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Abstract

We show that if V is a local-system for intersection homology on a
toric variety X, and K is its maximal constant sub system, then for any
perversity p, ITHE(X,V) = {0} & H.(T"; V) = {0} & rank(K) = 0.

We describe conditions which are necessary and suflicient for the
inclusion ¢ : K <+ V to induce an isomorphism on the homology of
the torus 7" and, equivalently, on the intersection homology of X. We
show further that it is sufficient but not necessary that V be defined by
a unitary representation of the fundamental group of 7". We give the
dimensional restrictions under which some isomorphism H,(7"; V) =
H.(T";K) exists for any V.

1 Introduction

Toric varieties were first defined in the early 70’s ([Mu], [De]) as complex
algebraic varieties. If they were seen at the time as anything more than
a technical tool designed to help deal with a specific problem (the desin-
gularization of symmetric varieties), than it was as a nice generalization of
projective space, in which some varieties embed more naturally than in P™.

In the past decade toric varieties have shown up in a broad variety of dis-
ciplines such as Symplectic Geometry (in the study of the moment map of
a torus action) and Representation Theory (the toric varieties associated to
Weyl chamber decompositions of R"), and their intersection homology with
twisted coefficients has been related by the work of Gel'fand Kapranov and



Zelevinsky [GKZ] (and the Riemman-Hilbert correspondence) to the theory
of generalized hypergeometric functions. But nowhere, it seems, have they
played so prominent a role as in Combinatorics, by means of fascinating
links between the topology of toric varieties and the combinatorial theory
of rational convex polytopes. We expand on this below.

In the early 80’s R. MacPherson gave (but unfortunately did not publish) a
topological description of the (compact) toric variety associated to a (com-
plete) rational fan in R™! (see the definitions below). Far reaching results
can be proved relying only on the topology and one quickly realizes that
the loss of the information contained in the algebraic structure is, for many
purposes, a small price to pay for the dramatic increase in accessibility for
the non-specialist in Algebraic Geometry.

Some important milestones in the history of the toric variety —
convex polytope connection: Any n-dimensional convex polytope A C
R™ with 0 € int A and whose vertices have rational coordinates generates
a complete rational fan (to each proper face ' € A corresponds the cone
{tz|t € [0,00),z € F}) and hence gives rise to a (compact, projective) toric
variety X = X, which is a rational homology manifold iff A is simplicial. In
his 1978 survey article [Da), Danilov calculates the cohomology ring (over
Q or C) of X, for simplicial A, and shows that the Betti numbers are
precisely the components of the h-vector A{A), an important combinatorial
invariant of A (the ring structure depends also on the specific embedding
in R™). In this context, the well known Dehn-Somerville relations h;(A) =
hn—i(A) are none other than Poincaré duality on Xa. Using these facts,
the hard Lefshetz theorem and his own newly introduced methods from
Commutative Algebra, Stanley ([St1]) succeeded to prove the necessity of
McMullen’s conditions ([McM)]) thus settling the almost century old problem
of classifying face vectors, for the case of simple (dually simplicial) convex
polytopes.

The combinatorial properties of a non simple/simplicial polytope are far
more complex, as are the the topological properties — and in particular
the nature of the singularities — of the associated toric variety. In 1988
McConnell showed ([McC]) that if A is not simplicial then the rational ho-
mology betti numbers of X5 are not combinatorial invariants. However in

"More recently, M. Davis and T. Januskiewicz ([DJ]) have generalized MacPherson’s
definition by replacing the underlying fan by a “characteristic function”. M. Audin ([Au])
gives a description of nonsingular toric varieties which naturally exhibits the symplectic
structure when one exists.



the early 80’s, shortly after the introduction of intersection homolgy the-
ory ([GM]), the middle perversity groups TH™(Xa, Q) for general A were
calculated on at least two independant occasions, once by R. MacPherson
and once by J. Bernstein and A. Khovanskii and indeed the ranks of these
groups were found to be combinatorial invariants of A* which (necessarily)
coincide with Danilov’s calculation when X is rationally nonsingular. These
calculations used very heavy characteristic-p machinery. MacPherson’s cal-
culation was first published in 1987 by Stanley ([St2]) who used it to define
generalized h-vectors and generalized Dehn-Somerville relations for general
convex polytopes. As opposed to the simplicial case, these results do not
suffice to classify face-vectors of general polytopes.

We take the next step in this sequence of generalisations by introducing an
arbitrary local coefficient system V for intersection homology on X (which
can be thought of as a local system V on the n-torus 7™). It is reasonable
to expect that the resulting Betti numbers - at least for cleverly chosen local
systems - will be new combinatorial invariants of convex polytopes, and since
a version of Poincaré duality holds for intersection homology with twisted
coefficients, this will yield new restrictions on face-vectors/flag-vectors.

Using purely topological definitions and techniques, we study the intersec-
tion homology I H.(X;V) and the ordinary homology H.(7"; V). We show
that the two are related and express relations between them in terms of the
maximal constant subsystem K C V, whose fiber is the fixed point set of
the action of the fundamental group of 7™ on the fiber of V. We first prove
that if either of these two homologies vanishes in all degrees then the other
does as well. This occurs in particular for all rank 1 local systems except
the trivial one. We then list necessary and sufficient conditions for either
(equivalently both) of these homologies to reduce naturally to homology with
coefficients in K, and show that it is sufficient but not necessary that V be
defined by a unitary representation of m;7". We show further that each of
these theorems reduces to simple Linear Algebra. All of our results con-
cerning intersection homology hold for any perversity. The aforementioned
characteristic-p methods do not apply to other than middle perversity.

The main theorems are stated in section 3 and proved in section 5 after
we describe in section 4, the E? term of a collapsing spectral sequence for
the product with a torus. In section 6 we take another look at the torus,

In this case the Betti numbers depend on more intricate combinatorial properties of
A, not just on the number of faces in each dimension, and can be conveniently expressed
in terms of the “flag vector” ([BK]).



and give precise dimensional restrictions under which H,(7"; V) is always
isomorphic to H.(7";K) although the isomorphism may not be induced
by the inclusion K « ¥. In the last section we discuss, with examples,
the non-existence of a certain long exact sequence for intersection homology
which arises in one of the main theorems.

2 Definitions and Notation

Let ¥ C R™ be a complete rational fan, t.e a decomposition of R as a finite
complex of closed, convex, polyhedral cones, each with apex 0, and each
generated by lattice ponts vy,..., v € Z". Take as the dual complex P, the
polyhedral cell decomposition of the unit ball in R® which has one unique
n-cell, and which, when restricted to $"~!, is dual to the cell decomposition
obtained by intersecting S™~! with the cones of £. We denote by & the
cell in P dual to the cone ¢ € £. Each codimension k cone ¢ € ¥ spans
a codimension k subspace of R™ which (since it has a rational basis) maps

under the projection R* — R"/Z™ = 7™ to a codimension k subtorus 7, C
™.

Definition 2.1 The topological toric variety X = Xy is obtained from
P x T" by modding out 6\3é& x T™ by the action of 7, on 7%, for each
o € . (For more details, see [FY]).

Denote by x : X — P the natural projection. X has a natural stratification
X=X 2X2;m-22---2X20Xp

where for each 1 € ¢ < n, Xy = 7~} (U{é¢ € P|dimé < i}). For any
k-cell & € P, n~1(6\04) = (C*)F. We identify the “non-singular” open
stratum X\ Xzn-2 = 7~!(intP) with (C*)" so that the maximal compact

torus 7° C (C™)" is equal to =~1(0). |

It is a consequence of the allowability conditions ([GM],[Mac]) that a local
system for intersection homology on an m-dimensional stratified pseudoman-
ifold Y need only be defined on the non-singular open stratum Y \Y,_s.
Denote by V alocal system of finite rank on (C*)*. We may assume without
loss of generality, that V. is the trivial extension to (C*)" of a local system
on 77, which we also denote by V. In our setting, the fiber V; over any
point ¢ € 7™ is a (finite dimensional) vector space over a field F and as
usual, is endowed with the discrete topology.



Throughout the paper we will use the same notation for a local system on a
space and for its restriction to a subspace. The meaning will be clear from
the context.

Fix a base point to € 7" and write V = V. Corresponding to any basis of
L" = m(T",1p) there are n commuting monodromies T},...,T,, € GL(V).
Let K C V be the (maximal constant) subsystem whose fiber K; is the
fixed point set of the m(7™,t)-action on V; and denote by K the fiber
K., = Ni=, ker(T; - TI).

We call V unitary if each T; is unitary.

We will supress the perversity 7 from any discussion of intersection homology
which is independent of the perversity.

3 Statement of results

Theorem 3.1
TH.(X;¥) = {0} & H(T™ V) = {0} & K = {0}.
Note: There are natural isomorphisms K 2 H,(T"; K) % H,(T"; V).

Theorem 3.2 Let i : K — V be the inclusion. The following are equiva-
lent:

(?) ¢ induces an isomorphism i, : TH.(X;K) —» TH.(X;V) .

(#1) % induces an isomorphism 1. : H. (7™ K) - H.(T"; V).

(#1t) i induces an isomorphism . : [ Ho(X; K) — THo(X; V).

(#v) 7 induces an isomorphism 1, : Ho(7"; K) — Ho(7T™; V).

(v) V splits as a direct sum of sub local systems : V. = K ¢ M.

(vt) The short exact sequence of local systems

0-K3V - V/K—0 (1)
induces a long exact sequence of intersection homology :

s = TH(X;K) 3 TH(X; V) — TH(X; V/K) = THp (X K) — -+
(2)

Theorem 3.3 If V is a unitary local system, then it splits as a direct sum
V = K® M and hence all of the equivalent conditions in theorem 3.2 hold.



We prove these results in section 5.

Remarks

(1) K = N ker(T; — I) and Ho(T™ V) = V/ 350 (Ti — T)X(V), whence
both theorem 3.1 and theorem 3.2 (part (iv)) reduce to elementary Linear
Algebra.

(#1) We show in section 6 that it is not necessary that V be unitary in order
for the conditions of theorem 3.2 to hold.

(#4i) It follows from thereom 3.2 that if V is a non-trivial irreducible local
system then the maps . are not isomorphisms.

(iv) It follows from the note following theorem 3.1 that if the inclusion
i/ : K! = V induces an isomorphism 7, : H (7" K') — H.(7™;¥Y) then
KcK.

(v) The ranks of the intersection homology groups (with field coefficients)
of a general toric variety X are known (see for example [St2]), and since
K is a direct sum of trivial, 1-dimensional local systems, rank I H;(X; K) =
rank T H;(X; F) rank(K) V.

(v?) m(X,t0) = 0 ([Da]) whence there are no non-trivial local systems for
ordinary homology on X.

4 On the product with a torus

Let Y be a topological space and let V be a local system on Y x 7™.
We assume given a decomposition of the torus as 7" = S x 77! and a
common base point so that the inclusions Y «— Y x S! < Y x 7" make
sense.

For any g, there is an induced local system Hq(Y;V) on 7", whose fiber

over any point ' € 7" is Hy(Y x {t'}; V |y (v} ), and similarly defined local
systems over other relevant subspaces of Y x 7T7.

Theorem 4.1 Forany 0 < k& < n,

H(YxTHV) @ HP(T";HQ(Y;_Y_)).
pteg=k

Proof: : by induction on =n.

For n = 1, the filtration Y C Y x S gives rise to a spectral sequence in
which E? = H,(S'; Hq(Y;V)). This spectral sequence obviously collapses
at E2.



Assume the theorem holds for all m < n.

H(YxT™V) = H{((YxSY)xTr4V)
ind. hyp.
=" P H(T™ ' Hg(Y x SLV))
. pHe=k
x P H, (T € Hi(S'; Hy(Y; V)
pt+q=k i+i=q
x P P H(THHE(SHH(Y; V)
pte=k i+ji=¢
dimY

= @ P H(TLH(SYLHY; V)

i=0 p+i=k—j

ind. hyp. dimY
2" D Hii(THH(Y; V)
i=0
= P H, (T Hy(Y;V)).
p+a=k

O

Remark: In [Bo] (proposition 2.1} it is shown that for any stratified pseu-
domanifold Y, the “suspension” map £ — £ x R induces an isomorphism
TH.(Y) S ITHE¥(Y x R), where the latter denotes intersection homology
with closed (as opposed to compact) supports. There is a natural isomor-
phism THEM(Y xR) = TH,(Y x §,Y x {t}) (with t € §'), and one readily
verifies (since S1\{t} 2 R) that the existence of these isomorphisms is not af-
fected by the introduction of a local system. Thus, the proof of theorem 4.1
carries over for intersection homology, and in fact we can state the slightly
more general relative case :

Theorem 4.2 Let Y be a stratified pseudomanifold, Y’ C Y a PL-subspace
and V a local system for intersection homology on Y x 7". Then for any
0<k<n,

TH((Y,Y)x TH V)2 @ Hy (T IHg(Y, Y, V).
pHe=Fk



5 Proofs of the main theorems

In the proofs we will make use of the following two lemmas.

Lemma 5.1 For any perversity p
THE(X; V) = Hy (T V) 2 K.

Proof: Let ¢ be the perversity dual to p (i.e, for2 < k < 2n, pp+Gx = k—2).
Then

TH](X;V) (THY(X; V)
(Ho((C)*; VM))*
(Ho(T™ VX))
}InCTm;EL)

(Here _* denotes the vector space dual). The first isomorphism follows from
Poincaré duality for intersection homology. The second follows from the
fact that 0 and 1 dimensional chains must be supported on the non-singular
stratum. The last isomorphism follows from ordinary Poincaré duality. O

R IR IR IR

Lemma 5.2 If either Ho(7™; V) = 0or H,(T™; V) = 0, then H(T™; V) =
0 for all k.

Proof: The implication Ho(7T™; V) = 0 = H.(T"; V) = {0} is a special
case of a theorem of Dwyer ([Dw]). The same theorem, and two applications
of Poincaré duality show that the vanishing of the homology in top degree
implies the vanishing in all degrees. o

Proof of theorem 3.1: The equivalence on the right and the implication
“=" on the left follow from lemmas 5.1 and 5.2.
For any o € £, set X, = 771 (¢ NP) and X3, = X, = U X,.

TCdo
If dimoe = n—m ( 0 < m < n) then there exists an m-torus 7/, com-
plementary to 7, in 7" so that 7" = 7, X 7] and so that (X,,Xs,) =
(X.,X5%,) x T}, for some (any) (n — m)-dimensional toric variety X’ asso-
ciated to a fan ¥’ C spano = R™ ™ which contains o. Furthermore, X/,
is the topological cone cX},, stratified by the cones on the strata of X}
along with the apex of the cone as a (unique) 0-stratum.

Define a filtration of X :
Tr=XcX'c...CcX® =X, with



U X, vi
dimo=i
and note that if o # ¢’ are m-cones in L, then X, N X,» € X™-1 and
X, NX™ 1 = X;,. In the spectral sequence corresponding to this filtration
we have
El

P9

TH,(X?, X", V)

@dima:p IHQ(XCT! xf’ n xp-l; X)

@dima:p IHQ(XJ’ Xao;X)

edl'mcr=p IH!I((X:ﬂ ’Ba) X 7;1\_,)

We show that E] , = {0} by induction on p.

For p =0, IH (X% 0; V) = H.(T™; V) = {0} is our hypothesis.

Assume the theorem holds forall p<n—mandlet ¢ € £,dime =n~m.
By the inductive hypothesis, for any 7 C 0,7 # o, [H.(X,, X5, V) = {0}.
Thus, when the filtration and the spectral sequence are restricted to Xj,,
the E! term vanishes, and hence

R

[ramll

IH.(Xa5; ¥) = TH(X5, x T5; ¥) = {0}. 3)
We must show that TH,((cX},,X%,) x T); V) = {0}. By theorem 4.2

TH(Xy, x T; VY2 @ H{(T);TH;(X5,;Y)), and (4)
i+1=k
THi1 (X550 X)) x T3 M) 2 €D Hi( T35 THjy 1 (X5, X501 X)) (5)
i4i1=k
By (3), all of the terms on the right hand side of (4) vanish.

It follows from [Bo] (proposition 3.1} that for any stratified pseudomanifold
Y,

TH (Y k>
me(cY,Y):{ P k2 (6)

where the “cutoff point” r depends on the perversity and on the dimension of
Y, and the isomorphism for each k > r is induced by the coning map & — ¢£.
Since the non-singular open stratum of Y is a strong deformation retract
of the non-singular open stratum of ¢Y, any local system for intersection
homology on ¢ is equivalent to the trivial extension of one on Y, and hence
(6) continues to hold when a local system is introduced. Moreover, for the
same reason, the isomorphism IH;1(cX5,,X5,;V) = TH;(X5,;V) (for
J > r) commutes with the action of the fundamental group of 7, whereby



the local systems IHj 1 (eX},, X5,; V) and TH;(X},,; V) are isomorphic for
all j > r. It follows that Hi(7,;TH;1(cX},,X5,; V) = {0} forall j > r.
For j < r, the vanishing follows from the vanishing of I H;11(cX5,,X5,; V).

a

Proof of theorem 3.2: The following implications are immediate :

(2) = (31)

(i1) = (iv)

(v) = (vi).

“(iv) <= (411)”: It follows from the allowability requirements in the def-
inition of intersection homology, that 0 and 1 dimensional chains are not
allowed to meet the positive-codimensional strata. Therefore I Ho(X; V) =
Ho((C™)™ V) & Ho(T™; V). The naturailty of these isomorphisms implies
the equivalence of (iv) and (#i1).

“(v) = (i), (31)": Denote by j the inclusion M — V.

i@ H(TK) @ H(T™ M) = H.(T™Y)

V=KoeM=> o
i, @ j. : TH(X;K)® TH.(X; M) = TH.(X; V).

K= H, (T V)2 H (T K) & Ho (T M) = H (T M) =0
= H.(T";M) = {0}
and by theorem 3.1, TH.(X; M) = {0} as well.

“(vi) = (1),(41)": Assume there is a long exact sequence as in (2), and
consider its top end

0 = THan(X; K) 5 THon(X; V) = THyn(X; V/K) = THap_1(X;K) — -+

Note that:

(a) 1. is an isomorphism since it is an injection on isomorphic vector spaces
(lemma 5.1).

(b) The intersection homology with field coefficients of any toric variety
vanishes in odd degrees. Thus by remark (v) at the end of section 3,
[H3n1(X; K) = 0.

It follows that IH,,(X;V/K) = 0 and hence, by lemmas 5.1 and 5.2,
H.(T";V/K) = {0}. Thus by theorem 3.1, every third term in the se-
quence Is trivial, and (i) follows. (i) follows as well since the short exact

10



sequence (1) always induces a long exact sequence
= H(T™K) 5 H(T™ V) » BT V/K) = He (THK) > -

“floy=> (v)": Set M =Im{Th — I+ .-+ Im(T, —I) C V. M is invariant
under each of the T;’s, whence there is a well defined sub local-system M C
V. Now, Ho(T™; V) = V/M. Thus if (iv) holds, then the inclusion 7 : K <
V induces an isomorphism K — V /M, hence V = K ® M and (v) follows.

a

Proof of theorem 3.3: Call a subspace U C V invariant if it is invari-
ant under each of the T}’s, and if so denote K;U = ker((T; — I')|y) and
M;U = Im((T; - I)|y). Assume V is unitary, i.e. 'V is endowed with an
inner product <,> such that for each 1 < ¢ < n and for all v,w € V,
< Tiv,Tow >=< v,w >. We need to show that the subspace K C V has an
invariant complement M.,

Remark : One easily verifies that for every 1 € 1 < n, K;V = ker(T; — I)
is orthogonal (with respect to <, >) to M;V = Im(T; - I), and that these
are complementary dimensional, invariant subspaces. Thus V decomposes
naturally as a direct sum V = K,V @ M;V. Now write V=M V@ K,V,
and repeatedly apply the same argument to the last direct summand each
time, to obtain the following natural direct sum decomposition of V :

V = MV
® MKV

® MuKn_1---K1V
@ KoKnq- KV

The last summand is equal to N}, ker(T;—7) = K, and the desired invariant
complement M is the direct sum of all the other summands. m]

6 More on the homology of the torus; examples
and counter examples

It is possible that H.(7™; K) & H.(7";V), but that the inclusion K «—

V. does not induce such an isomorphism, whereby conditions (¢) — (vi) of
theorem 3.2 all fail. In this section we show that if n = 1 or rank(¥) < 2,

11



such an isomporphism always exists, whereas in all higher dimensions and
ranks there exist counter examples. We then show that there exist non-
unitary local systems satisfying the conditions of theorem 3.2.

Proposition 6.1 Let V be a local system on 7. If n = 1 or rank(V) < 2,
then H (7™ K) = H.(T™ V).

Proof:

Case 1: n=1. Let T} € GL(V) correspond to one of the two generators
of 71(S1,t). Then H (84 V) = ker(Ty —1) = K = Hi(§,; K). Ho(S; V) =
cok(T1 — I) which is isomorphic to ker(T) — I) and hence to Ho(S1; K) = K.
But this isomorphism is not, in general, induced by the inclusion 7 : K — V.

Example 6.2 Suppose that rank(V) = 2, and that for a suitable basis of
V, Ti(z,y) = (z + ¥,y). Then dim K = 1 but the map K — cok(Ty - I)
induced by the inclusion K — V has rank 0.

Case 2: rank(V)= 1. Each of the monodromies T; € GL(V),1 <i < n,is
equal to multiplication by a constant ¢; € F. There are only two possibilities:
either Vi, ¢; = 1, in which case K = V, or for some ¢, ker(T; — I') = {0} =
K= {0}=> H,(T";¥)= H.(T";K) = {0} (lemmas 5.1 and 5.2).

Case 3: rank(V)= 2. We prove this case by induction on n. The base
case was taken care of in case 1. We will need the following
Lemma 6.3 dim H,(7T™; V) = dim Ho(T™; V).

The proofis an exercise in linear algebra. It suffices to show that if A;,..., A,
are commuting 2 X 2 matrices then the 2 x 2n matrix (4, A2...A,) and the
the 2n x 2 matrix with the A;’s vertically alligned, have the same rank. O

Now denote §;,, = dimg H;(7™;Z) and k = dim K, and assume that for all
m < nand for all 0 € ¢ < m, dim H;(7™; V) = dim H;(T™; K) = B k.
Let 7" = §! x 7", By theorem 4.1

dim Hy(T™; V) = dim H;(T""'; Ho(SY; V) + dim H;_, (7"~ H1(S1; V).

Note that dim V = 2 implies that Ho(S?; V) and H;(S1; V) also have rank
< 2. By the inductive hypothesis and lemma 6.3

dim H;(T™~1; He(S1; V) = Bins dim Ho(T™1; Hy(S1; V)
thcorém‘i.l ﬁ.‘,n—l dim HO(T",Y_)

lemma6.3
= ﬂi.n—l k .

12



By a similar argument, dim H;_(7""%; Hy(S}; V)) = B, o k. Finally,

ﬂi,n—l +ﬁi-1,n—1 = (n:l) + (?:;) = (?) = ﬁi,n' o

The following example shows that without additional restrictions on V, the
dimensional bounds given in proposition 6.1 are the best ones possible.

Example 6.4 Let V be a rank 3 local system on 72 such that for suit-
ably chosen bases of 7,(72,t) and of V, the monodromies 7y and T, are
represented by the (commuting) matrices

1
Ai=10
0

o= o

1 110
0 and A, =] 010
1 001

The 3 x 6 matrix (4 — I A — I) has rank 1 whence dim Ho(T% V) = 2,
whereas the 6 X3 matrix obtained by vertically alligning A, —7 and A,—1 has
rank 2, whence dim Hg(TZ;K) = dim K = 1. An analogous counter example
can be constructed for any n > 2 by setting T3 =Ty = --- =T, = I and for
any rank > 2 by direct summing with a constant coefficient system.

We conclude this section by observing that if V satisfies the conditions of
theorem 3.2, and V' is any non-unitary local system for which H (7™ V') =
{0} (eg when one of the momodromies acts as multiplication by a constant
¢ # 1), then V. @ V' is non-unitary and satisfies the conditions of theorem
3.2

7 On the non-exactness of the intersection ho-
mology sequence

In the non-existence of an exact sequence (2), intersection homology differs
from ordinary homology. The intersection complex IC,(_;_) is a (covariant)
functor of the second argument and hence the short exact sequence (1) does
induce an (exact) sequence

0 — IC(_,K) = IC.(,V) 5 IC.(; V/K).

However, because of the allowability requirements on the boundaries of
chains, the last map in this sequence is not, in general, surjective. Given

13



a chain £ € IC,(Y;V/K) we may choose representatives in V for each of
the coefficients of £, thus obtaining an allowable “preimage” chain ¢’ with
coefficients in V. However, 3¢ might contain non-allowable summands with
coefficients in K. Restated, this difference between ordinary homology and
intersection homology lies in the fact that the natural map

IC(Y; V)/IC.(Y;K) & IC.(Y; V/K)

is not an isomorphism (it is injective but need not be surjective).

Example 7.1 Let X 2 S? be the (unique) 2-dimensional toric variety, with
two antipodal points p,, p; as the 0-stratum, and let V be the local system
of example 6.2 (note that V/K is a rank 1 constant coefficient system). A
sequence T

0 — THo(X; K) 5 THo(X; V) = THy(X; V/K) » TH{(X; K)

cannot be exact at IHo(X;V/K), as it is easy to see that each of the
first 3 terms is 1-dimensional whereas JH,(X;K) = 0. Indeed, let &' €
IC1(X; V/K) be the chain with (constant) coefficient (0,1)+ K € V/K
which is supported on a great circle in X\ {p;,p2}, and let £ = ¢£’ €
IC(X; V/K) be the cone to p;. Since (0,1) ¢ K = ker(T) — I), any
preimage of ¢ would necessarily have a boundary point with non-trivial
coefficient, and hence any proposed preimage of £ will necessarily have a
non-trivial boundary component meeting the 0-stratum, and this is not al-
lowable since 1-chains may not meet the singular set. Thus neither = nor 7
are surjective.
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