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Abstract The trace set Tr(’) of a Fuchsian group I' is the set of the non-
negative traces of the elements of I', without counting multiplicities. 1 propose
the following new characterization of arithmetic Fuchsian groups. A cofinite
Fuchsian group is arithmetic iff its trace set has linear growth. An arithmetic
group is derived from a quaternion algebra iff Gap(T') := inf{le — 8| : a,b €
Tr(l),a # b} > 0. I prove this characterization in the non-compact case and
conjecture it in the compact case. Further, I show that the principal congruence
subgroups T'(N) of PSL(2,Z) have the property that every trace in its trace
set listed in ascending order is a global maximum compared with the trace sets
(listed in ascending order) of all other Fuchsian groups in the same moduli space
as ['(N). This generalizes the main result of [10] which shows that the systole,
the shortest positive trace bigger than 2, is a global maximum for ['(N) in its
moduli space.

1 Introduction

Arithmetic groups in the general context of Lie groups and algebraic groups
have been defined in the sixties, see Borel/Harish-Chandra [1]. In the case of
arithmetic Fuchsian groups (discrete subgroups of PSL(2, R)) Takeuchi [11] found
a characterization in terms of the trace set which, for a Fuchsian group T, is
defined as

Tr(f) = A{ltr(x)| : v € T}

Takeuchi’s characterization (see section 3 below) is a number theoretic one, but
since it is related to the trace set, it contains a geometric meaning, namely, if
M = H/T is the Riemann surface corresponding to a Fuchsian group [ (H is
the hyperbolic plane), then T7(I") can be defined as the set of the lengths of the
closed geodesics of M, more precisely

Tr(L) = Tr(M) := {2cosh(L(a)/2) : @ a closed geodesic of M} U {2}



where L{a) stands for the length of a. This geometric meaning can be given more
explicitely. T shall prove.

Theorem Let ' be a non-elementary cofinite Fuchsian group which contains at
least one parabolic element. Then
(i) I' is an arithmetic group if and only if there exists a finite constant C such
that

#laeTr(D):a<n} <1+Cn,Vn>0.

(i1) [ is an arithmetic group derived from a quaternion algebra if and only if
Gap(l) .= inf{|a = bl : a,b € Tr(T'),a # b} > 0.

Corollary Let [ and [ be two cofinite, non-compact Fuchsian groups. Let the
trace sets Tr(l') = {a) < a2 < a3 < ...} and Tr(I") = {a] < @) < ¢} < ...}
both be listed in ascending order. Assume that I' is arithmetic and [V is not
arithmetic. Then there exists an integer N = N([',["), depending on the two
groups, such that

a: <a;,Vi> N.

[ conjecture that these results also hold in the compact case that is if ' contains
no parabolic element.

The above theorem is proved in section 3 where some consequences of this
result are also given. Before, in section 2, [ prove some other rather surprising
facts about the trace set which are in contrast to the properties of the complete
length spectrum which is the set of the lengths of the closed geodesics of a hy-
perbolic surface, counted with multiplicities. Namely, [ show the existence of
surfaces with a so-called maximal length spectrum. Let M and M’ be surfaces of
the same moduli space. Let Tr(M) = {ai1,az,...} and Tr(M') = {d},d},...} be
listed in ascending order. Then M is a surface with mazimal length spectrum if
ai < a;, Vi, and for every surface M’ in the moduli space of M. The surfaces cor-
responding to the principal congruence subgroups ['(N) of PSL(2,Z) are surfaces
with maximal length spectrum. If one considers the complete length spectrum,
then such surfaces cannot exist.

In the same section (and with the same methods) it is also shown that there
exist families of infinitely many different hyperbolic surfaces with mutually dif-
ferent topology which all have the same trace set, while on the other hand it
is well known that the complete length spectrum determines the topology of a
surface. Moreover, there exist only finitely many non-isometric surfaces with the
same complete length spectrum.

A priori, the existence of surfaces with maximal length spectrum cannot be
expected. However, in view of the above mentioned corollary, their existence is
less surprising.

[ Q]



In the proofs, the main building blocks of hyperbolic Riemann surfaces, name-
ly the pairs of pants or Y-pieces, will play an important role. Most of the results
can be derived from the analysis of the situation of particular Y-pieces.

2 Some concrete length spectra and surfaces
with maximal length spectrum

Definition (i) A surface is a Riemann surface of constant negative curvature
and of finite area. Its signature (g,n) indicates the genus g and the number of
boundary components n which, if not otherwise stated, are simple closed geodesics
or cusps. The moduli space of a surface M is denoted by T(M). If M has
boundary geodesics, then, by convention, T(M) contains only the surfaces M’
of the same signature as M when the boundary geodesics of M’ have the same
lengths as the boundary geodesics of M.

(i1)) Let M be a surface. Let a be a closed geodesic of M. Then, by abuse of
notation, the length of a is also denoted by a. Define

tr(a) = 2cosh(a/2),
the trace of a. Define
Tr(M) = {tr(a) : a a closed geodesic of M} U {2},

the trace set of M.
(iii) A Fuchsian group [ is called cofinite if the Riemann surface M = H/T has
finite area where H denotes the hyperbolic plane. The trace set of I is the set

Tr(T) = {|tr(a)]: a € T}.

(iv) The trace set of a surface M or a Fuchsian group I' is always listed in
ascending order. Let M and M’ be two surfaces and let

Tr(M) = {a1,as, a3, ..},

T'l'(.l"[’) = {bl,bz, b;}, o }

Then
Tr(M) < Tr(M') means ¢; < b;, Vi.

If a) = bl = 2, then
Tr(M) < Tr(M') means a; < b;, Vi> 1.

(v) The systole of a surface M is its shortest closed geodesic which is not a
boundary geodesic.



(vi) A mazimal surface M is a surface with the property that the length of its

systole is a local maximum with respect to an open neighborhood of A in T(M).
A global mazimal surface M is a surface with the property that the length of

its systole is a global maximum in T'( ).

(vii) A surface M has mazimal length spectrum if for all surfaces M’ in T(M) the

inequality

Tr(M") < Tr(M)
holds.

Remark (i) [ underline the fact that some aspects of the above definition do
not correspond to some usual definitions. The signature of a surface is not the
same as the usual definition of the signature of its fundamental group. Further,
in the definition of the trace set, the multiplicities of the traces (or of the lengths
of closed geodesics) play no role. This is in contrast to the usual definition of
the length spectrum of a surface which is called complete length spectrum in the
sequel.

(ii) If a surface M has maximal length spectrum, then it is necessarely a
global maximal surface. But while every moduli space contains a global maximal
surface (see [9]), the existence of a surface with maximal length spectrum is a
priori not at all clear and it is even rather surprising that such surfaces exist.

(i) If, in contrast, we consider the complete length spectrum, then the ex-
istence of a surface M with a "maximal complete length spectrum” is excluded.
This can be seen for example like follows. If M has "maximal complete length
spectrum”, then it must be a global maximal surface. Let M’ be in a small neigh-
borhood of M in T(M) such that the closed geodesics which were systoles in M
all remain shorter than all other closed geodesics. [t then follows by a result of
[9] that at least one of the closed geodesics which is a systole in M is longer in
M’ than in M which contradicts the assumption that M has ”maximal complete
length spectrum”.

Definition (i) A Y-piece is a surface of signature (0, 3). For non-negative reals a,
b, ¢ the symbol Y'(a, b, ¢) stands for a Y-piece with boundary geodesics of lengths
a, b, c.

(i1) If a Y-piece M has two cusps, then instead of M = Y(0,0,c), I also write Y..

Lemma 1 (i) Tr(Y(a,b,0)) contains the set
{n(tr(a) + tr(b)) —tr(b) : n=1,2,3,...}.
(it) For all positive integers n, Tr(Y (a,b,0)) contains Tr{Y,(z,,0,0)) with
tr(zn) = n(tr(a) + tr(b)) — tr(b).

Proof. (i) We replace Y'(a,b,0) by Y{(a,b,2¢} and we work in a covering surface
of Y(a,b,2¢). For every positive integer n, Y(a,b,2¢) has a closed geodesic z,
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Figure 1: The geodesic z, for n = 3. The figure shows the halfs of the different

closed geodesics.

(compare Figure 1) with

cosh{a/2) + cosh(b/2) cosh e . _
- 2
sinb(b/2) sinh ¢ sinh(b/2) sinh ne — cosh(b/2) cosh ne.

cosh(z,/2) =

This implies for € — 0
cosh(z,/2) = n(cosh(a/2) + cosh(b/2)) — cosh(b/2).

(i1) In the n—folded covering of (i), z, is a simple closed geodesic and, together
with b and a cusp, the boundary geodesic of a Y-piece, compare Figure 1. O

Definition For positive integers A and N let

_ 1+ aAN  LAN .
Fa(N) = {[ eN l+dAN} € SL(2,2)

a,be,d e Z}.

If A =1, then I also write ['(/V) instead of [} (V).

Proposition 1 For positive integers A and N we have
Tr(Ca(N)) = {nAN* £2:n € N} \ {-1,-2}.
Proof. Since the determinant of every group element is 1, it is easy to see that

Tr(Ca(N)) C {nAN*£2:n e N}.
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On the other hand for every integer n

1+ nAN? AN
niV 1

isin [o(N). O

Proposition 2 Choose Y, such that tr(z) is an integer. Then
Tr(Yy)={n(tr(z) +2)£2:n € N}\ {-2}.

Proof. 1t follows by Lemma 1 that
{n(tr(z)+2)~2:n=1,2,3,...} C Tr(Yz).

When we apply Lemma L(i) to Y, with tr(z,) = n(tr(z) + 2) — 2 (compare
Lemma 1(11)}, we see that also

{n(tr(z)+2)+2:n € N} C Tr(Ys)
holds since (n + 1)(tr(z) + 2) — tr(z) = n(tr(z) + 2) + 2. By Proposition 1,
Tr(Cire)42(1)) = {n(tr(z) + 2) £2:n € N} \ {-2}.

The surface H/T ¢ (z)42(1) contains a Y-piece Y; which is generated by the two

group elements
1 tr(z) +2 1 0
l 0 1 ] and [ 11 ] .

Therefore Tr(Y;) C Tr(Cir(z)42(1)) and the proposition follows. O

Corollary 1 Choose Y; such that tr(z) is an integer. Then
Tr(Yz) = Tr(Tiyz)+2(1)).

Proof. Clear by the proof of Proposition 2. O

Lemma 2 Let Y, and Y, be such that tr(z) is an integer and such that 2 <
tr(y) < tr(z). Then Tr(Y,) < Tr(Yz).

Proof. By Proposition 2 we have
Tr(Y:) = {n(ir(z) +2)x2:n e N} \ {-2}.
By Lemma 1, Tr({Y,) contains the set .
{a(tr(y) +2) £2:n € N}\ {2},

Since 2 < tr(y) < tr(z), the lemma follows. O
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Theorem 1 For every integer N > 2, H/T(N) has mazimal length spectrum.

Proof. The case N = 2 is trivial, so assume that N > 2. Let C(N) = H/T(N)
and let M € T(C(N)). Let Y, C M be the Y-piece in M such that y is minimal.
It was shown in [10] that

tr(y) < N? -2,

By Proposition 1 we have
Tr(D(N)) = {nN*£2:n € N}\ {=2}

and by the proof of Proposition 2, C(N) contains a Y-piece Y, with tr(z) =
N? — 2. Moreover,

Tr(['(N))=Tr(Yz)
by Corollary 1. The theorem now follows by Lemma 2. O

Corollary 2 Let C(N) = H/T(N) be defined as in the proof of Theorem ! and let
M e T(C(N)). If M is not a global mazimal surface, then Tr(M) < Tr(C(N)).

Proof. Clear by the proof of Theorem 1. O

Remark (i) Let T’ be a normal subgroup of SL(2,Z) of level N. If for the systole
z of M we have tr(z) = N? — 2, then M is a global maximal surface, see [10].
If moreover Tr(M) = Tr(I'(N)), then M has maximal length spectrum. In
particular, this is the case if M is a cover of H/['(N).

(ii) T conjecture that there exist other types of surfaces with maximal length
spectrum, see the following two examples.

Conjecture (i) Let M be the (unique, see [9]) maximal surface of signature (1,1)
and let the boundary be a cusp. Then M has maximal length spectrum.

(ii) Let M be the (unique, see [9]) maximal surface of signature (2,0). Then
M has maximal length spectrum. '

Remark Let us consider for a moment the case genus 1, the tori with Euclidean
metric of normalized area. Then, as it was already known more than 2000 years
ago, the socalled hexagon lattice has the largest possible systole and hence is the
unique global maximal surface. The question if the hexagonal lattice also has
maximal length spectrum however has not been considered until now as far as |
know.

Theorem 2 Let M be a surface of genus g with n cusps, n > 0. Let Tr(M) =
{2 = ay,aq,a3,...} be its trace set. Then

-{_361’('29+n—‘2)’iz

tr{aqg) < —2 o, ,2,...
36:(2g +n —=2) |
tr(aziz1) <2+ ( gn2 ),l=031:2=-'-
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Figure 2: The surface M with its two ends £} and E; and the closed geodesic y.

and we have equality for all 1 if M corresponds to a principal congruence subgroup
[(N). Equality for all © is also possible if M corresponds to another normal
subgroup of SL(2,Z).

Proof. 1t follows by [10], that 3/ contains a Y-piece Y, with

36(2g + n —2)

n?

tr(z) < =2+

The theorem follows. O

Remark The complete length spectrum of a surface determines the topology of
a surface and, in the case where all boundary components are cusps, also the
boundary. Moreover, there exist only finitely many non-isometric surfaces with
the same complete length spectrum, see Buser [2] for the compact and Miiller [7]
for the non-compact case. If however we only take the trace set, then there exist
infinitely many surfaces of a very different topology which have the same trace
sets.,

Theorem 3 There exist infinitely many different surfaces of @ mutually different
topology which all have the same trace set as the groups U sn2{1), T 4(N) and the
surface Yy with tr(z) = AN? —2 for all AN > 1.

Proof. That the groups [4n2(1) and T4(NV) and the surface Y, with tr(z) =
AN? — 2 have the same trace set is a consequence of Propostion 1 and Corollary
L.

Take a finite covering surface M of ¥, as in Figure 2. One end E, of M
consists of a unique copy of Yz, the other end £; of two copies of Y;.

(1) Let us firstly look at E,. The subsurface consisting of two copies of Y,
contains a Y-piece N = Y'(0, z,y) where y is the closed geodesic of Figure 2. We
have tr(y) = tr(z) + 4. By Lemma 1, Tr(V) contains the sets

{n(2tr(z)+4)—tr(z) :n =1,2,...} and {n(2tr(z)+4)—(tr(z)+4):n=1,2,...}
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Figure 3: The geodesic z, for n = 3. The figure shows the halfs of the different

geodesics.

which implies that T'r(A) contains the set
{n(tr(z)+2)£2:n € N,n odd}.

(ii) Look now at FE;. We take a finite covering surface of M and apply the
argument of the proof of Lemma 1, see Figure 3. [t follows that Tr(M) contains
the sets Tr(Y,,) for £ € N\ {0} and

trizx) = 2k(tr(z) + 2) — 2.

This implies, again by Lemma 1, that Tr(M) contains the set
{n(tr(z) +2)£2:n € N,n even} \ {-2}.

(iit) It follows by (i), (ii) and Corollary 1 that T»(M) D Tr(Y.). Since M is
a finite covering surface of Y; we also have Tr(M) C Tr(Y;). Finally, we can
choose in M the part between the two ends arbitrarely long and the theorem
follows. O

3 The growth of the length spectrum

Definition I denote by Gap(M) or Gap(l') the minimal gap of the trace set of a
surface M or a [uchsian group [' which is defined as

Gap(M) = inf{|a = b| : a,b € Tr(M),a # b}.

Definition (i) A cofinite Fuchsian group I is called arithmetic if
(a) K = Q(T»(I')) is a number field of finite degree and T'r(I') C Of, the
ring of integers of K.



(b) If ¢ : k' — C is any embedding which is not the identity if restricted to
Tr*(T), then ¢(Tr(I')) is bounded where Tr(T') = {t2:t € Tr(I)}.

{ii) An arithmetic group [' is derived from a quaternion algebra if

(c) If ¢: K — Cis any embedding which is not the identity, then &(Tr(T))
is bounded.

This characterization of arithmetic Fuchsian groups is due to Takeuchi [11].
I will also need the following result of Takeuchi [12] which, as the author writes,
has been cited without proof in Magnus [6] (the first formulation is from Fricke).

Theorem 4 Let {a;,az,....a,} be a set of generators of a cofinite Fuchsian
group T'. For any subset {iy,...,tm} of {1,2,...,n} let t;.q,, = tr(a;, -+ a;,).
Then Tr(T') is contained in the ring

Zltiinl{iny o rin} € (1,2, )],
(]

Definition A Fuchsian group [' has the B-C property if there exists a constant
B(I') such that for all integers n the set Tr([') N [n,n + 1} has less than B(I)
elements.

"B-C property” stands for bounded clustering property. The above definition
has been introduced in Luo/Sarnak [5] where the following result is proved.

Theorem 5 (i) An arithmetic group has the B-C property.
(ii) For an arithmetic group [' derived from a quaternion algebra we have
Gap(T)y>0. O

Definition The trace set of a Fuchsian group I has linear growth if there exist
finite positive constants C' and D so that

#{a € Tr(0):a<n} <D+nC,Vn.

Analogously we define that the trace set of a surface has linear growth.

Remark The property "linear growth” is slightly weaker than the "B-C prop-
erty”.

Corollary 3 he trace set of an arithmetic group has linear growth.
Proof. This is clear by Theorem 5. O

In this section a partial converse of Theorem 5 and Corollary 3 is proved (I shall
firstly prove part (ii) and then part (i) of the following theorem).
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Figure 4: The double cover M’ and the closed geodesic z.

Theorem 6 Let ' be a cofinite non-elementary Fuchsian group which contains
at least one parabolic element.

(1) If Tr(L') has linear growth, then I' is an arithmetic group.

(11) If Gap(T') > 0, then [' is an arithmetic group derived from a quaternion
algebra.

Conjecture Theorem 6 also holds if I' has no parabolic element, that is in the
compact case.

Remark (i) More precisely, 1 shall prove the following. Let ' be a cofinite
non-elementary Fuchsian group. Then Gap(T') > 0 implies that T+(I') C Z {and
therefore in this case, I is an arithmetic group derived from a quaternion algebra).

Moreover, I shall prove that if Tr(I') has linear growth then Tr(T) contains
only square roots of rational integers and hence is arithmetic by the following
result of Takeuchi [11]: A cofinite Fuchsian group I is an arithmetic group if and
only if [® is an arithmetic group derived from a quaternion algebra where ['®
is the subgroup of " generated by {a® : @ € I'}. Therefore, in the non-compact
case, we conclude that a cofinite Fuchsian group I' is an arithmetic group 1f and

only if Tr(I'®) C Z.

Lemma 3 Let M = Y(0,b,¢). Forn € N\ {0} let N, =Y., with
tr(z,) = n(tr(b) + tr(c))? — 2.

Then for all n, Tr(N,) C Tr(M).

Proof. Let x be the closed geodesic of M’, a double cover of M as in Figure 4.
Then
1+ cosh(b/2) cosh(c/2)

z/2) = inh bsinh ¢ — cos
cosh(x/2) Snh(b/2) sinh(c/2) sinh bsinh ¢ — coshbcosh ¢

which implies
tr(z) = (tr(b) + tr(c))* — 2.

11



In M’', z is a boundary geodesic of a subsurface Y;. We now apply Lemma 1 to
Y, which proves the lemma. 0O

Definition For two integers a and b, {«, b) denotes the greatest positive common
factor.

Proposition 3 Gap(Y;) > 0 if and only if tr(z) is an integer. More precisely,
if tr(z) # 2 is an integer, then Gap(Y:) = min{4,tr(z) — 2}. Iftr(z) = 2, then
Gap(Yy) = 4.

Proof. (i) Assume that tr(z) = =2 + «/b, with positive integers @ and b > 1 and
(a,b) = 1. By Lemma 3, Tr(Y;) contains Tr(Y,) with tr(y) = =2 + «%/b%. Since
we can take y as the new x, we obtain by induction that Tr(Y;) contains T'r(Y}, )
with

triye) = =2+ a® /6 ke N.

By Lemma 1, Tr(Y;) contains the set {—=2+na/b:n =1,2,3,...}. Since Tr(Y},)
contains the analogous set, it follows that T'r(Y;).contains the set

{=241a® /6% ke N,n e N\ {0}}.
This implies
Gap(Ye) < min{|(=2 + £a®)/62) ~ (=2 + na/b)| # 0: £, € N\ {0}}.
Since (a,b) = 1, this minimum is
a /b,

Since b > 1 by hypothesis, we obtain for £ — co that Gap(Y:) = 0.

(i1) Assume now that z —2 := tr(2) € Q. Then, by Lemma 3, T'r(Y;) contains
nz® — 2 for every positive integer n and, by Lemma 1, Tr(Y;) contains kz — 2
for every positive integer k. Then, since z can be approximated by a continued
fraction (see for example Rockett/Sziisz [8]), for every € > 0 there exist integers
£ and n such that

0 < |22 — 2| = 2|26 — | <€

which proves that Gap(Y;) = 0.
(iii) Assume finally that {7(z) is an integer. Then, by Proposition 2, we have
Gap(Y:) = min{4, tr(z) — 2} if tr(z) > 2 and Gap(Yz) =4 if tr(z)=2. 0O

Lemma 4 Let M = Y(0,b,c) and N = Y (0,2b,z) with tr(z) = 2 + tr(b)tr(c).
Then Tr(N) C Tr(M).

Proof. Look at a double cover of M, see Figure 5. The lemma follows if one
calculates tr(z) where z is the closed geodesic in Figure 5. O

12
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Figure 5: The double cover of M with the closed geodesic .

Proposition 4 Let M = Y(0,b,¢c). Then Gap(M) = 0 if at least one of the
three numbers tr?b, tric, and tr(b)ir(c) is not an integer.

Proof. Assume that Gep(M) > 0. By Lemma 3, Tr(M) contains Tr(Y;) with
tr(z) = (tr(b) + tr(c))® — 2 and by Proposition 3, ¢{r(z) must be an integer.

(i) Assume that t7(b) = a/d, tr(c) = e/ f, with integers a, d, e, f and (a,d) =
(e, f) = 1. Since tr(z) is an integer,

(af + de)?
dzf?

is an integer and since (e¢,d) = (e, f) = 1, it follows that d = f and that
a+ e =0mod (d).

By Lemma 4, Tr(M) contains Tr(N) with N = Y(0,2b,z) and tr(z) =
2 4+ ae/d* and tr(2b) = —2 + «*/d*. 1t follows by the same argument as above
that a’+ae = a(a+¢e) = 0 mod (d?). Since (a,d) = 1it follows a+e = 0 mod (?).

Repeating this argument we conclude that a + e = 0 mod (d*) for every pos-
itive integer & which implies that d = 1 and that ¢{r(b) and ¢r(c) are integers.

(i1) We now treat the general case. By Lemma 4, Tr(M) contains Tr(N) with
N =Y(0,2b,z) and tr(z) = 2 + tr(b)ir(c). We apply Lemma 3 and Proposition
3 to N and conclude that

tr2(b)(tr(b) + tr(c))?

is an integer. Since we already saw that (¢r(b) + tr(c))? is an integer, it follows
that tr?(b) € Q and hence ¢r(2b) € Q. By an analogous argument tr%(c) € Q,
and since (tr(b) -+ tr(c))? is an integer, we conclude that 2tr(b)tr(c) € Q and thus
tr(z) € Q. Therefore, we can apply part (i) to N = Y(0,2b, =) which proves that
tr(2b) and tr(z) are integers. By the analogous argument ¢r(2c) is also an integer
and the proposition follows. O

Theorem 7 Let M = Y(0,¢,d). Then Gap(M) > 0 if and only if tr(c) and

tr(d) are integers.

13



Proof. If tr(c) and {r(d) are integers, then it follows by Theorem 4 that T»(M) C
N and therefore Gap(M) > 1.

‘Assume now that Gap(M) > 0. Then, by Proposition 4, tr*(c), tr*(d) and
tr(c)tr(d) are integers. Therefore, we can write tr(c) = a\/n, tr{d) = by/n where
a, b and n are integers and n is square free or 1. We have to prove that n = 1.
Assume that this is not the case.

By Lemma 1, Tr(M) contains the set

{a+byvn—avn:y=1,23,..}.
By Lemma 3, Tr(M) contains the set
{nla+ bz -2:2=1,23,...}.
We will show that that there exist positive integers z and y such that

[2(a+b)"z — 2] = [(a + by v — av/n]

is arbitrarely small. We multiply the above difference by its "conjugate”

[n(a+b)*a — 2] + [(a + b)yv/n — aV/n]

and obtain

[n(a + b)%z = 2]* = n[(a + b)y — a]®.
Let z = n(a+6)* =2 —n{(a+b)—a]*, vz = n(a+b)*z -2, and v, = (¢ +b)y —a.
It then follows by the theory of binary quadratic forms (see for example Zagier
[14]) that the Diophantic equation

‘U.2 - 71‘02 =z

has infinetely many different solutions (u;,v;), i, 7 integers, since it has one
solution (uy,v;). Therefore, there are solutions (u;,v;) with 7 and j arbitrarely
big so that

[n(a+b)*c = 2] + [(a + b)yv/n ~ aV/n]

is arbitrarely big and hence, since z is a constant,
[n(a + b)x — 2] — [(a + b)yvn — av/n]
is arbitrarely small which has to been proved. O

Proof of Theorem 6 (ii).

Assume that Gep(T') > 0 for a non-elementary cofinite Fuchsian group T’ with
at least one parabolic element.

(i) We firstly assume that [ has no elliptic element. Let M = H/T. Let a be
a simple closed geodesic of M. Then M contains a second simple closed geodesic

14



Figure 6: The geodesics yx and y,, in a & + m-fold cover of Y;

b such that M contains the Y-piece Y(a,b,0). It follows be Theorem 7 that ¢r(a)
and tr(b) are integers. In Theorem 3 we can choose a generating set consisting
only of simple closed geodesics such that the products also correspond to simple
closed geodesics. It thus follows by Theorem 3 that Tr(M) is a subset of the
integers and hence [ is an arithmetic group derived from a quaternion algebra.

(ii) Assume now that I’ has an elliptic element a and that I" is not a triangle
group. Then I' contains a hyperbolic element b and T»(I") contains the trace
set of a degenerated Y-piece Y'(a,b,0) where the "boundary geodesic” a is an
elliptic point. By an analogous calculation as in the proof of Lemma 1, Y (a, b,0)
contains a closed geodesic d with

tr(d) = tr(b) + 2tr(a).

Moreover, Tr(Y (a,b,0)) contains Tr(Y(b,d,0)). Therefore, by Theorem 7, ¢tr(b)
and tr(d) are integers which, by the above equation, implies that 2¢r(ca) is also
an integer. An analogous argument as in the proof of Lemma 3 shows that
(tr(a) + tr(b))? is an integer hence tr(a) is an integer.

(iii) Assume finally that [ is a triangle group (a,b,o0). Then it contains a
hyperbolic element d and it follows as in Lemma | or part (ii) above that Tr(I)
contains the trace set of a degenerated Y-piece Y (a,d,0). Therefore, tr(a) is an
integer by part (ii) and hence also ¢r(b). Theorem 3 finishes the proof. O

Lemma 5 T'r(Y;) contains Tr(Y (0, yk, ym)) with tr(ys) = k(tr(z) +2) +2 and
tr(ym) = m(ir(z) + 2) — 2 for all pairs (k,m) of positive integers.

Proof. Compare Figure 6 and Lemma 1. O
Proposition 5 Tr(Y;) has linear growth if and only if tr(z) is an integer.

Proof. Assume that z = ¢r(2) + 2 is not rational. By Lemma 5 and Lemma 4
Tr(Y,) contains tr{ym)tr{ys) + 2 and hence the set

{mkz? —2(k = m)z —2:m,k e N\ {0}}.
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Since z € Q all these numbers are different for different choices of pairs (m, k).
We assume that & > m and it follows that

mkz* > mkz? — 2(k —m)z - 2.

This implies
i=N

#FlaeTr(Ye) 1 a <Nz 2 1/23 o0(i)

i=1
where op(2) 1s the sum of (positive) divisors of . It is well known that the above
sum grows like Nlog(N) and therefore, Tr(Y,) cannot have linear growth.
Assume now that z = a/b for integers @ and b > 1 with (a,b) = 1. It follows
by Lemma 3 that T»(Y;) contains the trace set of Yy for tr(z(k)) +2 = 2(2)
for every positive integer k. We have
i=b

#a € Tr(Y):a < b7} 2 1/23 aoli)

=1

since all numbers mkz2 — 2(k — m)z — 2 are different for different choices of pairs
(m, k) with mk < b. But by the above remark b can be replaced by b(5,, which
implies that Tr(Y;) cannot have linear growth. O

Theorem 8 [f Tr(Y(c,d,0)) has linear growth, then there exist integers a,b,n
such that tr(c) = ay/n and tr(d) = by/n and n is squarefree or 1.

Proof. This follows by the proof of Proposition 4 and by Proposition 5. O

Proof of Theorem 6 (i). Assume that 77(M) has linear growth. Then, by
Theorem 8, {r¥(a) is an integer for every simple closed geodesic a of M and for

every closed geodesic a of M which is a simple closed geodesic in a finite covering
surface of M. It follows that Tr*(M) C N, which implies Theorem 6 (i). O

Remark [ shall give some consequences of the previous results.

Theorem 9 Let M = H/I' be a non-compact surface of finite volume. Then [’
is artthmetic if and only if for every Y-piece Y, which is virtually contained in
M (this means that Y, is contained in a finite cover of M) tr{x) is an integer.

Proof. This follows by Propostion 3, Theorem 6 and Theorem 8. O

Theorem 10 Let [' and [V be two cofinite, non-compact Fuchsian groups. As-
sume that [ is arithmetic and that I is not arithmetic. Then

Tr(l") < Tr(T')  almost everywhere,

this means that there ezists a number n, depending on I and [, such that a} < «;,

for all i > n, where Tr([") = {a},a},...} and Tr(l') = {a1,as,...}.
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Proof. This is a consequence of Theorem 6. O

Corollary 4 Assume that M = H/T is non-compact and of finite volume and
has mazimal length spectrum and assume that in the moduli space of I' there is
at least one arithmetic group. Then ' is arithmetic.

Proof. Clear by Theorem 10. O
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