
Q-FANO THREEFOLDS OF LARGE FANO INDEX, I

YURI PROKHOROV

Abstract. We study Q-Fano threefolds of large Fano index. In par-
ticular, we prove that the maximum of Fano index is attained for the
weighted projective space P(3, 4, 5, 7).

1. Introduction

The Fano index of a smooth Fano variety X is the maximal integer q(X)
that divides the anti-canonical class in the Picard group Pic(X) [IP99]. It
is well-known [KO73] that q(X) ≤ dimX+1. Moreover, q(X) = dimX+1
if and only if X is a projective space and q(X) = dimX if and only if X is
a quadric hypersurface. In this paper we consider generalizations of Fano
index for the case of singular Fanos admitting terminal singularities.

A normal projective variety X is called Fano if some positive multiple
−nKX of its anti-canonical Weil divisor is Cartier and ample. Such X is
called a Q-Fano variety if it has only terminal Q-factorial singularities and
its Picard number is one. This class of Fano varieties is important because
they appear naturally in the Minimal Model Program.

For a singular Fano variety X the Fano index can be defined in different
ways. For example, we can define

qW(X) := max{q | −KX ∼ qA, A is a Weil Q-Cartier divisor},

qQ(X) := max{q | −KX ∼Q qA, „ }.

If X has at worst log terminal singularities, then the Picard group Pic(X)
and Weil divisor class group Cl(X) are finitely generated and Pic(X) is
torsion free (see e.g. [IP99, §2.1]). Moreover, the numerical equivalence of
Q-Cartier divisors coincides with Q-linear one. This implies, in particular,
that defined above Fano indices qW(X) and qQ(X) are positive integers.
If X is smooth, these numbers coincide with the Fano index q(X) defined
above. Note also that qQ(X) = qW(X) if the group Cl(X) is torsion free.

Theorem 1.1 ([Suz04]). Let X be a Q-Fano thereefold. Then qW(X) ∈
{1, . . . , 11, 13, 17, 19}. All these values, except possibly for qW(X) = 10,
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occur. Moreover, if qW(X) = 19, then the types of non-Gorenstein points
and Hilbert series of X coincide with that of P(3, 4, 5, 7).

It can be easily shown (see proof of Proposition 3.6) that the index qQ(X)
takes values in the same set {1, . . . , 11, 13, 17, 19}. Thus one can expect that
P(3, 4, 5, 7) is the only example of Q-Fano threefols with qQ(X) = 19. In
general, we expect that Fano varieties with extremal properties (maximal
degree, maximal Fano index, etc.) are quasihomogeneous with respect to an
action of some connected algebraic group. This is supported, for example,
by the following facts:

Theorem 1.2 ([Pro05], [Pro07]). (i) Let X be a Q-Fano threefold.
Assume that X is not Gorenstein. Then −K3

X ≤ 125/2 and the
equality holds if and only if X is isomorphic to the weighted pro-
jective space P(13, 2).

(ii) Let X be a Fano threefold with canonical Gorenstein singularities.
Then −K3

X ≤ 72 and the equality holds if and only if X is isomor-
phic to P(13, 3) or P(12, 6, 4).

The following proposition is well-known (see, e.g., [BB92]). It is an easy
exercise for experts in toric geometry.

Proposition 1.3. Let X be a toric Q-Fano 3-fold. Then X is isomorphic to
either P3, P3/µ5(1, 2, 3), or one of the following weighted projective spaces:

P(13, 2), P(12, 2, 3), P(1, 2, 3, 5), P(1, 3, 4, 5), P(2, 3, 5, 7), P(3, 4, 5, 7).

We characterize the weighted projective spaces above in terms of Fano
index. The following is the main result of this paper.

Theorem 1.4. Let X be a Q-Fano threefold. Then qQ(X) ∈
{1, . . . , 11, 13, 17, 19}.

(i) If qQ(X) = 19, then X ' P(3, 4, 5, 7).
(ii) If qQ(X) = 17, then X ' P(2, 3, 5, 7).
(iii) If qQ(X) = 13 and dim | −KX | > 5, then X ' P(1, 3, 4, 5).
(iv) If qQ(X) = 11 and dim | −KX | > 10, then X ' P(1, 2, 3, 5).
(v) qQ(X) 6= 10.
(vi) If qQ(X) ≥ 7 and there are two effective Weil divisors A 6= A1

such that −KX ∼Q qQ(X)A∼Q qQ(X)A1, then X ' P(12, 2, 3).
(vii) If qW(X) = 5 and dim | − 1

5
KX | > 1, then X ' P(13, 2).

Note that in cases (iii) and (iv) assumptions about dim |−KX | are needed.
Indeed, there are examples of non-toric Q-Fano threefolds with qQ(X) = 13
and 11.

In the proof we follow the use some techniques developed in our previous
paper [Pro07]. By Proposition 1.3 it is sufficient to show that our Q-
Fano X is toric. First, as in [Suz04], we apply the orbifold Riemann-Roch
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formula to find all the possibilities for the numerical invariants of X. In
all cases there is some special element S ∈ | −KX | having four irreducible
components. This S should be a toric boundary, if X is toric. Further,
we use birational transformations like Fano-Iskovskikh “double projection”
[IP99] (see [Ale94] for the Q-Fano version). Typically the resulting variety
is a Fano-Mori fiber space having “simpler” structure. (In particular, its
Fano index is large if this variety is a Q-Fano). By using properties of our
“double projection” we can show that the pair (X,S) is log canonical (LC).
Then, in principle, the assertion follows by Shokurov’s toric conjecture
[McK01]. We prefer to propose an alternative, more explicit proof. In fact,
the image of X under “double projection” is a toric variety and the inverse
map preserves the toric structure. In the last section we describe Sarkisov
links between toric Q-Fanos that starts with blowing ups singular points.

Acknowledgements. The work was conceived during the authors stay at
the University of Warwick in the spring of 2008. The author would like to
thank Professor M. Reid for invitation, hospitality and fruitfull discussions.
Part of the work was done at Max-Planck-Institut für Mathematik, Bonn
in August 2008.

2. Preliminaries, the orbifold Riemann-Roch formula and its
applications

Notation. Throughout this paper, we work over the complex number field
C. We employ the following standard notation:
∼ denotes the linear equivalence;
∼Q denotes the Q-linear equivalence.
Let E be a rank one discrete valuation of the function field C(X) and

let D is a Q-Cartier divisor on X. a(E,D) denotes the discrepancy of E
with respect to a boundary D. Let f : X̃ → X be a birational morphism
such that E appears as a prime divisor on X̃. Then ordE(D) denotes the
coefficient of E in f ∗D.

2.1. The orbifold Riemann-Roch formula [Rei87]. Let X be a three-
fold with terminal singularities and let D be a Weil Q-Cartier divisor on X.
Let B = {(rP , bP )} be the basket of singular points of X [Mor85a], [Rei87].
Here each pair (rP , bP ) correspond to a point P ∈ B of type 1

rP
(1,−1, bP ).

For brevity, describing a basket we will list just indices of singularities, i.e.,
we will write B = {rP} instead of B = {(rP , bP )}. In the above situation,
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the Riemann-Roch formula has the following form

(2.2) χ(D) =
1

12
D · (D −KX) · (2D −KX)+

+
1

12
D · c2 +

∑
P∈B

cP (D) + χ(OX),

where

cP (D) = −iP
r2
P − 1

12rP

+

iP−1∑
j=1

bP j(rP − bP j)

2rP

.

Clearly, computing cP (D), we always may assume that 1 ≤ bP ≤ rP/2.

2.3. Now let X be a Fano threefold with terminal singularities, let q :=
qQ(X), and let A be an ample Weil Q-Cartier divisor on X such that
−KX ∼Q qA. By (2.2) we have

(2.4) χ(tA) = 1 +
t(q + t)(q + 2t)

12
A3 +

tA · c2
12

+
∑
P∈B

cP (tA),

cP (tA) = −iP,t
r2
P − 1

12rP

+

iP,t−1∑
j=1

bP j(rP − bP j)

2rP

.

If q > 2, then χ(−A) = 0. Using this equality we obtain (see [Suz04])

(2.5) A3 =
12

(q − 1)(q − 2)

(
1− A · c2

12
+
∑
P∈B

cP (−A)

)
.

In the above notation, applying (2.2), Serre duality and Kawamata-
Viehweg vanishing to D = KX , we get the following important equality
(see, e.g., [Rei87]):

(2.6) 24 = −KX · c2(X) +
∑
P∈B

(
rP −

1

rP

)
.

Theorem 2.7 ([Kaw92a], [KMMT00]). In the above notation,

(2.8) −KX · c2(X) ≥ 0,
∑
P∈B

(
rP −

1

rP

)
≤ 24.

Proposition 2.9. Let X be a Fano thereefold with terminal singularities
and let Ξ be an n-torsion element in the Weil divisor class group. Let BΞ

be the collection of points P ∈ B where Ξ is not Cartier. Then

(2.10) 2 =
∑

P∈BΞ

bP iΞ,P

(
rP − bP iΞ,P

)
2rP

.

4



where iΞ,P is taken so that Ξ ∼ iΞ,PKX near P ∈ B and is the residue
mod rP . Assume furthermore that n is prime. Then

(i) n ∈ {2, 3, 5, 7}.
(ii) If n = 7, then BΞ = (7, 7, 7).∗

(iii) If n = 5, then BΞ = (5, 5, 5, 5), (10, 5, 5), or (10, 10).
(iv) If n = 3, then

∑
P∈BΞ rP = 18.

(v) If n = 2, then
∑

P∈BΞ rP = 16.

Proof. Let By Riemann-Roch (2.2), Kawamata-Viehweg vanishing theorem
and Serre duality we have

0 = χ(Ξ) = 1 +
∑

P cP (Ξ),

0 = χ(KX + Ξ) = 1 + 1
12
KX · c2(X) +

∑
P∈B cP (KX + Ξ).

Subtracting we get

0 = − 1

12
KX · c2(X) +

∑
P∈B

(cP (Ξ)− cP (KX + Ξ)).

Since niΞ,P ≡ 0 mod rP ,

0 = − 1

12
KX · c2(X) +

1

12

∑
P∈B

(
rP −

1

rP

)
−
∑
P∈B

bP iΞ,P

(
rP − bP iΞ,P

)
2rP

.

This proves (2.10).
Now assume that n is prime. If P ∈ BΞ, then n | rP . Write rP = nr′P .

Since rP | niP , iP = r′P i
′
P , where n - i′P . Let ( )n be the residue mod n.

Then

2 =
∑

P∈BΞ

bP i′Ξ,P r
′
(
nr′P − bP i′Ξ,P r

′
P

)
2nr′P

=
r′P (bP i′Ξ,P )n

(
n− (bP i′Ξ,P )n

)
2n

.

Therefore,

4n2 =
∑

P∈BΞ

rP (bP i′Ξ,P )n

(
n− (bP i′Ξ,P )n

)
.

Denote ξP := (bP i′Ξ,P )n. Then 0 < ξP < n, gcd(n, ξP ) = 1, and

4n =
∑

P∈BΞ

r′P ξP (n− ξP ) ≥ n2

4

∑
P∈BΞ

r′P , 16 ≥ n
∑

P∈BΞ

r′P .

If n ≥ 11, then
∑
r′P = 1, n | r′P , and rP ≥ n2 ≥ 121, a contradiction.

Therefore, n ≤ 7. Consider the case n = 7. Then ξP (n− ξP ) = 6, 10, or 12.
The only solution is BΞ = (7, 7, 7). The case n = 5 is considered similarly.
If n = 3, then ξP (n− ξP ) = 3 and

∑
rP = 3

∑
r′P = 18. Similarly, if

∗More delicate computations show that this case does not occur. (We do not need
this.)
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n = 2, then ξP (n− ξP ) = 1 and
∑
rP = 2

∑
r′P = 16. This finishes the

proof. �

3. Computations with Riemann-Roch on Q-Fano threefolds of
large Fano index

Lemma 3.1 (see [Suz04]). Let X be a Fano threefold with terminal sin-
gularities with q := qW(X), let A := −1

q
KX , and let r be the Gorenstein

index of X. Then

(i) r and q are coprime;
(ii) rA3 is an integer.

Lemma 3.2. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L, then q divides qW(X).
(ii) If −KX ∼Q qL for some Weil divisor L, then q divides qQ(X).
(iii) qW(X) divides qQ(X).
(iv) Let q := qQ(X) and let KX + qA∼Q 0. If the order of KX + qA in

the group Cl(X) is prime to q, then qW(X) = qQ(X).

Proof. To prove (i) write −KX ∼ qW(X)A and let d = gcd(qW(X), q).
Then d = u qW(X) + vq for some u, v ∈ Z. Hence, dA = u qW(X)A +
vqA ∼ quL+ qvA = q(uL+ vA). Since A is a primitive element of Cl(X),
q = d and q | qW(X).

(ii) can proved similarly and (iii) is a consequence of (ii).
To show (iv) assume that Ξ := KX + qA is of order n. By our condition

qu + nv = 1, where u, v ∈ Z. Put A′ := A− uΞ. Then qA′ = qA− quΞ =
qA− Ξ ∼ −KX . Hence, q = qW(X) by (i) and (iii). �

Lemma 3.3. Let X be a Fano threefold with terminal singularities.

(i) qQ(X) ∈ {1, . . . , 11, 13, 17, 19}.
(ii) If qQ(X) ≥ 5, then −K3

X ≤ 125/2.

Proof. Denote q := qQ(X) and write, as usual, −KX ∼Q qA. Thus n(KX +
qA) ∼ 0 for some positive integer n. The element KX + qA defines a
cyclic étale in codimension one cover π : X ′ → X so that X ′ is a Fano
threefold with terminal singularities and KX′ + qA′ ∼ 0, where A′ := π∗A.
Let σ : X ′′ → X ′ be a Q-factorialization. (If X ′ is Q-factorial, we take
X ′′ = X ′). Run K-MMP on X ′′: ψ : X ′′ 99K X̄. At the end we get a
Mori-Fano fiber space X̄ → Z. Let A′′ := σ−1(A′) and Ā := ψ∗A

′′. Then
−KX̄ ∼ qĀ. If dimZ > 0, then for a general fiber F of X̄/Z, we have
−KF ∼ qĀ|F . This is impossible because q > 3. Thus dimZ = 0 and X̄ is
a Q-Fano.

(i) By Lemma 3.2 the number q divides qW(X̄). On the other hand, by
Theorem 1.1 we have qW(X̄) ∈ {1, . . . , 11, 13, 17, 19}. This proves (i).

6



To show (ii) we note that −K3
X̄
≥ −K3

X′′ = −K3
X′ ≥ −K3

X′′ . Here
the first inequality holds because for Fanos (with at worst log terminal
singularities) the number −1

6
K3 is nothing but the leading term in the

asymptotic Riemann-Roch and dim | − tKX′′| ≤ dim | − tKX̄ |. Now the
assertion of (ii) follows from Theorem 1.2. �

From Lemmas 3.2 and 3.3 we have

Corollary 3.4. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L and q ≥ 5, then q = qW(X).
(ii) If −KX∼QqL for some Weil divisor L and q ≥ 5, then q = qQ(X).

Lemma 3.5 (cf. [Suz04]). Let X be a Fano threefold with terminal singu-
larities and let q := qW(X). Assume that qW(X) ≥ 8. Then one of the
following holds:

q = 8, B = (32, 5), (32, 5, 9), (3, 5, 11), (3, 7), (3, 9), (5, 7),
(7, 11), (7, 13), (11),
q = 9, B = (2, 4, 5), (23, 5, 7), (2, 5, 13),
q = 10, B = (7, 11),
q = 11, B = (2, 3, 5), (2, 5, 7), (22, 3, 4, 7),
q = 13, B = (3, 4, 5), (2, 32, 5, 7),
q = 17, B = (2, 3, 5, 7),
q = 19, B = (3, 4, 5, 7).

In all cases the group Cl(X) is torsion free.

Proof. We use a computer program written in PARI [PARI]. Below is the
description of our algorithm.

Step 1. By Theorem 2.7 we have
∑

P∈B(1 − 1/rP ) ≤ 24. Hence
there is only a finite (but very huge) number of possibilities for the bas-
ket B = {[rP , bP ]}. In each case we know −KX · c2(X) from (2.6). Let
r := lcm({rP}) be the Gorenstein index of X.

Step 2. By Lemma 3.3 qQ(X) ∈ {8, . . . , 11, 13, 17, 19}. Moreover, the
condition gcd(q, r) = 1 (see Lemma 3.1) eliminates some possibilities.

Step 3. In each case we compute A3 and −K3
X = q3A3 by formula (2.5).

Here, for D = −A, the number iP is uniquely determined by qiP ≡ bP
mod rP and 0 ≤ iP < rP . Further, we check the condition rA3 ∈ Z
(Lemma 3.1) and the inequality −K3

X ≤ 125/2 (Lemma 3.3).
Step 4. Finally, by the Kawamata-Viehweg vanishing theorem we have

χ(tA) = h0(tA) for −q < t. We compute χ(tA) by using (2.4) and check
conditions χ(tA) = 0 for −q < t < 0 and χ(tA) ≥ 0 for t > 0.

At the end we get our list. To prove the last assertion assume that Cl(X)
contains an n-torsion element Ξ. Clearly, we also may assume that n is
prime. By Proposition 2.9 we have

∑
n|ri

ri ≥ 16. Moreover,
∑

n|ri
ri ≥ 18

if n = 3. This does not hold in all cases of our list. �
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Proposition 3.6. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Let
q := qQ(X) and let −KX ∼Q qA. Then the group Cl(X) is torsion free,
qW(X) = qQ(X), and one of the following holds:

dim |kA|
q B A3 |A| |2A| |3A| |4A| |5A| |6A| |7A| | −K|

9 (2, 4, 5) 1
20

0 1 2 4 6 8 11 19

9 (2, 2, 2, 5, 7) 1
70

−1 0 0 1 1 2 3 5

10 (7, 11) 2
77

−1 0 1 1 3 4 6 13

11 (2, 3, 5) 1
30

0 1 2 3 5 7 9 23

11 (2, 5, 7) 1
70

0 0 0 1 2 3 4 10

11 (2, 2, 3, 4, 7) 1
84

−1 0 0 1 1 2 3 8

13 (3, 4, 5) 1
60

0 0 1 2 3 4 5 19

13 (2, 3, 3, 5, 7) 1
210

−1 −1 0 0 0 1 1 5

17 (2, 3, 5, 7) 1
210

−1 0 0 0 1 1 2 12

19 (3, 4, 5, 7) 1
420

−1 −1 0 0 0 0 1 8

Proof. First we claim that qW(X) = qQ(X). Assume the converse. Then,
as in the proof of Lemma 3.3, the class of KX + qA is a non-trivial n-
torsion element in Cl(X) defining a global cover π : X ′ → X. We have
KX′ + qA′ ∼ 0, where A′ = π∗A. Hence X ′ is such as in Lemma 3.5 and
by Corollary 3.5 we have Cl(X ′) ' Z · A′ and qW(X ′) = qQ(X ′) ≥ q.
The Galois group µn acts naturally on X ′. Consider, for example, the case
q = 11 and BX′ = (2, 3, 5) (all other cases are similar). Then X ′ has three
cyclic quotient singularities whose indices are 2, 3, and 5. These points
must be µn-invariant. Hence the variety X has cyclic quotient singularities
of indices 2n, 3n, and 5n. By Lemma 3.2 we have gcd(q, n) 6= 1. In
particular, n ≥ 11. This contradicts (2.8). Therefore, qW(X) = qQ(X)
and so X is such as in Lemma 3.5.

Now we have to exclude only the case q = 9, B = (2, 5, 13). But in
this case by (2.6) and (2.5) we have A3 = 9/130 and −KX · c2 = 621/130.
On the other hand, by Kawamata-Bogomolov’s bounds [Kaw92a] we have
2673/130 = (4q2 − 3q)A3 ≤ 4KX · c2 = 1242/65 [Suz04, Proposition 2.2].
The contradiction shows that this case is impossible. Finally, the values of
A3 and dimensions of |kA| are computed by using (2.5) and (2.4). �

Corollary 3.7. Let X be a Q-Fano threefold satisfying assumptions of (i)-
(v) of Theorem 1.4. Then X has only cyclic quotient singularities.
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Proof. Indeed, in these cases the indices of points in the basket B are
distinct numbers and moreover B contains no pairs of points of indices 2
and 4. Then the assertion follows [Mor85a], or [Rei87] �

Corollary 3.8. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Then
dim |A| ≤ 0.

Computer computations similar to that in Lemma 3.5 allow us to prove
the following.

Lemma 3.9. Let X be a Fano threefold with terminal singularities, let
q := qW(X), and let A := −1

q
KX .

(i) If q ≥ 5 and dim |A| > 1, then q = 5, B = (2), and A3 = 1/2.
(ii) If q ≥ 7 and dim |A| > 0, then q = 7, B = (2, 3), A3 = 1/6.

3.10. Proof of (vi) and (vii) of Theorem 1.4. (vii) Apply Lemma 3.9.
Then the result is well-known: in fact, 2A is Cartier and by Riemann-Roch
dim |2A| = 6 = dimX + 3. Hence X is a variety of ∆-genus zero [Fuj75],
i.e., a variety of minimal degree. Then X ' P(13, 2).

(vi) Put q := qQ(X), Ξ := KX + qA, and Ξ1 := A − A1. By our
assumption nΞ ∼ nΞ1 ∼ 0 for some integer n. If either Ξ 6∼ 0 or Ξ1 6∼ 0,
then elements Ξ and Ξ′ define an étale in codimension one finite cover
π : X ′ → X such that KX′ + qA′ ∼ 0 and A′ ∼ A′

1, where A′ := π∗A
and A′

1 := π∗A1. If Ξ ∼ Ξ1 ∼ 0, we put X ′ = X. In both cases, the
following enequalities hold: qW(X ′) ≥ 7 and dim |A′| ≥ 1. By Lemma
3.9 we have B(X ′) = (2, 3) and qQ(X ′) = qW(X ′) = 7. Note that the
Gorenstein index of X ′ is strictly less than qW(X ′). In this case, X ′ '
P(12, 2, 3) according to [San96]. † Now it is sufficient to show that π is an
isomorphism. Assume the converse. By our construction, there is an action
of a cyclic group µp ⊂ Gal(X ′/X), p is prime, such that π is decomposed
as π : X ′ → X ′/µp → X. Here X ′/µp is a Q-Fano threefold and there is a
torsion element of Cl(X ′/µp) which is not Cartier exactly at points where
X ′ → X ′/µp is not étale. There are exactly four such points and two of
them are points of indices 2 and 3. Thus the basket of X ′/µp consists of
points of indices p, p, 2p, and 3p. This contradicts Proposition 2.9.

Lemma 3.11. Let X be a Q-Fano threefold with q := qQ(X). If there are
three effective different Weil divisors A, A1, A2 such that −KX ∼Q qA ∼Q

qA1 ∼Q qA2 and A 6∼ A1, then q ≤ 5.

Proof. Assume that q ≥ 6. As in 3.10 consider a cover π : X ′ → X. Thus
on X ′ we have A′ ∼ A′

1 ∼ A′
2 and −KX′ ∼ qA′. Moreover, dim |A′| = 1

according to Lemma 3.9. In this case, the action of Gal(X ′/X) on the

†The result also can be easily proved by using birational transformations similar to
that in §4.
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pencil |A′| is trivial (because there are three invariant members A′, A′
1, and

A′
2). But then A ∼ A1 ∼ A2, a contradiction. �

4. Birational construction

4.1. Let X be a Q-Fano threefold and let A be the ample Weil divisor that
generates the group Cl(X)/∼Q. Thus we have −KX ∼Q qA. Let M be a
mobile linear system without fixed components and let c := ct(X,M ) be
the canonical threshold of (X,M ). So the pair (X, cM ) is canonical but
not terminal. Assume that −(KX + cM ) is ample.

Recall that the class of KX is a generator of the local Weil divisor class
group Cl(X,P ).

Lemma 4.2. Let P ∈ X be a point of index r > 1. Assume that M ∼
−mKX near P , where 0 < m < r. Then c ≤ 1/m.

Proof. According to [Kaw92b] there is an exceptional divisor Γ over P of
discrepancy a(Γ) = 1/r. Let ϕ : Y → X be a resolution. Clearly, Γ is a
prime divisor on Y . Write

KY = ϕ∗KX +
1

r
Γ +

∑
δiΓi, MY = ϕ∗M − ordΓ(M )Γ− ordΓi

(M )Γi,

where MY is the birational transform of M and Γi are other ϕ-exceptional
divisors. Then

KY + cMY = ϕ∗(KX + cM) + (1/r − c ordΓ(M ))Γ + . . .

and so 1/r− c ordΓ(M ) ≥ 0. On the other hand, ordΓ(M ) ≡ m/r mod Z
(because mKX + M ∼ 0 near P ). Hence, ordΓ(M ) ≥ m/r and c ≤
1/m. �

4.3. In the construction below we follow [Ale94]. Let f : X̃ → X be K +
cM -crepant blowup such that X̃ has only terminal Q-factorial singularities:

(4.4) KX̃ + cM̃ = f ∗(KX + cM ).

As in [Ale94], we run K + cM -MMP on X̃. We get the following diagram
(Sarkisov link of type I or II)

(4.5)

X̃ //___

f

����
��

��
��

X̄
g

��?
??

??
??

?

X X̂

where varieties X̃ and X̄ have only Q-factorial terminal singularities,
ρ(X̃) = ρ(X̄) = 2, f is a Mori extremal divisorial contraction, X̃ 99K X̄ is a
sequence of log flips, and g is a Mori extremal contraction (either divisorial
or fiber type). Thus one of the following possibilities holds:
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a) dim X̂ = 1 and g is a Q-del Pezzo fibration;

b) dim X̂ = 2 and g is a Q-conic bundle; or

c) dim X̂ = 3, g is a divisorial contraction, and X̂ is a Q-Fano three-

fold. In this case, denote q̂ := qQ(X̂).

Let E be the f -exceptional divisor. For a divisor D on X, everywhere
below D̃ and D̄ denote strict birational transforms of D on X̃ and X̄,
respectively. If g is birational, we put D̂ := g∗D̄.

Claim 4.6 ([Ale94]). If the map is birational, then Ē is not an exceptional
divisor. If g is of fiber type, then Ē is not composed of fibers.

Proof. Assume the converse. If g is birational, this implies that the map g◦
χ◦f−1 : X 99K X̂ is an isomorphism in codimension 1. Since both X and X̂
are Fano threefolds, this implies that g ◦ χ ◦ f−1 is in fact an isomorphism.
On the other hand, the number of K + cM -crepant divisors on X̂ is less
than that on X, a contradiction. If dim X̂ ≤ 2, then Ē is a pull-back of
an ample Weil divisor on X̂. But then nĒ is a movable divisor for some
n > 0. This contradicts exceptionality of E. �

If |kA| 6= ∅, let Sk ∈ |kA| be a general member. Write

(4.7)

KX̃ = f ∗KX + αE,

S̃k = f ∗Sk − βkE,

M̃ = f ∗M − β0E.

Then

(4.8) c = α/β0.

Remark 4.9. If α < 1, then a(E, |−KX |) < 1. On the other hand, 0 =
KX + |−KX | is Cartier. Hence, a(E, |−KX |) ≤ 0 and so f is f−1

∗ |−KX | ⊂
|−KX̃ |. Therefore,

dim|−KX̄ | = dim|−KX̃ | ≥ dim|−KX |.

In our situation X has only cyclic quotient singularities (see Corollary
3.7). So, the following result is very important.

Theorem 4.10 ([Kaw96]). Let (Y 3 P ) be a terminal cyclic quotient sin-
gularity of type 1

r
(1, a, r−a), let f : Ỹ → Y be a Mori divisorial contraction,

and let E be the exceptional divisor. Then f(E) = P , f is the weighted
blowup with weights (1, a, r − a) and the discrepancy of E is a(E) = 1/r.

We call this f the Kawamata blowup of P .

4.11. Notation. Assume that g is birational. Let F̄ be the g-exceptional
divisor and let F̃ and F be its proper transforms on X̃ and X, respectively.
Let n be the maximal integer dividing the class of F̄ in Cl(X̄). Let Θ be
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an ample Weil divisor on X̂ that generates Cl(X̂)/∼Q. Write Ŝk ∼Q skΘ

and Ê ∼Q eΘ, where sk, e ∈ Z, sk ≥ 0, e ≥ 1. Note that sk = 0 if and only
if S̄k is contracted by g.

Lemma 4.12. In the above notation assume that the group Cl(X) is torsion

free. Write F ∼ dA, where d ∈ Z, d ≥ 1. Then Cl(X̂) ' Z ⊕ Zn and
d = ne.

Proof. Write F̄ ∼ nḠ, where Ḡ is an integral Weil divisor. Then Ē ∼
eΘ̄ + kḠ for some k ∈ Z and Cl(X̂) ' Cl(X̄)/F̄Z ' Z⊕ Zn. We have

Zd ' Cl(X)/〈F 〉 ' Cl(X̄)/〈Ē, F̄ 〉 ' Z⊕ Z/〈eΘ̄ + kḠ, nḠ〉.
Since the last group is of order ne, we have d = ne. �

From now until the end of this section we consider the case where X̂ is
a surface.

Lemma 4.13. Assume that X̂ is a surface. Then X̂ is a del Pezzo surface
with Du Val singularities of type An. The linear system | − KX̂ | is base

point free. If moreover the group Cl(X) is torsion free, then so is Cl(X̂)
and there are only the following possibilities:

(i) K2
X̂

= 9, X̂ ' P2;

(ii) K2
X̂

= 8, X̂ ' P(12, 2);

(iii) K2
X̂

= 6, X̂ ' P(1, 2, 3);

(iv) K2
X̂

= 5, X̂ has a unique singular point, point of type A4.

Proof. By the main result of [MP08b] the surface X̂ has only Du Val sin-

gularities of type An. Since ρ(X̂) = 1 and X̂ is uniruled, −KX̂ is am-

ple. Further, since both X̄ and X̂ have only isolated singularities and
Pic(X̄/X̂) ' Z, there is a well-defined injective map g∗ : Cl(X̂) → Cl(X̄).

Hence the group Cl(X̂) is torsion free whenever so is Cl(X). The remain-
ing part follows from the classification of del Pezzo surfaces with Du Val
singularities (see, e.g., [MZ88]). �

Proposition 4.14. In the above notation, let X̂ is a surface. Let Γ ∈
|−KX̂ | and let G := g−1(Γ). Suppose that there are two prime divisors D1

and D2 such that ϕ(Di) = Z and KX̂ +D1 +D2 + G ∼ 0. Then the pair

(X̄,D1 + D2) is canonical. If furthermore the surface X̂ is toric, then so
are X̄ and X.

Proof. Clearly, we may replace Γ with a general member of | −KX̂ |. Note
that G is an elliptic ruled surface and KG+D1|G+D2|G ∼ 0. Hence divisors
D1|G and D2|G are disjointed sections. This shows that D1 ∩D2 is either
empty or consists of fibres. Assume that D1 ∩D2 6= ∅. We can take Γ so
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that G ∩ D1 ∩ D2 = ∅. By adjunction −KD1 ∼ Ḡ|D1 + D2|D1 . Since D1

is a rational surface (birational to X̂), Ḡ|D1 +D2|D1 must be connected, a
contradiction. Thus, D1 ∩D2 = ∅.

Therefore both divisors D1 and D2 contain no fibers and so D1 ' D2 '
X̂. Then the pair (X̄,D1 + D2) is PLT by the Inversion of Adjunction.
Since KX̄ + D1 + D2 is Cartier, this pair must be canonical. The second
assertion follows by Corollary 4.17 below. �

Lemma 4.15. Let ϕ : Y → Z be a Q-conic bundle (we assume that Y is
Q-factorial and ρ(Y/Z) = 1). Suppose that there are two prime divisors D1

and D2 such that ϕ(Di) = Z, the log divisor KY + D1 + D2 is ϕ-linearly
trivial and canonical. Suppose furthermore that Z is singular and let o ∈ Z
be a singular point. Then o ∈ Z is of type Ar−1 for some r ≥ 2 and there
is a Sarkisov link

Ỹ
σ

����
��

��
��

χ //_______ Ȳ
ϕ̄

��>
>>

>>
>>

Y
ϕ

''OOOOOOOOOOOOOOO Z̄
δ

wwooooooooooooooo

Z

where σ is the Kawamata blowup of a cyclic quotient singularity 1
r
(1, a, r−a)

over o, χ is a sequence of flips, ϕ̄ is a Q-conic bundle with ρ(Ȳ /Z̄) = 1,
and δ is a crepant contraction of an irreducible curve to o. Moreover, if
D̄i is the proper transform of Di on Ȳ , then the divisor KȲ + D̄1 + D̄2 is
linearly trivial over Z and canonical.

Proof. Regard Y/Z as an algebraic germ over o. Since Di are generically
sections, the fibration ϕ has no discriminant curve. By [MP08c] the central
fiber C := ϕ−1(o)red is irreducible and by the main result of [MP08b] Y/Z is
toroidal, that is, it is locally analytically isomorphic to a toric contraction.
In particular, X has exactly two singular points at C ∩Di and these points
are cyclic quotients of types 1

r
(1, a, r − a) and 1

r
(−1, a, r − a), respectively,

for some a with gcd(r, a) = 1.
Now consider the Kawamata blowup of C∩D1. Let E be the exceptional

divisor and let D̃i be the proper transform of Di. Since KỸ = ϕ∗KY + 1
r
E

and the pair (Y,D1 +D2) is canonical, we have

KỸ + D̃1 + D̃2 = ϕ∗(KY +D1 +D2).

It is easy to check locally that the proper transform C̃ of the central fiber
C does not meet D̃1. Moreover, C̃ ∩ E is a smooth point of Ỹ and E.
Thus we have D̃1 · C̃ = 0, E · C̃ = 1, and D̃2 · C̃ = D2 · C = 1/r. Hence,
KỸ · C̃ = −1/r. Since the set-theoretical fiber over o in Ỹ coincides with
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E ∪ C̃, the divisor −KỸ is ample over Z and C̃ generates a (flipping)
extremal ray R. Run the MMP over Z in this direction, i.e., starting with
R. Assume that we end up with a divisorial contraction ϕ̄ : Ȳ → Z̄. Then
ϕ̄ must contract the proper transform Ē of E. Here Z̄/Z is a Mori conic
bundle and the map Y 99K Z̄ is an isomorphism in codimension one, so
it is an isomorphism. Moreover, Z̄/Z has a section, the proper transforms
of Di. Hence the fibration Z̄/Z is toroidal over o. Consider Shokurov’s
difficulty [Sho85]

d(W ) := #{exceptional divisors of discrepancy < 1}.
Then d(Y ) = d(Z̄) = 2(r − 1). On the other hand,

d(Z̄)− 1 ≤ d(Ȳ ) < d(Ỹ ) = r − 1 + a− 1 + r − a− 1 = 2r − 3

(because the map Ỹ 99K Ȳ is not an isomorphism). The contradiction
shows that our MMP ends up with a Q-conic bundle. Clearly, the divisor
KȲ + D̄1 + D̄2 is linearly trivial and canonical. By [MP08b] the surface
Z̄ has at worst Du Val singularities of type A. Hence the morphism δ is
crepant [Mor85b]. �

Corollary 4.16. In the above notations assume that Ȳ is a toric variety.
Then so is Y .

Corollary 4.17. Notation as in Lemma 4.15. Assume that the base surface
Z is toric. Then so is Y .

Proof. Induction by the number e of crepant divisors of Z. If e = 0, then Y
is smooth and Y ' P(E ), where E is a decomposable rank-2 vector bundle
on Z. �

5. Case qQ(X) = 10

Consider the case qQ(X) = 10. By Proposition 3.6 the group Cl(X) is
torsion free and B = (7, 11). For r = 7 and 11, let Pr be a (unique) point
of index r. In notation of §4, take M := |3A|. Since dim |2A| = 0, the
pencil M has no fixed components. Apply Construction (4.5). Near P11

we have A ∼ −10KX , so M ∼ −8kKX . By Lemma 4.2 we get c ≤ 1/8. In
particular, the pair (X,M ) is not canonical. Take divisor S2 ∈ |2A| and a
general member S3 ∈ M . For some a1, a2 ∈ Z we can write

KX̃ + 5S̃2 = f ∗(KX + 5S2)− a1E ∼ −a1E,

KX̃ + 2S̃2 + 2S̃3 = f ∗(KX + 2S2 + 2S3)− a2E ∼ −a2E.

Therefore,

(5.1)
KX̄ + 5S̄2 + a1Ē ∼ 0,

KX̄ + 2S̄2 + 2S̄3 + a2Ē ∼ 0,
14



where dim |S2| = 0 and dim |S3| = 1. Using (4.7) we obtain

(5.2)
5β2 = a1 + α,

2β2 + 2β3 = a2 + α.

Since S3 ∈ M is a general member, by (4.8) we have c = α/β3 ≤ 1/8, so
8α ≤ β3 and a2 ≥ 15α+ 2β2.

5.3. First we consider the case where f(E) is either a curve or a Gorenstein
point on X. Then α and βk are non-negative integers. In particular,
a2 ≥ 15. From (5.1) we obtain that g is birational. Indeed, otherwise
restricting the second relation of (5.1) to a general fiber V we get that
−KV is divisible by some number a′ ≥ a2 ≥ 15. This is impossible. Thus
X̂ is a Q-Fano. Again from (5.1) we get qQ(X̂) ≥ 15. Moreover, Ê ∼Q Θ.
In particular, |Θ| 6= ∅. This contradicts Proposition 3.6.

5.4. Therefore f(E) is a non-Gorenstein point Pr of index r = 7 or 11. By
Theorem 4.10 α = 1/r. Near Pr we can write A ∼ −lrKX , where lr ∈ Z and
10lr ≡ 1 mod r. Then Sk + klrKX is Cartier near Pr. Therefore, βk ≡ klr
mod Z and we can write βk = klr/r + mk, where mk = mk,r ∈ Z≥0.
Explicitly, we have the following values of α, βk, and ak:

r α β2 β3 a1 a2

7 1
7

3
7

+m2
1
7

+m3 2 + 5m2 1 + 2m2 + 2m3

11 1
11

9
11

+m2
8
11

+m3 4 + 5m2 3 + 2m2 + 2m3

Claim 5.5. If r = 7, then m3 ≥ 1.

Proof. Follows from c = α/β3 ≤ 1/8. �

If g is not birational, then ai ≤ 3, so r = 7. By the above claim we have
a2 ≥ 3. In this case, g is a generically P2-bundle and m2 = 0 (because
−KX̄ restricted to a general fiber is divisible by a2 ≥ 3). On the other
hand, a1 = 2 and S̄2 is g-vertical, a contradiction. Thus g is birational.
Since S̄3 is moveable, s3 ≥ 1. Put

u := s2 + em2, v := s3 + em3.

5.6. Case: r = 11. Then

(5.7)
q̂ = 5s2 + (4 + 5m2)e = 5u+ 4e,

q̂ = 2s2 + 2s3 + (3 + 2m2 + 2m3)e = 2u+ 2v + 3e.

Assume that u = 0. Then q̂ = 4e. The only solution of (5.7) is the
following: q̂ = 8, v = 1, e = 2. Hence, s2 = 0 and s3 = 1. In particular,
dim |Θ| ≥ dim |S3| = 1. On the other hand, by Lemma 4.12 the group

Cl(X̂) is torsion free and by Lemma 3.9 the divisor Θ is not moveable, a
contradiction.
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Therefore, u ≥ 1. By the first relation in (5.7) q̂ ≥ 9. Hence the group

Cl(X̂) is torsion free. Then by Lemma 4.12 we have F ∼ eA. Since |A| = ∅,
e ≥ 2. Again by (5.7) q̂ ≥ 13 and e is odd. Thus, e = 3, u = 1, and q̂ = 17.
Further, s3 + em3 = v = 3 and s3 = 3 (because S̄3 is moveable). By
Proposition 3.6 we have 1 = dim |S3| ≤ dim |3Θ| = 0, a contradiction.

5.8. Case: r = 7. Recall that m3 ≥ 1 by Claim 5.5. Write

(5.9)
q̂ = 5s2 + (2 + 5m2)e = 5u+ 2e,

q̂ = 2s2 + 2s3 + (1 + 2m2 + 2m3)e = 2u+ 2v + e.

Hence, v = s3 + em3 ≥ 1 + e.
If u = 0, then q̂ = 2e = 2v+e, e = 2v, and q̂ = 4v ≥ 4(1+e) = 4(1+2v), a

contradiction. If u = 2, then q̂ is even ≥ 12. Again we have a contradiction.
Assume that u ≥ 3. Using the first relation in (5.9) and Proposition 3.6

we get successively u = 3, q̂ ≥ 17, |Θ| = ∅, e ≥ 2, q̂ ≥ 19, |2Θ| = ∅, e ≥ 3,
and so q̂ ≥ 21, a contradiction.

Therefore, u = 1. Then q̂ = 5 + 2e = 2 + 2v + e and 2v = 3 + e = 2v ≥
2 + 2e. So, e = 1, v = 2, q̂ = 7. Since m3 ≥ 1, s3 = v − em3 = 1. Hence,
Ŝ3∼QΘ. Since dim |Ŝ3| ≥ 1, by (vi) of Theorem 1.4 we have X̂ ' P(12, 2, 3).

In particular, the group Cl(X̂) is torsion free. By Lemma 4.12 the divisor
F generates the group Cl(X). This contradicts |A| = ∅.

The last contradiction finishes the proof of (v) of Theorem 1.4.

6. Case qQ(X) = 11 and dim | −KX | ≥ 11

In this section we consider the case qQ(X) = 11 and dim | −KX | ≥ 11.
By Proposition 3.6 the group Cl(X) is torsion free and B = (2, 3, 5). For
r = 2, 3, 5, let Pr be a (unique) point of index r. In notation of §4, take
M := |2A|. Since 0 = dim |A| > dim M = 1, the linear system M has no
fixed components. Apply Construction (4.5). Near P5 we have A ∼ −KX

and M ∼ −2KX . By Lemma 4.2 we get c ≤ 1/2. In particular, the pair
(X,M ) is not canonical. It can be easily seen from Proposition 3.6 that
there are reduced irreducible members Sk ∈ |kA| for k = 1, 2, 3, 5.

Proposition 6.1. In the above notation, f is the Kawamata blwup of P5

and X̂ is a del Pezzo surface with Du Val singularities with K2
X̂

= 5 or 6.

Moreover, for k = 1, 2 and 3, the image Ck := g(S̄k) is a curve on X̂ with
−KX̂ · Ck = k.

Proof. Similar to (5.1)-(5.2) we have for some a1, a2, a3 ∈ Z:

(6.2)

KX̄ + 11S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 5S̄2 + a2Ē ∼ 0,

KX̄ + 2S̄1 + 3S̄3 + a3Ē ∼ 0,
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(6.3)

11β1 = a1 + α,

β1 + 5β2 = a2 + α,

2β1 + 3β3 = a3 + α.

Since S2 ∈ M is a general member, by (4.8) we have c = α/β2 ≤ 1/2, so
2α ≤ β2 and a2 ≥ 9α+β1. Since 2S1 ∼ S2, we have 2β1 ≥ β2. Thus β1 ≥ α
and a1, a2 ≥ 10α.

First we consider the case where f(E) is either a curve or a Gorenstein
point on X. Then α and βk are integers, so a1, a2 ≥ 10. From (6.2) we

obtain that g is birational. Moreover, q̂ ≥ 15, the group Cl(X̂) is torsion

free, and Ê ∼ Θ. In particular, |Θ| 6= ∅. This contradicts Proposition 3.6.

6.4. Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3 or 5.
As in 5.4 we have the following values of βk and ak:

r β1 β2 β3 a1 a2 a3

2 1
2 + m1 m2

1
2 + m3 5 + 11m1 m1 + 5m2 2 + 2m1 + 3m3

3 2
3 + m1

1
3 + m2 m3 7 + 11m1 1 + m1 + 5m2 1 + 2m1 + 3m3

5 1
5 + m1

2
5 + m2

3
5 + m3 2 + 11m1 2 + m1 + 5m2 2 + 2m1 + 3m3

Claim 6.5. If r = 2 or 3, then m2 ≥ 1.

Proof. Follows from 1/2 ≥ c = α/β2 = 1/rβ2. �

Assume that g is birational. By Proposition 3.6 and Remark 4.9 we have
dim | − KX̂ | ≥ | − KX | = 23. So, q̂ ≤ 11. If S̄1 is not contracted, then
by the first relation in (6.2) we have q̂ ≥ 11 + a1 ≥ 13, a contradiction.

Therefore the divisor S̄1 is contracted. By Lemma 4.12 the group Cl(X̂) is

torsion free and Ê ∼ Θ. Hence, q̂ = a1 ≤ 7, m1 = 0, and r 6= 5. But then
m2 ≥ 1 (see Claim 6.5) and a2 ≥ 5. This contradicts the second relation in
(6.2).

Therefore g is of fiber type. Restricting (6.2) to a general fiber we get
ai ≤ 3. Thus, r = 5 and a1 = a2 = a3 = 2. Moreover, divisors S̄1, S̄2, and
S̄3 are g-vertical. Since S̄3 is irreducible and dim |S̄3| = 2, X̂ cannot be

a curve. Therefore X̂ is a surface and the images g(S̄1), g(S̄2), and g(S̄3)
are curves. Since dim |S̄1| = 0, we have dim |g(S̄1)| = 0. Hence, K2

X̂
≤ 6

and g(S̄1) is a line on X̂. By Lemma 4.13 there are only two possibilities:

X̂ ' P(1, 2, 3) and X̂ is an A4-del Pezzo surface. �

6.6. Consider the case where X̂ is an A4-del Pezzo surface. Assume that
S̄6 is g-vertical. By Riemann-Roch for Weil divisors on surfaces with Du
Val singularities [Rei87] we have dim |S̄6| = dim |g(S̄6)| = 6. On the other
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hand, dim |S̄6| = dim |S6| = 7, a contradiction. Thus g(S̄5) = X̂. Since
KX + S5 + S6 ∼ 0,

KX̄ + S̄5 + S̄6 + Ē ∼ 0.

Therefore S̄6 and Ē are sections of g. By Proposition 4.14 the pair (X̄, S̄6+
Ē) is canonical. Now since S̄5 is nef, the map X̄ 99K X̃ is a composition of
steps of the KX̄ +S̄6+Ē-MMP. Hence the pair (X̃, S̃6+E) is also canonical.
In particular, S̃6 ∩ E = ∅ and so P5 = f(E) /∈ S6, a contradiction.

6.7. Now consider the case X̂ ' P(1, 2, 3). As above, if g(S̄5) is a curve,
then dim |g(S̄5)| = 5 and g(S̄5) ∼ 5g(S̄1). On the other hand, g(S̄5) ∼
−5

6
KX̂ . But then dim |g(S̄5)| = 4, a contradiction. Therefore, g(S̄5) = X̂.

Similar to (6.2) we have KX̄ + 2S̄5 + S̄1 + a4Ē ∼ 0. This shows that a4 = 0
and S̄5 is a section of g. Thus we can write KX̄ + S̄5 +G+ Ē ∼ 0, where G
is a g-trivial Weil divisor, i.e., G = g∗Γ for some Weil divisor Γ. Pushing
down this equality to X we get G ∼ 6S̄1, i.e., Γ ∈ |−KX̂ |. By Proposition
4.14 varieties X̄ and X are toric. This proves (iv) of Theorem 1.4.

7. Case qQ(X) = 13 and dim | −KX | ≥ 6

In this section we consider the case qQ(X) = 13 and dim |−KX | ≥ 6. By
Proposition 3.6 B = (3, 4, 5). For r = 3, 4, 5, let Pr be a (unique) point of
index r. In notation of §4, take M := |4A|. Since 1 = dim |3A| > dim M =
2, the linear system M has no fixed components. Apply Construction (4.5).
Near P5 we have A ∼ −2KX and M ∼ −3KX . By Lemma 4.2 we get
c ≤ 1/3. In particular, the pair (X,M ) is not canonical.

Proposition 7.1. In the above notation, f is the Kawamata blowup of P5,
g is birational, it contracts S̄1, and X̂ ' P(13, 2). Moreover, Ŝ3 ∼ Ŝ4 ∼
Ê ∼ Θ and Ŝ5 ∼ 2Θ.

Proof. Similar to (5.1)-(5.2) we have for some a1, a2, a3 ∈ Z:

(7.2)

KX̄ + 13S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 4S̄3 + a2Ē ∼ 0,

KX̄ + S̄1 + 3S̄4 + a3Ē ∼ 0,

(7.3)

13β1 = a1 + α,

β1 + 4β3 = a2 + α,

β1 + 3β4 = a3 + α.

Since S4 ∈ M is a general member, by (4.8) we have c = α/β4 ≤ 1/3,
3α ≤ β4 and a3 ≥ 8α+β1. Since 4S1 ∼ S4, we have 4β1 ≥ β4. Thus β1 ≥ α
and a1 ≥ 12α.

First we consider the case where f(E) is either a curve or a Gorenstein
point on X. Then α and βk are integers. In particular, a1 ≥ 12. From
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the first relation in (7.2) we obtain that g is birational. Moreover, q̂ ≥ 13

and Ê ∼ Θ. In particular, |Θ| 6= ∅. By Proposition 3.6 we have q̂ = 13,
a1 = 13, S̄1 is contracted, and α = 1. This contradicts (7.3).

Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4 or 5.
By Theorem 4.10 α = 1/r. Similar to 5.4 we have (here mk ∈ Z≥0)

r β1 β3 β4 β5 a1 a2 a3

3 1
3 + m1 m3

1
3 + m4

2
3 + m5 4 + 13m1 m1 + 4m3 1 + m1 + 3m4

4 1
4 + m1

3
4 + m3 m4

1
4 + m5 3 + 13m1 3 + m1 + 4m3 m1 + 3m4

5 2
5 + m1

1
5 + m3

3
5 + m4 m5 5 + 13m1 1 + m1 + 4m3 2 + m1 + 3m4

Claim 7.4. If r = 3 or 4, then m4 ≥ 1.

Proof. Follows from 1/3 ≥ c = α/β4 = 1/rβ4. �

If g is not birational, then a1 = 3, r = 4, m4 ≥ 1, and a3 ≥ 3. In this
case, a2 = a3 = 3, g is a generically P2-bundle, and divisors S̄1, S̄3, S̄4 are
g-vertical. Since dim |S̄4| > 1 and the divisor S̄4 is irreducible, we have a
contradiction. Therefore g is birational.

By Proposition 3.6 we have dim | − KX̂ | ≥ | − KX | = 19 and q̂ ≤ 13.
From the first relation in (7.2) we see that S̄1 is contracted. By Lemma 4.12

the group Cl(X̂) is torsion free and Ê ∼ Θ. Moreover, m1 = 0 (because
13m1 < a1e = q̂ ≤ 13). Thus q̂ = a1 = 4, 3, and 5 in cases r = 3, 4, and 5,
respectively.

In cases r = 3 and 4 we have q̂ ≥ 3 + a3 ≥ 6, a contradiction. Therefore,
r = 5, q̂ = 5, and s3 = s4 = 1. Since dim |Θ| ≥ 1, by (vi) of Theorem

1.4 we have X̂ ' P(13, 2). Since dim |S5| = 3 and dim |Θ| = 2, s5 ≥ 2.
Similar to (7.2)-(7.3) we have KX̄ + S̄3 + 2S̄5 + a4Ē ∼ 0, 2s5 + a4 = 4,
and a4 = β3 + 2β5 − α = m3 + 2m5. Thus, s5 = 2 and a4 = β5 = 0, i.e.,
P5 /∈ S5. �

Lemma 7.5. (i) S1 ∩ S3 is a reduced irreducible curve.
(ii) S1 ∩ S3 ∩ S4 = {P5}.

Proof. (i) Recall that A3 = 1/60 by Proposition 3.6. Write S1∩S3 = C+Γ,
where C is a reduced irreducible curve passing through P5 and Γ is an
effective 1-cycle. Suppose, Γ 6= 0. Then 1/4 = S1 · S3 · S5 > S5 · C. Since
P5 /∈ S5, C 6⊂ S5 and S5 · C ≥ 1/4, a contradiction. Hence, S1 ∩ S3 = C.

(ii) Assume that S1∩S3∩S4 3 P 6= P5. Since 1/5 = S1·S3·S4 = S4·C and
P, P5 ∈ S4∩C, we have C ⊂ S4. If there is a component C ′ 6= C of S1∩S4

not contained in S5, then, as above, 1/3 = S1 ·S4 ·S5 ≥ S5 ·C+S5 ·C ′ ≥ 1/2,
a contradiction. Thus we can write S1∩S4 = C+Γ, where Γ is an effective
1-cycle with Supp Γ ⊂ S5. In particular, P5 /∈ Γ. The divisor 12A is Cartier
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at P3 and P4. We get

1

5
= 12A3 = 12A · S1 · (S4 − S3) = 12A · Γ ∈ Z,

a contradiction. �

Lemma 7.6. Let X be a Q-Fano threefold and D = D1 + · · · + D4 be
a divisor on X, where Di are irreducible components. Let P ∈ X be a
cyclic quotient singularity of index r. Assume that KX +D ∼Q 0, P /∈ D4,
D1 ∩D2 ∩D3 = {P}, and D1 ·D2 ·D3 = 1/r. Then the pair (X,D) is LC.

Proof. Let π : (X], P ]) → (X,P ) be the index-one cover. For k = 1, 2, 3, let

D]
k be the preimage of Dk and let D] := D]

1 +D]
2 +D]

3. By our assumptions

D]
1 ∩ D

]
2 ∩ D

]
3 = {P ]}. Since D1 · D2 · D3 = 1/r, locally near P ] we have

D]
1 ·D

]
2 ·D

]
3 = 1. Hence D] is a simple normal crossing divisor (near P ]).

In particular, (X], D]) is LC near P ] and so is (X,D) near P .
Thus the pair (X,D) is LC in some neighborhood U 3 P . Since D1 ∩

D2 ∩ D3 = {P}, P is a center of LC singularities for (X,D). Let H be a
general hyperplane section through P . Write λD4 ∼Q H, where λ > 0. If
(X,D) is not LC in X \ U , then the locus of log canonical singularities of
the pair (X,D + εH − (λε + δ)D4) is not connected for 0 < δ � ε � 1.
This contradicts Connectedness Lemma [Sho92], [Kol92]. Therefore the
pair (X,D) is LC. �

7.7. Proof of (iii) of Theorem 1.4. By Lemma 7.6 the pair (X,S1 +
S3 + S4 + S5) is LC. Since KX + S1 + S3 + S4 + S5 ∼ 0, it is easy to
see that a(E, S1 + S3 + S4 + S5) = −1. Thus KX̃ + S̃1 + S̃3 + S̃4 + S̃5 =
f ∗(KX +S1+S3+S4+S5) ∼ 0. Therefore the pairs (X̄, S̄1+S̄3+S̄4+S̄5+Ē)

and (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê) are also LC. It follows from Proposition 7.1 and

its proof that X̂ ' P(13, 2), Ê ∼ Ŝ3 ∼ Ŝ4 ∼ Θ, and Ŝ5 ∼ 2Θ. We

claim that Ŝ3 + Ŝ4 + Ŝ5 + Ê is a toric boundary (for a suitable choice of
coordinates in P(13, 2)). Let (x1 : x′1 : x′′1 : x2) be homogeneous coordinates

in P(13, 2). Clearly, we may assume that Ê = {x1 = 0}, Ŝ3 = {x′1 = 0},
and Ŝ4 = {αx1 + α′x′1 + α′′x′′1 = 0} for some constants α, α′, α′′. Since

(X̂, Ŝ3 + Ŝ4 + Ê) is LC, α′′ 6= 0 and after a coordinate change we may

assume that Ŝ4 = {x′′1 = 0}. Further, the surface Ŝ5 is given by the equation
βx2 + ψ(x1, x

′
1, x

′′
1) = 0, where β is a constant and ψ is a quadratic form.

If β = 0, then Ŝ3 ∩ Ŝ4 ∩ Ê ∩ Ŝ5 6= ∅ and the pair (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê)
cannot be LC. Thus β 6= 0 and after a coordinate change we may assume
that Ŝ5 = {x2 = 0}. Therefore Ŝ3 + Ŝ4 + Ŝ5 + Ê is a toric boundary. Then
by Lemma 7.8 below the varieties X̄, X̃, and X are toric. This proves (iii)
of Theorem 1.4.

Lemma 7.8 (see, e.g., [McK01, 3.4]). Let V be a toric variety and let ∆ be
the toric (reduced) boundary. Then every valuation ν with discrepancy −1
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with respect to KV +∆ is toric, that is, there is a birational toric morphism
Ṽ → V such that ν corresponds to an exceptional divisor.

8. Case qQ(X) = 17

Consider the case qQ(X) = 17. By Proposition 3.6 B = (2, 3, 5, 7). For
r = 2, 3, 5, 7, let Pr be a (unique) point of index r. In notation of §4, take
M := |5A| and apply Construction (4.5). Near P7 we have A ∼ −5KX

and M ∼ −4KX . By Lemma 4.2 we get c ≤ 1/4. In particular, the pair
(X,M ) is not canonical.

Proposition 8.1. In the above notation, f is the Kawamata blowup of P7,
g is birational, it contracts S̄2, and X̂ ' P(12, 2, 3). Moreover, Ŝ3 ∼ Ŝ5 ∼
Θ, Ê ∼ 2Θ, and Ŝ7 ∼ 3Θ.

Proof. Similar to (5.1)-(5.2) we have for some a1, a2, a3 ∈ Z:

(8.2)

KX̄ + 7S̄2 + S̄3 + a1Ē ∼ 0,

KX̄ + S̄2 + 5S̄3 + a2Ē ∼ 0,

KX̄ + S̄2 + 3S̄5 + a3Ē ∼ 0,

(8.3)

7β2 + β3 = a1 + α,

β2 + 5β3 = a2 + α,

β2 + 3β5 = a3 + α.

Since S5 ∈ M is a general member, by (4.8) we have c = α/β5 ≤ 1/4, so
4α ≤ β5 and a3 ≥ 11α+β2. Since S2 +S3 ∼ S5, we have β2 +β3 ≥ β5 ≥ 4α.
Hence, a1 ≥ 6β2 + 3α and a2 ≥ 4β3 + 3α.

First we consider the case where f(E) is either a curve or a Gorenstein
point on X. Then α and βk are integers. In particular, a3 ≥ 11 and by
the third relation in (8.2) we obtain that g is birational. Moreover, q̂ ≥ 11.

In particular, the group Cl(X̂) is torsion free and so Ê ≥ 2Θ. Hence,
q̂ ≥ 2a3 ≥ 22, a contradiction.

Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3, 5 or 7.
Similar to 5.4 we have α = 1/r and

r β2 β3 β5 β7 a1 a2 a3

2 m2
1
2

+ m3
1
2

+ m5
1
2

+ m7 7m2 + m3 2 + m2 + 5m3 1 + m2 + 3m5

3 1
3

+ m2 m3
1
3

+ m5
2
3

+ m7 2 + 7m2 + m3 m2 + 5m3 1 + m2 + 3m5

5 1
5

+ m2
4
5

+ m3 m5
1
5

+ m7 2 + 7m2 + m3 4 + m2 + 5m3 m2 + 3m5

7 3
7

+ m2
1
7

+ m3
4
7

+ m5 m7 3 + 7m2 + m3 1 + m2 + 5m3 2 + m2 + 3m5

Claim 8.4. (i) If r = 2, then m5 ≥ 2 and m2 +m3 ≥ 2.
(ii) If r = 3, then m5 ≥ 1 and m2 +m3 ≥ 1.
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(iii) If r = 5, then m5 ≥ 1.

Proof. Note that 1/4 ≥ c = α/β5 = 1/rβ5 and rβ5 ≥ 4. This gives us
inequalities for m5. The inequalities for m2 + m3 follows from β2 + β3 ≥
β5. �

From this we have min(a1, a2, a3) ≥ 3. Moreover, the equality
min(a1, a2, a3) = 3 holds only if r = 7. Therefore the contraction g can
be of fiber type only if a1 = 3, r = 7, m2 = m3 = 0, min(a1, a2, a3) = 3,
r = 7, m2 = m3 = m5 = 0, a3 = 2, and a2 = 1. Then g is a del Pezzo
fibration of degree 9 and by the first relation in (8.2) divisors Ŝ2 and Ŝ3 are
g-vertical. But then a2 = 3, a contradiction. From now on we assume that
g is birational.

Since S̄5 is moveable, it is not contracted. Therefore, s5 ≥ 1. By (8.2)
we have

q̂ = 7s2 + s3 + a1e,

q̂ = s2 + 5s3 + a2e,

q̂ = s2 + 3s5 + a3e.

Put
u := s2 + em2, v := s3 + em3, w := s5 + em5.

8.5. Case: r = 2. Then a3 ≥ 7 and q̂ ≥ 3s5 + a3 ≥ 10. Hence the group
Cl(X̂) is torsion free. So, e ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 17. In this case
|Θ| = ∅. Therefore, s5 ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 20, a contradiction.

8.6. Case: r = 3. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (m2 + 5m3)e = u+ 5v,

q̂ = s2 + 3s5 + (1 +m2 + 3m5)e = u+ 3w + e.

Assume that u > 0. Then q̂ ≥ 9. Hence the group Cl(X̂) is torsion free
and e ≥ 2. Since dim |S5| = 1 and dim |Θ| ≤ 0, we have s5 ≥ 2. Since
m5 ≥ 1 (see Claim 8.4), we have w ≥ 4 and q̂ > 13. In this case, s5 ≥ 5, a
contradiction.

Therefore, u = 0, m2 = 0, s3 6= 0, m3 ≥ 1, and v ≥ 2. So, q̂ = 5v ≥ 10.
Then we get a contradiction by (v) of Theorem 1.4.

8.7. Case: r = 5. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (4 +m2 + 5m3)e = u+ 5v + 4e,

q̂ = s2 + 3s5 + (m2 + 3m5)e = u+ 3w.

From the first two relations we have 3u = 2v + e and 1 ≤ u ≤ 2. Further,
q̂ − 4u = 3(v + e), so q̂ ≡ u mod 3.
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If u = 2, then e is even and q̂ = 14 + v + 2e ≥ 18. So, q̂ = 19, a
contradiction.

Thus u = 1, 3 = 2v+e, and q̂ = 7+v+2e ≥ 9. By (v) of Theorem 1.4 q̂ is
odd. Hence, v is even, e = 3, v = 0, q̂ = 13. In this case, s5 +3m5 = w = 4.
By Claim 8.4 m5 = s5 = 1. Note that the group Cl(X̂) is torsion free and
s2 = 1. Thus dim |Θ| > 0. This contradicts Proposition 3.6.

8.8. Case: r = 7. Then

q̂ = 7s2 + s3 + (3 + 7m2 +m3)e = 7u+ v + 3e,

q̂ = s2 + 5s3 + (1 +m2 + 5m3)e = u+ 5v + e,

q̂ = s2 + 3s5 + (2 +m2 + 3m5)e = u+ 3w + 2e.

Assume that u > 0. Then q̂ ≥ 10, the group Cl(X̂) is torsion free and so
e ≥ 2, q̂ ≥ 13, u = 1. From the first two relations we get q̂ + 2 = 7v.
Hence, v = 3, q̂ = 19, e = 3, and s2 = 0. This contradicts the equality
1 = u = s2 + em2.

Therefore, u = 0 and s2 = m2 = 0. From the first two relations we
get q̂ = 7v. Thus, q̂ = 7, v = 1, e = 2, w = 1, m3 = m5 = 0, and
s3 = s5 = 1. By Lemma 4.12 the group Cl(X̂) is torsion free and so

dim |Θ| ≥ dim |S̄5| > 0. From (vi) of Theorem 1.4 we have X̂ ' P(12, 2, 3).
In particular, dim |Θ| = 1. Further, similar to (8.2) we have

KX̄ + S̄3 + 2S̄7 + a4Ē ∼ 0,

β3 + 2β7 = a4 + α.

This gives us a4 = 2β7 and s7 + a4 = 3. Since dim |S7| = 2, s7 > 1, s7 = 3,

Ŝ7 ∼ 3Θ, a4 = 0, and β7 = 0, i.e., P7 /∈ S7.

�

Lemma 8.9. (i) S2 ∩ S3 is a reduced irreducible curve.
(ii) S2 ∩ S3 ∩ S5 = {P7}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S2 ∩ S3 ∩ S5 3 P 6= P7. Since

1/7 = S2 · S3 · S5 = S5 · C and P, P7 ∈ S5 ∩ C, we have C ⊂ S5. If there
is a component C ′ 6= C of S2 ∩ S5 not contained in S7, then, as above,
7/15 = S2 · S7 · S7 ≥ S7 · C + S7 · C ′ ≥ 2/5, a contradiction. Thus we can
write S2∩S5 = C+Γ, where Γ is an effective 1-cycle with Supp Γ ⊂ S7. In
particular, P7 /∈ Γ. The divisor 30A is Cartier at P2, P3, and P5. We get

120

210
= 120A3 = 30A · S2 · (S5 − S3) = 30A · Γ ∈ Z,

a contradiction. �
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Now the proof of (ii) of Theorem 1.4 can be finished similar to 7.7: the

pair (X̂, Ŝ3 + Ŝ5 + Ê + Ŝ7) is LC and the corresponding discrepancy of S̄2

is equal to −1.

9. Case qQ(X) = 19

Consider the case qQ(X) = 19. By Proposition 3.6 B = (3, 4, 5, 7).
For r = 3, 4, 5, 7, let Pr be a (unique) point of index r. In notation of
§4, take M := |7A| = |S7| and apply Construction (4.5). Near P5 we have
A ∼ −4KX and M ∼ −3KX . By Lemma 4.2 we get c ≤ 1/3. In particular,
the pair (X,M ) is not canonical.

Proposition 9.1. In the above notation, f is the Kawamata blowup of P5,
g is birational, it contracts S̄3, and X̂ ' P(12, 2, 3). Moreover, Ŝ4 ∼ Ŝ7 ∼
Θ, Ê ∼ 3Θ, and Ŝ5 ∼ 2Θ.

Proof. Similar to (5.1)-(5.2) we have for some a1, a2, a3, a4 ∈ Z:

(9.2)

KX̄ + 5S̄3 + S̄4 + a1Ē ∼ 0,

KX̄ + S̄3 + 4S̄4 + a2Ē ∼ 0,

KX̄ + S̄4 + 3S̄5 + a3Ē ∼ 0,

KX̄ + S̄5 + 2S̄7 + a4Ē ∼ 0,

(9.3)

5β3 + β4 = a1 + α,

β3 + 4β4 = a2 + α,

β4 + 3β5 = a3 + α,

β5 + 2β7 = a4 + α.

Remark 9.4. Since S7 ∈ M is a general member, by (4.8) we have c =
α/β7 ≤ 1/3, so 3α ≤ β7 and a4 ≥ 5α + β5. Further, S3 + S4 ∼ S7. Thus,
β3 + β4 ≥ β7 ≥ 3α, a1 ≥ 4β3 + 2α, and a2 ≥ 3β4 + 2α.

Assume that X̂ is a surface. Then X̂ is such as in Lemma 4.13. From the
first and second relations in (9.2) we obtain that S3 and S4 are g-vertical.
Since dim |S̄k| = 0, dim |g(S̄k)| = 0, k = 3, 4. Hence, K2

X̂
≤ 6 and the

curves g(S̄k) are in fact lines on X̂. In particular, g(S̄3) ∼ g(S̄4). This
implies S̄3 ∼ S̄4 and S3 ∼ S4, a contradiction.

Now assume that X̂ is a curve and let G be a general fiber of g. Clearly,
divisors S̄3 and S̄4 are g-vertical. If the divisor S̄5 is also g-vertical, then
k3S̄3 ∼ k4S̄4 ∼ k5S̄5 ∼ G, where the ki are the multiplicities of correspond-
ing fibres. Considering proper transforms on X we get 3k3 = 4k4 = 5k5 and
so k3 = 20k, k4 = 14k, k5 = 12k for some k ∈ Z. This contradicts the main
result of [MP08a]. Therefore the divisor S̄5 is g-horizontal. In this case
the degree of the general fiber is 9. As above we have k3S̄3 ∼ k4S̄4 ∼ G,
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3k3 = 4k4. So, k3 = 4k, k4 = 3k, k ∈ Z. Again by [MP08a] g has no fibers
of multiplicity divisible by 4.

From now on we assume that g is birational. Then

(9.5) q̂ = 5s3 + s4 + a1e = s3 + 4s4 + a2e = s4 + 3s5 + a3e.

Consider the case where f(E) is either a curve or a Gorenstein point on
X. Then α and βk are integers. By Remark 9.4

a1 + a2 = 5(β3 + β4) + β3 − 2α ≥ 13α ≥ 13.

On the other hand, from (9.5) we obtain 2q̂ ≥ 6s3 + 5s4 + 13 ≥ 18. So,

q̂ ≥ 9 (both S̄3 and S̄4 cannot be contracted). In this case, the group Cl(X̂)

is torsion free and by Lemma 4.12 we have Ê ≥ 3Θ. Since a4 ≥ 5, we have
Ê ∼ 3Θ, q̂ ≥ 15, and S̄3 is contracted. In this situation, |Θ| = ∅, so
s5, s7 ≥ 2. This contradicts the fourth relation in (9.2).

Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4, 5 or 7.
Similar to 5.4 we have α = 1/r and

r β3 β4 β5 β7 a1 a2 a3

3 m3
1
3

+ m4
2
3

+ m5
1
3

+ m7 5m3 + m4 1 + m3 + 4m4 2 + m4 + 3m5

4 1
4

+ m3 m4
3
4

+ m5
1
4

+ m7 1 + 5m3 + m4 m3 + 4m4 2 + m4 + 3m5

5 2
5

+ m3
1
5

+ m4 m5
3
5

+ m7 2 + 5m3 + m4 1 + m3 + 4m4 m4 + 3m5

7 2
7

+ m3
5
7

+ m4
1
7

+ m5 m7 2 + 5m3 + m4 3 + m3 + 4m4 1 + m4 + 3m5

Claim 9.6. (i) If r = 3 or 4, then m7 ≥ 1 and m3 +m4 ≥ 1.
(ii) If r = 7, then m7 ≥ 1.

Proof. To get inequalities for m7 we use 1/3 ≥ c = α/β7 = 1/rβ7, rβ7 ≥ 3.
The inequalities for m3 +m4 follows from β3 + β4 ≥ β7. �

Thus, in all cases a1, a2 ≥ 1. Put

u := s3 + em3, v := s4 + em4, w := s5 + em5.

9.7. Case: r = 3. Then u+ v > e(m3 +m4) ≥ e by Claim 9.6. Further,

q̂ = 5s3 + s4 + (5m3 +m4)e = 5u+ v,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (2 +m4 + 3m5)e = v + 3w + 2e.

If u = 0, then v = q̂ = e+ 4v, a contradiction.
Assume that u ≥ 2. Then q̂ ≥ 10, u ≤ 3, the group Cl(X̂) is torsion

free and by Lemma 4.12 we have e ≥ 3. If u = 2, then v ≥ 2, q̂ ≥ 13,
v = q̂ − 10, and e ≤ q̂ − 2− 4v ≤ 2, a contradiction. If u = 3, then v = 2,
e = 6, q̂ = 17, and m3 = m4 = 0. This contradicts Claim 9.6.
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Therefore, u = 1. Then v = q̂ − 5, 19 = e + 3q̂, and q̂ ≤ 6. We get
only one solution: q̂ = 6, u = v = w = e = 1. Recall that m3 + m4 ≥ 1
by Claim 9.6. Hence either s3 = 0 and Ŝ4 ∼Q Ŝ5 ∼Q Ê ∼Q Θ or s4 = 0 and

Ŝ3∼Q Ŝ5∼Q Ê∼Q Θ. In both cases Ŝ5 6∼ Ê (otherwise S̄5 ∼ Ē+ lF̄ for some
l ∈ Z and so S5 ∼ lF , a contradiction). Then we get a contradiction by
Lemma 3.11.

9.8. Case: r = 4. As in the previous case, u+ v > e and

q̂ = 5s3 + s4 + (1 + 5m3 +m4)e = 5u+ v + e,

q̂ = s3 + 4s4 + (m3 + 4m4)e = u+ 4v.

If u is even, then so is q̂. Hence, q̂ ≤ 10. From the first relation we have
u = 0, q̂ = 4v, and e = 3v. This contradicts u+ v > e. Therefore u is odd.

Assume that u = 1. Then q̂ = 5 + v + e = 1 + 4v and e = 3v − 4.
Since u + v > e, there is only one possibility: v = e = 2, q̂ = 9. Then
the group Cl(X̂) is torsion free. By Lemma 4.12 we have F ∈ |2A| 6= ∅, a
contradiction.

Finally, assume u ≥ 3. Then u = 3 and q̂ = 15 + v + e = 3 + 4v ≥ 16.
Thus, q̂ = 19, v = 4, and e = 0, a contradiction.

9.9. Case: r = 7. Then

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (3 +m3 + 4m4)e = u+ 4v + 3e,

q̂ = s4 + 3s5 + (1 +m4 + 3m5)e = v + 3w + e.

In this case u = (3v + e)/4 > 0. Assume that u ≥ 2. Then q̂ ≥ 13 and

the group Cl(X̂) is torsion free. By Lemma 4.12 we have e ≥ 3. Further,
u = 2, and q̂ ≥ 17. We get m3 = 0, s3 = 2, e ≥ 4, q̂ = 19, e = 4, and v = 1.
This contradicts the last relation.

Therefore, u = 1. Then 3v + e = 4. Assume that e = 4. Then v = 0,
q̂ = 13, w = 3, s4 = 0, s3 = 1, and m4 = m3 = 0. Since dim |Θ| =
dim |2Θ| = 0, we have s5 ≥ 3. Recall that m7 ≥ 1 by Claim 9.6. Hence,
β7 ≥ 1 and a4 = 2β7 ≥ 2. This contradicts the fourth relation in (9.2).

Therefore, e < 4. In this case, e = 1, v = 1, and q̂ = 8. Then Ê ∼Q Θ

and either Ŝ3 ∼Q Θ or Ŝ4 ∼Q Θ (because u = v = 1). This contradicts (vi)
of Theorem 1.4.

9.10. Case: r = 5. From (9.2) we obtain

(9.11)

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (m4 + 3m5)e = v + 3w.
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Then e = 3v − 4u. If u ≥ 2, then e = 3v − 4u ≤ 3v − 6, and so v ≥ 3.
Hence, q̂ ≥ 15 and the group Cl(X̂) is torsion free. By Lemma 4.12 we have
e ≥ 3. So q̂ = 19, e = 3, s3 = 0, and 2 = u = em3 ≥ 3, a contradiction.

Assume that u = 1, then e = 3v − 4 and v ≥ 2. Further, q̂ = 7v − 3 =
v + 3w ≤ 19. We get q̂ = 11 and e = 2. This contradicts Lemma 4.12.

Therefore, u = 0. Then e = 3v, q̂ = 7v = 7, v = 1, e = 3, and w = 2.
By Lemma 4.12 the group Cl(X̂) is torsion free. Thus s3 = 0, i.e., S̄3 is
contracted, s4 = 1, s5 = 2, and m5 = β5 = 0. This means, in particular,
that P5 /∈ S5. From the fourth relation in (9.2) we get a4 = 1 and s7 = 1.

In particular, dim |Θ| > 0 and X̂ ' P(12, 2, 3) by (vi) of Theorem 1.4.

�

Lemma 9.12. (i) S3 ∩ S4 is a reduced irreducible curve.
(ii) S3 ∩ S4 ∩ S7 = {P5}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S3 ∩ S4 ∩ S7 3 P 6= P5. Since

1/5 = S3 · S4 · S7 = S7 · C and P, P5 ∈ S7 ∩ C, we have C ⊂ S7. If there
is a component C ′ 6= C of S3 ∩ S7 not contained in S5, then, as above,
1/4 = S3 · S7 · S5 ≥ S5 · C + S5 · C ′ ≥ 2/7, a contradiction. Thus we can
write S3∩S7 = C+Γ, where Γ is an effective 1-cycle with Supp Γ ⊂ S5. In
particular, P5 /∈ S5. The divisor 84A is Cartier at P3, P4, and P7. We get

9

5
= 84A · S3 · (S7 − S4) = 84A · Γ ∈ Z,

a contradiction. �

Now the proof of (i) of Theorem 1.4 can be finished similar to 7.7.

10. Toric Sarkisov links

Proposition 10.1. Let X be a toric Q-Fano threefold and let P ∈ X be
a cyclic quotient singularity of index r. Let f : X̃ → X be the Kawamata
blowup of P ∈ X. Then a general member of | −KX | is a normal surface
having at worst Du Val singularities. The linear system | −KX | has only
isolated base points. In particular, −KX̃ is nef and big. The map f : X̃ →
X can be completed by a toric Sarkisov link (cf. (4.5)).

Proof. This can be shown by explicit computations in all cases of Propo-
sition 1.3. Consider, for example, the case X = P(3, 4, 5, 7). Let x3,
x4, x5, x7 be quasi-homogeneous coordinates in P(3, 4, 5, 7). A section
S ∈ | − KX | is given by a quasi-homogeneous polynomial of degree 19.
By taking this polynomial as a general linear combination of x5

3x4, x
3
3x

2
5,

x4
3x7, x4x

3
5, x

3
4x7, x5x

2
7 we see that the base locus of | − KX | is the union

of four coordinate points and the surface S has only quotient singularities.
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Since KS is Cartier, the singularities of S are Du Val. Further, we can
write KX̃ + S̃ = f ∗(KX + S) ∼ 0, where S̃ is the proper transform of S.

Hence, S̃ ∈ | − KS̃| and the linear system | − KX̃ | has only isolated base
points outside of f−1(P ). In particular, −KX̃ is nef. It is easy to check

that −K3
X̃
> 0, i.e., −KX̃ is big. Recall that ρ(X̃) = 2. So, the Mori cone

NE(X̃) has exactly two extremal rays, say R1 and R2. Let R1 is generated
by f -exceptional curves. If −KX̃ is ample, we run the MMP starting from
R2. Otherwise we make a flop in R2 and run the MMP. Clearly, we obtain
Sarkisov link (4.5). �

Explicitly, for weighted projective spaces from Proposition 1.3, we have

the following diagram of Sarkisov links. Here an arrow X1

1
r−→ X2 indicates

that there is Sarkisov link described above that starts from Kawamata
blowup of a cyclic quotient singularity of index r > 1 on X1 and the target
variety is X2.
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