this
identification, we have ϕtG = <−, G>e|K0(mod Λ), and so G ∈ kerϕt if and only if it is a grading.

The claim that the isomorphism is given explicitly by G 7→ deg
G

= <F (−), G>e can be seen
by diagram chasing. �

The significance of this theorem is that, as in the triangulated case, it provides a basis-
free method to identify gradings on Frobenius cluster categories and the cluster algebras they
categorify. In the latter context, basis-free essentially means free of the choice of a particular
cluster.

Specifically, as explained in more detail below, to establish that some categorical datum gives
a grading, one only needs to check that that it respects exact sequences. This is potentially
significantly easier than checking the vanishing of the product Bt

TG where BT is given in terms
of dimensions of Ext-spaces over the endomorphism algebra Λ of some cluster-tilting object T .
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On the other hand, given some knowledge of the cluster algebra being categorified—in par-
ticular, knowing a cluster—one can use the above theorem to deduce information about the
Grothendieck group of the Frobenius cluster category.

As promised at the end of Section 2, we can use Theorem 3.12 to see how the grading in
a graded Frobenius cluster category is independent of the cluster-tilting object. Precisely, let
(E , T,G) be a graded Frobenius cluster category, and let deg

G
be the corresponding function on

K0(E). Let T ′ =
⊕n
i=1 T

′
i be another cluster-tilting object, with Λ′ = EndE(T

′)op, and denote the
simple Λ′-modules by S′i for 1 6 i 6 n. Using the inverse of the isomorphism of Theorem 3.12,
we see that if G′ in K0(fd Λ′) is given by

G′ =
n∑
i=1

deg
G

(T ′i )[S
′
i],

then (E , T ′, G′) is a graded Frobenius cluster category with deg
G

= deg
G′

, as one should expect.
Note that this statement is not dependent on the existence of a sequence of mutations from T
to T ′, which is not known to exist in general.

As was remarked about the triangulated case in [Gra15], these observations highlight how
the categorification of a cluster algebra is able to see global properties, whereas the algebraic
combinatorial mutation process is local.

The following example shows the theorem in action, although again we need the additional
assumption of Hom-finiteness of E .

Lemma 3.13. Assume that E is Hom-finite and let P be a projective-injective object. Then
dim HomE(P,−) and dim HomE(−, P ) define gradings for E.

Proof: Since P is projective and injective, both HomE(P,−) and HomE(−, P ) are exact functors,
and so in each case taking the dimension yields a function in HomZ(K0(E),Z). Then the result
follows immediately from Theorem 3.12. �

In sufficiently nice cases, applying this result with a complete set of indecomposable projectives
will yield that the dimension vector of a module is a (multi-)grading.

However, we remark that some care may be needed regarding which algebra we measure “di-
mension vector” over. If E ⊂ mod Π for some algebra Π (as in most examples), then we may
consider the Π-dimension vector of X ∈ E , defined in the usual way. On the other hand, any
Hom-finite Frobenius cluster category E is equivalent to GP(B) ⊂ modB for B the opposite
endomorphism algebra of a basic projective generator P =

⊕n
i=1 Pi of E , by [KIWY15, Theo-

rem 2.7]. Re-interpreting all of the objects of E as B-modules, the projective-injectives will now
be precisely the projective B-modules, and (dim HomE(Pi, X)) is the B-dimension vector of X
(tautologically, since the equivalence E → GP(B) takes X to HomE(P,X)). Note that B may
not be the same as the algebra Π from which E originated, and the B-dimension vector of a
module may differ from the Π-dimension vector.

Given a complete set of projectives, it is natural to ask whether the associated grading might
be standard, as defined in [Gra15]; we briefly recall this definition and some related facts.

Definition 3.14. Let (x,B) be a seed. We call a multi-grading G whose columns are a basis
for the kernel of B a standard multi-grading, and call (x,B,G) a standard graded seed.

It is straightforward to see, from rank considerations, that mutation preserves the property
of being standard. Moreover, as shown in [Gra15], if (x,B,G) is a standard graded seed and H
is any grading for (x,B), then there exists an integer matrix M = M(G,H) such that for any
cluster variable y in A(x,B,H) we have

deg
H

(y) = deg
G

(y)M,

where on the right-hand side we regard y as a cluster variable of A(x,B,G) in the obvious way.
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That is, to describe the degree of a cluster variable of a graded cluster algebra A(x,B,H), it
suffices to know its degree with respect to some standard gradingG and the matrixM = M(G,H)
transforming G to H. In particular, to understand the distribution of the degrees of cluster
variables, it suffices to know this for standard gradings.

Since the statement applies in the particular case when G and H are both standard, we see
that from one choice of basis for the kernel of B, we obtain complete information. For if we chose
a second basis, the change of basis matrix tells us how to transform the degrees. Hence up to a
change of basis, there is essentially only one standard grading for each seed.

Then, depending on the particular Frobenius cluster category at hand, if we have knowledge
of the rank of the exchange matrix, we may be able to examine categorical data such as the
number of projective-injective modules or dimension vectors and hence try to find a basis for the
space of gradings.

For example, for a basic cluster-tilting object T in E a Hom-finite Frobenius cluster category,
we have n − r projective-injective summands in T : if the exchange matrix BT has full rank, a
basis for the space of gradings has size n − r so that, via Lemma 3.10, a canonical standard
grading is given by the set {[FTi] | i > r}, which is linearly independent since it is a subset of
the basis of projectives for K0(fd Λ) = K0(mod Λ).

From knowledge of this standard grading, we then obtain any other grading by means of some
linear transformation. In the next section, we do this for two important examples.

4. Examples of graded Frobenius cluster categories

4.1. Frobenius cluster categories associated to partial flag varieties. Let g be the Kac–
Moody algebra associated to a symmetric generalised Cartan matrix. Let ∆ be the associated

Dynkin graph and pick an orientation ~∆. Let Q be the quiver obtained from ~∆ by adding an

arrow α∗ : j → i for each arrow α : i→ j of ~∆. Then the preprojective algebra of ∆ is

Π = CQ/
∑
α∈~∆

[α, α∗],

which is, up to isomorphism, independent of the choice of orientation ~∆.
For each w ∈W , the Weyl group of g, Buan, Iyama, Reiten and Scott [BIRS09] have introduced

a category Cw; the following version of its construction follows [GLS11], and is dual to the original.
Assume w has finite length and set l(w) = n; we do this for consistency with the notation used

above but note that other authors (notably [GLS11], [GLS13]) use r and their n is our n− r.
Set Îi to be the indecomposable injective Π-module with socle Si, the 1-dimensional simple

module supported at the vertex i of Q.
Given a module W in mod Π, we define

• soc(l)(W ) :=
∑
U6W
U∼=Sl

U and

• soc(l1,l2,...,ls)(W ) := Ws where the chain of submodules 0 ⊆W1 ⊆W2 ⊆ · · · ⊆Ws ⊆W is
such that Wp/Wp−1

∼= soc(lp)(W/Wp−1).

Let i = (in, . . . , i1) be a reduced expression for w. Then for 1 6 s 6 n, we define Vi,s :=

soc(is,is−1,...,i1)(Îis). Set Vi =
⊕n
s=1 Vi,s and let I be the subset of {1, . . . , n} such that the

modules Vi,i for i ∈ I are Cw-projective-injective. Set Ii =
⊕

i∈I Vi,i and n − r = |I|. Note that
this is also the number of distinct simple reflections appearing in i.

Define

Ci = Fac(Vi) ⊆ nil Π.

That is, Ci is the full subcategory of mod Π consisting of quotient modules of a direct sum of a
finite number of copies of Vi.
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Then Ci and Ii are independent of the choice of reduced expression i (although Vi is not), so
that we may write Cw := Ci and Iw := Ii. It is shown in [BIRS09] that Cw is a stably 2-Calabi–Yau
Frobenius category. Moreover Cw has cluster-tilting objects: Vi is one such. Indeed, cluster-tilting
objects are maximal rigid, and vice versa. The indecomposable Cw-projective-injective modules
are precisely the indecomposable summands of Iw, and Cw = Fac(Iw).

Furthermore, it is also shown in [GLS11, Proposition 2.19] that the global dimension condition
of Definition 3.6 also holds, leaving only the Krull–Schmidt condition. By [Kra15, Corollary 4.4],
we should check that the endomorphism algebras of objects of Cw are semiperfect, and that this
category is idempotent complete. The first of these properties holds since Cw is Hom-finite. The
second follows from the fact that Cw is a full subcategory of the idempotent complete category
mod(Π/Ann Iw), and that if M is an object of Fac(Iw), then so are all direct summands of M .

We conclude that Cw is a Frobenius cluster category, in the sense of Definition 3.6.
Let Λ = EndCw(Vi)

op and F = HomCw(Vi,−). Then, as above, the modules Ps := FVi,s for
1 6 s 6 n are the indecomposable projective Λ-modules and the tops of these, Ss, are the simple
Λ-modules. Recall that the exchange matrix obtained from the quiver of Λ, which we shall call
Bi, has entries

(Bi)ij = dim Ext1
Λ(Si, Sj)− dim Ext1

Λ(Sj , Si)

for 1 6 i 6 n and j /∈ I, so that the r columns of Bi correspond to to the mutable summands
Vi,j , j /∈ I, of Vi.

Let Li be the n× n matrix with entries

(Li)jk = dim HomΠ(Vi,j , Vi,k)− dim HomΠ(Vi,k, Vi,j).

By [GLS13, Proposition 10.1] we have

n∑
l=1

(Bi)lk(Li)lj = 2δjk,

and hence the matrix Bi has maximal rank, namely r.
It follows that there exists some standard grading Gi = (G1, . . . , Gn−r) ∈ K0(mod Λ)n−r for

Cw and (Cw, Vi, Gi) is a graded Frobenius cluster category. As discussed above, such a standard
grading can be used to construct all other gradings, so our goal is to identify one.

We have additional structure on Cw that we may make use of. Namely, Cw is Hom-finite and
we may apply Lemma 3.10 with respect to the Cw-projective-injective modules Vi,i that are the
indecomposable summands of Ii.

The resulting grading [FVi,i], i ∈ I, is standard, since its n − r components are a subset
of the basis of projectives for K0(mod Λ), and so in particular are linearly independent. By
Theorem 3.12, the existence of this standard grading implies that the Grothendieck group K0(Cw)
has rank n− r.

We wish to understand this standard grading more explicitly. Note that the objects of Cw are
Π-modules and we may consider dimension vectors with respect to the Π-projective modules.

Then we notice that in fact the grading by ([FVi,i])i∈I is equal to the Π-dimension vector
grading in the case at hand. This is because, by Lemma 3.10, the degree of X with respect
to [FVi,i] is dim HomΠ(X,Vi,i), and each Vi,i is both a submodule and a minimal right Cw-

approximation of an indecomposable injective Îi for Π, so HomΠ(X,Vi,i) = HomΠ(X, Îi), the
dimensions of the latter giving the Π-dimension vector of X.

In [GLS11, Corollary 9.2], Geiß, Leclerc and Schröer have shown that

dimΠVi,k = ωik − si1si2 · · · sik(ωik)

for all 1 6 k 6 n, where the ωj are the fundamental weights for g and the sj the Coxeter
generators for W . This enables us to construct the above grading purely combinatorially.
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Example 4.1. We consider the following seed associated to g of type A5 with

i = (3, 2, 1, 4, 3, 2, 5, 4, 3),

as given in [GLS13, Example 12.11]. The modules Vi := Vi,i, in terms of the usual representation
illustrating their composition factors as Π-modules, are

3V1 = 3
4

V2 = 3
4

5

V3 =

3
2

V4 = 3
2 4

3

V5 = 3
2 4

53
4

V6 =

3
2

1

V7 = 3
2 4

1 3
2

V8 = 3
2 4

1 5
2

3
4

3

V9 =

The exchange quiver for this seed is

V1 V2 V3

V4 V5 V6

V7 V8 V9

It is straightforward to see that Π-dimension vectors yield a grading: for example, looking
at the vertex corresponding to V1, the sums of the dimension vectors of incoming and outgoing
arrows are [0, 1, 2, 1, 0] and [0, 1, 1, 0, 0] + [0, 0, 1, 1, 0] respectively.

4.2. Grassmannian cluster categories. Let Π be the preprojective algebra of type An−1,
with vertices numbered sequentially, and let Qk be the injective module at the k-th vertex. In
[GLS08], Geiß, Leclerc and Schröer show that the category Sub Qk of submodules of direct sums
of copies of Qk “almost” categorifies the cluster algebra structure on the homogeneous coordinate
ring of the Grassmannian of k-planes in Cn, but is missing a single indecomposable projective
object corresponding to one of the frozen variables of this cluster algebra. The category SubQk
is in fact dual to one of the categories Cw introduced in the previous section, for ∆ = An−1 and
w a particular Weyl group element depending on k, so it is a Frobenius cluster category in the
same way.

Jensen, King and Su [JKS16] complete the categorification via the category CM(A) of maximal
Cohen–Macaulay modules for a Gorenstein order A (depending on k and n) over Z = C[[t]]. One
description of A is as follows. Let ∆ be the graph (of affine type An−1) with vertex set given by
the cyclic group Zn, and edges between vertices i and i+1 for all i. Let Π be the completion of the
preprojective algebra on ∆ with respect to the arrow ideal. Write x for the sum of “clockwise”
arrows i→ i+ 1, and y for the sum of “anti-clockwise” arrows i→ i− 1. Then we have

A = Π/〈xk − yn−k〉.
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In this description, Z may be identified with the centre C[[xy]] of A.
Jensen, King and Su also show [JKS16, Theorem 4.5] that there is an exact functor

π : CM(A) → Sub Qk, corresponding to the quotient by the ideal generated by Pn, and that
for any N ∈ Sub Qk, there is a unique (up to isomorphism) minimal M in CM(A) with πM ∼= N
and M having no summand isomorphic to Pn. Such an M satisfies rk(M) = dim soc πM , where
rk(M) is the rank of each vertex component of M , thought of as a Z-module.

We now show that CM(A) is again a Frobenius cluster category. Properties of the algebra A
mean that an A-module is maximal Cohen–Macaulay if and only if it is free and finitely generated
as a Z-module. Since Z is a principal ideal domain, and hence Noetherian, any submodule of a
free and finitely generated Z-module is also free and finitely generated, and so CM(A) is closed
under subobjects. In particular, CM(A) is closed under kernels of epimorphisms. Moreover
[JKS16, Corollary 3.7], A ∈ CM(A), and so Ω(modA) ⊆ CM(A).

As a Z-module, any object M ∈ CM(A) is isomorphic to Zk for some k, so we have that

EndZ(M)op ∼= Zk
2

is a finitely generated Z-module. Since Z is Noetherian, the algebra
EndA(M)op ⊆ EndZ(M)op is also finitely generated as a Z-module. Thus EndA(M)op is Noe-
therian, as it is finitely generated as a module over the commutative Noetherian ring Z. We
may now apply [Pre15, Proposition 3.6] to see that any cluster-tilting object T ∈ CM(A) sat-
isfies gldim EndA(T )op 6 3. Moreover [JKS16, Corollary 4.6], CM(A) = SubQk, so CM(A) is
2-Calabi–Yau, and CM(A) is a Frobenius cluster category.

Unlike Sub Qk and the Cw, the category CM(A) is not Hom-finite. However, as already
observed, the endomorphism algebras of its objects are Noetherian, so we may apply our general
theory to this example.

In their study of the category CM(A), Jensen, King and Su show the following. Let

Zn(k) = {x ∈ Zn | k divides
∑
i xi}

with basis α1, . . . , αn−1, β[n], where the αj = ej+1 − ej are the negative simple roots for GLn(C)

and β[n] = e1 + · · ·+ ek is the highest weight for the representation
∧k(Cn).

Then by [JKS16, §8] we have that K0(CM(A)) ∼= K0(A) ∼= Zn(k); let G : K0(CM(A))→ Zn(k)
denote the composition of these isomorphisms. The GLn(C)-weight of the cluster character of

M ∈ CM(A) (called ψ̃M in [JKS16]) is given by the coefficients in an expression for G[M ] ∈ Zn(k)
in terms of the basis of Zn(k) given above [JKS16, Proposition 9.3], and thus this weight defines
a group homomorphism K0(CM(A))→ Zn.

Said in the language of this paper, CM(A) is a graded Frobenius cluster category with respect
to GLn(C)-weight, this giving a standard multi-grading.

Let δ : Zn(k) → Z be the (linear) function δ(x) = 1
k

∑
i xi. By the linearity of gradings,

composing G with δ yields a Z-grading on CM(A) also. Explicitly, δ(x) is the coefficient of β[n],
and is also equal to the dimension of the socle of πM , which is equal to rk(M), which is equal to
the degree of the cluster character of M ∈ CM(A) as a homogeneous polynomial in the Plücker
coordinates of the Grassmannian.

It is well known that the cluster structure on the Grassmannian is graded with respect to
either the GLn(C)-weight (also called the content of a minor, and, by extension, of a product
of minors) or the natural grading associated to the Plücker embedding. The results of [JKS16]
show that these gradings are indeed naturally reflected in the categorification of that cluster
structure. This opens the possibility of attacking some questions on, for example, the number of
cluster variables of a given degree by examining rigid indecomposable modules in CM(A) of the
corresponding rank, say. We hope to return to this application in the future.

Of course, one can also argue directly that rk(M) yields a grading on CM(A), considering it as
a function on K0(CM(A)). Note that the socle dimension of πM is not a grading on Sub Qk, but
rather it is the datum within Sub Qk that specifies how one should lift πM to M (see [JKS16,
§2] for an illustration of this). As described in the previous section, Sub Qk (in its guise as one
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of the Cw) does admit gradings, such as the grading describing the degree of the cluster character
of πM ∈ Sub Qk (called ψπM in [JKS16]) with respect to the standard matrix generators.
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