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CONTINUED FRACTIONS AND RELATED TRANSFORMATIONS

Introduetion

In these lectures we deseri1>e the origin and some of the recent applications of the

transfer operator method in the theory of expanding dynamieal systems. Originally

introduced by Sinai, Bowen and Ruelle in their work on ergodie properties of smooth

dynamieal systems, tbis method has been found to be applicable to a mueh wider field of

problems in the theory of dynamica1 systems. Typical examples are the theory of zeta

funetions as introdueed by Ruelle [R.2], which we will discuss in more detail, the closely

related problem of the distribution of closed orbits in hyperbolie systems, where Parry

and Pollieott found an amusing analogon to the prime number theorem [PP], discussed

in Pollieotts lectures [P], or finally Ruel1E~'s recent work on resonances ofAxiom A

systems [R3]. In all these applicationa analyticity properties of different funetions play

an important role wbich are established by the transfer operator method. Another

promising application of the method ia to Selberg's theory of surfaces of constant

negative curvature. Through bis trace formula respectively his zeta function there ia

established a surprising connection between the spectra of the Laplacians and the length

spectra of the closed geodesics of such surfaces. The main step for applying the transfer

operator method in tbis case ia Bowen's and Series' construction of a symbolic dynamics

for these nows, reducing tbis way the dynamics to special nows over analytic expanding

maps of the cirele respectively the unH interval [S]. For the modular surface tbis map is
\

just Gaus8' continued fraction transformation which serves as the main example of tbis

dass of expanding systems. The transfer operator method for tbis map will be the

central issue of our contribution. The above mentioned systems of 2--dimensional
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hyperbolic geometry, even if they are not really very exciting aB physical systems, are

nevertheless rather interesting !rom another point of view: they are highly chaotic

systems where the eonnection between the systems quantum and claBsical behaviour is

fully understood through Selberg's theory. Since the transfer operator method gives a

rather straightforward approach to this theory one could at least hope that this method

will shed new light also on the general problem of quantum chaos which treats the above

relation for general dynamicalsystems.

In the present lectures we restriet our discussion of the transfer operator method to

one dimensional expanding systems with rather sIDooth analytic dynamics . In this case

the method gives the strongest results.

By accident the Bowen-Series maps mentioned above belong to this class of

systems [SJ. For a discussion of the method for systems with less smooth behaviour we

refer to Ruelle's recent R. Bowen Lectures in Berkeley [Rl].

These lectures have been prepared during a stay at the IFF of KFA Jülich and at

the MPI for Mathematics at Bonn. I am indebted for financial support and the kind

hospitality extended to me at these institutions to their directors Prof. G. Eilenberger

and Prof. F. Hirzebruch.
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I. The Tramer Operator Method

In tbis chapter we introduce the trans~er operator for subsbifts of finite type [K]

wbich play an important role as mathematical models for so called lattice spin systems.

It is in fact the physical theory of such systems namely classical equilibrium statistical

mechanics where the origins of the transfer operator method can be found.

1. Tranfer Matrices for Lattice Spin Systems

It was one of the real deep insights of the work of Sinai, Ruelle, Bowen, Lanford et

al. during the last twenty years that there is a surprising analogy in the mathematical

structure of hyperbolic dynamical systems and c1assical spin systems on a lattice. These

spin systems and their ergodic properties under lattice translations are part of general

classical equilibrium statistical mechanies, one of the fundamental theories of classical

physicsJ closely connected to names like Maxwell, Boltzmann and GibbsJ to mention

only the most prominent ones. The Main objects of study of this theory are systems

composed of a huge number of interacting subsystems whose macroscopic behavioUI one

wants to understand from the underlyjng microBcopic interactions. Since real systems

like a piece of a ferromagnet are much too complicated to be described by the methods

available presently to us, one has to approach the problem by discussing simple models

fOI these systems, hoping that essential features responsible for the observed phenomena

are described correctly by them. Classical lattice spin systems are among the simplest

models to describe ferromagnetism: there classical spin variables are located on the sites

oI a lattice interacting with each other via some interaction. In the simplest case one

takes a one dimensionallatticeJ for instance the lattice 1l. of integers. Whereas for our

real world tbis case ia not too interesting, objects in nature are in general 3 dimensional,

it nevertheless playa a fundamental role in the theory of dynamical systems: tbis is



-4-

closely related to the fact that we are interested in general in evolutions with respect to

time which turns out to be l-dimensional in our world. As soon as one wants to study

the action of more general groups than "D.. or IR on some phase space one had to

consider also more complicated lattices aB for instance "D.k , k > 1 . Spin systems on

such lattices are much more complicated to deacribe mathematically, a fact closely

related to the phenomenon of phase transitions in such systems [R2].

The best known of all classicallattice spin models are the Ising type models where

the spin variable u takes values in sorne finite or countable set F. We ca.ll such a

system free if there is besides a possible exclusion rule for spins on neighbouring lattice

sites no interaction between different spins. Depending on whether the lattice is 7l or

"D.+ = {i E. 7l : i ~ O} and whether card F < m or card F = m the mathematical model

for such a free spin system. ie the one - or two--sided subshift of finite respectively

infinite type with alphabet F and transition matrix A describing the nea.rest

neighbour exclusion rule. As discussed in Keane's lectures [KJ A is indexed by the set

F )( F and its entries are either 0 or 1. We will always assume that An > 0 for sorne

n E. IN . Since many properties of the two--sided shift can be reduced to the shift over

7l+ [Bo], we restrict our discussion to this case. Anyhow, we are mainly interested in

noninvertible dynamicaJ systems and their symbolic dynamics leads to one-sided

subshifts [K], [M], [S]. In the following we introduce some notations which are

frequently used in the literature and which have their origin in classica.l statistical

mechanics, so that to many people they appear rather strange. We hope to remedy ibis

situation a little bit.

A sequence e= (e·)· 11 with e
l
• E. F is called a configuration of the spin

1 lE. +
11

system on the lattice 7l.+ and we denote the space of al1 such configuratious by F +
11

which ia configuration space. A configuration eE. F + ia ca.lled allowed if
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(1)

for all i€.11.+ . This means spin ei on lattice site i can have the spins ei- 1 and

ei+1 aB its left resp. right neighbour for all i ~ 1 . Let U8 denote by {}A the space of

all allowed configurations. On this space acts in a natural way the lattice translation 

or shift operator r: nA --+ nA through

(2)

In [K] it is shown how the space nA can be made a compact metric space such that r

becomes a continuous map on 0A' Then the pair (OA,r) defines a topological

dynamical system.

Part of classical statistical mechanics of lattice spin systems is just ergodic theory

of the dynamical system (0A,r) J that is the theory of measures on nA invariant under

the shirt r [KJ. Of special interest for equilibrium statistical mechanics are the 80

called equilibrium states, translation invariant Gibbs states, associated to the interaction

of the spins with each otherj such an interaction can be described by a continuous

function A E. ~(nA) , also called observable in the following, whose value at a

configuration e just describes the interaction energy between the spin eO on lattice

site i = 0 and the remaining spins ei on sites i ~ 1 plus a possible selfinteraction of

eO with itself. From this it is more or less obvious ihat the quantity

can be writ ten as [R2]

n-1

Hn(e) = 1: A(rke)
k=O

(3)
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(4)

where H(eO' ... ,en- 1) describes the energy content of the finite configuration

(~O' ... ,en- l ) and W(eO'''' ,en-ll en,en+1, ... ) is the interaction energy between the

SpillB (eO'''' ,en- 1) and the spins (enlen+l' ...) . Of fundamental importance in

equilibrium statistical mechanics are the Gibbs states. They are the infinite volume

limits aB n --+ m of the following finite volume probability measures /in

(5)

with H defined in (3) and e(n) any allowed configuration such that e{n) = e. for
n 1 1

o5 i :5 n - 1 . The choice of {(n) corresponds to the selection of certain boundary

conditions for the spin system. The normalization factor Zn(A) ia called the finite

volume partition function and depends obviously on the boundary conditions. It has the

explicit form

Zn(A) = l exp Hn(e(n)) .

{O' ... ,en- l tSF

(6)

The measures in (5) are the so called Gibb's ensembles, more precisely the canonical

ensemble.

Of special interest in connexion with dynamical systems are what are called

periodic boundary conditiollB. In this ca.se the configuration e(n) in (5) reep. (6) is

chosen aB

e~~i = ej for i = 0,1, ... ,n - 1 and all k tS IN . (7)
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Then the partition function Zn(A) can be rewritten aB

n-l

Zn(A) = l exp l A(.,.ke)

eEFix ~ k=O

(8)

where Fix Tn = {e E nA : Tne = e} denotes the set of all periodic configurations with

period n.

Through (5) respectively its infinite volume limit n --+ CD ) also called

thermodynamic limit, to every observable A E t4'(nA) there are a8sociated one or

several T-invariant probability measures on configuration space nA , which

completely determine the physics or more precisely the thermodynamic behaviour of the

infinitely extended spin system. The above Gibbs states are special cases of Keane's

g-mea.sures for subshifts of finite type where g = exp A . What now is the relation

between the above Gibbs ensembles and physical properties of the spin system, and how

can the latter be extracted from them? This is exacUy what the so caJIed

thermodynamic formalism is dealing with. A central role in tbis formalism is played by

the above partition functionB Zn(A) and their asymptotic behaviour in the

thermodynamic limit n --+ CD • More precisely, the following quantity P(A) is of

special interest

P(A) = I im ~ log Zn(A) ,
n~m

(9)

wbich is called the topological pressure of the observable A. In the physics literature

this quantity, up to a sign and sorne factor invo~ving the temperature, is called the free

energy of the spin system. It ia considered in general as a function of the temperature
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respectively some exterior magnetic field for a fixed given interaction. In (9) P is more

generally considered a functional over the space ~ ({}A) , that means a function of the

observable A and hence of the interaction..

The main problem now is the calculation of the pressure P for a given observable

A , respectively more generally the behaviour of P as a function of A .Completely

understood is the case, where the function A depends on the configuration

e= (ei)ie.ll+ only through finitely many variables eO'(l' ... ,er' One speaks in tbis

case also of a finite range interaction. In this case physicists found many years aga a very

elegant method for solving (9): it became known in the literature aB the transfer matrix

method. Indeed, already Ising used tbis method in 1925 in his Ph.n. thesis when

discussing what is nowadays called the 1-dim. Ising model: in our notation this model

corresponds to a subshift of finite type with alphabet F = {+ 1,- I} transition matrix

A I = 1 for all U,u I e. Fand the following choice of the observable A:u,u

A({) = sreOe 1 corresponding obviously to a' nearest neighbour interaction. The simplest

case however where the method can be applied are the free models, the subshifts of finite

type with transition matrix A. In this case A:: 0 and Zn(O) in (8) counts just the

number of allowed periodic configurations with period n:

(10)

A little thinking then shows that Zn(O) can be expressed in this case through the

transition matrix A as

Z (0) = trace An .
n (11)
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Sometbing siInilar happens in the case of the 1-dim. Ising model with A(() = ~{Oel"

If we introduce the matrix IL =L" {T,{T I E. F ={+ 1,- I} with
(T,U

we find again

L I = ex:p 9"U{T'u,(j

Z (A) = trace Ln .
n

(12)

(13)

Tbis raiBes the question if a representation like (13) can be found also for more general

observables A. It is weIl known in the physics literature, that for functions A

depending only on finitely many variables eO' ••• ,er corresponding to finite range

interactions one can find indeed such a matrix L = L(A) with

· n
Zn(A) = trace L(A) . (14)

Furthermore tbis matrix can be chosen to have only nonnegative entries as was the case

in (11) and (13). An explicit construction for such an L follows from our discussion of

more general transfer operators below. A positive matrix L = L(A) fulfilling relation

(14) is called a transfer matrix for the spin system with observable A. What have we

achieved in tbis case? Q1rlte a lot! Existence of such a transfer matrix allows a more or

less complete solution of problem (9)! By the Perron-Frobenius Theorem the pressure

P(A) can be written simply as

P(A) = log Al(L) (15)
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w~ere ~1(L) denotes the leading positive eigenvalue of L (assuming that at least some

power of L is strictly positive for the strang version of the P-F Theorem to be

applicable, which in fact can be shawn for finite range A's) .

Hy (15) the problem to determine P is reduced to a purely algebraic one, namely

to find the leading eigenvalue of the positive matrix L .

For general observables A €. 'if(OA) it is not known how to construct such a

transfer matrix L(A) respectively more general a trace class operator $ = ~A such

that relation (14) holds for a1l n. Since the size of L(A) increases rapidly with the

range of the finite range observables A, for infinite range observables A the transfer

"matrix tl L(A) tannot be anymore finite dimensional. In a certain sense a relation like

(14) gives much more information about such a spin system than one in general wants to

have: it not only describes the infinite system but also arbitrary finite approximations.

The infinite system is really described by expression (15). Therefare it is very often

enough to find a positive operator ~A whose leading eigenvalue "I gives via

expression (15) the pressure P(A) . That such an operator ~A really exists for a large

class of observables A was shown by D. Ruelle. Be introduced for general A E. ~(OA)

the following linear bounded operator :t = :tA on the Banaeh space ~(OA) [R2]:

(:t f)(e) = \ A t exp A(u,e) f(u,e)
L u,~O

UE.F

(16)

I I I

where (u,e) denotes the configuration e' = (e .). 11 with eO= u, e· = {. 1 for
1 lE. + 1 1-

i ~ 1 .

For this operator the Ruelle-Perron-Frobenius Theorem holds [Bo]:

Theorem (RPF) For Bälder continuous A the operator :t = :tA has the following

properties:



-11-

*
2) There exists a probability measure vA. (. ff(OA) with vA ~ 0 J vA(hA) = 1

*
and ~A vA = "'lvA

4) P(A) = log "'1

5) The probability measure IlA = hA · vA ia T-invariant and ia a Gibba state.

It is a rather simple exercise to show that the operator ~A for observables A

with finite range, that meana depending only on finitely many variables eO,e l' ... ,er'

leaves invariant the suhspace ~-1 (11A) of all functions depending only on the

variables eO'''' ,er- 1 . It reduces in thia aubspace to a matrix L = L(A) with

nonnegative entries, acting in the space RI F Ir and indexed by

r r
r"---"'''''"----' r---"'''''"---,
F )( F)( ... )( F)( F )( F)( ... )( F. Ha general matrix element

lL(t t)( ) ia given explicitly as
~O' ... '~r-1 u0' ... ,ur-1
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(17)

which obviously is strictly positive after iterating it sufficiently many times. Indeed, this

matrix is a transfer matrix for the observable A in the strong sense of relation (14) as

one ean verify easily. This justifies to eall .tA the transfer operator for the spin system

with observable A.

In the next section we IDSCUSS a simple example of an observable A whieh depends

on the entire eonfiguration eE. nA ' that means is of infinite range, but nevertheless

allows for a transfer operator such that relation (14) is still true with some minor

modification. This example serves also as a motivation to introduce methods of analytie

function theory in our diseussion wbieh play an imponant role in the thermodynamie

formalism of such systems as developped by the physicists.

2. The Kae model and eomoosition operators

The transfer operator .tA defined in (16) not only allows us to determine (at

least in principle) the pressure P(A) of the observable A but several other properties

of the spin system of great interest are related to tbis operator and its spectral

properties. Let us mention only the ergodie propenies of the measure p,A under the

translation T and the closely related decay properties of eorrelation functionB. Hy these

one understands for arbitrary observables f, g E. 'if(f!A) funetionB of the form

(18)
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Introducing the projector !f1: ~(OA) --t '6(0A)

with vA resp. hA defined as in the Ruelle-Perron-Frobenius Theorem, we find for

Cf the representation,g

(19)

where f denotes the operator

By the R-P-F Theorem we know for Bälder continuoUB A that

li m I IXin A' n I I = 0
n -+00

and hence we find in tbis case

limCf {n)=O.
n -+00 ,g

(20)

(21)

(22)

This shows that 11A is mixing [KJ and hence certainly ergodie. How fast the decay in

(22) takes place depends on the t1 smoothness" of the observables fand g, where

smoothness is related to the way these functions depend on the variables {i for large i .
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In the most favourable case the spectral radius of the operator .A' in (20) then is

strictly smaller than Al leading to an exponential decay of such correlations. In the

physics literature one talks in this case of systems with a finite correlation length.

Examples of such systems are the one dimensional lattice spin models with finite

range observables A. Another nontrivial exa.mple but with an A of infinite range is

provided by the Kac model [Ma3J. This model ia characterized by the following data:

F = {+ l,-l} I A ,= 1 for al1 u,u' E. F and the observableU,u

m

A(e) = jreo l ei
Ai .

i=1
(23)

There jr is some real parameter and 0 < A < 1 a constant describing the asymptotic

dependence of A on ej for i ---+ m I which obvioualy decays esponentially fast. The

transfer operator $ A for this model has the simple form

m

-Z'Af({) = l exp( jru lei_lAi) f (u,{) .
u =:1 i=l

From the R-P-F Theorem we know that

(24)

lim
n~ m

=0 (25)

where 1 represents the function f({):: 1 .

Denoting the function (AlU -Z'A l)({) by fn({) we see from (24) that any fn

belangs to the following subspace Am({}A) in ~(nA) :
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where DR = {z e. (: Iz I < R} and ?r: (}A ---+ DR is the map

m

it(e) = l ei_lAi.
i=l

(26)

(27)

Am(DR) denotes the Banach spate of all functionB f holomorphic in DR and

continuous on DR with the sup norm

I If I I = sup If(z) I
ze.U'R

(28)

That the space Am(OA) ia indeed invariant under the operator .:tA in (24), at least

for any R with R >~ J follows from

Lemma IOn the space Am(nA) the operator .:tA a.ct s aB

($Af)(e)= l exp(j'u1r{en f(tPu(1r{e))
u =::1::1

where tPq : DR ---+ DR ia the holomorphic map

t/J (z) = Au + Az .q (29)

The proof is a simple calculation tagether with the fact that for R >~ the function

exp (j'q z) f 0 1/Ju(z) ia in Am(DR) for fe. Am(DR) .
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This shows that $ A : Am{nA) -----t Am{f!A) is a well defined bounded linear

operator. What one would like to have now is that the eigenfunction hA corresponding

to the highest eigenvalue ..\1 belongs to the space ArJ){f!A) . Instead of working in this

space one can aB weIl study the induced action of the operator $ A in the space

Am{DR) which we denote by the same symbol:

$ Ag{z) = l exp (3"0" z) g( tPO"(z))
er =%1

with .,pO": DR -----t DR defined in (29).

(30)

Lemma 2 The eigenfunction hA belongs. to the space ArJ){f!A) 1 that means there

exists a function gA e. Am{DR) with

where "1 is the leading eigenvalue of $ A in the space ~(f!A) .

The proof follows from positivity and compactness properties of the operator

~A : ArJ){DR) -----t ArJ){DR) which we will discuss in a more general setup next.

From its definition in (30) we see that $ A is the sum of two operators both of

which of the form

$g{z) = cp(z) g 0 tJ.(z) (31)

acting in some Banach space of holomorphic functions over some domain D C( , such

that tP maps D holomorphically inside itself and tp is a holomorphic function on D
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too. To understand the functional analytic properties of $ it is obviously enough to

study the operator

C1/Jg(z) = g 0 ~z) (32)

which ia an example of a so ca1led composition operator. These operators and their

properties have been objects of intense studies up to the present day [8hl,8h2]. An

interesting question is for instance, how the spectral behaviour of such an operator

depends on the spaces of holomorphic functions on which it can be defined. There seems

to take place a rather complex interplay between the way 1/1 maps D inside itself and

the boundary behaviour of the functions on D on which Ct/J is considered to act. Trus

ca.n be seen already from the two extreme ca.ses for the map 1/J: ~z) = z or

tU,.z) = Zo . In the first case C1/J is the identity operator whereas in the second case it is

a rank one operator mapping the entire function apace onto a l-dim. subspace. In

simple words the reault of the work of Shapiro et al. [Sh, ShT, 8eh] ia essentially the

following: in the different spaces of holomorphic functiona over the domain D,

characterized by the functions boundary behaviour, the operator C1/J in (32) can be

compact or even traceclasa only if the image tU,.D) of the closure D of D hits the

boundary of D not too often and not too smooth. For spaces of boundary regular

functions, that means those continuous up to the boundary of D , it is known [Sh] that

C'r/J ia compact if and only if tJ.(D) does not hit 8 D in any point. Let UB give the

argument for the Banach space Am(D1). In this space a linear operator $ ia compact

iff any sequence {f } converging to zero pointwise containa a 8ubsequence {f.} such
n J

that ~im 11 $f·11 = 0 . Hence if C.1• is compact the sequence {fn} with
.t+ IJ) J Y-'

f (z) = zn whieh obvioulsy convergea to zero pointwise IDust contain a subsequence
n

{f.} such that lim IIC.1,f·11 =lim 11,p· jll =0 where ,p. j denotes the
J ~IJ) ~J ~m
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function 1/1. j(z) = (1/.(z)~ . This however" ia possible only if SUp I1/.(Z) I < 1 . The

ZtD

inverse direction of our claim follows from the sequel where we will show that Ct/J has

even stronger spectral properties than being compa.ct.

Example: In Am(D1) the operator C.,p with 1/.(z) =~ is not compact, even

though 1/.(D) hits 8 D only in the single point Z= 1 [8eh] .

Less restrietive for C.,p to be compact (or even tra.cec1ass) are the conditions on .,p if

one considers C1/J as acting on spaces of functions with less regular boundary behaviour,

typical examples for such spaces being the Hardy spaces Hp(D). For domains D with

smooth enough boundary lJ D and 1 ~ P < 'm the space Hp(D) is defined as [D]:

Hp(D) = {f: f holomorphic on D and f If(z) IPdz < lD}

8 D

(33)

It is known that for 1/J: D~ D holomorphic the operator C.,p is well defined and

bounded on H (D) [Sh]. Indeed one has [ShT]p

Theorem 1 If .,p maps D inside a polygon inscribed in the boundary 8 D then C.,p is

nuclear in Hp(D) in the sense of Grothendieck for all m > p ~ 1 .

Corollary 1 Under the conditions of Theorem 1 the operator C1/1 is tra.ceclass in the

Hilbert space H2(D).

Let us briefly recall the definition of compact respectively traceclass operators in a

separable Hilbert spare B.
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A linear operator $: eN ---+ JI

complete) orthonormal sets {fn}~=l

{Pn}~=l with Pn ---+ 0 such that

ia compaci if there exist (not necessarily

and {~}~=1 and positive real numbers

N

$ = l Pn(fn")&n J 1 5 N ~ Q)

n=l

(34)

where the suro on the right hand side converges in norm and (,) denotes the scalar

product in J{.

Remark. The numbers Pn are called singular values of $.

Using this representation for compact operators in the Hilbert space tH the trace

dass or nuclear operators are characterized by the property:

N

L is trace class iff L is compact and l 11 < Q) •

i=l

(35)

One then shows that anyoperator $: tN ---+ eN of trace class has the properly 1hat

for any orthonormal basis {<pn} of R the quantity l (<pn' $ 'Pn) converges

n

absolutely and is independent of the basis. U defines the tra.ce-functional

trace $ = l (<pn' $ <,on) which turns out to be identical to the sum over the eigenvalues

n

{ ...\} of $ counted according to their algebraic multiplicity. Grothendieck extended

this definition of trace class to general Banach spaces: A linear operator .:!: B ---+ B ,

B an arbitrary Banach space, is called nuclear of order q, if there exist families

* * *
{fn} E. B J {fn} E. B , Ilfn I1 ~ 1, Ilfnll ~ 1 J and a s~uence {Pn} of complex
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numbers, such that

(36)

and q = inf{p ~ 1 : II Pn Ip < m} . Convergence in (36) is again in the operator norm.

n
*The space B is the dual space of B , that is the space of continuous linear functionals

on B with the usua! norm. More details about Grothendieck'8 theory can be found in

an appendix, where also the possibility for de-fining a trace for such nuclear operators is

discussed, which is more delicate than in the Hilbert space case.

Remark: It is common use to call a linear operator $ in a Banach space simply

nudear, if in the representation (36) the numbers Pn fulfill II Pn I < m • In this sense

n

Theorem 1 has to be understood.

As for the space A (D) also in the space H (D) defined aBm m

H (D) = {f: f holomorphic in D, sup If(z) I < m}
m z~D

(37)

the operator Ct/J is nuclear Hf t/J maps D strict1y inside itself [8ch] .

Let us corne back now to the discussion of our transfer operator .!IA in (30). Since

the maps t/J in (29) map the disc DR for R > _A_ strictly inside itself it follows
u 1- A

from the preceding discussion that the composition operators C.,p are nudear, in fact
u

of order zero (see appendix) in the space Am(DR). Standard arguments about sums

resp. composition of nuclear operators with bounded operators finally lead to
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Lemma 3 The transfer operator .tA : Am(DR) --+ Am(DR) in (30) is for R >~

nuclear of order zero and hence of trace class.

Exercise Determine representation (36) for the operator

.t f(z) = cp(z) · f(pz)

Our next aim is to determine the trace of the transfer operator .tA . To achieve

this, we need the following fixed point theorem [EH], which we formulate in a very

general form:

Theorem 2 (Earle, Hamilton) H D is a bounded connected domain in some complex

Banach space B and .,p is a holomorphic map of D strictly inside itself, then .,p has

* *exact1y one fixed point z in D and 11 D ?/J (z ) 11 < 1 .

* *Thereby D Vi.,z) denotes the derivative of ?/J at the point z = z , which is a

linear operator in B. The term "strict1y inside itself' means that

in f 11 'f/.( z) - Z I I I ~ 6 > 0 .
zED,z I EB\D

Remark: For finite dimensional Banach spaces this result ia rather clasaical [H], even if

its proof ia not completely trivial. The above Theorem allows a complete determination

of the eigenvalues of the compostion operator C.,p on Aco(D) at least, if .,p map8 D
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strictly inside itself. We restrict our discussion to the case D ( ( , mention however,

that the result can be generalized immediately to any Bana.ch space B as long as the

*operator D~z ) is itself nuclear [Mal] ~

Lemma 4. If t/J maps the domain D C ( strictly inside itself then the spectrum of the

generalized composition operator .z'g = t.p -. Ct/J g on the spaee AQ)(D) consists of the

. * I * n .agenvalues An = rp{z )(,p (z» , n =0,1, ... convergIng for n ---+ Q) to the point

*o,where z is the unique fixed point of ,p in D.

Proof: Since ~ is compact the spectrnm of .z' is discrete with possibly 0 the only

accumulation point. Assume A to be an eigenvalue. Then we have

.tf(z) = cp{z)f 0 ~z) = M(z) .

*At the point z = z we find

* * *cp{z )f(z ) = M(z ) ,

* * *and hence, if f(z ) *0 , we conelude ~ = cp{z ) . If on the ather hand f(z ) = 0 we

look at the onee differentiated eigenequation

<p' (z)f 0 tJ.(z) + cp{z),p' (z)f' (tI(z» = M' (z) .

*Taking again z = z we get

* * * *cp(z ),p' (z )fl (z ) = M' (z ) ,
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* * *and hence, if f' (z ) f 0 , we find A = rp(z' )1/1' (z ) . Repeating this argument we see

* *that anyeigenvalue A of the operator $ must belong to the set {tp{z )1/1' (z )n} . We

show next that any of these numbers is a simple eigenvalue of $. For this take any

g €. Am(DR) with the property g(k)(z*) = 0 for 0 5 k 5 n - 1 and g(n)(z*) +0 . A

straightforward calculation then shows that there is no solution in Am(DR) of the

equation

* . *
, (.t - rp(z )1/1' (z )nl)f = g , (38)

* *and hence An = rp(z )1/1' (z )n is an eigenvalue of .t. From our previous arguments we

know already that eigenfunctions 'Pn belonging to tbis eigenvalue must fulfill the

relations 'Pik)(z*) = 0 0 ~ k ~ n -1 and 'P~n)(z*) f 0 . Differentiating the

eigenequation

(39)

(n + 1)-times we find at the point z = z* that 'P~n+l)(z*) is uniquely determined

by 'P~n)(z*) . From this we conclude that the solution of equation (39) is, up to a

constant multiplicative factor, unique. The preceding characterization of 'Pn combined

with equation (38) shows finally, that there ca.nnot exist any solution to the equation

($ - An1)f(z) = 'Pn(z)

and hence besides f = 'Pn also no solution to the equation

k($-An1) f = 0, k = 1,2, ....

(40)

(41)
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Tbis shows that "'n has algebraic multiplicity l.

Knowing this way the complete eigenvalue spettrum of the operator ~ = rp • C1/J

we can wri te down immediately its trace:

Corollary 2 The trace of the operator ~ = rp • Ct/J in the space Am(DR) is given by

the formula

CD *
tra.ce $ = 1: "'n = ---.!11 z ) *

n=O 1 - t/J' (z )
(42)

Remark: This formula has a straightforward generalization for domains D in (.m and

reads then

*cp{z )trace $ = *det(l - D1/.(z ))

* *where D'lj.(z ) denotes the derivative of 't/J at z = z .

Applying next tbis trace formula to the transfer operator $ A for the Kac model

in (30) we find the finite volume partition functions Zn(A) can be written as

(43)

The factor 1 - ",n can be get rid of very easily: define a second transfer operator
N N

$ A = '" $ A which obviously is also trace dass with trace $ Ä = ",n trace $Ä .

Hence we can represent Zn(A) finallyas:
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N

Zn(A) = trace .&"Ä - trace .&" Ä.

N

(44)

This shows that for the Kac model the two operators .&"A and ~ A play exactly the

role which for finite range functions A played the transfer matrix L(A).

In the next section we will diSCU8S how far this method can be extended to more

general subshifts of finite type.

3. General subshifts of finite type with nuclear transfer operators

Let UB start aur discussion with a slight modification af the Kac model where we

allow for a nontrivial transition matrix A , for instance A = [: :] . The Ruel1e

operator then takes the form

Q)

.i'Af(O = 1: AOOJ~O exp(oo :Y 1: ei_lAi) f (00,0 .
u =:1:1 i=l

(45)

The right hand side depends now on the variable ~O in a new way, namely through the

matrix element At. To cope with this situation we consider the operator .&"A as
u,~O

acting in the larger space e AQ)(o'A) whose elements f we denote by
UE.F

(46)

with { E. A (nA)' The space A (nA) is embedded in this 8pace through { = { tor
U m m u

all u E. F, f E. A ({}A) .On the apace ED A (nA)' the operator .&"A acta as
(I) ue.F (I)
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CD

(.t'Af}u(e) = l Au I U exp(O' I 9' l ei- l ~i) fO' I (0' I ,e) .
J

U'EF i=1

(47)

Now we can proceed as in the case A I = 1 . The operator .t'A in (47) induces anu,u

operator ~A in the Banach space EB A (Da)
O'EF CD

(.t'Ag) (z) = \ A I exp(u ' :Yz) g 1(1/1. I z) ,u L u ,u u q

u'EF
(48)

with the maps 1/Ju defined in (29). This operator is again nuclear of order zero and its

trace is given by

\ A exp(u AZ*) __1__
L (J,u U I *

uEF 1 - 1/J (z )u u

(49)

Introducing a second operator

N

we find also in this case for the partition functions Zn(A):

N

Zn(A) = trace .t'! - trace .t' Ä.

(50)

(51)

It should be dear now how we can apply the preceding method to a general subshift of

finite type, which fulfills the following conditions:
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(Tl) There exists a map 11": nA ---+ IRk , open sets Wu C IRk with

1(" ({lA) C U W and maps 't/J: U W, ---+ W with
u e.F U U u' e.S U U

U

S = {u' €. F : A ,= I} such that for any (u,{) €. 0A we haveu u,u

(T2)

(T3)

There exist complex neighbourhoods U of W in (k such that ../,u q ~q

extends to a holomorphic map of U U, strictly inside U .
q'e.S q q

q

There exist holomorphic functions Aq on Uq such that

A(q ,e) = Aq(tPq(w(e))) for q €. F .

If a subshift of finite type (0A'T) fulfills conditions (Tl) - (T3) then its transfer

operator :IA can be considered as acting on the Banach space tD A (U) as
q e.F lD U

follows:

Thia operator ia nuclear of order zero with trace .!IA given by the fonnula

trace :IA = l Au exp A (z*) 1 •.
q €.F ,q q q det(l - DtPq(zq))

(53)

*Thereby Zu denotes for u €. Sq the fixed point of the mapping tPq ' If u ~ Sq then

*z...,. ia obvioualy not defined. Thia does not matter eince then A = 0 and the
v u,u
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*corresponding term vanishes by definition. To get rid of the factor det(1 - Dt/J. (z )) inq q

(53) we use a weil known formula !rom multilinear algebra which teIls us that [GI]

k

det(1 - L) = l (- 1)r trace AIL
r=O r

(54)

where AL denotes the r-fold exterior product of the linear operator L in IRk .
r

This way we are lead to a whole class of transfer operators on the Banach spaces

e AB(U) where AB(U) denotes the B-space of differential I-forms
q EF r q r q

holomorphic over the domain Uq ((k . An element wr of this space has the

representation

(55)

with w· . e. A (U ).11 ... Ir m q

On the space e A B(U ) I I 5 r 5 k we define an operator ~1I) as
UEF r U

where AD"p I (z) denotes the r-fold exterior product of the linear operator
r q

D1/J
u

I (z) : (k --i (k .

The trace of the operator 21r) is given by the formula:

trace .z'lr) = 1: A exp A (z*) trace AD'f/J (z*) 1 *.
u,u U U r U q det(1 - D,p (z ))

ue.F u u
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This together with fonnula (54) then shows that

k

Zl(A) = l (-l)rtrace .z'ir)
r=O .

(57)

where .z'1.0) is identical to the transfer operator .z'A in (52).

It certainly does not come as a big surprise that quite generally the partition

functions Zn(A) of a subshift of finite type fulfilling conditions (Tl) to (T3) can be

expressed aB

k

Zn(A) = l (-l)rtrace( .z'ir))n .

r=O
(58)

Formula (51) for the Kat model now appea.rs as a special case of formula (58): one only

*has to take k = 1 and D1/Ju(zu) = A .

This concludes our disCU8sion of transfer operators for subshifts of finite type

(f!A,T) or in other words, one dimensionallattice spin systems. In the next chapter we

turn our attention to one dimensional expanding maps of the unit interval which

through symbolic dynamics are closely related to the former systems.
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n. Expanding Mape and their Transfer Ooerators

We restrict ou! discussion to dimension d = 1 for the reasons we explained

already in the introduction. Let us mention however, that most of the theory extends to

expanding systems of any dimension d (See for instance [Ma4J). The transfer operator

for a l-dim. expanding map T is better known under the name "Perron-Frobenius

operator11 and describes how densities transform under the map. This operator

corresponds exactly to the transfer operator for a subshift of finite type defined by the

symbolic dynamics of T (For symbolic dynamics see contributions in [A], [K], [M],

[P], [SJ). One only has to apply the procedure discussed in the preceding section to

define the transfer operator on same space of functions smooth in same domain D. In

the present case this domain is just the phase space of T which we take as the unit

interval I or some complex neighbourhood of it. The map 11" of condition (Tl) of the

preceding section, 11" : nA ---+ I I then defines just the symbolic dynamics of T and is

the first step for applying the thermodynamic formalism for spin systems as developped

in the first chapter. The following discU8sion will be centered around the questions what

kind of properties an expanding map must have 80 that the transfer operator method in

the strong analytic form of the foregoing sections can be applied and what kind of

problems can be treated by this method. In the laBt chapter we will finally discuss a very

special hut nevertheless for this meeting very interesting case of an expanding map

where the transfer operator method can be pushed raiher far to give rather new results.

1. The Perron-Frobenius operator

We denote by I the unit interval [O,IJ and consider maps T: I~ I with strang

hyperbolieity praperties
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Definition: A map T: I ---i I is called expanding, if there exists a countable partition

.A = {I.}. «of I into nontrivial intervals I. = [t. 1,t.] such that
1 1E...., 1 1- 1

(EI) I = U I.
iE.~ 1

(E2) int I. nint I. = t/J if i f j
1 J

(E3) T.:= T II is monotone and 'f!k
1 .

1

,
(E4) I(Tn) (x) I ~ 6 > 1 for some n ~ 1 and all x E. I .

In case the loeal branches T. of T are real analytic we call T an analytie expanding
1

map.

Ergodic properties of T with respect to an invariant Borel measure p are closely

related to speetral properties of the Perron-Frobenius (P-F) operator [LaM] of T

with respect to p. If .t'1(I,dll) denotes the Banach space of p integrable functions

over I then thie operator .t'T: $1(I,dp) ---i .t'1(I,dp) is defined through the

equation

Jdp(x) ~T f(x)g(x) = Jdp(x) f(x)g(Tx)

I I

(1)

where f E. $1(I,dp) and g E. $ m(I,dJl) are arbitrary. This operator tells UB how

densities with respect to the measure p transform under T: if dv(x) = f(x)d~x) ,

"
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f e. .1'1 (I,dJi), f ~ 0 , then we find for any measurable set A:

T*v(A) =v(T-
1
A) = Jdv(x) =Jdv(x) X 1 (x) =

T- A
T-1A. I

=JXA(Tx)f(x)dp(x) =JXA(x).t'T f(x)dp(x) =J.t'T f(x)dp(x) •

I I A

*which shows that T v is absolutely continuoUB with respect to Ji with density

.1'T fex) . From this we conelude that v = fsL is Tinvariant iff $T f = f .

Let us list sorne further properties of the P-F operator .z'T :

(PI) Jf d!, = J.t'T f d!, for all f lö .t'1 (I,d!,)

I I

(P2) .z'T f ~ 0 if f ~ 0 (positivity) (2)

In the following we are rnainly interested in the case where Ji is ordinary Lebesque

measure on I, so that from now on we set dp(x) = dx . In this case the operator $T

has a simple explicit representation for expanding maps:

(3)
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-1where 1/1 = Ti : TIi --+ Ii is the local inverse of T restricted to Ii and XTI. is the
1

characteristic function of the set Tli . Since the functions Ti are monotone by
I

assumption &nd I(Tn) I (x) I ~ 6 > 0 the functions tPi do not change sign on Tli and
I I I

ItPi (x) I is therefore equal to citPi (x) with ci = sign tPi (x) on Tli independent of

x.

As soon as at least for one i e. ~ Tli =1= 1 ~T does not leave invariant the

space ~ (I) of continuous functions over I since ~T f in tbis case is certainly

discontinuous at least at one of the two points Tti or Tti_1 . Hence eigenIunctions of

~T are at most piecewise continuous, in general even only .z'l' Here on the other

hand we are interested in systems whose P-F operator has piecewise analytic

eigenfunctions. This seems at first to be a rather restricted class of maps, but it turns

out that such map8 playarather interesting role in hyperbolic geometry in dimension 2

and the dynamical systems there: it was shown by Bowen and Series [S] that the

symbolic description of geodesic flows on surfaces of constant negative curvature involves

such one dimensional maps as some kind of Poinca.re map of the corresponding flows. For

more details we refer to the lectures by Adler [A], Manning [M], Pollicott [P] and

especially Series [S], where one can find also the references to the originalliterature. To

introduce tbis dass of maps, we need some more notation. H A = {Ii}ie. e5' is any

countable partition of 1 into dosed intervals Ii = [~-l,ai] we denote by

the set of boundary points of the Ii ' completely specifying the partition .A.

Definition: A partition .A = {A.} is compatible with the action of the map T iff
1

the partition determined by the set
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We next introduce so called Markov maps:

Definition: An expanding map T: I --+ I with partition A = {I.}. ~ is Markov, if
1 lE. '"

(MI) T dI.A is a finite set

(M2) there exists a finite number N such that T r!/,9( r//.9 if .9 denotes the

N
partition defined by the set U Tn cV',""U {O,I} .

n=1

Examples

[

3x mod 1

(1) If Tx =

3 1
~ x - ~

(5)

then T is Markov since # vi= { 0 , i '~} and #.9'= T dIvi= { 0 , ~ , I }

obviously obeys: T dI,9( #,9.

(2) If Tx =

!modl xfOx

o x = 0

,then (6)

dIvi= {O} U {~: n ~ IN } . If #.9'= T # vi= {O,l} we find: T #.9'( #.9' and

T is Markov.
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Remark 1 The partition .9 constructed above for a Markov map is the minimal

partition of I finer than the partition T u4' and compatible with T. We will see that

this partition .9 determines the kind of smoothness an eigenfunction of the P-F

operator ~T for T can have at most.

Remark 2 A Markov map has a second important partition namely the one determined

by #.9 U "",A . It is also compatible with T but finer than partition .9'. This

partition is in a certain sense the minimal Markov partition of the system (I,T) from

which symbolic dynamics can be constructed. This is the kind of partition used in almost

al1 of the lectures during tbis meeting. See especially the lectures of [P] and [S].

If T: I --t I ia an expanding Markov map with partition .A= {Ii}i~8' we

denote the partition .9' constructed above by .9= {Oj}j~X. The P-F operator .i'T

can then be written as

(~T f) .(x) = ~ \ c.,,/ (x) A( i) f D (tA(x)) if x ~ OJ' ,
J L L 1 1 ·t (.. 1

i~ e5' tE. X J

where we introduced for t ~ X and x ~ 0 t the notation

and defined for all i E. :Y and t,j ~ X the transition matrices

(7)

(8)

A(i) =
j,t

1 if,p. ( 0 .) ( 0 D
1 J (..

o oth erwi se

(9)
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To derive expression (7) one uses the fact that for a.ll i E. ~

TI. = U 0.
1 '.x J.JE. 1

where Xi = {j E. X: int 0j nint TIi f ,p} .

(10)

(11)

From tbis one derives that t!1(Oj) C0k for 1/.i(int 0j) nint 0k f ,p . Simple functional

analytic properties of the above P-F operator (7) can be derived for analytic Markoy

maps T . These are expanding Markov map8 with a partition !jJ oheying the following

conditions:

(Al) T. = T II is real analytic
1 .

1

(A2) for any 0j €. 9J there exists a complex neighoourhood Uj (( with

°jeUj such that the mappings "1 extend to holomorpbic maps on

U U. J mapping any U. for j €. X. strictly inside U..
j€. X J J 1 1

1

See the contributions of Pollicott [P] and Series eS] for examples where such

maps can anse.

For analytic Markov maps the P-F operator $T in (7) obviously defines a

nuclear operator of order zero on the Banach space fB A (Uf) of piecewise analytic
tE.X m

functions over the domains Uf. . The proof is the same as for subshifts of finite type

fulfilling conditions (Tl) - (T3). As in tms laUer case we can define also for expanding

map8 partition functions Zn(A) for abitrary observables A E. 'i!(I) by
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(12)

A very special role in the ergodie theory of such expanding maps is then pIayed by the

function A(x) = - ßlog IT I (x) I which far piecewise analytic functions is itself

piecewise analytic. In this case the partiüon function Zn(A) is just

n-l

Z (A) = Z (ß) = l TI 1
n n k=O IT' (Tkx) I/1 .

xe.Fix ~

(13)

It is not too difficult to show, that for expanding Markov maps Zm((f) can be rewritten

as

(14)

*where x . is the unique fixed point of Tm with the property that1
1

... im

(15)

(i k ) A(i k ) -0
and A

tk
+

1
t

k
= 1 for all 1:5 k :5 m (l.m+1:= t 1) . In the case t

k
+

1
t

k
- for

same k, the corresponding term has to be set equal to zero in (14).

To apply now the theory of transfer operators we define generalized P-F operators
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as follows

(~ s) f)J'(z) = \ \ (E.t/J~ (Z))ß t/J~ (Z)S A(i) f D (tA(Z)) .
ß L L 11 1 "f,.{" 1

ie. 3f le. X . J,
(16)

I

As long as I3f I is finite (remember % ia finite by definition!) and ,pi (z) :f 0 on

U U. the operators cA S
), s = 0,1 are nuclear for all ß e. ( . If on the other hand

je. X J .uß
1

I~ I = IIJ the range of ß's such that 4s) is nuclear has to be investigated in more

detail. This will be done later for the continued fraction transformation, where 3f = IN .

Applying next the trace formula (53) in eh. I. we find

*where zi denotes the unique fixed point of. Ti = TI I
j

respectively 1/1 in the interval

0l.. with t/1(Ot) C0l. . From this we conclude

(18)

It is a little bit cumbersome but straightforward to show for general m ~ IN :

(19)
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This shows piecewise analytic Markov maps possess nuclear transfer operators

(generalized Perron-Frobenius operators) which give a simple description of their

partition functions Zm({f). In the next section we apply these results to zeta functions

assciated with Buch systems.

2. Ruelle's zeta functions for exoanding maps

We restrict our discussion to analytic expanding Markov maps introduced in the

last section. It should be mentioned that the theory of zeta functions has been

developped for quite general dynamical systems [R], but the results are most complete

in the case considered here. These functions playafundamental role in Parry's and

Pollicott's work on the distribution of closed orbits in hyperbolic systems [P]. If

T : I ---+ I is such a Markov map and A: 1--+( some function then we defined

already the partition functions

Zn(A) = 1:
XE.Fix Tn

n-l

exp 1: A(Tkx).

k=O

These numbers can be put together in a very elegant way in some kind of generating

function, the so called zeta function

Q)

C(z,A) := exp 1: ~ zk Zk(A) ,
k~l

(20)
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which in this generality was introduced by D. Ruelle [R] for general hyperbolie

dynamieal systems. In the special eue A E: 0 , the above formal power serles in z is

just the Artin-Mazur funetion [ArM] for T sinee in this case

Z (0) = # {x E. I : Tnx = x} again simply counts periodie points of T of period n.
n

Quite a lot is known about analyticity propenies of the funetion C(z,A) both as a

function of z E. (: and of A in some Banach space of functions [R]. In general there is

same dise D around z = 0 such that C(z,A) for fixed A is meromorphie in D. For

aur class of maps this result can be improved quite a lot:

Theorem 3 If T: I -----+ I is an analytie Markov map with partition A = {Ii}ie.jJ'

and loeal inverses 1/\' i e. ~, and if the functions exp A 0 1/\ extend to holomorphie

funetions on U U. , then the Ruelle function C(z,A) has a meromorphie extension to
je.X J

1

the entire complex z-plane. This extension is given by the formula

Proof: Consider the generalized P-F operators %1s), 8 = 0,1 defined on

t: J{Am(U1.) by

($18) g)j(z) = 1: 1: exp A(!/1(Z)) (t/J~ (z))8 A~~) gt(!/1(z)) .
ie. 3" le. X J

One then shows again

(21)
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Using next the fomula

det(1 - z.t) = exp trace log(1 - z .t) (22)

valid for the Fredholm determinant of a nuelear operator of order zero [GI], we find

det(1 - z $11))
«z A) = ID) .

det(1 - z Z )

By Grothendieck's theory for nuclear operators the right hand side obviously is

meromorphic in the entire z-plane as the·quotient of two entire functions.

Instea.d of studying the function (z,A) in the variable z e. ( for fixed A, we

can also consider the function (l,ß A) for fixed A and ß varying in the complex

plane. Of special interest again is the case A = -log IT' (x) I ,which we mentioned

already in ihe last section: there is a elose connection between ibis function and the

Selberg zeta function for geodesie flows on surfaces of constant negative curvature, if one

takes for T the appropriate expanding maps. These matters are discussed in the

lectures by Pollicott [P].

By applying exactly the same arguments as above and also the fact, thai

det(l - .:tri is holomarphic in ß as lang a.s the nuclear operator .:tß depends itse1f

analyticallyon ß in some domain, we arrive ai

Theorem 4 H T: I --t I is an analytic Markov map with finite partition

cA = {li}ie. :1" 1:1' I < m , then the function
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m

((1,,8) = exp l ~ Zm(ß)

m=l
(23)

m-l

with Zm({f) = l exp-ß l log IT' (Tkx) I extends to a meromorphic

x€.Fix Tm k =0

function in the whole complex ß-plane . This extension can be written as

det(l 
((1,,8) =

det(l -
(24)

Proof: We have to take simply the generalized P-F operators ~s) defined in (16) of

eh. II.

Remark: Obviously, the poles of this function have to be found among those values of ß

for which the operator ~s) has A= 1 as an eigenvalue. Their multiplicity

determines the order of the pole.

In the next chapter we are going to apply our general results to the continued

fraction map Tx = ! mod 1 . This map plays an important role in number theory in
x

connection with continued fraction expansions. Hut this map is also closely related to the

symbolic description of the geodesie flow on the 80 called modular snrfa.ce as found by

Artin [Ar] whose work was continued quite recently by Series, Bowen, Adler et al. For

more details see their contributions [A], [S].
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IIT. The Qontinued Fraction Transformation (Gauss-Map)

1. Perron-Frobenius operators

The transformation T: I ----i I

(1)

x=O

plays a crucial role in number theory through its relation to the continued fraction

expansion of any real in the unit interval I:

x= 1 n. e. IN
1

(2)

For ahort, we will write this as x = [nl'n2, ... ] . It is known that this expansion is

finite iff x is rational. In thia caae the expansion ia not unique since n + 1 = n + i .
For irrational x however the expansion does not determinate and it is also unique.

From its definition we find

T
k (n1'~' ... ] - [nk+l' ... ] , k = 0,1,2, ... (3)

and nk = ((Tk-1x)-1] where (xJ denotes the largest integer S x . From thia we can

see immediately that the distribution of the entries nk in the expansion (2) of x is

closely related to the ergodic proporties of the dynamical system T in (1). Obviously,
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the Gauss map T is an analytie expanding Markov map defined in sect. 1 of eh. TI: For

the panition A = {In}ne.1N wi th

[
-1 1 ]I = -n n+l'n (4)

we find: T I (x) = T (x) = 1:. - n is analytic in x f 0 ,and I(T2) I (x) I ~ 4 > 1 for
I n x
n

all XE.I.

Furthermore we get for all n e. IN : TIn = I , so that XTl == 1 for all n e. IN . The
n

inverse maps t/.i = Ti1 : I ---+ Ii have the explicit form

1
t/i(x) = x + 1 ' (5)

and hence are meromorphic in the entire z-plane with a simple pole at z = - i .

Since T #'"",,= {OJ1} and hence T @'.9= dI!IJ if #',9= {O,l} , the partition ,9 is

the trivial partition .9' = {I} . Therefore the generalized P-F operators 4s) as

defined in (16) of eh. 11. have the form

(6)

acting on the space Aco(U1) where U1 is the disc

(7)

It is easy to verify that 1J.i(U1) ( u1 for all i E. IN . With this choice of U1 the

operators 4s) define nuclear operators of order zero on the space Am(U1) for all' ß



-45-

with Rß ß> ~ for s = 0 respeetively Re ß> - ~ for 8 = 1 .

Berore we are going to diseuss the different zeia functions for ihis system, let us

investigate a little bit in more detail the above operators -18
). For ß = 1 the

operator -10) is the ordinary Perron-Frobenius operator for T with respect to dx I

which perhaps was known already to Gauss. In fad, he must have known at least the
(0 )

eigenfunetion belonging to the leading eigenvalue Al of $ ß=I ' which by property

(PI) of the P-F operator in (2) of eh. II must be equal 1. This eigenfuneiion h is the

invariant density of the map T and turns out to be given by

1 1
h(x) = Iog2" X+T .

and defines what is called Gau88 measure for T.

(8)

Obviously, the function ~(z) belongs to the space Am(U1) . In a letter to Laplace

Gauss stated the result, that the asymptotie probability for the event Tnx < a in the

limit n --+ w is given b the fo:nua P(Tnx< a) = lo~ 2 log(l + a) . In modem

terminology this simply says

1i m p(T-n [0,a] ) = I i m
n-+m n-+m

a

f d~x) = lo~ 2 f x ~ 1 dx I

T-n [O,a] 0

(9)

where Ji denotes any normalized measure on I absolutely eontinuous with respeet to

Lebesque. By relation (1) in eh. n we ean write this also as

(10)
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and the result of Gauss is a special case of the asymptotic behaviour of the operator

.z10) under iterations. Unfortunately, it never became known how Gaus8 derived his

result in (9). In his letter to Laplace he also posed the problem of determining the rate of

convergence to the asymptotic law. A first proof of relation (9) was given much later by

R. Kuzmin [Ku] in (1928), who also 8how~ the error for finite n to be bounded by

q1fi for same 0 < q < 1 . This result was improved by P. Levi to qn with

o< q < 0.68 [Le]. In the meantime the number q has been determined numerically

even up to 20 decimal places [W] as

q ~ 0.30366300289873265860 . (11)

In the space Am(U1) Kuzmin's (or better Levy's) Theorem follows uom spectral

properties of the operator 4°) valid for real ß> ~ :

Theorem ~ The operator 4°) :A
m

(U1) --l AlIJ(U1) has a positive leading

eigenvalue Al(ß) which is simple and strictly larger than al1 other eigenvalues in

absolute value. The corresponding eigenfunction hß E. Aco(U1) is strict1y positive on

~O)* * *U1 nIR . The adjoint operator --ß : Aco(U1) ---t Aco(U1) has a positive

* *eigenfunctional lß with eigenvalue Al (ß) with lrJ-f) > 0 if f > 0 on U1 n IR . H .9'ß

denotes the projector

(12)

then 4°) has the representation

(13)
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with .9'ß·.Aß = .Aß · .9ß= 0 . The spectral radius of .Aß is strictly smaller than

Al(ß) .

*Exercise: Determine the eigenfunctional l1o'

From this Kuzmin's Theorem then follows as a simple corollary

C roluc 3 If .1Jj ie ur gcnerauzed P-F operator for the GaUBe map in the epace

Aoo(UI ) then

where qß = I~~~~ i < 1 and >'2({f) ie the eecond higheet eigcnvalue of -10) in

absolute value. H ß= I then AI{I) = land hence ql = IA2(1) I [MaRI], [MaR2].

The proof of Theorem 5 ia a Perron-Frobenius type of argument based on

poeitivity propertiee of the operator 4°). What positivity really meane in the eetup of

infinite dimensional Banach spa.ces we are going to explain next.

Definition A set K in the real Banach space B is called a proper cone, if p fE. K for

all rE. K and all p ~ 0 and if K n- K = {O} . A proper cone is called reproducing if

B = K - K , that is every g E. B has a representation g = fl - ~, fi E. K, i = 1,2 .

Given such a proper, reproducing cone K in B we can define positive operators with

respect to K:

Definition: A linear operator $: B --+ B is positive with respect to K if .tK ( K .
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o
In the following we assume the cone K to have nonemty interior int K = K .

o
Definition: A positive operator $: B ---+ B ia called uO-positive with UoE. K , if

there exiat for every 0 ~ fE. K a number p E. IN and reale a,ß> 0 , such that

where the order ~ is defined by K: f ~ g ~ g - fE. K . For uO-positive compact

operators one has a Perron-Frobeniua Theorem [Kr]:

Theorem 6 (Krasnoselskii) If $: B --t B is a compact uO-positive operator with

respect to the cone K such that ßuo~ $ Puo~ a Uo J then there exists exactly one

o
eigenvector h1 E. K and a "I > 0 such that $ h1 = "Ih1 . The eigenvalue "I ia

simple, in absolute value strictly larger than all other eigenvalues of :t and fulfills the

bounds rf/p ~ "I ~ a 1/
p

. For any fE. B one has I i m ~ln f1 f = c(f)h1 where
n-+m

It turns out that operator 4°) in (6) of this chapter is uO-positive with respect

to the following cone K :

(14)

which ia obvioualy proper, reproducing and haB non empty interior.
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Theorem 7 The generalized P-F operator .t10) is tor real ß> ~ no-positive with

respect to the cone K. Its leading eigenvalue ~1 (ß) fulfills a minimax principle

(15)

Proof (idea T0e uon) = 1 , willcha ccrtainly in K, The bound .t10) {~a(f) ia

trivial. To cstablish a lower bound ß(f) ~ .t10)p { tor same p ~ 1 for {E K\{O} .one

assumes that for every p €. IN there exists a point x €. U1 nIR such that

-10)p f(x) = °,Uaing the explicit form of -10) one then ahows that thia is possible

o
only if f == 0 . Ta get the minimax principle one argnes as folIows: if fE. K then also

~O) f(x)-10) fE KI hunce the function~ t0ea ita minimum and its maximum in

U1 nIR . Then obviously

min [-1:~~~X) ]f ~ -10) f ~ max [=1\~~~X)]f.

XE. U1nlR

o
This being true for all fE. K J we conelnde

sup min
o x

fE.K
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by referring to the bound for Al in Theorem 6. Since by the same Theorem h1 belongs

o
to K we get the minimax principie for Al(/1) .

This minimax principle leads to simple rigorous bounds for the eigenvalue Al(ß) :

(16)

o
where f is arbitrary in K. For f = 1 this gives for instance

(17)

m

w e ((zoq) = i ( : d is the Hurwitz zeta function.

i=O

In the special case ß= 1 we Bucceeded in [MaR2] applying the same technique

also to the setond highest eigenvalue A2(ß). To achieve this, one introduces the

B-ßpace A1,m(U1) ( Am(U1) of all f's in Am(U1) which together with their first

derivative ~ f(z) are continuous on U1 . Since any eigenfunction of ~O) different

!rom h1 must He in the kernel of the projector .9ß=1 onto h1 we can restriet our

discuBsion to the following space

(18)

Since ~O).9J. = .9J. ~O) this space is invariant under ~O), and obviously, ~O)

restricted to this Spate is indentical to the operator .Ai of Theorem 5. To define then a

cone left invariant by .AI we proceed as follows: any f €. A ~ ,00 can be written as
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f = h1 · f ,where h1 is the eigenfundion of ~1 with leading eigenvalue

Al(1) = 1 , which obviously is nonvanishing on U1 . Then define the cone C aB follows

A -

C = {f E. A~ (JJ(U1) : f' (x) 2: °on U1 nIR} .,

In [MaR2] we proved

(19)

Theorem 8 The operator-I1 is uO-positive in the Banach space A~,(JJ(U1) with

o
respect to the cone C, where uO(z) = 1 - h1(z) E. C .

From this it follows that at least for ß= 1 the eigenvalue A2(ß) is again simple

and real, in fact negative. It can be determined from the minimax principle:

m

A

(-Vf)'(x)

f' (x)
(20)

A

where Vf(z) = (z + 1)

Open problems:

l
n=1

(21)

1) Prove that al1 eigenvalues of the operator .40) are simple.

2) Do ihere exist invariant cones analogons to the cone C for f ß if ß 4= 1 ?
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2. Generalized transfer operators in BaId! spaees

In the foregoing seetions we discussed 8pectral properties of generalized P-F

operators in Banach spates of boundary regular holomorphie funetions. In 1his seetion we

try to restrict the space further to funcUons holomorphie in entire half planes whieh

however need not be 80 regular at the boundaries of such domains. For certain Hilbert

spaces of such functions it turns out that the operators 4°) are isomorphie to very

simple integral operators Jbß with kernel just the Besse! funetions. To derive this we

proeeed as (ollows: From the explicit form of the operator ~ß= 4°) in (6) we see

that any eigenfunetion of ~ß in the space Am(U1) must be holomorphie and bounded

in every of the half planes

B-1+6' = {z E. ( : Re z > - 1 + 6'} (22)

for 6' > 0 . It is therefore quite natural to introduee an $ ß invariant spaee eN of such

funetions. This ean be done via a generalized Laplace transform:

m

fez) = J dm(s)e-sz<p(s)

o
(23)

where dm(s) is some measure on IR+ whieh will be determined shortly. The funetion

cp should belong to some Spate of square integrable funetions over IR+ with respect to

the measure J.'. Since the space eN we are looking for should be ~ß invariant we

apply ~ß to f in (23) and find

2ß m --s _1_

[z ~ n] J dm(s)e z+n<p(s).

o
(24)
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lD [ ] 2ß --s_1
Obviously for Re ß > ~ the SUIll \ 1 e z+n is uniformly convergent

~ L z + n
n=l

in s E. lR+ and summation and integration can be interchanged. This sum however can

be rewritten also as

Q)

l
n=1

2ß -8 _1_ lD "k
[z~n ] e z+n = 1: ~ (k + 2ß i Z + 1)

k=O
(25)

lD

where ((z; q) = 1: [q~n ] z is the Hurwitz zeta function. For Re z > 1 this

n=O
function can be represented also ~ [Gr]

and hence relation (25) can be written as

~ [1 ] 2ß - z~n ~ (- s)k 1 ItIl tk+2ß-1e-zt
L z+n e = L --xr r(k + 2ß) e t _ 1 dt .

n=1 k=O 0

Inserting this into expression (24) we find

(26)

(27)

Q) m 2ß-l
.i'ß fez) = I dm(s)<p(s) I dt \ e~t

o 0 e - 1

~ f- st)k
L k!(k + 2ß) .

k=O

The sum in this expression can be performed explicitly to give [GR]:
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\ _ st k ~2~1 (2.,1fi)
L k!(k + 2ß) = .'ti 2ß=i .

k=O y.a

Inserting this finally gives

m 2~1 m ~ (2~
-'jH = f d e~ f dro(s\ 20 1 <P(B) •

o e - 1 0 ß - '2"
(ts)

1
ß-1J.

With <p(s) = S ~8) we find for

m ß-1
f(z) = f dm(B)e-tlz B ~ ;p(B) .

o

1
m ß-"}, m

f t -zt f .~N
~rJ(z) = dt t e dm(s) 8J2~1(2Y"SJCP(s) .

o e -1 0

Chosing therefore the measure

dm(s)=~
eS -1

we get

(28)

(29)

(30)

(31)
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with

m

Xß~t) =Jdm(S)~ß-l(2~~S).
o

From this we condude

Lemma 4: If B ß denotes the space of all functions f holomorphic in the half plane

H 1 and bounded in every half plane H 1 for 5 > 0 , which have a
-~ -~+ö

representation

m ß-1
fez) = Jdm(s)s 2" e-sz~s)

o

with q; E. .2'2(IR+,dm), then .2'ß leaves this Spate invariant.

(32)

Proof: The operator .%ß: $2(lR+,dm) ---+ .2'2(1R+,dm) ia bounded. Since its kerne!

t9J'2ß-l (2VSt) ia integrable with respect to dm the operator Kß is even trace dass (as

a Hilbert space operator). The space JIß can obviously be made a Hilbert space by

introducing the scalar product

m

(fl'f:!) =Jdm(B);P~(s );P2(s)
o

(33)
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We can give a more direct description of this Hilbert space without using explicitly

representation (32):

Theorem 9 For Re ß~ 1 the space tNß is identical to the generalized Hardy 8pa.ce

"'~~)ß of functions f holomorphic in H 1 belonging to the Hardy space
-2'

",(2) [H 1 ] for any 6 > 0 such that
-2'+6

lD +lDf x2Re
ß-2 dx f dy( If(x - ~ + iy) 1

2
- 1f(x + iy) 1

2
) < m.

o --m

Ordinary Hardy space ",(2)(Ho) over the half plane Re z > 0 is defined as

+lD

and f dy If(a + iy)l2 < m} .
--m

(34)

(35)

Proof: A simple calculation using essentially Plancherel's Theorem shows that for

f E. R ß as in (32)
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m +mid x2Re ß-2 dx J dy(lf(x - ~ + iy)l2- Ifex + iy)l2) =
o ---m

m

=( %§=p. J dm(s)l~s)l2<m
2 0

holds. To show that any f ~ J'(~~)ß has a representation as in (32) with

~ E. $2(IR+,dm) is a straightforward generalization of the classical Paley-Wiener

Theorem [D] for functions in ",,(2)(Ha ). Details are given in [Ma2].

For ß~ ( with Re ß> ~ one defines Space8 J'(~~)ß as those holomorphic

functions in H 1 which vanish for Re z --+ m and have the propeny that f' (z)
-2'

belongs to J'(~~)ß+l as in Theorem 9. Obviously, the space J'(ß is again identical to

the space J'(~~)ß . The case ß= 1 has been discu&sed in [MaRI]. Using nex1

arguments very similar to the ones used for ß= 1 in [MaR2] one proves

Theorem 10 The spectrum u( $ rP of $ß: Am(U1) --+ Am(U1) and the spectrum

u( $ ~ of $ ß: ""ß--+ dIß are identical and equal to u( J{~ of the integral

operator Xß with kernel .52ß-l(2.vst) in $2(1R+,dm).

An immediate consequence of this ia

Corollary 4 For real ß with ß> ~, &11 eigenvalues of .tß:Am(U1) --+ Am(U1) are

real.

Conjecture: For general real ß, ß> ~ , the eigenvalues are simple.
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3. Zetafunetions for the GaUBs map

Since Tx = ! mod 1 is an analytie expanding Markov map aB inttoduced andx

discussed in eh. II, we ean immediately apply the general tesults about zeta funetions fOt

such maps as described in seet. 2 of this eh. II. We only have to take care of the fact that

fot this map the set Fix Tn of all periodie points of period n has infinite elements fOt

all n E. lN : Obviously, x E. Fix Tn iff the continued fraetion expansion of x is petiodic

of period n, that means if x = [kl'k2t ...] then x E. Fix~ iff ki+n = ki fot all

i E. lN . Such x'S we wtite as

Consequently, the partition funetions

(36)

Zn(A) = l .exp

XE.Fix Tn

are not weil defined for general

Fix Tn = {x = [kl' ... ,kn ] ,ki E. IN} we find

A Inserting the set

n-l

Zn(A) = 1: TI exp A( [ i1+k, ... ,inJil' ... ,i1+k- 1 J) ,
il' ... ,inE.1N k=O

or if we introduce the function rp(x) = exp A(x)
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n-1

Zn(cp) = l TI cP( [ i1+k, ... ,in,il' ... ,i 1+k- 1 ])
il" .. ,ineJN k=O

(37)

Ta ensure convergence of these sums it is certainly sufficient the function 1cp(x) 1 to

behave like 1x 1
6 for x -----i 0 for some 6 > 1 . To be able to apply again the

techniques of analytic function theory, obviously, the function cp has to have same mild

analyticity properties: the functions '" 0 1f.\(z) = "'[ z ; n] mUßt be holomorphic in

the disc U1 . 0 bviously, the function cp(x) = exp - ßlog 1T I (x) 1 = x
2ß has tms

property, since the functions [Z; I]2ß are in A
m

(U1) for all i E. IN and furthermore

1cp(x) I N I x 1
2ß for x -----i 0 , so that canvergence in (37) is guaranteed for Re ß> ~ .

Summarizing tms discussion we hence get far the Gauss map T:

Theorem 11 [MaS] If cp: I ----i ( is such that cp 0 '1/1 e. Am(U1) for all i e. IN and

I cp(x) 1 Nix 1
5 as x ----i 0 for same 6 > 1 , then the zeta function

m n
C(z,cp) = exp l : Zn( 'iJ)

n=l

extends to a meromorpmc function in the entire z-plane. This extension is given by

det
C( z,cp) = -----l~-_+_JrT.......

det

where the nuclear operators $~s) I s = 0,1 are defined as
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CD

$~S)f(z)= 1: \0 [Z~l](-l)Sf[Z~l] .
i=l

(38)

As mentioned already several times, of special interest is the case

rp(x) = exp - ßlog IT I (x) I = x2ß . Then the above operators (38) are just the

generalized P-F operators of section 1 of the prcsent chapter:

J.; ) CD [ 1 ] 2ß+2s s [ 1 ]
J;ßS f(z) = 1: z + 1 (- 1) f z + 1 •

i=l

(39)

For Re ß> ~ these are nuclear operators of order zero and depend analytically on ß.

Hence we can apply Theorem 4 in section Ir. 2 to find

CD

Theorem 12 The function ((1,ß) = exp \ 1. Z (ß) withl m m
m=l

n-1

. Zn(ß) = 1: n (Tkx)2ß extends to a meromorphic funciion in the complex

XE.Fix Tn k=O

ß-half plane Re ß> ~ through the fonnula

det
C( 1,ß) = ~-----'T-K-l:"""""4-

det

whose poles are among the ß-values , for which 4°) has eigenvalue A = 1 .

We will show next that the function C(l,ß) is meromorphic even in the entire

ß-plane . Ta achieve this we have to find meromorphic continuations of the functions
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det (1- 4S
)) • Since the arguments for s = 0 and B = 1 are identical, we restrict the

discussion to the case s =°.For simplicity we write again ~fJ for 4°) J which is

the operator

m [ 1 ] 2ß [ 1 ]
.trJ(z) = l Z + 1 f Z + 1 .

i=1

(40)

The idea is to extend this operator to the whole ß-plane. This can be done step by step

as follows: we write Zß in a slightly different way as

For Re ß> ~ this gives

~r/(z) = f(0)((2{J;z + 1) + i [z'; 1] 2ß [f [z .; 1] - f(0)] .
i=1

That means, $ ß is the sum of the finite rank operator

'".trJ(z) = f(0)((2ß;z + 1)

which is trivially nuclear of order zero in Am(U1), and another nuclea.r operator

$'r/(z) = i [ziJ]2
ß [f [ziJ] -f(O)] .

i=l _

(41)

(42)

(43)

(44)
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The zeta funetion ((2ß i z + 1) is for any z E. U1 a meromorphie funetion in the entire

ß-plane with the only pole at ß= ! 'which is simple and has residue !. From this we
A

conclude that the operator $ ß in (43) ia a nuclear operator meromorphic in the entire

ß-plane with the property:

(45)

where 1/J denotes the function ~x) =~ log r(x) . The operator .?ß in (44) on the

other hand is nuclear of order zero in the domain Re ß> 0 . This comes !rom the fact

that

If[ --r+1 ] - f(O) I~ c 1 for all i ~ M and M large enough.
z 1 Iz+i1

The foregoing diseussion shows that the operator $ ß in (42) defines an analytic

continuation of the operator $ ß in (40) which is nuclear of order zero in the domain

Re ß> 0 with a simple pole at the point ß= ! ' determined by equation (45). Quite

generally we can continue the operator $ ß in (40) meromorphically into the whole

ß-plane as follows: for any N E. IN we decompose $ ß into two pieces

N (J) [ 1 ] Jk> [ 1 ] k
$ ßf(z) = l l z + 1 • Z + 1 +

k=O i=1

(46)

m [ 1 ] 2ß [ 1 ]
+ l z + 1 IN z + 1 '

i=l

where IN(z) denotes the rest term in Taylor's expansion of f around the point z = 0 :
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N
v Iki~O) kfN(z) = f(z) - l . z.

k=O
(47)

Since the Taylor expansion for fE. Am(U1) ia uniformly convergent for instance for all

z with Iz I 5 ~ we find that for Iz I :5 i

(48)

Expression (46) can be simplified to give

N ~k) (I) 2ß
$ßf(z)= L ~((2ß+k;z+1)+ L [Z~lJ fN [Z~lJ· (49)

k=O i=1

A

The first term in (40) defines a finite rank operator $ ß,N

N
A ~k)(O)

$ ß,N f(z) = 1: ----rr- ((2ß + k;z + 1) ,
k=O

(50)

meromorphic in the entire ß-plane with simple poles at the points 2ß + k = 1 . The

behaviour of the operator .;ß,N for ß -----+ Y 0 ~ k ~ n is the following:

. [A 1 I d)] ~k ) (0)
h~-k .z' ß,N f(z) - 2ß + k -1 . =- f/.(z + 1) ----rr- +

ß-+--rr
(51)

N ~t) .
+ l ~ ((I+t-k;z+l).

t=O,t+k
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This shows that the residue of ; ß,N at the point ß --+!...j! is the following operator

of rank 1 in the space Am(U1)

1 ~ki~O)f k f(z) = ~ .'

Obviously tbis operator ia nilpotent for all k ~ 1 ihat means ~:: 0 for k 2: 1 .

The second term in the representation (46) on the other hand defines a nuclear

(52)

with fN defined in (47).

Because of (48) the operator ~ ß,N is nuclear of order zero and holomorphic in ß

in the half plane Reß> - ~ . Since the above arguments hold for any N E. IN , we have

shown

Th~r~m l~ The operators 4s) in (39) have meromorphic continuations as nuclear

operators of order zero into the entire complex ß-plane with simple poles at the points

1 - k . 11 Jk)ß= -,--, k = 28,28 + 1, ... , and resldue the rank 1 operator f k f =~ ltr f\ (0).

The Fredholm determinants det(l- -1s» are meromorphic in the entire ß-plane

with simple poles at the points ß= !...j!,k = 2s,2s + 1,28 + 2, ....

Let us apply this result to the following function 'T which ia a little modification

of Riemann's zeta function:
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(T(ß):= l x2ß = l [i] 2ß ,
xe.Fix T ie.1N

(53)

with [ i] = [i~,i, ... ] the irrational number x > 0 , whieh obeys the equation

2 . 1 S·x + IX = . Inee

(54)

the analyticity properties of (T(ß) are determined by the analyticity properties of the

two traces in (54).

Lemma 5 Tue trace of tue Oft amr atV) is meromorphic in tue entire ß plane witu a

simple pole at the point ß= ~ - 8 •

rod- duce 2'V = (-1 (;MS N + ; ß+s,N) • wuere tue operators on tue right

have been defined in (50) resp. (52), we find

N
~s) 8 A

trace ..ß = (- 1) (trace .:tß+s,N + traee .:t ß+s,N) . (55)

A

The trace of the operator $ ß+s,N can be determined explicitly, since this operator is

a finite sum of rank 1 operators:

N
A 1 dk

trace $ ß+s,N = l Kr 7K
d

((2ß + 2s;z + 1) Iz=O .
k=O z

(56)
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Using the formula [GR]:

daz ((q,z) = - q((q + Ijz) ,

we find:

N
A \ k 1

trace ~ß+s,N = l (-1) Kr (2ß + 2s) .. : (2/3 + 28 + k -1)((2/3 + 2s + k) ,
k=Q

(57)

(58)

with ((x) ordinary Riemann's zeta function. Since this function has only one pole,
A

namelyat the point x = 1 , which is simple, we conelude from (58): trace ~ß+s,N is

meromorphic in the entire ß-plane with simple pole at the point 2ß + 2s = 1 with
N

residue !. On the other hand we know, that the operator ~ ß+s,N is holomorphic in
N

ß in the half plane Re /3 > - ~ - s and hence trace ~ ß+s,N is holomorphic in this

region too. Since representation (55) holds for any N E. IN Lemma 5 is proved.

From this we then get

Theorem 14 The function (T(,ß) = l [i ~ /3 has a meromorphic continuation into the

ie.1N

entire ß-plane with simple poles at the points ß= :i: 1 with residues 1.

Problem Does there hold something like Riemann's conjecture about the position of the

zero's of the function (T? Does the function (T fulfill some functional equation? Since

the function i ----t [i] is not multiplicative it is not obvious why this should be true.
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Theorem 13 allows also an improvement of Theorem 12:

Theorem 15 The function ((1,ß) in Theorem 12 haB a meromorphic extension to the

entire ß-plane with trivial zero's at the points ß= 0 reep. ß=! .The nontrivial

poles respectively zero's of (I,ß) are among the points (J such that 4°)
respectively 41) have ~ = 1 among their eigenvalues.

Remark: We know already that 4°) has ~ = 1 as an eigenvalue for (J = 1 : the

eigenfunction is just the density of the Gauss measure. Our discussion above also shows

thai the operator .z11) has a spectral radius strictly smaller than 1. Hence ß= 1 is a

simple pole of the function ((I,,B). A similar argument shows that ((I,ß) has no other

pole on the real &xis for ß> 1 nor any zero for ß~ 0 . Of special interest are the poles

of ((1,ß) on the line Re ß= ~ : one expects a elose relation between these numbers and

the eigenvalues of the hyperbolic Laplacian är on the modular surface Mr ,

r = PSL(2,ll) . This is related to receni work of Pollicott on Selberg's theory for

compact hyperbolic surfaces via transfer operators. The function ((I,ß), where the

Gauss map is replaced by the Bowen-8eries boundary map [S] for the corresponding

compact surface, is then elosely related to Selberg's zeta function for tbis surface. Its

poles on the line Re ß= i hence determine the spectrum of är completely. This way

it is, at least in principle, possible to determine these eigenvalues through the spectrum

of the corresponding transfer operators. Since the Bowen-Series maps belong to the class

of analytic expanding Markov maps the methods developped above should be of some

help. Since for the modular surface Mr the Gauss map is more or less the

Series-Bowen map one should expect ((I,ß) and its poles on the line ß= i + i s to be

closely related to the spectrum of - är . Since Mr for r = PSL(2,ll) is not compact

its Laplacian has continuous spectrum, into which there are embedded infinitely many

eigenvalues. Not much seems to be known about these numbers. It would be niee if more
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could be learned about them through our transfer operators -1s) by using the theory

developped above.
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Appendix

Grothendieck's Theory of Nuclea.r Qperators

This theory generalizes nuclear resp.. trace class operators to arbitrary Banach

spaces [G2].

*If B is an arbitrary B-ßpace and B its dual, that means the space of bounded

*"
functionals on B J the projective topological tensor product B GD?r B is the completion

*of the ordinary tensor product B GD B under the norm

I IX I l?r = in! l I Ie; I I I Iei I I
{i}

(Al)

\ * *where the infimum is taken over all finite representations X = L ei GD ei e. B GD B .

{i}
*"The elements X e. B S B are called Fredholm-kemels and any such X has a

1("

representation

X= l
{i}

*A. e. Se.
I I I

(A2)

* * *with ei e. B, ei e. B such that Ilei 11 = Ilei 11 = 1 and {Ai} e. t l ' that means

l 1Ai 1< CD •

{i}

Every such X defines in a canonical way a linear operator $ X : B --+ B

through
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~X f = l Ai e;(f) ei .

{i}

(A3)

*A
On the spate B GD B of Fredholm kemels there exists a canonicallinear functional,

11'"

the trace:

trace X = l ~ e;(ei) .

{i}

One can define nuclear operators in an arbitrary Banach spate B as folIows:

(A4)

Definition 1 A linear bounded operator ~: B ----+ B is nuclearJ if there exists a
*A

Fredholm kerne! X E. B 81(" B with ~= ~X .

An interesting class of nuclear operators are the p-summable ones. Ta define

these we need

*'"
Definition 2 A Fredholm kerne! X E. B GD1(" 'B ia called p-summable (0 < p ~ 1) if X

*has a representation X = \ A. e. GD e· with {A.} e. t J that meansL 1 1 1 1 P

{i}

A nuclear operator $ is Humrnable, if there exists a p-summable

*'"XE. B 81(' B with
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The order of a Fredholm. kernel X is the infimum q of all 0 < p ~ I such that X is

p--;;ummable . Since a nuclear operator .:I can have more than one Fredholm kernel

with .:I = ..iX the trace of .:I cannot be defined in general. For nuclear operators of

order 5 i Grothendieck proved however

Theorem Al If .:I is nuclear of order ~ i then .:I has a trace with

trace .:I = l Pj, where Pj are the eigenvalues of .:I counted according to their

{i}
algebraic multiplicities. The Fredholm determinant det(l - z.:l) is an entire function of

z given by the formula det(1 - z.:l) = TI (1 - '1z) . For this Fredholm determinant

i

the formula

det(1 - z.:l) = exp trace log(l - z J;')

is true. If $: .:I(ß) and the dependence on ß is holomorphic for ß in some domain

D then det(l - .:I(ß)) is holomorphic in D.

For special Banach spaces, for instance those of holomorphic functions over

domains in (n, every nuclear operator .:I is of order zero and hence of trace class

[G2] .

The notion of nuclear operator cau be generalized to Frechet spaces, complete

metric topological spaces. Among them there is a class of spaces, 80 called nuclear

spaces, which have the nice property that every bounded map of such aspace .:F into an

arbitrary Banach space B ia nuclear.

A typical example of such a nuclear space is the space R(D) of all holomorphic

functions over sorne dornain D in (n whose topology is defined by the seminorms

11 11 K' K compact in D:
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I If I IK = su p If(z) I .
ZE.K

By using nuclea.rity of the spate di(D) ane proves in an elegant way nuclearity of the

composition operator CI = f 0 1/J if 1/J maps D strictly inside itse1f: consider namely

the operator C1/J: ß(D) --+ A(D(D) . One shows that under the above condition C1/J

is bounded and hence nuc1ear: we have only to find a neighbourhood of zero in 3(D)

which is mapped into a bounded set in Am(D). For this define

UM(O) = {f E. 8(D) : sup If(z) I < M}
ZE.K

where a compactum K is chosen such that

tt(D) ~ K CD.

But then we find for all fE. UM(O)

I IC ,{ I I = su_p If 0 tt(z) I ~ 8U p If(z) I < M
1fT ZE.K

ZED

and hence C1/JUM(O) ia bounded in Am(D). Composing Ct/J with the bounded

injection

i : A(D(D) --+ ß(D) i(f) = f

we find C./1o i : A (D) --+ A (D) is nuclear. More details about nuclear spaces and
'Y (D (J)

nuclear operators on Frechet spaces one finds in [G2].



-73-

References

[A]

[Ar]

[ArM]

[Bo]

[D]

[EH]

R. Adler: q.v.

E. Artin: Ein mechanisches System mit quasiergodischen Bahnen. In

"Collected Papers", Addison-Wesley 499-501 (1965)

E. Artin, B. Maznr: On periocÜc Points. Ann. Math. (2) 81, 82-99 (1965)

R. Bowen: "Equilibrium States and the Ergodic Theory of Anosov

Diffeomorphisms" LNM HQ., Springer, Berlin (1975)

P. Duren: "Theory of HP-Spaces", Acad. Press N.Y. (1970)

C.Earle, R. Hamilton: A fixed point theorem for holomorphic mappings. In

"Global Analysis l1 Proc. Symp. Pure Math. vol XIV, eds. S. ehern, S. Smale,

AMS, Providence, R.I. (1970)

[G1] A. Grothendieck: La theorie de Fredholm. BuH. Sec. Math. France M,
319-384 (1956)

[G2J A. Grothendieck: Produits tensoriels topologiques et espaces nucleaires. Mem.

Am. Math. Sec. 12 (1955)

[Gr] I. Gradshteyn, I. Ryzhik: 11 Table of Integrals, Series and Products 11, Acad.

Press, N.Y. (1965)

[H] M. Herve: "Several complex variables, local. theory" p. 83, Oxford Univ. Press

(1963)

[KJ M. Keane: q.v.



-74-

[Kr] M. Krasnoselskii: "Positive 8OlutiOIlB of operator equations", eh. 2. P. Noord

hoff, Groningen (1964)

[Ku] R. Kuzmin: A problem of Gauss. In Atti Congr. Internat. Mat. vol ~, 83-89,

Bologna (1928)

[LaM] A. Lasota, M. Mackey: "probabilistic properties of deterministic systems",

Cambridge Univ. Press (1985)

[Le] P. Levi: Sur les lois de probabilite dont dependent les quotients complets et

incomplets d'une fraction continue. Bull. Soc. Math. France QI, 178-194

(1929)

[M] A. Manning: q.v.

[Mal] D.Mayer: On composition operators on Banach Spates of holomorphic

funCtiOIlB. J. Funet. Analys. ~, 191-206 (1980)

[Ma2] D. Mayer: On the thermodynamic formalism for the Gauss map. To appear

[Ma3] D. Mayer: "The Ruelle-Araki Transfer Operator in Cisssical Statistical

Mechanics". LNP 123, Springer, Berlin (1980)

[Ma4] D. Mayer: Approach to equilibrium for locally expanding maps in Rk .

Commun. math. phys. 9.Q, 1-15 (1984)

[MaS] D. Mayer: On a , function related to the continued fra.ction transformation.

Bull. Soc. math. France 104, 195-203 (1976)

[MaRI] D. Mayer, G. Roepstorff: On the relaxation time of Gauss' continued fraction

map 1. Hilbert space approach. J. Stat. Phys. 11, 149-171 (1987)

[MaR2] D. Mayer, G. Roepstorff: On the relaxation time of Gauss' continued fraction

map. II. Banach space approach. J. Stat. Phys. QQ, 331-344 (1988)



-75-

[PP] W. Pury, M. Pollicott: An analogue of the prime number theorem for closed

orbits ofAxiom A flows. Ann. Math. llS., 573-591 (1983)

[P] M. Pollicott: q.V.

[R1] D. Ruelle: The thermodynamic fonnalism for expanding maps. R. Bowen

Lectures at UC Berkeley 1988. mES Preprint P/89/08

[R2] D. Ruelle: t1Thermodynamic fonnalism" , Addison-Wesley, Reading Mus.
(1978)

[R3] D. Ruelle: Resonances for Axiom A flows. J. Diff. Geom. ~, 99-116 (1987)

eS] C.Series: q.v.

[Sh] J. Shapiro: Compact eomposition operators on spaces of boundary-regular

holomorphic funetions: Proc. A.M.S. !QQ., 49-57 (1987)

[ShT] J. Shapiro, P. Taylor: Compact, nuclear and Hilbert Schmidt composition

operators on H2 . Indiana Univ. Math. J. 23,471-496 (1973)

[Seh] H. Sehwartz: Composition operators on HP . Ph.-D. Thesis, Univ. of Toledo

(1969)

[W] E. Wirsing: On the theorem of Gauss-Kuzmin-Levy and a Frobenius type,

theorem for function spaces. Acta Arithm. 2.1,507-528 (1974)


