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Abstract: The goal of this paper is to provide a method, based on the the-
ory of extensions of left-symmetric algebras, for classifying left-invariant a¢ ne
structures on a given solvable Lie group of low dimension. To better illustrate
our method, we shall apply it to classify all complete left-invariant a¢ ne struc-
tures on the oscillator group.

1 Introduction

It is a well known result (see [1], [14]) that a simply connected Lie group G
which admits a complete left-invariant a¢ ne structure, or equivalently G acts
simply transitively by a¢ ne transformations on Rn; must be solvable. It is also
well known that not every solvable (even nilpotent) Lie group can admit an
a¢ ne structure [2]. Now given a simply connected solvable Lie group G which
can admit a complete left-invariant structure, it is important to classify all such
possible structures on G.

Our goal in the present paper is to provide a method for classifying left-
invariant a¢ ne structures on a given solvable Lie group of low dimension. Since
the classi�cation has been completely achieved up to dimension four in the
nilpotent case (see [7], [10], [12]), we shall illustrate our method by applying it
to classify all complete left-invariant a¢ ne structures on the remarkable solvable
and non-nilpotent four-dimensional Lie group O4, known as the oscillator group.
Recall that O4 can be viewed as a semidirect product of the real line with the
Heisenberg group. Recall also that the Lie algebra O4 of O4 (that we shall
call oscillator algebra) is the Lie algebra with generators e1; e2; e3; e4; and with
nonzero brackets

[e1; e2] = e3; [e4; e1] = e2; [e4; e2] = �e1:

Since left-invariant a¢ ne structures on a Lie group G are in one-to-one cor-
respondence with left-symmetric structures on its Lie algebra G [10], we shall
carry out the classi�cation of complete left-invariant a¢ ne structures on O4 in
terms of complete (in the sense of [17]) left-symmetric structures on O4.
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The paper is organized as follows. In Section 2, we recall the notion of
extensions of Lie algebras and its relationship to the notion of G-kernels. In
Section 3, we give some necessary de�nitions and notations and basic results
on left-symmetric algebras and their extensions. In Section 4, we consider the
special case where the Lie algebra G is O4:We observe that any left-symmetric
product on O4 can be obtained by extension of a left-symmetric product on the
Heisenberg algebra H3 according to a short sequence of l.s. algebras of the form

0! A3
i! A4

�! R! 0;

where A3 and A4 are viewed as left-symmetric algebras whose associated Lie
algebras are H3 and O4; respectively. In Section 5, we show that the Lie algebra
associated to A3 is isomorphic to the Lie algebra E (2) of the group of Euclid-
ean motions of the plane. We show that, up to left-symmetric isomorphism,
there is a unique complete left-symmetric structure on E (2), and we use this
to carry out all complete left-symmetric structures on O4: We �nd that, up to
left-symmetric isomorphism, there exist exactly two non-isomorphic complete
left-symmetric structures on O4: By using the Lie group exponential maps, we
deduce the classi�cation of all complete left-invariant a¢ ne structures on the
oscillator group O4 in terms of simply transitive actions of subgroups of the
a¢ ne group Aff

�
R4
�
= GL

�
R4
�
nR4 (see Theorem 18 below).

Throughout this paper, all considered vector spaces, Lie algebras, and left-
symmetric algebras are supposed to be over the �led R. We also suppose that
all considered Lie groups are connected and simply connected.

2 Extensions of Lie algebras

Recall that a Lie algebra eG is an extension of the Lie algebra G by the Lie
algebra A if there exists a short exact sequence of Lie algebras

0! A i! eG �! G ! 0: (1)

In other words, if we identify the elements of A with their images in eG via
the injection i; then A is an ideal in eG such that eG=A �=G .
Two extensions eG1 and eG2 are called equivalent if there exists an isomorphism

of Lie algebras ' such that the diagram

0 �! A i1�! eG1 �1�! G �! 0
idA # # ' # idG

0 �! A i2�! eG2 �2�! G �! 0

commutes.
The notion of extensions of a Lie algebra G by an abelian Lie algebra A is

well known (see for instance, the books [5] and [9]). In light of [16], we shall
describe here the notion of extension eG of a Lie algebra G by a Lie algebra A
which is not necessarily abelian.
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Suppose that a vector space extension eG of a Lie algebra G by another Lie
algebra A is known, and we want to de�ne a Lie structure on eG in terms of the
Lie structures of G and A. Let � : G ! eG be a section, that is, a linear map
such that � � � = id: Then the linear map 	 : (a; x) 7! i (a) + � (x) from A� G
onto eG is an isomorphism of vector spaces.
For (a; x) and (b; y) in A� G, de�ne a commutator on eG by

[i (a) + � (x) ; i (b) + � (y)] = i ([a; b]) + [� (x) ; i (b)] (2)

+ [i (a) ; � (y)] + [� (x) ; � (y)]

Since � (x) lies in i (A) for all x 2 G, we shall denote � (x) = i (x) with
x 2 A. Now we de�ne a linear map � : G ! End (A) by

� (x) a = [x; b] ;

that is, � (x) = (adx)jA : On the other hand, since

� ([� (x) ; � (y)]) = � (� ([x; y])) ;

it follows that there exists an alternating bilinear map ! : G � G ! A such that

[� (x) ; � (y)] = � [x; y] + ! (x; y) :

In summary, by means of the isomorphism above, eG �= A� G and its elements
may be denoted by (a; x) with a 2 A and x is simply characterized by its
coordinates in G. The commutator de�ned by (2) is now given by

[(a; x) ; (b; y)] = ([a; b] + � (x) b� � (y) a+ ! (x; y) ; [x; y]) ; (3)

for all (a; x) 2 eG �= A� G.
Now, it is easy to see that this is actually a Lie bracket (i.e, it veri�es the

Jacobi identity) if and only if the following three conditions are satis�ed

1. � (x) [b; c] = [� (x) b; c] + [b; � (x) c] ;

2. [� (x) ; � (y)] = � ([x; y]) + ad!(x;y);

3. ! ([x; y] ; z) � ! (x; [y; z]) + ! (y; [x; z]) = � (x)! (y; z) + � (y)! (z; x) +
� (z)! (x; y) :

Remark 1 We see that condition (1) above is equivalent to say that � (x) is a
derivation of A, and condition (3) is equivalent to the fact that ! is a 2-cocycle
(i.e., ��! = 0; where �� refers to the coboundary operator corresponding to the
action �). Condition (2) indicates clearly that if A is supposed to be abelian,
then G becomes an A-module in a natural way, because in this case the linear
map � : G ! End (A) given by � (x) a = [x; b] is well de�ned. Namely, � does
not depend on the choice of the section �, given that A is abelian.
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As we mentioned in Remark 1, G is actually acting by derivations, that is,
� : G ! Der (A) : If now �0 : G ! eG is another section, then �0�� = � for some
linear map � : G ! A, and it follows that the corresponding morphism and
2-cocycle are, respectively, �0 = �+ad � � and !0 = !+ ��� +

1
2 [� ; � ] ; where ad

stands here and below, if there is no ambiguity, for the adjoint representation
in A (Recall here that 1

2 [� ; � ] (x; y) = [� (x) ; � (y)]). Therefore, !0 � ! is a 2-
coboundary if and only if [� (x) ; � (y)] = 0 for all x; y 2 G. Equivalently, !0 � !
is a 2-coboundary if and only if � has its range in the center Z (A) of A. In
that case, we get !0�! = ��� 2 B2� (G; Z (A)) ; the group of 2-coboundaries for
G with values in Z (A) :
To overcome all these di¢ culties, we proceed as follows. Let C2 (G;A) be the

abelian group of all 2-cochains, i.e. alternating bilinear mappings G � G ! A.
For a given � : G ! Der (A) ; let T� 2 C2 (G;A) be de�ned by

T� (x; y) = [� (x) ; � (y)]� � ([x; y]) ; for all x; y 2 G:

If there exists some ! 2 C2 (G;A) such that T� = ad � ! and ��! = 0; then
the pair (�; !) is called a factor system for (G;A) : Let Z2 (G;A) be the set of all
factor systems for (G;A) : It is shown in ([16], Theorem II.7) that the equivalent
classes of extensions of a Lie algebra G by a Lie algebra A are in one-to-one
correspondence with the elements of the quotient space Z2 (G;A) =C1 (G;A) ;
where C1 (G;A) is the space of linear maps from G into A. Note that if we
assume that A is abelian, then we meet the well known result (see for instance
[4]) stating that for a given action � : G ! End (A) ; the equivalent classes of
extensions of G by A are in one-to-one correspondence with the elements of the
second cohomology group

H2
� (G;A) = Z2� (G;A) =B2� (G;A) :

In the present paper, we shall be concerned with the special case where A is
non-abelian and G is the �eld R, and hencefore the cocycle ! is identically zero.

Remark 2 It is worth noticing that the construction above is closely related
to the notion of G-kernels (considered for Lie algebras �rstly in [15]) . On�
� : G ! Der (A) : T� = ad � !; for some ! 2 C2 (G;A)

	
; de�ne an equivalence

relation by � � �0 if and only if �0 = �+ad� � ; for some linear map � : G ! A.
The equivalence class [�] of � is called a G-kernel. It turns out that ifA is
abelian, then a G-kernel is nothing but a G-module. By considering the quo-
tient morphism � : Der (A) ! Out (A) = Der (A) =adA; and remarking that
� � ad � � = 0 for any linear map � : G ! A, we can naturally associate to each
G-kernel [�] the morphim � = � � [�] : G ! Out (A) :

3 Extensions of left-symmetric algebras

The notion of a left-symmetric algebra (or l.s. algebra in short) arises naturally
in various areas of mathematics and physics. It originally appeared in the
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works of Vinberg [18] and Koszul [11] concerning convex homogeneous cones and
bounded homogeneous domains, respectively. It also appears, for instance, in
connection with Yang-Baxter equation and integrable hydrodynamical systems
(cf. [3], [8], [13]).
A left-symmetric algebra (A; :) is a �nite-dimensional algebra A in which the

products, for all x; y; z 2 A; satisfy the identity

(xy) z � x (yz) = (yx) z � y (xz) ; (4)

where here and frequently during this paper we simply write xy instead of x � y.
It is clear that an associative algebra is a l.s. algebra. Actually, for a l.s.

algebra A; if (x; y; z) = (xy) z � x (yz) is the associator of x; y; z, then we see
that (4) is equivalent to (x; y; z) = (y; x; y) This means that l.s. algebras are
natural generalizations of associative algebras.

Now if A is a l.s. algebra, then the commutator

[x; y] = xy � yx (5)

de�nes a structure of Lie algebra on A; called the associated Lie algebra. On
the other hand, if G is a Lie algebra with a l.s. product � satisfying

[x; y] = x � y � y � x;

then we say that the l.s. structure is compatible with the Lie structure on G.
Suppose now we are given a Lie group G with a left-invariant �at a¢ ne

connection r; and de�ne a product � on the Lie algebra G of G by

x � y = rxy; (6)

for all x; y 2 G. Then, the conditions on the connection r for being �at and
torsion-free are now equivalent to the conditions (4) and (5), respectively.
Conversely, suppose that G is a simply connected Lie group with Lie algebra

G, and suppose that G is endowed with a l.s. product � which is compatible
with the Lie bracket of G. We de�ne an operator r on G according to identity
(6), and then we extend it by left-translations to the whole Lie group G. This
clearly de�nes a left-invariant �at a¢ ne structure on G: In summary, for a given
simply connected Lie group G with Lie algebra G, the left-invariant �at a¢ ne
structures on G are in one-to-one correspondence with the l.s. structures on G
compatible with the Lie structure.

Let A be a l.s. algebra, and let the left and right multiplications Lx and Rx
by the element x be de�ned by Lxy = x � y and Rxy = y � x: We say that A is
complete if Rx is a nilpotent operator, for all x 2 A: It turns out that, for a given
simply connected Lie group G with Lie algebra G, the complete left-invariant
�at a¢ ne structures on G are in one-to-one correspondence with the complete
l.s. structures on G compatible with the Lie structure. It is also known that
an n-dimensional simply connected Lie group admits a complete left-invariant
�at a¢ ne structure if and only if it acts simply transitively on Rn by a¢ ne
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transformations (see [10]). A simply connected Lie group which is acting simply
transitively on Rn by a¢ ne transformations must be solvable according to [1],
but it is worth noticeable that there exist solvable (even nilpotent) Lie groups
which do not admit a¢ ne structures (see [2]).

We close this section by �xing some notations which we will be using in what
follows. For a l.s. algebra A, we can easily check that the subset

T (A) = fx 2 A : Lx = 0g

is a two-sided ideal in A: Geometrically, if G is a Lie group which acts simply
transitively on Rn by a¢ ne transformations then T (G) corresponds to the set
of central translational elements in G; where G is endowed with the complete
l.s. product corresponding to the action of G on Rn: It has been conjectured
in [1] that every nilpotent Lie group G which acts simply transitively on Rn by
a¢ ne transformations contains a central translation, but this turned out to be
false (see [6]).

We discussed in the last section the problem of extension of a Lie algebra
by another Lie algebra. Similarly, we shall brie�y discuss in this section the
problem of extension of a l.s. algebra ~A by another l.s. algebra A: To our
knowledge, the notion of extensions of l.s. algebras has been considered for the
�rst time in [10], to which we refer for more details.
Suppose that a vector space extension ~A of a l.s algebra A by another l.s.

algebra E is given. We want to de�ne a l.s. structure on ~A in terms of the l.s
structures given on A and E: In other words, we want to de�ne a l.s. product
on ~A for which E becomes a two-sided ideal in ~A such that ~A=E �= A; or
equivalently,

0! E ! ~A! A! 0

becomes a short exact sequence of l.s algebras.

Theorem 3 ([10]) There exists a l.s. structure on ~A extending a l.s. algebra A
by a l.s. algebra E if and only if there exist two linear maps �; � : A! End (E)
and a bilinear map g : A � A ! E such that, for all x; y; z 2 A and a; b 2 E;
the following conditions are satis�ed.

(i) �x (a � b) = �x (a) � b+ a � �x (b)� �x (a) � b;

(ii) �x ([a; b]) = a � �x (b)� b � �x (a) ;

(iii) [�x; �y]� �[x;y] = Lg(x;y)�g(y;x);

(iv)
�
�x; �y

�
+ �y � �x � �x�y = Rg(x;y);

(v) g (x; y � z)� g (y; x � z) + �x (g (y; z))� �y (g (x; z))� g ([x; y] ; z)

��z (g (x; y) + g (y; x)) = 0:
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If the conditions of the Theorem 3 are ful�lled, then the extended l.s. product
on ~A �= A� E is given by

(x; a) � (y; b) =
�
x � y; a � b+ �x (b) + �y (a) + g (x; y)

�
: (7)

It is remarkable that if the l.s. product of E is trivial, then the conditions
of the Theorem 3 simplify to the following two conditions:

(i) [�x; �y] = �[x;y]; i.e. � is a representation of Lie algebras,

(ii)
�
�x; �y

�
+ �y � �x � �x�y = 0:

In this case, E becomes an A-bimodule and the extended product given in
(7) simpli�es too.

Let A be a l.s. algebra, and suppose that an A-bimodule V (which is not
necessarily trivial) is known. We denote by Lp (A; V ) the space of all p-linear
maps from A to V; and we de�ne two coboundary operators �1 : L1 (A; V ) !
L2 (A; V ) and �2 : L2 (A; V ) ! L3 (A; V ) as follows : For a linear map h 2
L1 (A; V ) we set

�1h (x; y) = �y (h (x)) + �x (h (y))� h (x � y) ; (8)

and for a bilinear map g 2 L2 (A; V ) we set

�2g (x; y; z) = g (x; y � z)� g (y; x � z) + �x (g (y; z))� �y (g (x; z)) (9)

�g ([x; y] ; z)� �z (g (x; y) + g (y; x)) :

It may be veri�ed that �2 � �1 = 0: Therefore, if we set Z2�;� (A; V ) = ker �2
and B2�;� (A; V ) = Im �1, we can de�ne a notion of second cohomology for the
actions � and � by simply setting H2

�;� (A; V ) = Z2�;� (A; V ) =B
2
�;� (A; V ) :

As in the case of extensions of Lie algebras, we can prove that for given
linear maps �; � : A! End (V ), the equivalent classes of extensions of A by V
are in one-to-one correspondence with the elements of the second cohomology
group H2

�;� (A; V ) :

3.1 Central extensions of l.s. algebras

The notion of central extensions known for Lie algebras may analogously be
de�ned for l.s. algebras. Let ~A be a l.s. extension of a l.s algebra A by another
l.s. algebra E, and let eG be the Lie algebra associated to ~A: We say that the

extension 0 ! E
i! ~A

�! A ! 0 is central if i (E) � Z
�eG� ; where Z �eG� is

the center of the Lie algebra eG:
In particular, when E is a trivial A-bimodule (i.e. � = � = 0 ), we deduce

that the extension 0! E
i! ~A

�! A! 0 is central if and only if i (E) � C
�
~A
�
;

where

C
�
~A
�
= T

�
~A
�
\ Z

�eG� = nx 2 ~A : x � y = y � x = 0; for all y 2 ~A
o
;
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where T
�
~A
�
is the two-sided ideal of ~A de�ned above. In particular, if i (E) =

C
�
~A
�
we say that the extension is exact. It is easy to verify (see [10]) that the

extension is exact if and only if I[g] = 0; where

I[g] = fx 2 A : x � y = y � x = 0 and g (x; y) = g (y; x) = 0; for all y 2 Ag :

We note here that I[g] is well de�ned because any other element in [g] has
the form g + �1h with �1h (x; y) = �h (x � y) (since we have here � = � = 0).

Remark 4 We notice that, in [10], the center of ~A is de�ned to be the ideal

C
�
~A
�
, and an extension is called central exactly whenever i (E) � C

�
~A
�
: This

implies that, for a central extension in the sense of [10], the A-bimodule E is
always trivial.

Given a l.s. algebra A and a trivial A-bimodule E; we denote a central
extension 0 ! E ! ~A ! A ! 0 corresponding to a cohomology class [g] 2
H2 (A;E) by

�
~A; [g]

�
: Let

�
~A; [g]

�
and

�
~A0; [g0]

�
be two central extensions of

A by E; and let � 2 Aut (E) = GL (E) and � 2 Aut (A) ; where Aut (E) and
Aut (A) are the groups of l.s. automorphisms of E and A; respectively. It is
clear that, given h 2 L1 (A;E) ; then the linear mapping  : ~A! ~A0 de�ned by

 (x; a) = (� (x) ; � (a) + h (x))

is an isomorphism provided g0 (� (x) ; � (y)) = � (g (x; y)) + �1h (x; y) for all
(x; y) 2 A � A; i.e. �� [g0] = �� [g] : This allows us to de�ne an action of the
group G = Aut (E)�Aut (A) on H2 (A;E) by setting

(�; �) : [g] = ���
� [g] ; (10)

or equivalently, (�; �) :g (x; y) = � (g (� (x) ; � (y))) for all x; y 2 A:
Denoting the set of all exact central extensions of A by E by

H2
ex (A;E) =

�
[g] 2 H2 (A;E) : I[g] = 0

	
;

and the orbit of [g] by G[g]; it turns out that the following result is valid (see
[10]).

Proposition 5 Let [g] and [g0] be two classes in H2
ex (A;E) : Then, the central

extensions
�
~A; [g]

�
and

�
~A0; [g0]

�
are isomorphic if and only if G[g] = G[g0]: In

other words, the classi�cation of the exact central extensions of A by E is, up
to l.s. isomorphism, the orbit space of H2

ex (A;E) under the natural action of
G = Aut (E)�Aut (A) :
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4 Left-symmetric structures on the oscillator al-
gebra

Recall that the Heisenberg group H3 is the 3-dimensional Lie group di¤eomor-
phic to R� C with the group law

(v1; z2) � (v2; z2) = (v1 + v2 +
1

2
Im(z1z2); z1 + z2);

for all v1; v2 2 R and z1; z2 2 C.
Let � > 0; and let G = RnH3 be equipped with the group law

(t1; v1; z1) � (t2; v2; z2) = (t1 + t2; v1 + v2 +
1

2
Im(z1z2e

i�t); z1 + z2e
i�t);

for all t1; t2 2 R and (v1; z1); (v2; z2) 2 H3: This is a 4-dimensional Lie group
with Lie algebra G having a basis fe1; e2; e3; e4g such that

[e1; e2] = e3; [e4; e1] = �e2; [e4; e2] = ��e1;

and all the other brackets are zero.
It follows that the derived series is given by

D1G = [G;G] = spanfe1; e2; e3g; D2G = spanfe3g; D3G = f0g;

and therefore G is a (non-nilpotent) 3-step solvable Lie algebra.

When � = 1; G is known as the oscillator group. We shall denote it by O4,
and we shall denote its Lie algebra by O4 and call it the oscillator algebra.

The following useful lemma is easy to prove.

Lemma 6 The oscillator algebra O4 contains only two proper ideals which are
Z (O4) �= R and [O4;O4] �= H3:

We want to classify all the complete real l.s. structures on O4: In what
follows, let A4 be a l.s. algebra whose associated Lie algebra is O4 and consider
the subspace

C (A4) = T (A4) \ Z (O4) = fa 2 A4 : ax = xa = 0; for all x 2 A4g ;

where Z (O4) is the center of the Lie algebra O4 and T (A4) is the two-sided
ideal of A4 de�ned in Section 3.
Since dimZ (O4) = 1; it follows that dimC (A4) � 1: Consequently, we

should distinguish two cases according to whether C (A4) is trivial or not. How-
ever, as we will see below (see Lemmas 10 and 11), the classi�cation of complete
l.s. structures on O4 will be reduced to the case where C (A4) is nontrivial.
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First, we begin by observing that any arbitrary algebra A contains A2 = A�A
as a two-sided ideal. This allows us to consider the two-sided ideal A24 in A4
which is also an ideal of the Lie algebra O4: Second, by Lemma 6, the only
proper ideals of O4 are Z (O4) �= R and [O4;O4] �= H3: It follows that the
associated Lie algebra of A24 is H3; since A24 � [O4;O4]. We thus get a short
exact sequence of l.s. algebras

0! A3
i! A4

�! R! 0; (11)

where A3 = A24 is viewed here as a three-dimensional l.s. algebra whose associ-
ated Lie algebra is H3:
Since the Lie algebra associated to A4 is required to beO4; the short sequence

(11) yields a short exact sequence of Lie algebras of the form

0! H3 ! O4 ! R! 0:

Let � : R! Der (H3) be a derivation of H3; which is completely determined
by its value at 1:

Lemma 7 In a basis fe1; e2; e3g of H3 satisfying [e1; e2] = e3, the derivation
D = � (1) takes the following simpli�ed form

D =

0@ a1 b1 0
a2 �a1 0
a3 b3 0

1A ;

with a21 + a2b1 6= 0:

Proof. Put D = � (1) in the form

D =

0@ a1 b1 c1
a2 b2 c2
a3 b3 c3

1A ;

relative to a basis fe1; e2; e3g of H3 satisfying [e1; e2] = e3: First of all, we
deduce from the identity De3 = [De1; e2] + [e1; De2] that c1 = c2 = 0 and
c3 = a1 + b2: On the other hand, since a skew-symmetric bilinear form from
R�R into H3 is obviously identically zero, we deduce that Z2� (R;H3) = 0; that
is, the extensions of R by H3 are precisely the semidirect products of R by H3

with respect to derivations of H3. In that case, the extended Lie bracket de�ned
by (3) on R�H3 is given by

[(a; x) ; (b; y)] = ([a; b] ; [x; y] + � (a) y � � (b)x) ;

for all x; y 2 H3 and a; b 2 R: By setting eei = (0; ei), 1 � i � 3; and ee4 = (1; 0) ;
we obtain

[ee1; ee2] = ee3;
[ee4; ee1] = a1ee1 + a2ee2 + a3ee3;
[ee4; ee2] = b1ee1 + b2ee2 + b3ee3;
[ee4; ee3] = c3ee3:

10



Since O4 is unimodular, we deduce that a1+b2+c3 = 0; and taking into account
that c3 = a1 + b2 we deduce that c3 = 0 and b2 = �a1: It is now clear that,
in the sub-basis fee1; ee2; ee3g which still satis�es [ee1; ee2] = ee3, and hencefore in
the initial basis fe1; e2; e3g, the derivation D takes the desired simpli�ed form.
The condition a21 + a2b1 6= 0 follows now from the fact that a1ee1 + a2ee2 and
b1ee1 � a1ee2 must be linearly independent, since dim [O4;O4] = 3:
On the other hand, it is not di¢ cult to prove the following proposition

(compare [7], Theorem 3.5).

Proposition 8 Up to l.s. isomorphism, the complete l.s. structures on the
Heisenberg algebra H3 are classi�ed as follows: There is a basis fe1; e2; e3g of
H3 relative to which the l.s. product is given by one of the following classes:

(i) e1 � e1 = pe3; e2 � e2 = qe3; e1 � e2 = 1
2e3; e2 � e1 =

1
2e3; where p; q 2 R:

(ii) e1 � e2 = me3; e2 � e1 = (m� 1) e3; e2 � e2 = e1; where m 2 R:

Remark 9 It is noticeable that the l.s. products on H3 belonging to class (i) in
Proposition 8 are obtained by central extensions (in the sense �xed in Section
3) of R2 endowed with some complete l.s. structure by R endowed with the
trivial l.s. product. However, the l.s. products on A3 belonging to class (ii) are
obtained by central extensions of the nonabelian two-dimensional Lie algebra G2
endowed with its unique complete l.s. structure by R endowed with the trivial
l.s. structure.

Now we return to the short sequence (11). Let � : R ! A4 be a section,
and set � (1) = x0 2 A4:We de�ne two linear maps �; � 2 End (A3) by putting
� (y) = x0 � y and � (y) = y � x0: Now if we put e = x0 � x0; we get

� (e) = � (x0 � x0) = � (� (1) � � (1)) = � (� (1)) � � (� (1)) = 1 � 1 = 0:

This means that e = x0 � x0 2 A3: Let g : R� R ! A3 be the bilinear
map de�ned by g (a; b) = � (a) � � (a) � � (a � b) : From the completeness of the
l.s. structure on R, we see that g (a; b) = abe; or equivalently g (1; 1) = e; and
it is obvious too (using the notation of Section 3) to verify that �2g = 0; i.e.
g 2 Z2�;� (R; A3).
On the other hand, the extended l.s. product on A3 � R given in (7) turns

out to take here the simpli�ed form

(x; a) � (y; b) = (x � y + a� (y) + b� (x) + abe; 0) ;

for all x; y 2 A3 and a; b 2 R:
The conditions in Theorem 3 also simplify to the following conditions:

(a) � (x � y) = � (x) � y + x � � (y)� � (x) � y;
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(b) � ([x; y]) = x � � (y)� y � � (x) ;

(c) [�; �] + �2 = Re:

Now observe that (x; a) 2 T (A4) if and only if (x; a) � (y; b) = (0; 0) for
all (y; b) 2 A3 � R, or equivalently, x � y + a� (y) + b� (x) + abe = 0 for all
(y; b) 2 A3 � R. Since y and b are arbitrary, we conclude that this is also
equivalent to say that (Lx)jA3 = a� and � (x) = ae: In particular, an element
x 2 A3 belongs to T (A4) if and only if (Lx)jA3 = 0 and � (x) = 0; or equivalently,

A3 \ T (A4) = T (A3) \ ker � (12)

The following two lemmas will be crucial for the classi�cation of l.s. struc-
tures on O4:

Lemma 10 In the short sequence (11), if the l.s. algebra A3 belongs to class
(i) of Proposition 8, then the two-sided ideal C (A4) is nontrivial.

Proof. Assume that A3 belongs to class (i) of Proposition 8. Applying the
formula in condition (b) above to e3, we �nd that, in a basis fe1; e2; e3g of H3

satisfying [e1; e2] = e3; the operator � has the form

� =

0@ �1 �1 0
�2 �2 0
�3 �3 3

1A ;

with 3 = p�1 � q�2 +
1
2 (�1 + �2) : Since D = � � �, we apply Lemma 7 to

deduce that, relative to the same basis above, we have

� =

0@ �1 + a1 �1 + b1 0
�2 + a2 �2 � a1 0
�3 + a3 �3 + b3 3

1A :

Since (Le3)jA3 = 0 and e 2 A3, then condition (c) above (when applied to
e3) gives

23e3 = e3 � e = 0;

which in turn obviously implies that 3 = 0; i.e. � (e3) = 0: Hence, we get
from (12) that e3 2 T (A4) : Since Z (O4) = Re3; we deduce that C (A4) =
T (A4) \ Z (O4) 6= 0; as required.

Lemma 11 In the short sequence (11), the l.s. algebra A3 could not belong to
class (ii) of Proposition 8.

Proof. Assume to the contrary that A3 belongs to class (ii) of Proposition 8,
i.e. there is a basis fe1; e2; e3g of H3 relative to which the l.s. product is given
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by : e1 � e2 = me3; e2 � e1 = (m� 1) e3; e2 � e2 = e1; where m is a real number.
Relative to that basis, put

� =

0@ �1 �1 1
�2 �2 2
�3 �3 3

1A :

Applying the formula in condition (b) above to e3; we get

1 = ��2; 2 = 0; 3 = m�2 � (m� 1)�1:

The same formula, when applied to e1 or e2; yields

(m� 1) 1 = 0:

It follows that

� =

0@ �1 �1 ��2
�2 �2 0
�3 �3 m�2 � (m� 1)�1

1A ;

with (m� 1)�2 = 0: Since � = D+�; Lemma 7 tells us that, in the same basis,
we have

� =

0@ �1 + a1 �1 + b1 ��2
�2 + a2 �2 � a1 0
�3 + a3 �3 + b3 m�2 � (m� 1)�1

1A ;

with (m� 1)�2 = 0 and a21 + a2b1 6= 0:
Now, by applying the formula in condition (c) above to e3, we have

�2 (�2 + a2) = 0; �2 (a1 +m�2 � (m� 2)�1) = 0; (13)

�2 (�3 + a3) = (m�2 � (m� 1)�1)
2
:

Moreover, by applying the formula in condition (a) above to all products of
the form ei � ej ; we get the following extra conditions

a1 = 0; a2 = �m�2; �2 = �1; a3 + �3 = mb1 + (m� 1) (b1 + �1) : (14)

It is now easy to verify that (13) and (14) are not compatible (more precisely,
we get a contradiction with the condition on D that a21 + a2b1 6= 0). This
terminates the proof of the lemma.

5 Classi�cation

By Lemmas 10 and 11, any complete l.s. algebra A4 whose associated Lie algebra
is O4 contains a central translation, i.e. C (A4) 6= 0: Since dimZ (O4) = 1; we
deduce that dimC (A4) = 1; i.e. C (A4) is isomorphic to the �eld R with the
trivial l.s. product. It follows that A4 may be obtained as an extension of a
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complete l.s. 3-dimensional algebra A3 by the trivial l.s. algebra R �= C (A4) :
We therefore get a short exact sequence of l.s. algebras

0! R! A4 ! A3 ! 0; (15)

which in turn yields a short exact sequence of Lie algebras of the form

0! R! eG ! G3 ! 0; (16)

where G3 denotes the associated Lie algebra to A3 and eG is a (non speci�c) Lie
algebra which extends G3 by R.
Being solvable and unimodular, the three-dimensional Lie algebra G3 is nec-

essarily isomorphic to one of the following Lie algebras

1. The abelian Lie algebra R3;

2. The Heisenberg algebra H3, i.e. the two-step nilpotent Lie algebra having
a basis fe1; e2; e3g which satis�es [e1; e2] = e3,

3. The Lie algebra E (2) of the group of Euclidean motions of the plane,
i.e. the solvable Lie algebra having a basis fe1; e2; e3g which satis�es
[e1; e2] = e3 and [e1; e3] = �e2;

4. The Lie algebra E (1; 1) of the group of Lorentzian motions of the Minkowski
plane, , i.e. the solvable Lie algebra having a basis fe1; e2; e3g which sat-
is�es [e1; e2] = e3 and [e1; e3] = e2:

Proposition 12 The Lie algebra G3 associated to A3 is isomorphic to E (2) :
Proof. According to the discussion above, there are only four possibilities for
A3: As we will see below, a unimodular Lie algebra extension of a Lie algebra G
by R is necessarily central. It follows that if, in sequence (16), we take eG = O4
which is solvable but not nilpotent, then G3 could not be R3 or H3:
Now we wish to show that G3 could not be E (1; 1) too. For, assume to the

contrary that G3 is isomorphic to E (1; 1). This means that O4 may be obtained
as a central extension of E (1; 1) by R. As above, we consider a short exact
sequence of the form

0! R! eG ! E (1; 1)! 0;

where eG is just a Lie algebra extension of E (1; 1) by R. In what follows, we
shall make use of the notation of Section 2.
Let fe1; e2; e3g be a basis for E (1; 1) satisfying [e1; e2] = e3 and [e1; e3] = e2:

On R�E (1; 1), the extended Lie bracket de�ned by (3) is now given by
[(a; x) ; (b; y)] = (� (x) b� � (y) a+ ! (x; y) ; [x; y]) ;

given that R is abelian, where � : E (1; 1)! End (R) �= R and ! 2 Z2 (E (1; 1) ;R).
By setting eei = (0; ei), 1 � i � 3; and ee4 = (1; 0) ; we get

[ee1; ee2] = ee3 + ! (e1; e2) ee4;
[ee1; ee3] = ee2 + ! (e1; e3) ee4;
[ee2; ee3] = ! (e2; e3) ee4;
[eei; ee4] = aiee4; 1 � i � 3;
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where � (ei) = ai; 1 � i � 3:
Since eG is required to be unimodular (keep in mind that we are targeting

O4), then a1 = a2 = a3 = 0: This means that � is identically zero, i.e. eG is a
central extension of E (1; 1) by R: Actually, this is a general fact in the sense that
any unimodular Lie algebra extension eG of a Lie algebra G by R is necessarily
central. Putting ee01 = ee1; ee02 = ee2 + ! (e1; e3) ee4, ee03 = ee3 + ! (e1; e2) ee4; and
!23 = ! (e2; e3) ; we see that the new basis fee01; ee02; ee03; ee04g satis�es

[ee01; ee02] = ee03; [ee01; ee03] = ee02; [ee02; ee03] = !23ee04; (17)

and all the other brackets are zero. It is now clear that, independently of
the value of ! (e2; e3) ; these commutators do not yield O4: Hence, we have
established that G3 is not isomorphic to E (1; 1) :
As we have seen up till now, the cases of R3; H3; and E (1; 1) cannot occur.

Next, we wish to show that O4 may be obtained as a central extension of E (2)
by R. For, we consider in a similar fashion as above a short exact sequence of
the form

0! R! eG ! E (2)! 0;

where eG is just a Lie algebra extension of E (2) by R.
Let fe1; e2; e3g be a basis for E (2) satisfying [e1; e2] = e3 and [e1; e3] =

�e2: Just as we could conclude above that there is a new basisfee01; ee02; ee03g foreG which satis�es (17), we obtain in the situation of E (2) a basis fee01; ee02; ee03; ee04g
satisfying hee0 ; ee02i = ee03; [ee01; ee03] = �ee02; [ee02; ee03] = !23ee04;
where !23 = ! (e2; e3), and all the other brackets are zero.
Now it is clear that if !23 6= 0; then the Lie algebra spanned by ee01; ee02; ee03; ee04 is

isomorphic to O4: This means that O4 may be obtained as a central extension of
E (2) by R corresponding to a cocycle ! 2 Z2 (E (2) ;R) such that ! (e2; e3) 6= 0
with respect to a basis fe1; e2; e3g for E (2) satisfying [e1; e2] = e3 and [e1; e3] =
�e2:

Remark 13 It is remarkable that one can easily obtain E (1; 1) by a central
extension of the (unique) non-abelian two-dimensional Lie algebra G2 by R. In
contrast, E (2) cannot be obtained by central nor noncentral extensions of a two-
dimensional Lie algebra by R. It can however be obtained as an extension of R
by R2: For, we consider a short exact sequence of the form

0! R2 ! G ! R! 0: (18)

This is necessarily a semidirect extension, i.e. G is the semidirect product of
R and R2 with respect to �: To see this, recall from Section 2 that, since R2 is
abelian then, for a given � : R! End

�
R2
�
; the equivalent classes of extensions

of R by R2 are in one-to-one correspondence with the elements of the second
cohomology group H2

�

�
R;R2

�
: Now, since a skew-symmetric bilinear form from
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R � R into R2 is obviously identically zero, we deduce that Z2�
�
R;R2

�
= 0: In

other words, the extensions of R by R2 are precisely the semidirect products of
R by R2 with respect to representations of R in R2. Let � : R ! End

�
R2
�
be

such a representation, and set

� (1) =

�
� �
 �

�
:

On G = R2 o� R, the extended Lie bracket de�ned by (3) is now given by

[(x; a) ; (y; b)] = (� (a) y � � (b)x; 0) :

If e1; e2 is a basis for R2; then by putting eei = (ei; 0), 1 � i � 2; and ee3 = (0; 1) ;
we obtain

[ee1; ee2] = 0;

[ee3; ee1] = �ee1 + ee2;
[ee3; ee2] = �ee1 + �ee2;

from which we deduce that G is unimodular if and only if tr (adee3) = tr (� (1)) =
� + � = 0: If det (� (1)) = �� � � = 0; it is easy to see that G �= H3:
If det (� (1)) = �� � � 6= 0; we can easily conclude that G �= E (2) when
det (� (1)) > 0; and G �= E (1; 1) when det (� (1)) < 0: We end this remark by
noticing that if in the short sequence (18) we replace R2 with the non-abelian
two-dimensional Lie algebra G2; then the resulting Lie algebra G is not unimod-
ular.

We return to the short sequences (15) and (16). By Proposition 12, the
Lie algebra associated to A3 is isomorphic to E (2) : We therefore conclude that
all the complete l.s. structures on the oscillator algebra O4 may be obtained
through extensions of the complete l.s. structures on E (2) by the trivial l.s.
structure on the �eld R. Hence, we must �rst determine all the complete l.s.
structures on E (2) : For, we will make use of the following lemma which we state
without proof (compare [7], Theorem 4.1).

Lemma 14 Up to l.s. isomorphism, there is a unique complete l.s. structure
on E (2) ; which is given as follows: there is a basis fe1; e2; e3g of E (2) relative
to which the nontrivial l.s. products are: e1 � e2 = e3; e1 � e3 = �e2.

Before we continue, we �x the following notation. From now on, A3 will
denote the vector space E (2) endowed with the complete l.s. product given in
Lemma 14. On the one hand, observe that we have the central extension of Lie
algebras given by (16) for which the extended Lie bracket on E (2)�R is given
by

[(x; a) ; (y; b)] = ([x; y] ; ! (x; y)) ; (19)

with ! 2 Z2 (E (2) ;R) : On the other hand, we have the extension of l.s. algebras
given by (15) for which the extended l.s. product on A3 � R is given by

(x; a) � (y; b) =
�
x � y; a � b+ b�x + a�y + g (x; y)

�
; (20)
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with �; � : A3 ! End (R) �= R and g 2 Z2�;� (A3;R) : Note here that we have
identi�ed the value of � (resp. �) at an element x 2 A3 with the corresponding
real number �x (resp. �x) via the isomorphism End (R) �= R.
As we have noted in Section 3, R �= C (A4) is an A3-bimodule, or equiva-

lently, the conditions in Theorem 3 simplify to the following conditions:

(i) [�x; �y] = �[x;y]; that is, � is a representation of Lie algebras,

(ii)
�
�x; �y

�
+ �y � �x � �x�y = 0:

By using (19) and (20), we deduce from

[(x; a) ; (y; b)] = (x; a) � (y; b)� (y; b) � (x; a) ;

that
! (x; y) = g (x; y)� g (y; x) and � = �: (21)

Furthermore, the fact that (20) de�nes a l.s. product yields

�x�y = �x � �y:

Applying the last identity to ei � ei; 1 � i � 3; we deduce that � = 0: In other
words, in the sense of Section 3, the extension A4 is central.

By Proposition 5, the classi�cation of the exact central extensions of A3 by
R is, up to l.s. isomorphism, the orbit space of H2

ex (A3;R) under the natural
action of G = Aut (R)�Aut (A3) : Accordingly, we must compute H2

ex (A3;R) :
Since R is a trivial A3-bimodule, we see �rst from formulae (8) and (8) in Section
3 that the coboundary operator � simpli�es as follows:

�1h (x; y) = �h (x � y) ;
�2g (x; y) = g (x; y � z)� g (y; x � z)� g ([x; y] ; z) ;

where h 2 L1 (A3;R) and g 2 L2 (A3;R) : By Lemma 14, there is a basis e1; e2; e3
of E (2) for which the only nonzero products in A3 are e1 � e2 = e3 and e1 � e3 =
�e2: Using the �rst formula above for �1, we get

�1h =

0@ 0 h12 h13
0 0 0
0 0 0

1A ;

where h12 = �h (e3) and h13 = h (e2) : Similarly, using the second formula above
for �2, we verify easily that if g is a cocycle (i.e. �2g = 0), then

g =

0@ g11 g12 g13
0 0 g23
0 �g23 0

1A ;

where gij = g (ei; ej) : We deduce that, in the basis above, the class [g] 2
H2 (A3;R) of a cocycle g may be represented by a matrix of the simpli�ed form
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g =

0@ � 0 0
0 0 �
0 �� 0

1A :

In fact, we have � 6= 0: Indeed, if we return to the proof of Proposition 12,
we see that, in the same basis above, the cocycle ! has the form

! =

0@ 0 !12 !13
�!12 0 !23
0 �!23 0

1A ; !23 6= 0;

and we therefore deduce, using the �rst identity in (21), that 2� = !23 6= 0:

We can now determine the extended l.s. structure on A4: By setting eei =
(0; ei), 1 � i � 3; and ee4 = (1; 0) ; and using formula (20), we �ndee1 � ee1 = �ee4; ee1 � ee2 = ee3; ee1 � ee3 = �ee2;ee2 � ee3 = �ee4; ee3 � ee2 = ��ee4;
with � 6= 0; and all the other products are zero. Now, it is clear that by setting
t = �

2� , ei = eei for 1 � i � 3; and e4 = 2�ee4; we obtain a one-parameter family
(with parameter t) of l.s. structures on O (4) : We have thus established the
following result.

Theorem 15 The complete l.s. structures on O (4) are classi�ed as follows:
There is a basis fe1; e2; e3; e4g of O (4) relative to which, the nontrivial l.s.
products are:

e1 � e1 = te4; e1 � e2 = e3; e1 � e3 = �e2;
e2 � e3 = e4; e3 � e2 = e4;

where t 2 R: We denote O (4) endowed with one of these structures by A4;t.

Our goal is classify the complete l.s. structures on O (4), up to l.s. isomor-
phisms. For this purpose, we recall �rst from Subsection 3.1 that the extension
given by the short sequence (15) is exact, i.e. i (R) = C (A4), if and only if
I[g] = 0; where

I[g] = fx 2 A3 : x � y = y � x = 0 and g (x; y) = g (y; x) = 0; for all y 2 A3g :

Claim 16 The extension 0! R! A4 ! A3 ! 0 is exact.

Proof. To show that I[g] = 0, we take an arbitrary x 2 I[g]: By putting
x = ae1 + be2 + ce3 2 I[g] and computing all the products x � ei = ei � x = 0; we
deduce that x = 0:

Let now A4;t and A4;t0 be two l.s. algebras as in Theorem 15. We know
from Subsection 3.1 that A4;t is isomorphic to A4;t0 if and only if the exists
(�; �) 2 Aut (R)�Aut (A3) such that for all x; y 2 A3; we have

g0 (x; y) = � (g (� (x) ; � (y))) : (22)
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We have Aut (R) = R�; and it is easy too to determine Aut (A3) : Indeed,
recall that the structure of A3 is given by e1 � e2 = e3; e1 � e3 = �e2; and let
� 2 Aut (A3) be given, in the basis fe1; e2; e3g ; by

� =

0@ a1 b1 c1
a2 b2 c2
a3 b3 c3

1A :

From the identity � (e3) = � (e1 � e2) = � (e1) � � (e2) ; we deduce that c1 = 0;
c2 = �a1b3; and c3 = a1b2: Similarly, we deduce from the identity �� (e2) =
� (e1 � e3) = � (e1)�� (e3) that b1 = 0; b2 = a1c3; and c3 = �a1c2: Since det � 6= 0;
we get a1 = �1; which in turn implies that b2 = �c3 and b3 = �c2: This means
that we get �nally

� =

0@ " 0 0
a2 b2 c2
a3 �"c2 "b2

1A ;

with " = �1 and b22 + c22 6= 0:
We shall now apply formula (22). For this we recall that, in the basis above,

the class g corresponding to A4;t has the form

g =

0@ t 0 0
0 0 1
0 �1 0

1A :

From g0 (e1; e1) = �g (� (e1) ; � (e1)), we get

t0 = �t:

From g0 (e1; e2) = �g (� (e1) ; � (e2)) we get

"a2c2 + a3b2 = 0:

Similarly, from g0 (e1; e3) = �g (� (e1) ; � (e3)) we get

"a2b2 � a3c2 = 0:

The two last identities yield a2 = a3 = 0; and from g0 (e2; e3) = �g (� (e2) ; � (e3))
we get

� =
"

b22 + c
2
2

:

Hence, A4;t and A4;t0 are isomorphic if and only if t0 = �t for some real
number � 6= 0: Summarizing, we have established the following theorem which
is our main result.

Theorem 17 There exist, up to l.s. isomorphism, exactly two complete l.s.
structures on O (4) : These are described below (by their nontrivial products) in
a basis fe1; e2; e3; e4g of O (4) :
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(i) A4;0 : e1 � e2 = e3; e1 � e3 = �e2; e2 � e3 = e4; e3 � e2 = e4;

(ii) A4;1 : e1 � e1 = e4; e1 � e2 = e3; e1 � e3 = �e2; e2 � e3 = e4; e3 � e2 = e4:

We note that the mapping X 7! (LX ; X) is a Lie algebra representation of
O4 in aff

�
R4
�
= End

�
R4
�
� R4: By using the (Lie group) exponential maps,

Theorem 17 can now be stated, in terms of simply transitive actions of subgroups
of the a¢ ne group Aff

�
R4
�
= GL

�
R4
�
nR4, as follows.

Theorem 18 Suppose that the oscillator group O4 acts simply transitively by
a¢ ne transformations on R4: Then, as a subgroup of Aff

�
R4
�
; O4 is conjugate

to the following subgroup

G4;" =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0BB@
1 + " (ex � 1) 0 0 0

0 cosx � sinx 0
0 sinx cosx 0
0 y sinx+ z cosx y cosx� z sinx 0

1CCA

�

2664
x+ " (ex � x� 1)
y cosx� z sinx
y sinx+ z cosx

w + 2yz cosx+
�
y2 � z2

�
sinx

3775 ; x; y; z; w 2 R

9>>>>>>>>>>>>=>>>>>>>>>>>>;
;

with " = 0 or 1 (i.e. there are only two distinct conjugacy classes according to
whether " = 0 or 1).
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