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I. It is a basic problem in foundations of quantum mechnics

to describe how one can reconstruct the state-vector of an
ensemble of particles from the experimental data obtained in

the course of observation. Max Born, [Z2, p. 100]:

"physical significance is confined to the gquantitiy lez

(the square of the amplitude), and other similiarly constructed
quadratic expressions (matrix elements) which only partially
define ¢, it follows, that eveﬁ when the physically determinable
quantities are completely known at t;me t = 0, the initial

value of yY-function is necessarily not completely definable".

To be more. precise, one may ask whether the data
o, (1, AcA

determine the state-vector ¢ up to a constant phase factor.
Here A 1is a given set of self-adjoint operators in a complex.
Hilbert space X and ILpA(J\)I2 is the spectral density of the

operator A w.r.t. the state-vector v , so that
(1) SHIE@Y> = [1y, (A I°E(0) ao(h)

for A€A, ¥ € X (cf. §2). In particular, let X = L®(R>, d)).

be the Hilbert space of complex-valued L2-functions on IR3 H



one may ask to what extent the absolute values |[¢(x)| and
A
[y (p) | determine the function, that is how to describe the

set of solutions of the system of equations

_ A ) “ 2.3
(2) wx)l = £(x}, 1vip)l = g(p) Yy € L™(IR™)

A
for two given functions £ and g; here  denotes the

Fourier transform of ¢ and one should assume, of course,
that f(x) 20, g(p)20 for X - a.e. x€]R3,pE]R3.Even
in this special case, corresponding to the position and momen-
tum measurements for an ensemble of sninless non-relativistic
particles, this problem remains unsclved. It has been, however,
shown in [7] that given a solution of (2) one can construct
another solution; thus position and momentum measurements are
in general not sufficient to reproduce the state-vector of a
spinless particle (in accordance with the remark of M. Born's
cited above). Developing further this idea we construct here
an infinite system fA(a)[a € R} of self-adjoint operators,
such that although the operators A(a) and A(8) have no
common invariant subspace when a # 8, there are two véctors

" and ¢~ such that ¢  #cy” with c€C but

Iw;(a)(k)l = |w;(a)(k)l for o € R . Thereby we give a counter-
example to a conjecture of Moroz's expresséd in [8, p. 333].
The general problem of'describing the set of solutions
{¢|v € X} to the system of equations (1) when A varies over
a given set A of self-adjoint operators remains unsolved.
One may ask, for example, whether equations (2) have only a
finite number of solutions or, more generally, what conditions

should one impose on A to guarantee uniqueness (up to a



constant factor) of the solution to the system of equations
(1). Already in 1933 E. Feenberg suggested another approach
to the discussed reconstruction problem and'gave an heuristic
argument suggesting that one could uniquely reproduce the
y-function from position measurments during a short intervall
of time (cf. [5, p. 71]. His arguments is, however, false:
Consider two spinless particles moving freely on the n-dimen-
sional torus with period L and having the state-functions

_ 2ri o
P, (X) =1 and ¥,(X) = exp(F= 3

j=1
t = 0, a brief consideration shows that position measurements

Xj) at the moment of time

cannot distinguish between ¢1 and wz. On the other hand,

we show that position measurements carried out, in different
moments of time on an ensemble of particles placed in a suit-
able poténtial can provide data sufficient to reproduce the
initial state of the ensemble. This results strengthens the
-resu;ts of V. Ja. Kreinovitch, .[6]. To conclude this introduction
we should like to refer to [1] for some other results in one

space-dimension which seem to be relevant in this context.

In the next paragraph we describe our counterexample to the
Moroz's conjecture; in § 3 we construct a system of potentials
which ensures uniqueness of reconstruction of the initial state

of an ensemble of particles.

ITI. Let A be a self-adjoint (s.a.) operator in a rigged Hilbert
space ¢ cXc ¢' with spectral decomposition A = [A dE,
(cf. [4, Ch. 1.4]). The operator A has acomplete system: of

generalized eigenvectors et



{eAM € spec Al c ¢’

so that each { €¢ <can be uniquely decomposed as follows:

vo= f va(M)ey do(h)

where o is the Borel measure on spec A determined by A
and wA is the o-measureable function on spec A determined

by ¢ and A satisfying the following condition:
CPE@YS = [y, 0% £ do)

for every Borel-measurable function £f. According to the Born's
postulate, the probalitiy distribution of the results of the
measurements of the oberservable A wupon an ensemble of particles

prepared in -the state Y€ ¢ 1is given. by the following function:

<Y }x--B (A)y>

< ly>

B —»

B
characteristic function of B. This propability distribution is

where B ranges over Borel subsets of R and X denotes the

uniquely determined by the spectral density wA » SO that the

orobability to find the value of A in B 1is equal to

1 | 2 .
PR f |¢A(A)| Xg (1) do(X)

(1) (2)

Thus two states , U

with the same A-spectral density,

that is for which

1¢;1)(A)| =l¢£2)(l)| c = a.e.



cannot be distinguished by the measurements of A. Let
A1"“’An be s.a. operators on ¢ < X = ¢' such that no
pair Ai,Aj with 123 has a common invariant subspace. In
[8, p. 333] (cf. also [8] corrigendum)B.Z. Moroz conjectured

if n23 (or at least sufficiently large), then it follows

from the equations

|¢A_(A)| =|wA.(l)| 0, — a.e., 1s isn
i i i

that ¢ =cy, c €EC, Vv € ¢, © € ¢ .
We need the Baker—Campbell—Hausdorff formula, as stated, e.g.
in f3, p.135]. Let A, B, N be the symmetric operators on

¢ satisfying the following conditions:
t}) N is essentially s.a. on ¢ and N 2 1
ii) there is a K1 in R such that

t A S KN ,+i[N,A] S KN, £ B S KN, £ [N,[N,B]] s K4N

in the sense of quadratic forms on ¢ x ¢

iii) let c, = A, ¢, := 1i[B,c

a ] for n 2 1 , then there

0
is K2 in IR such that

n-1

n . n
Cn s (KZ) niN , tl[N,Cn] s (K2) n!N

By Nelson's commutator theorem, [10, p. 193], it follows from
ii) that the operators H and B are essentially self-

adjbint on ¢ .



Theorem 0: (cf. [3])

The following identity holds:

s : o n
elt Bels A7l B _ oyplis £ (C ET )
“n N onl
n=0
-1 I
for |t| < (K,) ', s € R . Moreover, the operator I C =t
' n=0 :

is essentially s.a. on D(N) and D(N) o ¢ .

Let ¢ = y be the Schwartz space of rapidly decreasing
functions on K' and let X = L2(:Rnydk) be the Hilpert space
of Lz-complex valued functions on R" w.r.t. the Lebesgue-

measure di ; we denote by xj and pj the operators
]
f }— Xy f respectively f |— i 5;; £

for f£f € ¢ . Let

2

o 2
N = p° + x +1=1+X_(pj + x5 .

3=1

Then pj, xj, N are essentially s.a. on ¢ and N 2 1 ,

and it can be easily shown one may apply Theorem 0 to any
real polynomial in xj, pj of degree < 2 ; morebver, the
constant Kz can be chosen to be arbitrary small by a proper
rescaling of N . To construct a system of operators

{A(a) |o € R} violating Moroz's conjecture we shall work

in one space-dimension and let n = 1 . Although the
following result is well-known, we give a short proof of

it to make our exposition self-contained.

Lemma 1:

The operators p and x have no common non-trivial subspace.



Proof:

Write

[e=)

-p? 1 1 2
(e ¥ ) (x) = 5 [ exp(= glx-y[T)viy)dy

-0

so that if ¢y 2 0, ¢ 2 0 almost everywhere and <w|e-p p> = 0

then ¢y =0 a.e. or ¢ =0 a.e. . Let U be a common:

invariant subspace for x and p and let 1y € U, ¢ € Ul :
let
Y (x) -1
nw(x) = xB(x) —— B =y (&~{0})
|y (x) |
and let
® (X) -1
n (x) = xg,(x) —— ; B' := @ (C~{0}) .
@ B |0 (x) |

Then nw(x)w(x) 20, nw(x)w(x) 20 "for x a.e., and
2

- =P
e (e
n(D nww

so that

- 7P _
e = (
<einge © n u>

_.2
or <nww|e P nww> = 0 . Therefore it follows, that ¢ = 0
or Y =0 .

a

Remark 1:

Nonvanishing of the commutator of two s.a. operators on
every nontrivial subspace of a Hilbert space doces not imply
that these operators have no common nontrivial invariant

subspace: let -AaA be the Laplacian on Lz(im,dk) with



Dirichlet boundary conditions on &A ; then L(A,d})
is a common invariant subspace of Lz(im,dk) for x
and -ABA .
Theorem 1:

Let Af(a) := ap + x2, o €R . The operator Al(a) is
essentially s.a. on the Schwartz space ¢ and the two
operators Af(a), A(B}) have no common nontrivial infariant

subspace when a * B .

Proof:

We assume without loss of generality, that B8 # 0 . Then

citA(a) 1sA(8) -itA(a) _ _is(a(8)+2t(a-8)x+t a(a-8))

Let U be a common invariant subspace for A(a) and A(B)

then it is also (A(B) + nx)-invariant, n := 2t(a-8) . Let
us define two unitary operators B, and B2 :
-1 x3
(B1 V) (x) := exp(iR 3 ) vix) for x a.e.
(82 U) (x) := exp(ix2 ”/2) Y(x) for x a.e.

let F Dbe the Fourier transform, and let B = B1FB2

-~

The operator B 1s unitary and, moreover

B A(B)B ! = x B(A(B) + nx)B ' = p

By Lemma 1, we have U = {0} or U = X . This proves the

theorem.



This theorem may be used to construct a counter-example

to the conjecture of Moroz's, [8, p. 333]. Indeed, by the
theorem, no pair of these operators have a common nontrivial
invariant subspace, therefore the system {A(a)|a € R}
satisfies the conditions of the conjectufe. The operator
A(a) 1is unitary equivalent to a Hamiltonian of a spinless
particle in a linear potential. We use the unitary operator
B, and the generalized eigenvectors of p to recover the

system of the generalized eigenvectors of A(a) :

a _ . 3
ek(x) = exp 1(A/a X + X /3a )
o _ o
A(a)ek = Ael

for o #+ 0 .'Let now ¢, n be two real-valuéd even functions

in ¢ , and let

+

P (x) = @(x)e -in(x)

in(x) P(x) = pix)e .

. + - .
Obviously, for non-constant n , we have ¢ % cy with

c €EC . On the other hand, let

vy () i= I-w¥(x)e§(x)dx
then
;w;(x)lz - w(x,w(y)ei(n(x)-n(y))ei(k(x—y)/a)+i(x3—y3)/3adxdy
and
Iw;(x)|2 = | w(x)m(y)ei(n(y)-n(x));i(X(x-y)/a)+i(x3-y3)/3adxdy

the substitution x > -x, y = -y transforms the first

integral into the second one since ¢(-x) = o¢(x) ,



ni{-x) = n(x) , and we conclude that
e 12 = lugoo|?

Thus the A(a) - measurements, o« € R , cannot distinguish
between the ensemble of particles prepared in the state w+
and the ensemble of particles prepared in the state ¢- ,

contrary to the assertion of the conjecture.

Remark 2:
It can be easily seen that one cannot also distinguish
between w+ and ¢ by position-measurements or by

momentum-measurements.

ITII. In the Heisenberg's picture of guantum mechanics the
position-observable in the jEE - direction at the moment of

time t 1is represented by the operator
X. € ' t €ER

where. H denotes the Hamiltonian of the system (assumed to

be time-independent)}. The probability distribution of the
experimental data obtained by conducting position-measurements
at the moment of time t wupon an ensemble of particles

prepared in the state ¢y is’'given by the function

w,elt HXBe-lt HW>

<
B |—
<y |y>
where B ranges over the Borel subsets of R" . The

distribution of the results of the position-measurements

is determined by the mean-values
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it H iixx _-it H
e e

<p|e > , A € R®

n
where Ax := I A,X, . Let now

o 2
H(p) := -4A- L p.X, ; p. >0, 1s3jsn
j=1 J ] J

it follows that the operator H(p} is essentially self-
adjoint on ¢ . To make use of Theorem 0 we choose A = Ax P
2 2

B = H(p) and N = p~ + x° + 1 . One can prove by induction

on n that, in notations of Theorem 0,

n
= T (-4p)™ A x.
c2m j=1( oj) Aj 3
n m
C = - I (=4p.) A.p.
2m-1 sor 3 iP5
so that

elt Helkxe-lt H _ ol A(X)

with
. n 1 . —_—

A(X) =j§1Aj[cos(2t/5;)xj -2;E; 51n(2t/pj)pj]
Proceeding as in § 2 we can calculate the generalized
eigenfunctions

{e1 < I ® e”n’nj € R}

of the operator A(})

2
(x) := e ip.x. + iv.x. 19 S$n
enj ) xp ( “J j 3%5 ) ]
where Hy = uj(t,n,p) 1= an»’pj(s:‘m(zt»/oj))'1

vy = vj(t,p) t= /o—j(cot(Zt/o_j))
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and

n
A(A)(en €.....8e_ ) ( Z

1 n, ; anj)(e €.....8e )

1

Let

p{n) :=_f lp(x)(en ..... @en ) (x)dx
R 1 n
The distribution of the results of position-measurements

at the moment of time t is determined by the map

A — <w|eiA(*’w> = Iw(n)elkn@(n)dn'

or since the Fourier transformation is unitary, by the map

n F—*li(n)lz = [y(x)y(y)exp i(u(n.t.p)(x-y)+v(t,p)(x2-y2))dxdy .

The substitution u = x-y, v = xz-y2 transforms this integral
into the following one:

-1 =5 “
Iw(u+v2u ) w(u-gu Jexp i(u{n,t,p)u+vit,plviu 1dudy

_where we let, for brevity

u =1 u ' (vu ). = v.u

3=1 7
Thus the distribution of the results of position-measurements

at the moment of time t is determined by the map
n = Fy(uin,t,0), vit,0))

where fy denotes the Fourier transform of the function

/ S I N
(w,v) b p (B (BT 7

If 2t/3; # O(mod w), i $ j € n , we have
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: n n
{un,typ) [ €ER} =R

if, moreover, Vpi - %pj is irrational for 1 £ i< j sn,

"then the set
{vit,p) |t € R} ~

is a dense subset of :Rn . Thus, if this last condition is

satisfied, the graph
{(uln,t,p), vit,0)) [n €R", t € R}

is dense in :Rzn , and we obtain the following statement

Theorem 2:
Suppose that py > 0, 1£3Jjsmn, that Vp, -‘/E; is irrational
for 1 £ i <3 s n and let
n 2
H{p) 1= = & - L p.x." .
j=1JJ
Then H(p) 1is essentially self-adjoint on ¢ . Moreover, if
w1, wz have continous Fourier transform, ¢1 € X,

L € X , and

it Hip) gy e~it Hlo)y o <¢2|eit H(p) ¢ (x)e~it Hlp)

<w1|e .

Yo

for all f € ¢. and 2all t € R , so that (by Born's postulate)
one can distinguish between the states ¢1 and wz by a
position-measurement at no time, then w1 = elcwz in x

for some ¢ ER .

Proof:

By assumption, Fw and Flp are - two continuous functions
1 2



- 14 -

on :RZn which, according to the above considerations,

coincide on a dense subset. Therefore Fw = Fw , SO that
1 2
1 ~ - -1 -~
Lp1(u+vu ) w1(u vu ) u 1 - wz(u+zu ) wz(u ;u ) u 1

for u,v a.e., and the assertion follows.

Remark 3:
The potential -px2 is not physical. However it can be
approximated by a sequence of potentials VIrl € C;( Efﬁ

m=20,1,... , so that
2 2
Vo f — (-px°)f (L“-convergence)
for each f € ¢ . Then, [9, p. 292]
-A+Vm—>-H(p)

in the strong resolvent sense, and it follows that the
sequence'of functions
it(-a+v ) iix —it(-A+Vm) ,
A b= <ple -~ e . e v>
converges uniformly (in A } to theﬁfunction

A | <w|eitli(p)eikxe-itE{(p)w>

for each ¢ in L2 N L1 and each t . Since the Fourier

transformation is continous with respect to this type of
convergence, the functions Fw can be arbitrarily good

determined by measurements in the potentials Vm and

therefore ¢ may be determined with arbitrarily high
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precision.
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