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Abstract The trace set Tr(r) of a Fuchsian group r is the set of thc non­
negative traces of the elements of r, without counting multiplicities. I propose
the following new characterization of arithmetic Fuchsian groups. A cofinite
Fuchsian group is arithmetic iff its trace set has linear growth. An arithmetic
group is derived from a quaternion algebra iff Gap(r) := inf{la - bl : a, b E
Tr(r), a =j:. b} > O. I prove this characterization in the non-compact case and
conjectt;re it in the compact case. Further, I show that the principal congruence
subgroups f( IV) of PSL(2, Z) have the property that every trace in its trace
set listed in ascending order is a global maximum compared with the trace sets
(listed in ascending order) of all other Fuchsian groups in the same moduli space
as r(N). This gene.ralizes the main result of [10] which shows that the systole,
the shortest positive trace bigger than 2, is aglobai rnaximum for r( .N) in its
moduli space.

1 Introduction

Arithmetic groups in the general context of Lie groups and algebraic groups
have been defined in the sixties, see BoreljHarish-Chandra [1]. In the case of
arithmetic Fuchsian groups (discrete subgroups of PS L(2, R)) Takeuchi [11] found
a characterization in ternlS of the trace set which, for a Fuchsian group r, is
defined as

Tr(f) = {ltr(,)1 : l' Er}.

Takeuchi's characterization (see section 3 below) is a number theoretic one, hut
since it is related to the trace set, it contains a geornetric meaning, namely, if
NI = Hjr is the Riemann surface corresponding to a Fuchsian group r (H is
the hyperbolic plane), then Tr(r) can be defined as the set of the lengths of the
closed geodesics of Al, more precisely

T7·(r) = T'r(l\I) := {2cosh(L(a)j2): CL a closed geodesic of l\I} U {2}
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where L(a) stands for the length of a. This geometrie meaning can be given more
explicitely. I shall prove.

Theorem Let r be a non-elementary cofinite Fuchsian group which contains at
least one parabolic element. Then
(i) r is an arithmetic group if and only if there exists a finite canstant C such
that

# {a E Tr ( f) : a ::; n} ::; 1 + Cn 1 Vn 2:: O.

(ii) f is an arithmetic group derived from a quaternion algebra if anel only if

Gap(f) := inf{ la - bj : a, b E Tr(f), a =I b} > O.

Corollary Let f anel f' be two cofinite1 non-compact Fuchsian groups. Let the
trace sets Tr(f) = {al< a2 < a3 < ...} and Tr(f') = {a~ < a; < a; < ...}
both be listed in asceneling order. Assun1e that r is arithmetic and f' is not
arithmetic. Then there exists an integer !'l = IV(r, f')l depending on the two
grau PS1 such that

I conjecture that these results also hold in the compact case that is if f contains
no parabolic element.

The above theorem is proved in section 3 where some consequences of this
result are also given. Before 1 in section 2, [ prove some other rather surprising
facts about the trace set which are in contrast to the properties of the camplete
length spectrum which is the set of the lengths of the closed geodesics of a hy­
perbolie surface, counted with nnIltiplicities. Namely, I show the existence of
surfaces with a so..ealled nlaximallength speetrum. Let AI anel 1\1' be surfaees of
the saille moduli spaee. Let T1'( J\il) == {al, a2, ...} and Tr( lvI') == {a'll a;, ... } be
listed in ascending order. Then 1\1 is a S1t1jace with 'maxi'mal length speetrum if
a~ ::; ai, 'Vi, and fOf every surfaee J\'l' in the IllOduli space of 1\1. The surfaees cor­
responding to the prinei pal congruence subgroups f( 1V) of PS'L(2, Z) are surfaces
with Illaximal length speetrum. If one considers the complete length spectrum,
then such surfaces eaunot exist.

In the same seetion (anel with the same methods) it is also shown that there
exist families of infinitely many different hyperbolie surfaces with mutually dif­
ferent topology which all have the same trace set, while on the other hand it
is weil known that the conlplete length speetrum determines the topology of a
surface. ivloreover, there exist only finitely many non-isometrie surfaces with the
same complete length spectrum.

Apriori, the existence of surfaces with maxinlallength spectrum cannot be
expeeted. However, in viev.., of the above mentioned corollary, their existenee is
less surprising.
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In the proofs, the lnain builcling blocks of hyperbolic Riemann surfaces, name­
ly the pairs of pants 01' Y-pieces, will play an important role. n10st of the results
can" be derivecl from the analysis of the situation of particttlar Y-pieces.

2 Some concrete length spectra and surfaces
with maximal length spectrum

Definition (i) A sll;r/ace is aRiemann sUfface of constant negative curvature
and of finite area. Hs signature (9,11,) indicates the genus 9 anel the lHl'mber 0/
boundary con/'ponents n which, if not otherwise stated, are simple closed geodesics
or cusps. The moduli space of a surface 1\1 is denoted by T( l\![). If 1\1 has
boundary geodesics, then, by convention, T( lvI) contains only the surfaces lvI'
of the same signature as lVI when the boundary geodesics of lV[' have the same
lengths as the bounclary geodesics of lVI.
(ii) Let !v[ be a surface. Let a be a closed geodesie of 1\1. Then, by abuse of
notation, the length of a is also denoted by a. Define

tr(a) = 2 cosh (a/2),

the trace of a. Define

Tr( Iv!) = {tr( a) : a a closeel geoelesic of IvI} U {2} 1

the trace set 0/ 1\1.
(iii) A Fuchsian group r is calleel cofinite if the Riemann surface Iv! = H/r has
finite afea where H denotes the hyperbolic plane. The trace set 01 r is the set

Tl'(r) = {Itr(a)j : a Er}.

(iv) The trace set of a sUfface 1\1 Of a Fuchsian group r IS always listed l1l

ascending order. Let 1\1{ anel 1\1' be two surfaces and let

Tr(1\1) = {at,a2,(l3",,},

T'l'( 1\1[') = {bi, b2l b3 , .•. }.

Then
Tr(AtJ) :::; Tr(l\l') means ai :::; bi , Vi.

If al = bl = 2, then

Tr( i\tJ) < Tl'( 1\1') means (Li < bi , V'i > 1.

(v) The systole of a surface 1\1{ is its shortest closed geodesie which is not a
boundary geodesic.
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(vi) A -maximal swjace 1\1 is a surface with the property that the length of its
systole is alocal rnaximum with respect to an open neighborhood of 1\1 in T(kI).

-.A. global "maxi·mal S'u'rface 1H is a surface with the property that the length of
its systole is aglobai tnaximum in T(lV/).
(vii) A surface 1\'/ has 'TTl,aximallength speetnl'Tn if for all surfaces 1\1' in T( A1) the
inequality

T.,,( 1\l') ::; Tr( J\tI)

holels.

Remark (i) I underline the fact that some aspects of the above definition do
not correspond to some usual definitions. The signature of a surface is not the
same as the usual definition of the signature of its fundamental group. Further,
in the definition of the trace set: the multiplicities of the traces (or of the lengths
of dosed geodesics) play no role. This is in contrast to the usual definition of
the length spectrum of a surface \vhich is called cornplete length speet1'um in the
sequel.

(ii) If a surface 1\1 has maximal length spectnun, then it is necessarely a
global maximal surface. But while every moduli space contains a global maximal
surface (see [9]), the existence of a surface with maximal length spectrum is a
priori not at all deal' and it is even rather surprising that such surfaces exist.

(iii) If, in contrast, we consider the complete le.ngth spectrum, then the ex­
istence of a surface 1V! with a "lnaximal complete length spectrum" is exduded.
This can be seen for example like follows. If 1\1 has "maximal complete length
spectrum": then it must be a global maxim~l surface. Let 1\1' be in a small neigh­
borhood of 1\1 in T( lvI) such that the closed geodesics which were systoles in 1\1
all remain shorter than all other closed geodesics. It then follows by a result of
[9] that at least one of the closed geodesics which is a systole in 1\1 is longer in
1\1' than in lvI which contradicts the assumption that lVI has "rnaximal complete
length spectrurn".

Definition (i) A Y-piece is a surface of signature (0,3). For non-negative reals a,
b, c the symbol Y( Cl, b, c) stands for a V-piece with boundary geodesics of lengths
Cl, b, c.
(ii) If a '{-piece J\tl has two cusps, then instead of ).\;[ = Y(O, 0, c), I also write Y~.

Lemma 1 (0 Tr( Y( a, b, 0)) contains the set

{n(tr(a) + t1'(b)) - tr(b) : n = 1,2,3, ... }.

(ii) Fo-r all p08itive integer.':' 11., Tl'(Y(a, b, 0)) contain,5 Tr(Y;~(zn, b, 0)) with

tr(Zn) = n(t-r(a) + t1'(b)) - t1'(b).

Proof. (i) \Ve replace Y(a, b, 0) by V(a, b, 2c) and we work in a covering surface
of Y(a, b, 2t:). For every positive integer Tl, Y(a, b, 2t:) has a dosed geodesie Zn
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Figure 1: The geodesic Zn for n =:3. The figure shows the halfs of the different
clased geodesics.

(campare Figure 1) with

cosh(a/2) + cosh(b/2) cosh E .
cosh(zn/2) = . h(6/')) . h slnh(b/2) sinh nE - c08h(b/2) cash nE.

SIn ... Sln t

This implies for t -4 0

cosh( zn/2) = n(cosh( a/2) + cosh(b/2)) - cosh(b/2).

(ii) In the n-folded covering of (i), Zn is a simple closed geodesic and, together
with band a cusp, the boundary geadesic of a V-piece, compare Figure 1. 0

Definition For positive integers A anel lV let

{ [
1 + aAN bAlV] .) I }rA(iV) = ClV 1 +dA1V E SL(.."Z) a,b,c,dE Z .

If A = 1, then I also write r( lV) instead of r I (lV).

Proposition 1 Far positive integers A and lV we have

Tr(rA(lV)) = {nAlV2 ± 2 : n E N} \ {-1, -2}.

Proof. Since the determinant of every group element is 1, it is easy to see that

Tr(rA(N)) C {nAN 2 ± 2 : n E N} .
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On the other hand for every integer n

[
1 + nAIVz A

1
lV]

nlV

is in r A ( lV) . 0

Proposition 2 Choose Y~ such that tr(x) is an integer. Then

Tr (Yx ) = {n (t1' (x) +2) ± 2 : n E N} \ {- 2} .

Proof. It follows by Lemma 1 that

{n(tr(x) + 2) - 2 : n = 1,2,3, ...} C Tr(Yx )'

vVhen we apply Lemma l(i) to Y~n with tr(zn) = n(t1'(:Z:) + 2) - 2 (compare
Lemma l(ii)), we see that also

{n(tr(x) +2) +2 : n E N} c Tr(Yx )

holcls since (n + l)(tr(x) + 2) - tr(x) = n(tr(x) + 2) + 2. By Proposition 1,

Tr(f tr(x)+z(I)) = {n(tr(x) +2) ± 2 : n E N} \ {-2}.

o

[
1 tr( x) + 2 ] cl [1 0]o 1 an -1 1 .

Therefore T1'( Y~) C Tr( f tr(x)+2 (1)) and the proposi tion follows.

The surface Hjf tr(x)+2(1) contains a V-piece Y~ which is generated by the two
group elements

Corollary 1 Choose Yx such that tr( x) is an integer. Tlten

Tr(Y~) = Tr(rtr(x)+z( 1)).

Proof. Clear by the proof of Proposition 2. 0

Lemma 2 Let Y~ and Y~ be such thai t1'(X) is an -integer and such that 2 <
tr(y) < tr(x). Then Tr(Y~) < Tr(Y~).

Proo/. By Proposition 2 we have

T l' ( }'~) = {n (tT ( x) + 2) ± 2 : n E N} \ { - 2} .

By Lemma 11 Tr(Y~) contains the set

{n(tr(y) +2) ±2: nE N} \ {-2}.

Since 2 < tr(y) < tr(x) 1 the lemma follows. 0
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Theorem 1 Fol' every integer LV 2: 2) H/r( LV) has 1naximal length speetru1n.

Pro..of. The case iV = 2 is trivial, so asslllne that LV > 2. Let C(lY) = H/r(lY)
and let i\l E T(C(I\T)). Let y~ C 1\4 be the V-piece in i\t[ such that y is minimal.
It was shown in [10] that

lr(y) :S Ly2
- 2.

By Proposition 1 we have

Tr(f(lV)) = {n1V 2 ± 2 : n E N} \ {-2}

and by the proof of Proposition 2~ C(LV) contains a Y-piece y~ with tr( x) =
lV2 - 2. ~loreover,

T l' ( f (LV)) = T r ( Yx )

by Corollary 1. The theorem now follows by Lelnma 2. 0

Corollary 2 Let C(lY) = H/f(lV) be defined as in fhe proof of Theorem 1 and let
iVI E T(C(lV)). If lvI is not a global1naximal surface, then T1'(Al) < Tr(C(lY)).

Proof. Clear by the proof of Theorem 1. 0

Remark (i) Let f be anormal subgroup of S L(2, Z) of level LV. If for the systole
x of 1\1 we have tr (x) = lV2 - 2, then lvI is aglobai maximal surface, see [10].
Ir moreover Tr(lvJ) = Tr(r(lV)), then 1\1 has maximal length spectrum. In
particular l this is the case if NI is a cover of H/ r( N),

(ii) I conjecture that there exist other types of surfaces with maxirnallength
spectrum, see the following two examples.

Conjecture (i) Let L\l be the (unique, see [9]) maximal surface of signature (1,1)
and let the boundary be a cusp. Then iVf has maximallength spectrum.

(ii) Let lvI be the (unique, see [9D rnaximal surface of signature (2,0). Then
A'! has maximallength spectrum. .

Remark Let us consider for a Inoment the case genus 1, the tori with Euclidean
metric of normalized area. Then, as it was already known more than 2000 years
ago, the socalIed hexagon lattice has the largest possible systole and hence is the
unique global maximal surface. The quest ion if the hexagonal lattice also has
maximallength spectrum however has not been considered until IlOW as far as I
know.

Theorem 2 Let J\tJ be a s-urface of genus 9 with n C7.1Sps) n > O. Let Tr(i\1) =
{2 = at, Cl2, Cl3, .•. } be its trace set. Then

'36 '(') + .)). _.) . l ...g n -... . _ .)
tr( a2~):S ... + 2 ~ 1 - 1, ... , ...

n

') 36i(2g + 'n - 2) . _ .)
tr(a2i+d:::; ... + 2 ,l-O,l, ... ~ ...

n
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x

Figure 2: The surface lvI with its two ends EI and E2 and the closed geodesie y.

and we haue equahty for all i if 1\1 corresponds to a principal congruence subgroup
r( lV). Equality fOT all 'i is also possible 1f M corresponds to anothel' norm,al
subgroup of S L(2 , Z).

P'roof. It follows by [10], that AI contains a V-piece Y~ with

() 2
36(2g +n - 2)

tr x ::; - + 2 •
n

The theorem follows. 0

Remark The complete length speetrum of a surface determines the topology of
a surface and, in the ease where all boundary components are eusps, also the
boundary. wloreover, there exist only finitely many non-isometrie surfaces with
the same complete length spectrum, see Buser [2] for the eo~pact and Müller [7]
for the non-eompaet case. If however we only take the trace set, then there exist
infinitely n1any surfaees of a very different topology which have the salne trace
sets.

Theorem 3 There exisl infinitelymany different surfaces 01 a lnutually different
topology which al/ have the same trace set as the groups r AN2 (1) , rA (lV) and the
surjace Y~ with tr( x) = A lV2

- 2 fo'r al/ A lV > 1.

Proof. That the groups rAN2(1) and rA(lV) anel the surface Y~ with lr(x) =
A1V2 - 2 have the same trace set is a consequence of Propostion 1 and Corollary

1.
Take a finite covering surface 1\1 of Yx as in Figure 2. One end E 1 of 1\1

consists of a unique copY of Y~, the other end E2 of two copies of }/~.

(i) Let HS firstly look at E2 . The subsurface consisting of two copies of }/~

contains a V-piece lV = Y(O: X, y) where y is the closed geodesic of Figure 2. vVe
have tr(y) = tr( x) + 4. By Lemma 1, Tr( lV) contains the sets

{n(2tr(x)+4)-tr(x) : n = 1,2, ... } and {n(2tr(x)+4)-(tr(x)+4) : n = l, 2, ... }

8
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Figure :3: The geodesie Zn for n =:3. The figure shows the halfs of the different
geodesics.

which implies that Tr( J\1) contains the set

{n{tr{x) + 2) ± 2 : 12 E N: 12 odd}.

(ii) Look now at EI. "Ve take a finite covering surface of lvI anel apply the
argument of the proof of Lemma 1: see Figure 3. It follows that T1'{J\I) contains
the sets Tr(Y~k) for k E N \ {O} anel

tr(zd = 2k(tr(x) + 2) - 2.

This implies, again by Lemma 1 ~ that Tr( kI) contains the set

{n(tr(x) + 2) ± 2 : n E N, n even} \ {-2}.

(iii) It follows by (i), (ii) anel Corollary 1 that Tr( lvI) =:> Tr( Y~). Since JvI is
a finite covering surface of )/~ we also have Tr(J\1) C Tr(Y~). Finally: we can
choose in J\1 the part between the two ends arbitrarely long anel the theorem

follows. 0

3 The growth of the length spectrum

Definition I denote by Gap(kJ) or Gap(f) the minimal gap of the trace set of a
surface Al or a Puchsian group r which is defined as

Gap(AJ) = inf{la - bl : a,b E Tr(lVJ),a =1= b}.

Definition (i) A cofinite Fuchsian group r is called arith'metic if
(a) [( = Q(Tr(f)) is a nUlnber field of finite clegree and Tr(r) C 0 10(, the

ring of integers of [{.

9



(b) If cf; : [\~ --+ C is any embedding which is not the identity if restricted to
T.,,2(fL then <jJ(Tr(r)) is bounded where Tr 2(f) = {t2 : t E Tr(f)}.

{ii) An arithmetic group f is derived [rom a quaternion algebra if
(c) If cP : [( --+ C is any embedding which is not the identity, then cjJ(Tr( f))

is bounded.

This characterization of arithrnetic Fuchsian groups is due to Takeuchi [11].
I will also need the following result of Takeuchi [12] which~ as the author writes~

has been cited without proof in ß1lagnus [6J (the first fonllulation is from Fricke).

Theorem 4 Let {ah a2, ... : an} be a set 0/ generators of a cofinite Fuchsian
group f. For any subset fi 1 , ... , im} of {l, 2, ... , n} lel li, ...im = tr(ai, ... (tim)'

Tlten Tr(r) is contained in the ring

o

Definition A Fuchsian group f has the B-C prope'rty if there exists a constant
B( f) such that for all integers 11 the set Tr( f) n (n, 11 + 1] has less than B( f)
elen1ents.

"B-C property" stands for bounded dustering property. The above definition
has been introduced in Luo/Sarnak [5] where the following result is proved.

Theorem 5 (i) An arithmetic gro·up has the B-C property.
(ii) Fm' an arithmetic gro7.1p f derived from a quaternion algebra we have

Gap(r) > O. 0

Definition The trace set of a Fuchsian group f has linear g1'owth if there exist
finite positive constants C and D so that

#{n E Tr(r) : a ::; n} ::; D +nC, \/n.

Analogously we define that the trace set of a slujace has linear growth.

Ren1ark The property "linear growth" is slightly weaker than the l' B-C prop­
ert,Y" .

Corollary 3 he lrace set of an arithmelic group has line(!'!' growth.

Proo/. This is deal' by Theorem 5. 0

In this section a partial converse of Theorem .) anel Corollary 3 is proved (I shall
firstly prove part (ii) and then part (i) of the following theorem).
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Figure 4: The double cover i\l' anel the closed geodesic x.

Theorem 6 Let r be a cofinite non-ele-menta1'Y Fuchsian g1'O'llp which contains
at least one pa1'abolic element.

(i) // Tr( f) has linear g'rowth, then f is an arithmetic group.
(ii) // Gap(f) > 0, then f is an arithmetic group rle'rived from a quate'mion

algeb1·a.

Conjecture Theorem 6 also holels if r has no parabolic element, that is in the
compact case.

Remark (i) ~'Iore precisely, I shall prove the following. Let f be a cofinite
non-elementary Fuchsian group. Then Gap(f) > 0 implies that Tr(f) C Z (anel
therefore in this case,· r is an arithmetic group derived from a quaternion algebra).

Ivloreover, I shall prove that if Tr( f) has linear growth then Tr( f) contains
only square roots of rational integers anel hence is arithmetic by the following
result of Takeuchi (11]: A cofini te Fuchsian group r is an arithmetic group if and
only if r(2) is an arithmetic group derived froIn a quaternion algebra where r(2)

is the subgroup of f generateel by {a 2 : a Er}. Therefore, in the non-compact
case, we conclude that a cofinite Fuchsian group f is an arithnletic group if anel
only if T1'( f(2)) C Z.

Lenlma 3 Let i11 = Y(O: b, c). For n E N \ {O} let lVn = r~n with

tr(x n ) = n(t1'(b) + t1'{C))2 - 2.

Then /01' all 11 " Tr( iVn) C Tr( i\tJ).

Proof. Let x be the closed geodesic of 1\;[', a double cover of i\IJ as in Figure 4:
Then

I + cosh(b/2) cosh(c/2). .
cosh(x/2) = . (/')' I ( /') smh bSInh c - cosh bcash c

Slilh b 2 SIn 1 C 2

which implies
l1'(:r) = (t1'(b) + tr{c))2 - 2.

11



In J\I', x is a bounelary geodesic of a subsurface Yx . vVe now apply Lemma 1 to
y~ which proves the lemIlla. 0

Definition For two integers a anel b: (Cl, b) denotes the greatest positive COlllmon
factar.

Proposition 3 Gap( y~) > 0 ij and only if tr·( x) is an integer. lHore precisely,
ij t1'( x) =I- 2 is an integer~ then Gap( Yx ) = Inin{4: t1'( x) - 2}. 11 t1'( x) = 2~ then
C;ap(y~) = 4.

Proof. (i) Assume that tr(x) = -2 + a/b, with positive integers a and b > 1 and
(a,b) = 1. By Lemma 3, Tr(Yx ) contains Tr(Yy) \vith tr(y) = -2 +a2 /b2 . Since
we can take y as the new .'1:, \ve obtain by induction that Tr(Y~) contains Tr(Y~k)

with
tr(Yk) = -2 +a(2

k
) /b(2

k
), k E N.

By Lemma 1, Tr(Y~) contains the set {-2 +na/b : n = 1: 2, 3: ...}. Since Tr(YYk)
contains the analogous set, it fo11ows that T'r(Yx).contains the set

This implies

Since (a, b) = 1: this mininlum is

Since b > 1 by hypothesis, we obtain for k --+ 00 that Gap(Y~) = O.
(ii) Assumenow that z-2:= t1'(:r) rt Q. Then, by Lemma 3, Tl'(l'~) contains

nz2 - 2 for every positive integer n and, by Lemma 1, Tr(Yx ) contains kz - 2
for every positive integer k. Then, since z can be approximated by a continued
fraction (see for example Rockett/Sziisz [8]), for every t. > 0 there exist integers
~ and '1] such that

o < Iz2~ - ':171 = zlz~ - 171 < t

which proves that Gap(Y~) = O.
(iii) Assume finally that tr(x) is an integer. Then: by Proposition 2: we have

Gap(Yx ) = tuin{4, tr(x) - 2} if tr·(x) > 2 anel Gap()/~) = 4 if tr(x) = 2. 0 .

Lemma 4 Let J\IJ = Y(O, b: c) and lV = Y(O,2b: z) with tr(z) = 2 + tr(b)tr(c).
Then Tr( LV) C Tr( AI).

Proof. Look at a double cover of AI: see Figure 5. The lemma fo11ows if one
calculates tl'( z) where z is the closed geodesie in Figure 5. 0
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Figure .5: The double cover of 1l'1 with the closed geoelesic z.

Proposition 4 Let 1\1 = Y(O, b: c). Then Gap( 1\1) = 0 i/ ai least one 0] the
th1'ee numbe1's t1'2b, t1'2c} and l1'{ b)t1'( c) is not an integer.

Proof. Assurne that Gap(AI) > O. Bl' Lemnla 3: T1'(l\I) contains Tr(Y~) with
t1'{x) = (t1'(b) +t1'(c))2 - 2 anel bl' Proposition ;3~ t1'{x) must be an integer.

(i) Assume that t1'{ b) = a/d, t1'{ c) = e/], with integers a, cl, e, f anel (a, d) =
(e~ f) = 1. Since tr{x) is an integer~

(a! +de)2
([2/2

is an integer anel since (a, d) = (e,]) = I, it follows that d = f anel that
a + e 0 moel (cl).

Bl' Lemma 4, Tr(L\l) contains Tl'(lV) with lV = Y(O,2b,z) anel tr(z) =
2 + ae/er anel t1'(2b) = -2 + a2/ef2. It fallows bl' the same argument as abave
that a2+ae = a(a+e) == 0 fiod (([2). Since (a, d) = 1 it follows a+e == 0 mod (([2).

Repeating this argument we canelnde that a + e == 0 mael (dk
) for everl' pos­

itive integer k which irnplies that d = 1 anel that t1'( b) anel t1'( c) are integers.
(ii) We naw treat the general case. Bl' Lemma 4~ Tl'( 1\1) contains Tl'( IV) with

lV = Y(O,2b: z) and tr(z) = 2 + tr(b)t1'(c). \Ve appll' Lemma 3 and Proposition
:3 to iV and conclude that

is an integer. Since we already saw that (t1'(b) + tr(c))2 is an integer: it follows
that t1'2(b) E Q and hence t1'(2b) E Q. By an analogons argument t1'2(c) E Q,
anel since (t1'(b) + tr(c))2 is an integer: we conelude that 2tr(b)t1'(c) E Q anel thus
tr(z) E Q. Therefore~ we can apply part (i) to LV = \/"(O:2b:z) which proves that
lr(2b) anel t1'(z) are integers. By the analogons argument tr(2c) is also an integer
and the proposition follows. 0

Theorem 7 Let l\l = Y(O, c, cl). Then C-:ap(tv[) > 0 ij and only il tr(c) und
t1'( d) are integers.
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Proof. If tr( c) and tr( d) are integers, then it follows by Theorem 4 that T1'( lVI) C

N and therefore G'ap( J1tI) ~ 1.
-Assurne now that C-:ap{ AI) > O. Then, by Proposition 4~ tr2 ( c), tr2(d) anel

tr( c)tr( d) are integers. Therefore, we can write tr(c) = avn, tr( d) = bJ]i where
a, band TI. are integers and n is square [ree 01' 1. \Ve have to prove that 12 = 1.
Assume that this is not the case.

By Lenlma I, Tr(l\I) contains the set

{(a +b)y~ - aV;; : y = 1,2,3, ... }.

By Lemma 3, Tr( 1\1) contains the set

{, ( + b)2 _.). - 1 .) 3 }n a x ... . x - , .... , , ....

vVe will show that that there exist positive integers x anel y such that

[n(a +b?x - 2] - [(a +b)yvn - aA
is arbitrarely small. vVe multiply the above difference by its "conjugate"

[n(a +b)2 X - 2] + [(a +b)yvn - avnJ

and obtain
[n(a + b)2X - 2]2 - n[(a + b)y - a]2.

Let z = n(a+b)2 -2]2- n [(a+b)-a]2, lt x = n(a+b)2x -2, and vy = (a+b)y-a.
It then follows by the theory of binary quadratic forms (see for example Zagier
[14]) that the Diophantic equation

has infinetely many different solutions (Uil Vj), 'i, j integers, since it has one
solution (1lI, vd. Therefore, there are solutions (Ui' Vj) with i anel j arbitrarely
big so that

(n(a + b)2 X- 2] + [(a + b)yV11 - av0l)

is arbitrarely big anel heuce, since z is a constant,

[n(a + b)2 X - 2] - [(a + b)y,Jn - avn]

is arbitrarely sIllall which has to been proved. 0

Proof of Theorem 6 (ii).
Assume that Gap(r) > 0 for a. non-elementary cofinite Fuchsian group f with

at least one parabolic element.
(i) vVe firstly assurne that f has no elliptic element. Let AI = Hjf. Let a be

a simple closed geodesic of Al. Then 1\1 contains a seconel simple closed geodesic

14



Figure 6: The geodesics Yk and Ym in a k + rn-fold cover of Y~

b such that lvI contains the V-piece Y( a, b, 0). It follows be Theorem 7 that tr(a)
and tr( b) are integers. In Theorem :J \ve can choose a generating set consisting
only of simple closed geodesics such that the products also correspond to simple
closed geodesics. It thus follows by Theorem 3 that Tr(l\iI) is a subset of the
integers and hence r is an arithmetic group derived from a quaternion algebra.

(ii) Assume now that f has an elliptic element a and that r is not a triangle
group. Then r contains a hyperbolic element band Tr(f) contains the trace
set of adegenerated Y-piece Y(a,b,O) where the "boundary geodesic" a is an
elliptic point. By an analogous calculation as in the proof of Lemma 1, Y(a, b, 0)
contains a closed geodesie cl with

tr(d) = tr(b) + 2tr(a).

IVloreover, Tr(Y(a, b, 0)) contains Tr(Y(b, d, 0)). Therefore, by Theorem 7, tr(b)
and tr(d) are integers which, by the above equation, implies that 2tr(a) is also
an integer. An analogous argument as in the proof of Lemma 3 shows that
(tr( a) + tr( b))2 is an integer hence tr( a) is an integer.

(iii) Assume finally that r is a triangle group (a, b, 00). Then it contains a
hyperbolic element cl and it follows a.s in Lelnn1a 1 or part (ii) above that T'1'( f)
contains the trace set of adegenerated Y-piece Y (a, cl, 0). Therefore, tr(a) is an
integer by part (ii) and hence also tr(b). Theorem 3 finishes the proof. 0

Lemma 5 T1'(Y~) contains Tr(Y (0, Yk, Ym)) wilh tr(Yk) = k( t1'( x) +2) +2 and
tr(Ym) = m( tr( x) +2) - 2 Jor alt pairs (k, 171,) 0/ positive intege'/'s.

Proo/. Compare Figure 6 auel Lemma 1. 0

Proposition 5 Tr( Yx ) has linear growth if and only ij tr( x) is an integer.

Proof. Assume that == tr(x) + 2 is not rational. By Lemma 5 and Lemma 4
Tr( }.~) contains ir(Ym)tr{Yd + 2 anel hencc the set

{mkz2 - 2{k - 1n)= - 2 : nl,k E N \ {O}}.
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Since z f/. Q a11 these numbers are different for different choices of pairs (m, k).
\~re assume that k ~ 1n and it follows that

'm,kz2
;:: m,kz2

- 2(k -,n)z - 2.

This iInplies
i=N

#{a E T1'( y~) : a ::; LVZ2} ~ 1/2 L O"o(i)
i=1

where O"o(-i) is the sun1 of (positive) divisors of i. It is weil known that the above
sum grows like LVlog( lV) anel therefore, T1'(Y~) cannot have 1inear growth.

Assume now that z = alb for integers a anel b> 1 with (a,b) = 1. It fo11ows
by Lemma 3 that Tr('y~) contains the trace set of }'~(k) for tr(x(k)) + 2 = Z{2

k
)

for every positive integer k. vVe have

i=b

#{a E Tr(Y) : a ::; bz2
} 2: 1/2 L 0"0 ( i)

i=l

since a11 numbers mkz2 - 2( k - ,n)z - 2 are different for differen t choices of pairs
(1n, k) with mk ::; b. But by the above remark b can be replaceel by b(2k) which
in1plies that T1'(Yx ) cannot have linear growth. 0

Theorem 8 [I Tr( Y( c, d, 0)) has linear g1'owth, then there exist integers a, b, n
such that tr(c) = avn and t1'( d) = bJTi and n is squa1'ef1'ee 01' 1.

Prooj. This fo11ows by the proof of Proposition 4 and by Proposition 5. 0

Proof of Theorem 6 (i). Assume that Tr(l\l) has linear growth. Then, by
Theorem 8, tr2(a) is an integer for every simple closeel geodesie a of 1'11 and for
every closed geodesie a of 1\'1 which is a simple closed geodesie in a finite covering
surface of AI. It fo11ows that Tr2

( lvI) c N, which implies Theorem 6 (i). 0

Remark I shall give some consequences of the previous results.

Theorem 9 Let lvI = H/f be a non-co'mpact surJace 0/ finite uolu'me. Then f
is arithmetic i/ and only i/ /01' every Y-piece y~ which is virtually contained in
lvI (this nuans that Yx is confained in a finite cover 0/ lvI) t1'( x) is an integer.

Proof. This follows by Propostion 5, Theoren1 6 and Theorem 8. 0

Theorem 10 Let rund f' be two cofinde: non-con~pact Fuchsian groups. As:­
S1L'me that f is arith-metic and that r' is not arithmetic. Then

Tr( f/) ::; Tr( f) almost eve1'ywhere,

this 'means that there exists a number n: depending on r ([nd f': such that a~ ~ ai,

Jor alt i ~ n, where Tr(f/) = {a~,a;, ... } and Tr(f) = {al,a2," .}.
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Proof. This is a consequence of Theorenl 6. 0

Corollary 4 ASSll'1ne that 1''1 = H/f is non-compaet and of finite vol'ume and
has 'maxi'mal length speetnlm and aSS1l'me that in the moduli space of r there is
ai least one arithmetic gro'llp. Then f is arith1netic.

Proof. Clear by Theorem 10. 0
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