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CHOW RING OF GENERIC FLAG VARIETIES

NIKITA A. KARPENKO

Abstract. Let G be a split semisimple algebraic group over a field k and let X be the
flag variety (i.e., the variety of Borel subgroups) of G twisted by a generic G-torsor. We
start a systematic study of the conjecture, raised in [8] in form of a question, that the
canonical epimorphism of the Chow ring of X onto the associated graded ring of the
topological filtration on the Grothendieck ring of X is an isomorphism. Since the topo-
logical filtration in this case is known to coincide with the computable gamma filtration,
this conjecture indicates a way to compute the Chow ring. We reduce its proof to the
case of k = Q. For simply-connected or adjoint G, we reduce the proof to the case of
simple G. Finally, we provide a list of types of simple groups for which the conjecture
holds. Besides of some classical types considered previously (namely, A, C, and the spe-
cial orthogonal groups of types B and D), the list contains the exceptional types G2, F4,
and simply-connected E6.
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1. The conjecture

Let k be a field and let G be a split semisimple algebraic group over k. A (standard)
generic G-torsor E is the generic fiber of a (standard) versal G-torsor U → S = U/G,
whose total space U is a non-empty open G-equivariant subvariety in a finite-dimensional
linear representation V of G. (For short, we omit the word “standard” in the sequel.)

Date: 21 December 2016.
Key words and phrases. Algebraic groups; projective homogeneous varieties; Chow groups. Mathe-

matical Subject Classification (2010): 20G15; 14C25.
This work has been supported by a Discovery Grant from the National Science and Engineering Board

of Canada and accomplished in the perfect environment of the Max-Planck Institute in Bonn.
1



2 NIKITA A. KARPENKO

Therefore, the base S of the versal torsor is an absolutely integral variety over k whose
function field F := k(S) is the base of the generic torsor E; in particular, E is a principle
homogeneous G-space over the field F . Versal and therefore generic G-torsors exist for
any k and any G, see, e.g., [10, Example 2.6].

The generic flag varietyX ofG, given by E, is defined as the flag variety (i.e., the variety
of Borel subgroups) of GF , twisted by E. A choice of a Borel subgroup B ⊂ GF identifies
X with the quotient variety E/B. We write CHX for the Chow ring of X (graded by
codimension of cycles), K(X) for the Grothendieck group of X, and GK(X) for the
graded ring associated with the topological filtration (i.e., the filtration by codimension
of support) on K(X). We consider the epimorphism of graded rings CHX →→ GK(X),
associating to the class of a closed subvariety Z ⊂ X of codimension j the class in the
j-th graded piece of GK(X) of the structure bundle of Z.

Conjecture 1.1. For any k, G, and E as above, the epimorphism CHX →→ GK(X) is
an isomorphism.

The ring K(X) is known due to [12]. Moreover, the topological filtration on K(X)
coincides with the gamma filtration (see [7, Example 2.4]), which is computable. Therefore
Conjecture 1.1 is a way to compute CHX. Let us mention a recent [18] where the problem
of computation of CHX is also investigated.

As shown in Section 2, Conjecture 1.1 does not depend on E. In Section 3, we show
that Conjecture 1.1 only needs to be proven for k = Q. In Section 4, we show that
Conjecture 1.1 holds for G = G1 × G2 provided it holds for G1 and G2; in particular,
for simply-connected or adjoint G, we reduce the proof of Conjecture 1.1 to the case of
simple G.

In the final Section 5, we provide a list of simple G for which Conjecture 1.1 holds.
Besides of some classical types considered previously (namely, A, C, and the special
orthogonal groups of types B and D), the list contains the exceptional types G2, F4, and
simply-connected E6. As by now, all remaining types (besides the spinor group Spinn

with n ≤ 10) seem to be open.
Summarizing, we prove:

Theorem 1.2. Conjecture 1.1 holds for G (with arbitrary k and E) provided that G is
a product of simple groups none of which is (isomorphic to): a spinor group Spinn with
n ≥ 11, a semispinor group Spin±

4n with n ≥ 2, an adjoint group of type Dn with n ≥ 4,
an adjoint group of type E6, any of type E7 or of type E8.

2. Variation of E

For arbitrarily fixed k and G, the ring CHX does not depend on the choice of a generic
G-torsor E:

Lemma 2.1. For k and G as in Conjecture 1.1 and for i = 1, 2, let Ei be a generic
G-torsor, and let Xi the the generic flag variety of G given by Ei. The rings CHX1 and
CHX2 are canonically isomorphic.

Proof. The following proof is due to A. S. Merkurjev. For i = 1, 2, let Ei be the generic
fiber of a versal G-torsor Ui → Si, where Ui is a non-empty open G-equivariant subvariety
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of a linear representation Vi of G. In particular, the base field of Ei is the function field
Fi := k(Si). Then U := U1 × U2 is a non-empty open G-equivariant subvariety of the
G-representation V := V1 ⊕ V2 and we have a versal G-torsor U → S := S1 × S2. There
is a commutative diagram:

U1 ←−−− U −−−→ U2y y y
S1 ←−−− S −−−→ S2

Passing to the generic fibers of the vertical morphisms, we get a commutative diagram

E1 ←−−− E −−−→ E2y y y
SpecF1 ←−−− SpecF −−−→ SpecF2

where E is the generic fiber of U → S and F is the function field of the k-variety S.
Since the vertical morphisms are G-torsors, both the left and the right squares of the
diagram are cartesian, giving identifications E = (Ei)F and, therefore, X = (Xi)F , where
X is the generic flag variety corresponding to E. By no-name lemma [15, Lemma 2.1],
the field extensions F/Fi are purely transcendental. It follows that the change of field
homomorphisms CHXi → CHX are isomorphisms. �

3. Variation of k

The following lemma reduces Conjecture 1.1 to prime fields:

Lemma 3.1. If Conjecture 1.1 holds for some field k and some k-group G, then it holds
for any field extension k′/k and the k′-group G′ := Gk′.

Proof. Let U → S be a versal G-torsor and let E be the generic G-torsor given by its
generic fiber. Then Uk′ =: U ′ → S ′ := Sk′ is a versal G′-torsor whose generic fiber E ′ is
a generic G′-torsor. The base of E ′ is the function field F ′ := k′(S). The corresponding
to E ′ flag variety X ′ is then the base change F ′/F of the F -variety X. We are using the
characteristic maps described in Appendix. In the commutative square

S(T̂ ′) −−−→ CHX ′x x
S(T̂ ) −−−→ CHX

with T ′ := Tk′ and surjective horizontal maps, the left vertical map is an isomorphism. It
follows that the change of field homomorphism CHX → CHX ′ is surjective.
Similarly, from the commutative square

Z[T̂ ′] −−−→ K(X ′)x x
Z[T̂ ] −−−→ K(X)
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with surjective horizontal maps and an isomorphism on the left, we deduce that the
change of field homomorphism K(X) → K(X ′) is surjective. However, by [12], it is
as well injective (for an arbitrary projective homogeneous variety X and an arbitrary
change of field homomorphism out of K(X)). It follows that the right map of the square
is an isomorphism. Since the topological filtrations on both K(X) and K(X ′) coincide
with gamma filtrations ([7, Example 2.4]), this is an isomorphism of rings with filtrations.
Consequently, the change of field homomorphism of the associated graded ringsGK(X)→
GK(X ′) is also an isomorphism.

We have shown that the left map in the commutative square

CHX ′ −−−→ GK(X ′)x x
CHX −−−→ GK(X)

is surjective whereas the right one is an isomorphism. Therefore the top epimorphism has
to be an isomorphism provided that the bottom epimorphism is so. �

And the next proposition reduces Conjecture 1.1 to the field Q. We recall that any
split semisimple group over any field k is the base change Z → k of certain Chevalley
group over the integers.

Proposition 3.2. Let G be a Chevalley group over Z. If Conjecture 1.1 holds for the
field Q and the Q-group GQ, then it holds for any field k and the k-group Gk.

Proof. We assume that Conjecture 1.1 holds for Q and GQ. By Lemma 3.1, it then holds
for any field k of characteristic 0 and the group Gk. Therefore we may assume that char k
is a prime p.

Conjecture 1.1 holds, in particular, for the p-adic field Qp and the group GQp . Pro-
ceeding like in the previous proof, using specialization homomorphisms of Chow and
Grothendieck rings, given by the discrete valuation ring Zp (as in [2, Example 20.3.1]), in
place of change of field homomorphisms, we show that it also holds for the prime subfield
of k (and the corresponding base change of G). Finally, again by Lemma 3.1, it holds for
k itself (and Gk). �

4. Variation of G

Proposition 4.1. Let G := G1 × G2 for some split semisimple algebraic groups G1 and
G2 over the field k = Q. Conjecture 1.1 holds for G provided it does for both G1 and G2.

The proof is given in the end if this section. We start with some preparations.
For i = 1, 2, let Ei/Fi be a generic Gi-torsor, obtained as the generic fiber of a versal

Gi-torsor Ui → Si. The product U1 ×k U2 := U → S := S1 ×k S2 is a versal G-torsor and
its generic fiber E is a generic G-torsor whose base is the field F := k(S). Note that (Ei)F
is a generic (Gi)F3−i

-torsor with the same base F . And E coincides with the product of
the torsors (E1)F and (E2)F over F .

We writeXi for the generic flag variety variety of (Gi)F3−i
, given by (Ei)F . And we write

X for the generic flag variety variety of G, given by E. Then X and Xi are F -varieties
satisfying X = X1 ×X2.
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Lemma 4.2. The exterior product homomorphism CHX1⊗CHX2 → CHX is surjective.

Proof. Let Ti be a maximal split torus in Gi. Then T := T1×k T2 is a maximal split torus
in G. The composition

S(T̂ ) = S(T̂1)⊗ S(T̂2)→→ CHX1 ⊗ CHX2 → CHX,

where the middle epimorphism is tensor product of the usual epimorphisms

S(T̂i)→→ CHXi,

is the usual epimorphism S(T̂ )→→ CHX. �

Lemma 4.3. The exterior product homomorphism K(X1) ⊗K(X2) → K(X) is an iso-
morphism.

Proof. Replacing in the proof of the previous lemma the Chow ring by the Grothendieck
ring and the symmetric algebra by the group algebra, we get a proof of surjectivity for the
homomorphism in question. Injectivity (for arbitrary projective homogeneous varieties
X1, X2 and their product X) follows by [11, Theorem 16]. �

Corollary 4.4. The exterior product homomorphism GK(X1) ⊗ GK(X2) → GK(X) is
an isomorphism. �

Proof of Proposition 4.1. Tensor product of the isomorphisms CHXi → GK(Xi) gives
rise to an isomorphism

CHX1 ⊗ CHX2 → GK(X1)⊗GK(X2).

Composing it with the isomorphism of Corollary 4.4, we get an isomophism

CHX1 ⊗ CHX2 → GK(X),

which also decomposes as

CHX1 ⊗ CHX2 → CHX → GK(X),

where the first map is surjective by Lemma 4.2. It follows that the second (as well as the
first) map of the composition is an isomorphism. �

Remark 4.5. As a byproduct of the proof of Proposition 4.1, we see that the exte-
rior product homomorphism CHX1 ⊗ CHX2 → CHX of Lemma 4.2 is an isomorphism
provided that Conjecture 1.1 holds for G1 and G2.

5. Simple groups

5a. Types A and C. For any n ≥ 1, Conjecture 1.1 has been proved for all simple (split)
groups of type An and of type Cn in [8, Theorem 1.1]. Note that unlike the positive cases
of Conjecture 1.1 discussed in the next subsection, the Chow group of the generic flag
variety here usually contains a non-trivial, even a large torsion subgroup (see [8, Examples
3.17 – 3.21]).
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5b. Special orthogonal groups. Let G be the adjoint split simple group of type Bn for
some n ≥ 1. (Since B1 = C1 and B2 = C2, we may assume that n ≥ 3.) This means that
G is isomorphic to the split special orthogonal group O+

2n+1. The corresponding generic
flag variety X is then the variety of complete flags of totally isotropic subspaces of the
generic 2n+1-dimensional non-degenerate quadratic form q (given by a generic G-torsor).
The variety X projects onto the highest orthogonal Grassmannian Y of q – the variety
of n-dimensional totally isotropic subspaces in q. This way X is identified with the flag
variety of the tautological vector bundle on Y . In particular, the Chow motive of X is a
direct sum of several shifted copies of the motive of Y .

It has been shown in [14] (see also [16]) that the additive group of CHY is torsion-free.
This implies the same for CHX. Since in general every element of the kernel of the
epimorphism CHX → GK(X) is of finite order, it follows that the kernel is trivial for
our X meaning that Conjecture 1.1 holds for G.

The remaining split simple group of type Bn – the simply-connected one – is the spinor
group Spin2n+1 for which Conjecture 1.1 is wide open.1 Even the question if the Chow
group of zero cycles CH0 X is torsion-free (equivalent to the same question on CH0 Y ) is
open. If Conjecture 1.1 holds, then the homomorphism CH0 X → K(X) is injective so
that CH0X is torsion-free by the reason that the K(X) is so.

Now let G be the split special orthogonal group O+
2n for some n ≥ 3. Therefore G

is a split simple group of type Dn. Since D3 = A3, we may assume that n ≥ 4. We
explain below that Conjecture 1.1 holds for this G. However, it is open for every of
the remaining groups of type Dn, namely: the spinor group Spin2n (simply-connected) –
besides of n = 4, 5;1 the projective orthogonal group PGO+

2n (adjoint); and – in the case
of even n – the semispinor group Spin±

2n.
Generic flag variety X of G = O+

2n is the variety of flags of totally isotropic subspaces
of dimensions 1, 2, . . . , n−1 of the generic 2n-dimensional non-degenerate quadratic form
q (of trivial discriminant) given by a generic G-torsor. The variety X projects onto a
component Y of the highest orthogonal Grassmannian of q, i.e., a component of the
variety of n-dimensional totally isotropic subspaces in q. (Note that Y is isomorphic to
the highest orthogonal Grassmannian of a 2n− 1-dimensional subform q′ ⊂ q, providing
a link with the case of adjoint Bn−1, considered above.) This way X is identified with the
flag variety of the tautological vector bundle on Y . In particular, the Chow motive of X
is a direct sum of several shifted copies of the motive of Y .

It has been shown in [14] as well (see also [16]) that CHY is torsion-free. This implies
the same for CHX. So, Conjecture 1.1 holds for G by the same reason as in the case of
adjoint Bn.

5g. Type G2. Let G be a split simple group of type G2 over a field k. Conjecture 1.1
holds for such G because of the following stronger result:

Proposition 5.1. For G as above and any G-torsor E over k, the epimorphism CHX →
GK(X) is an isomorphism, where X is the flag variety of G, twisted by E.

1The case of G = Spinn for n = 7, 8, 9, 10 is known and easy: because of relationship between G-torsors
over k and 3-Pfister forms, one has the statement of Proposition 5.1 for such G as well.
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Proof. By [8, Lemma 4.2] and since any parabolic subgroup of G is special, we may replace
X by any variety of parabolic subgroups in G, twisted by E. One of these varieties is
isomorphic to the projective quadric Y given by a 7-dimensional non-degenerate subform
of a 3-fold Pfister form π (which is anisotropic if and only if E is not split). We may
assume that π is anisotropic (otherwise the statement we want is trivial). The Chow
motive (and therefore also the GK-motive) of Y decomposes into a direct sum, where
each summand is a shift of the Rost motive R associated with π. Thus we only need to
check that CHR → GK(R) is an isomorphism. The motive R is a direct summand of
the motive of a 3-dimensional smooth projective quadric. We are done because for any
projective dimensional quadric Q of dimension ≤ 3 the epimorphism CHQ → GK(Q)
has trivial kernel. �
5f. F4 and simply-connected E6. We have a statement similar to Proposition 5.1, but
we need the characteristic-0 assumption here (mainly, to have a computation of Chow
groups of Rost motives related to prime 3 ). But by Proposition 3.2 this is fine to ensure
that Conjecture 1.1 holds for F4 and simply-connected E6 in general.

Proposition 5.2. Let k be a field of characteristic 0. Let G be a split simple group of
type F4 or a split simply-connected group of type E6 over k. Let E be a G-torsor over k,
and let X be the flag variety of G, twisted by E. Then the epimorphism CHX → GK(X)
is an isomorphism.

Proof. For every prime p, let kp be a maximal (possibly infinite) algebraic field extension
of k of degree prime to p. It suffices to check the statement in the case k = kp. We may
assume that E is not split (over k = kp) because otherwise the statement we want is
trivial. The assumption implies that p = 2, 3.
The p-portion of the Rost invariant for G produces a symbol in the Galois cohomology

group H3(k, µ⊗2
p ), see [4] for references. Since the Rost invariant has trivial kernel (see

[3]), the symbol is non-zero and the upper motive of the variety X is a Rost motive R
corresponding to the symbol (in the sense of [9]). It follows by [13] (as well as by [6])
that the Chow motive of the variety X decomposes in a finite direct sum of shifts of R.
The Chow groups of R, computed in [9] (in characteristic 0), are as follows: CHj R is Z
for j = 0; pZ for j = (p + 1)k with k = 1, . . . , p − 1; Z/pZ for j = (p + 1)k − 2 with
k = 1, . . . , p− 1; and 0 for the remaining values of j.
Let n be the number of summands in the decomposition of the motive of X into a direct

sum of shifted copies of R. The change of field homomorphism K(X) → K(X̄), where
X̄ is X over an algebraic closure of k, is an isomorphism. The order of the cokernel of
GK(X)→ GK(X̄) is (p− 1)n. By the formula of [5, Proposition 2], the order of torsion
in GK(X) is also (p − 1)n. Since the order of torsion in CHX is (p − 1)n as well, the
statement we want follows. �

Appendix. Characteristic maps

Let G be a split semisimple algebraic group over a field k and let X be a generic flag
variety of G. Let T ⊂ G be a maximal split torus and let B ⊃ T be a Borel subgroup of
G. Let T̂ be the group of characters of T . We consider the group ring Z[T̂ ] and the ring

homomorphism Z[T̂ ]→ K(X), mapping each character of T to the class in K(X) of the
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corresponding linear bundle on X. It is surjective: the ring Z[T̂ ] can be interpreted as the
B-equivariant Grothendieck ring KB(Spec k), and the homomorpshism decomposes as

Z[T̂ ] = KB(Spec k) = KB(V )→→ KB(U)→→ KB(E) = K(E/B) = K(X),

where U is the open subvariety of the G-representation V for which E is the generic
fiber of the G-torsor U → U/G. The onto maps here are surjective by the localization
property of equivariant K-groups ([17, Theorem 2.7]), the second map is an isomorphism
by homotopy invariance ([17, Theorem 4.1]).

Similarly, we consider the symmetric algebra S(T̂ ) and the ring homomorphism S(T̂ )→
CHX, mapping each character of T to the Euler class in CH1 X of the corresponding linear
bundle on X. It is surjective (by the “same” reason as the above homomorphism Z[T̂ ]→
K(X)): the ring S(T̂ ) can be interpreted as the B-equivariant Chow ring CHB Spec k,
and the homomorpshism decomposes as

S(T̂ ) = CHB Spec k = CHB V →→ CHB U →→ CHB E = CHE/B = CHX.

Here we use localization and homotopy invariance properties of equivariant Chow groups
([1]).
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