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0. Introduction.

Let K be a local complete discrete valuation field with perfect residue field &
of characteristic p. We denote by K,., a separable closure of K and by I' =
Gal(K,.p/K) the absolute Galois group of K. Consider the standard tower of
algebraic extensions

KCKy CKy C Ksep

where K., (resp., Ky, ) is a maximal unramified (resp., tamely ramified) subfield of
K,.p. This gives us a filtration of I':

ror® s>y,

where K,y = Kfe(;) and K¢ = It 1s known that the tamely ramified sub-
quotient T(®/I of T is a procyclic group of order relatively prime to p. I is a
pro-p-group, which is a profree if charK = p. The group theoretic structure of
['/I as well as the arithmetic nature of the above filtration are well known. A
further decomposition of T is related to a decreasing filtration {I'(*)},5¢ of normal
subgroups of I. These I'(") are called the ramification subgroups of I in upper
numbering. This filtration plays a very important réle in many arithmetic topics:

(a) Let L be a finite Galois extension of K with Galois group I';/x. The knowl-
edge of the image of the filtration {I'(")},5¢ in I'y /i gives us full information about
the values of the differente and the discriminant of L/ K.

(b) Most applications of the local classfield reciprocity map ¢ : K* — T'%® use
the arithmetic structure of K*. This structure is related to a filtration {Un}nZO of
K*, where U, = {u € Ok | u = 1(n})} (7K is any uniformiser of the valuation
ring Ok of K), which corresponds under 4 exactly to the image of {I'")},50 in
I[ad,

(c) Though an explicit description of I in purely group theoretic terms is known,
cf. [J-W], [Jac], there is a principal difficulty in applying it somewhere. The
reason is the absence of any information about the arithmetic nature of the known
generators and relations. A description of the ramification filtration in terms of
these generators would certainly provide us with this arithmetic information.

(d) Let charK = 0. There is no arithmetic in the description of finite commu-
tative group schemes G over K. They are just simply representations of I in a
module G(K,,.p) and can be described in purely group theoretic terms. But the
question which of these representations arise from group schemes G over a valuation
ring O of K gives a lot of arithmetic. For example, the property “an abelian vari-
ety A over K has a good reduction over K" closely related to the property “group
schemes Ker(p"ids),n > 1, can be defined over O”. All known properties of I'-
modules H, which arise from a finite flat commutative group scheme over O, can
be expressed in terms of the ramification filtration. They are:

(d1) “Serre’s conjecture” about the action of the tamely ramified part of I on a
semisimple envelope of H, [Sel],[R];

(dz) the condition for the action of I'*) to be trivial on H for any v > vo(H),
where vo(H) depends on some invariants of K and H, [F1]. In some cases these
conditions are also sufficient for H to be realised in the form G(K,.,), where G is
a group scheme over O,[A1],[A2].
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(e) The similar problem about representations of I" in the étale cohomology of
proper schemes over K, having a good reduction (= we have a lot of arithmetic)
gives us the same picture, [F2],[A3],[A4].

(f) The problem of the study of the ramification filtration is interesting by itself.
Some information about the nontrivial character of this filtration was obtained by
E.Maus, [Ma], and Gordeev,[Go).

The main purpose of this paper is to show the possibility of giving an explicit
description of the ramification filtration {I'*)},5¢ in group theoretic terms. We
consider the simplest case of the problem: charK =p, k = F,. The reasons are :
1) the subgroup I = "L>JOI"(") of T is a pro-p-free group, so we have no additional

problems with the abstract group theoretic structure of I; 2) the requirement that
the residue field k¥ of K is algebraically closed does not affect the ramification
filtration and gives us the possibility of identifying ' and I'(%); 3) the arithmetical
properties of K depend on its cohomological dimension n, so we treat the case
n=1

Our main result gives us an explicit description of the ramification filtration
modulo subgroup IPC,(I), where Cp(I) is the subgroup of I' generated by all com-
mutators having length p. We now outline the basic steps of our approach.

The first thing we need is some generalisation of the Artin-Schreier theory.

Let K now be an arbitrary field of characteristic p. Classical Artin-Schreier
theory gives an explicit description of any p-elementary extension of K with an
action of the Galois group. E.Witt gave an extension of this theory to the case of
cyclic extensions, [Wtt]. A matrix form of this theory was developped by H.Inaba,
(In1-3]. Under this approach it is possible to treat arbitrary extensions of K, but
as a matter of fact it gives us a theory of representations of I in vector spaces
over F,. The invariant form of this theory appeared in the study of crystalline
representations, [F3],[A3] (from this point of view the solution of Grothendieck’s
problem of “mysterious "functor can be considered as the high point of the Artin-
Schreier theory, [F-M],[Fa]). But this generalisation is not very convenient if we
want to study the Galois group itself (rather than its image under some modular
representation ).

We construct our version of the Artin-Schreier theory in n.1. Our construction
depends on the choise of some filtered associative bialgebra (f.a.b.) over Fp (c.f.
1.1.1) and its area of applicability depends on some condition (C,,), c.f. 1.1. We
construct such f.a.b. objects, which satisfy the condition (C,,) for any s, < p,
and apply this construction to the study of extensions of K with the Galois group
of exponent p and class of nilpotency < p. In this case the Galois group of such
extensions may be related in a very natural way to some Lie algebra over F, (having
class of nilpotency < p) and in these terms the action of the Galois group can be
described explicitly, c¢.f. n.2.

We specify our arguments in n.3 in the case of a local complete discrete valuation
field K of characteristic p. So, we have an explicit description of the extension K =
Kf:pc P over K (here Cp(I) is the subgroup of the higher ramification subgroup
I generated by all commutators of order > p) in terms of a profree Lie Fp-algebra
L. Under some identification, the Galois group Gal(K/K,,) and the Lie algebra
L = £/C,(L) (where C,(L) is the ideal of £ generated by all commutators of length
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> p) are related by the truncated exponent.

In n.4 we define a decreasing filtration {£{*)},5¢ of £ by its ideals £(*), v > 0.
The description of this filtration becomes more clear when considered over k = F,
(c.f. n.5). ~

The main theorem (c.f. n.7) shows that if the residue field of K is k = [,

then the truncated exponent transfers the above filtration {E(")}.,)g to the image
of the ramification filtration {I'")},5¢ of the Galois group I' = Gal(K,.,/K) in
Gal(K /K). |

It is almost clear now that this aproach must work without “mod I?C,(I)”
and “charK = p” assumptions. We can apply the characteristic p version of the
Campbell-Hausdorff formula for the construction of an f.a.b. objects, satisfying the
condition (C,,) for sg > p, {Di]. The Fontaine-Wintenberger functor “les corps
norms ”, [Wnt], works very well in extending our description to the characteristic
zero case. But the general picture is not clear now so we put off the discussion on
this subject till a following paper.

The main results of this paper were obtained by author during his staying in
Uthrecht University (Holland, Febr.91-May 91) and in the Max Planck Institut fiir
Mathematik (Bonn, Febr.92-Jan.93). I would like to express my gratitude to these
organisations (and especially to the organisers of these visits: Prof. G.van der Geer,
Prof. F.Oort and Prof. F.Hirzebruch) for their hospitality.

1. One generalisation of the Artin-Schreier theory.

1.1. The statement of the masn theorem.

Let k be any field.
1.1.1.Definition.

A is a filtered associative bialgebra (f.a.b.) over k, if
a) A is an associative k-algebra with the unit element 14 = 1;
b) there is a decreasing filtration in A:

A=Jo(A)D /1 (4)D..D J.(4)D ..,

where all J,(A) are two sided ideals, J,,, (A)Jn,(A) C Jn,4n,(A) for all ny,ny >0
and A = k14 & J1(A) as a k-module;

c) there is the structure of a coassociative coalgebra over k on A, which is given
by the k — algebra morphisms: A : A — A® A (comultiplication) and e : A — &
(counit);

d) for every n > 1 we have A(J,(A)) C +€B Jn (A)® Jn,(A) and e(Ja(A4)) =

ni4n3=n
0.

If A, B are f.a.b. over k then A ®; B is equipped with the natural structure of

an f.a.b. over k. We note that forn 20, J,(A®B)= Y, Jn,(A) ® Jn,(B).

n=ni+na

If K is any extension of k and A is an f.a.b. over k then 4 ®; K has the natural
structure of an f.a.b. over K.
1.1.2. Let A be any f.a.b. over k and s any nonnegative integer.

3



Definition. a € A/J,4+1(A) is called s-diagonal if for some (and hence for any)
& € A such that a = @mod J,41(A) we have: A(a) = ® amod J,41(A Q@ A) and
ea) =1L

We shall denote the set of all s-diagonal elements in A by G4(s). Obviously,
Ga(s) is a group with respect to the operation induced by the multiplication in
A. For s; > s the quotient morphisms A/J, 4+1(A) — A/J,,41(A) induce the
reduction morphisms r,, 5, : Ga(81) — Ga(sz2).
Definition. An f.a.b. A defined over F, satisfies the condition (C,,), if for all
natural numbers s;, 89, such that s; < s; < 3¢, and all fields K, the map

Tay,82 ¢ GAK(sl) I GAK (32)

is an epimorphism.

1.1.3. Let A be an f.a.b. over the field K, L any Galois extension of K and
Gal(L/K) its Galois group. For any natural number consider the groups G 4(s)
and G4, (s) of s-diagonal elements in A and A, = A ® L, respectively. Obviously,

{a € Ga (s}l Ta=a forall 7€ Gal(L/K)} = Ga(s).

1.1.4. Let p be any prime, let A be an f.a.b. over F, and let K be any field of
characteristic p. For s > 1 we use the notation G, (s) and Gg(s) for the groups of
s-diagonal elements in A and AQ K, respectively. The absolute Frobenius morphism
of K acts on Gk(s) and we shall use the notation a(P) for the image of a € Gx(s)
under this action.

We have

{a € Gk(s) |a=aP} = Gr,(s).

We introduce an equivalence relation R, on Gg(3):

for any ay,a; € Gk(s), a; = a; mod R, iff there exists b € Gy (s) such that
a; = b~ laybP),

Let K,.p be a separable closure of K, I' = Gal(K,.p/K). By the definition:

f1,f1 € Hom(T',Gpy,(s)) are in the same conjugation class  iff there exists
¢ € Gy, (3) such that fi(r) = c™! fa(7)c for any 7 € T,

Theorem. Let K be a field of characteristic p > 0 and A be an f.a.b. over F,
satisfying for some sg > 1 the condition (C,,). Then for any s < sy there exists a
one-to-one correspondence

s : {Gk(8)/R,} — { conj. cl. of Hom(T', G, (s))}

Remark. It follows from the proof below, that these correspondences agree on s,
i.e. for any s3 < 53 < sg the following diagramm is commutative:

{Gk(s1)/Ra} —2 { conj. cl. Hom(T, Gy, (s1))}

fal.-:l lr'l-‘:"

{Gk(s2)/Ray} —2 { conj. cl. Hom(T, Gy, (s2))}

4



1.2.

Proof of theorem. Let L be any algebraic extension of K and e € Gg(s) for some
s > 0. Consider the set

M,(L,e) = {f € Ar/Jsr(AL)f € GL(3), f® = fe}

(here the f.a.b. A, = A® L is obtained from A by extension of scalars).

1.2.1. Lemma. For any s < 3¢ and e € Gg(s) there exists a separable extension
L of K such that M,(L,e) # .

Proof. For any a € A we can define its degree d(a) = min{n | a € J,(A)}. Choose
a family {cy}eer C J1(A) such that for any natural number s

{ca | @ € I,cq € J,(A)}

is an F,-basis of J,(A). This means also that for any s > 0 the elements of the
set {ca | @ € I,eq ¢ Js41(A)} U {1} taken mod J,41(A) give an F,-basis of
AT uia(A).

Now we are able to choose (uniquely) E € A such that e = E mod J,41(A) and
E =1+ 3 n(a)ecq, where each n(a) € K and n(a) = 0 for d(cq) > 5. We must

prove that there exists F =1+ > T(a)cq € Ak,,, such that
s

asep

(1) FP = FE mod J,41(Ak,,,);

(2) AF=F®F mod J,4.1(Ak,,, ® Ak,.,)-

It is clear that we can assume that s > 1 and that all T(a) are defined for
d(cq) < 8, in such a manner that the equivalences (1) and (2} are valid modulo
Js(Ak,.,) and J,(Ak,,, ® Ak,,, ), respectively.

Let

Ly = K{T(@)ld(ca) < s}).
By inductive assumption Ly C K,cp. It follows from part b) of the definition of
f.a.b. that for any a;,ap € I

CayCaz = E Alay, az; &)y,
acl

where A(ay,az;a) € Fp and A(a), az; «) = 0 for d(aq) + d(az) > d(a).
If a € I and d(cq) = s, then the expression

Y. T(ar)Ala, a5 a)n(az)

oy ,aE]

is well defined and gives an element of L,. Indeed, if A(a;,az;a)n(az) # 0 then
d(cay) + d(ca,) £ d(ca) = s, 850 d(cq,) < s and T(a;) defines an element of L; by
the inductive assumption.

For « € I, such that d(cy) = 3, we consider the extension

L = Li({T(a)ld(cq) = s}),

5



where

T(a)? = T(a)= Y T(o1)A(e1,a2;0)n(az) +n(a).

ay,a3€]

Obviously, L is separable over L; and we can assume that L C K,.,. Let

=1+ z: T(a)ea € AL.
d(ca)<s

By the choice of T(a) for d(c,) = s we have Fl(p) = FiEmod J,4+1(AL). By the
inductive assumption

AF, = Co(F, ® F1)mod J,41(AL ® AL),

where

Co=1+ Z ‘)’(alaa’Z)cal ® Cay,

g,y

v(a1,a2) € L and y(a1, a2) = 0 for d(ca,) + d(ca, ) # s.
From the equivalences

AF® = CP(FP @ FP)) = CSP(F, @ FE ® E)ymod J,4,(AL ® A),

AFI(P) = AFRAE=Co(Fi @ L) (E® E)mod J,41(AL @ AL),

it follows, that Co = CP, i.e. all y(ay, ;) € F,.
Let us prove the existence of C € A such that C = 1modJ,(A) and AC =
Co(C ® C) mod J,.g.](A ® A) Let

C=1+ Y u(a)ca,

d(ca)=2
where p(a) € F,. We can assume, that

Acag =¢ca®1+1®cq + E B(a;a1,a3)cq, ® Cay
oy ,03€T
for some B(a; ay,a2) € F,. We have B(a;ay,a3) = 0 for d(cq, ) + d(cq,) < s from
part d) of the definition of f.a.b. It is clear that the existence of C is equivalent
to the existence of u(a) € Fp, for all a € I such that d(cy) = s, satisfying the

following equations

™*) ZB(C‘f;al,az)ﬂ(a) = y(a, az),

where ay,a;3 € I and d(cq, ) + d(cq,) = 3.
The coefficients and free members of this system are in F,, so it is sufficient to
prove the solvability of the system (*) in some field of characteristic p.
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By the condition (C,,), Gr(s) — GL(s —1) is an epimorphism, therefore there
exists Fz € A such that F; mod J,41(AL) € G1(s) and F; = Fimod J,(AL). Let
C=FF;  then C € Ay, C = 1mod J,(Ar) and

Aé = (AF])(AFz)_l = CQ(F] ®F1)(F2®Fg)—l = CU(é@é) mod J,+1(A.L ®AL)

If

C=1+ Y ji(a)camodJ,1(AL),
d(ca)=2

then the equivalence above means that the collection {fi(a)|d(c,) = s} gives the
solution of the system (*) in L. So the system (*) is solvable in F, and the needed
element C exists.

Now for F = C~'F, € A, we have

F®) = c@-1F® = c-1p E = FEmod J,41(AL),

AF = (AC)'AF =C 1 (C®C) 'Co(Fy ® Fy) = F @ Fmod J,41(AL).
The Lemma is proved.

1.2.2. Proposition. Let e € Gk(s) and L be an extension of K such that
M_,(L,&) '_)'é 9. Hflva € MJ(L’G): then flfz_1 € GF;(S)‘

Proof. fl(p) = fie, fé”) = fae, therefore (fi f;71)P) = fif; ', i.e. fif;! € Gr,(s).

1.2.3. Corrolary. Let us fix some separable closure K,., of K. Then fors < sy,
e € Gk(s), there exists a uniquely determined Galois extension K,(e) C K,.p of K
such that
(1) M,(K,(e),e) # B;
(2) if M,(L,e) # 0 for some subfield L C K,.p, then L D K,(e) and M,(L,e) =
M,(K,(e),e).

Proof. Let Ly C K,.p be some minimal element in the partially ordered (by in-
clusion) set of the subfields L in K,.p, such that M,(L,e) # @. Choose some
fo € M,(Lo,e).

If L C K,pis such that M,(L,e) # @ and f € M,(L,e) then fo, fi € M,(LLy,e).
It follows from the above proposition that fq, fi € M,(L N Lg,e). Lg is minimal,
so LN Ly = Ly, i.e. L D Ly. Analogously, Ly is the Galois extension of K. So we
can take K,(e) = Lo, q.e.d.

1.2.4. Now we are able to use the new notation M,(e) for the set M,(K,(e),e).

Proposition. Let s; < 87 < 39, €; € Gg(31),e2 € Gk (s;) and r,, ,,(e1) = ey,
where 1,, 5, : Gr($1) — Gk(s2) is the reduction morphism from n.1.2. Then
K, (e1) D K,,(e2) andr,, ,, induces an epimorphic mapping M,,(e1) — M,,(e2).

The proof follows immediately from n.2.2.

1.2.5. Let s < s, € € Gk(s), f € M,(e). For any 7 € T = Gal(K,.p/K)
7f = ¢(7)f, where ¢(r) € Gf,(s). Obviously, 7 +— ¢(7) defines an element of
Hom(T', Gy, (s)), which we denote by 7. s,.. The following proposition follows im-
mediately from the definitions.



Proposition.

(1) Ker(m,,1,) = Gal(K,ep/K,(e));

(2) if f1,f2 € M,(e) then 7.4 , and 7., , are conjugate under some inner
automorphism of the group G, (s);

(8) if some homomorphism « : ' — G, (s) is conjugate to 7. 1, then there
exists f' € M,(e) such that me g , = 7.

1.2.6. So, for 1 < s < s, the correspondence e — {conj.cl. Hom(T', Gy,(s))}
gives the mappings

#y : Gg(s) — { conj. cl. Hom(T, Gy, (s))}.

Proposition. Let e;,e3 € Gg(s), s < sp. Then we have:

7s(e1) = 7a(e2) & €1 = €2 mod R,, i.e. there exists some h € Gk(s), such that
€2 = h—lelh(p).

Proof. Let fi € M,(e1), f2 € M,(e2). We have:

#a(e1) = 7,(e2) & there exists a € G, (s) such that forany 7 € T, (7)) =
aYcy(7)a, where 7f; = ¢1(7) f1,7f2 = co(7) fa.

Let h = f{'a™' f, € Gx,.,(s). Then h(® = fPT1a=1 P = 71 f101 fre, =
el_lheg, ie. e = h™leh®), But forany 7 € T : vh = (vfi) a7 (7 f,) =
fila(m)a e (r)fa = f7la M fa = h,ie. h € Gi(s).

1.2.7. It follows from the previous proposition that 7, defines an injective map-
ping

7y : Gi(s)/Rs — { conj. cl. Hom(T, G¥,(s))}.

The surjectivity of , follows from the next proposition.

Proposition. Let s < s and 7 € Hom(T',Gy,(s)). Then there exist e € Gk(s)
and f € M,(e), such that =7, 5,,.

Proof. We can assume that s > 1 and use the induction on s. Then there exist
er € Gk(s—1), fi € M,_1(e1) such that for any 7 € T, 7f; = 7'(7)f1, where
7'(t) = n(7) mod J,(A). Choose e; € Gg(s) such that r, ,_;(ez) = e; and
choose f; € M,(ez) such that r, ,_1(f2) = f1.

Now we shall use the special Fy-basis {cq4}qer from the proof of lemma 1.2.1.
By means of this basis we can take liftings

E,=1+ Zn(a)c,Jr € Ax
acl

and

Fz = 1 + Z#(a)ca e AK-sp
a€l

of ez and f,, which are uniquely determined by the conditions n(a) = 0, u(a) =0
if d(cq) > 5. We have:

F,‘SP) = F,E; mod J,41(Ak,.,),
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AF, = F; @ F; mod J,41(Ak,,, ® Ak,., ),
TFQ = m (T)F2 mOd JJ+1(AK|¢' ))

where 7 € T',m; € Hom(T', G, (s)) and m; = 7 mod J,(4).

Let m(7) = ¢(7)n(7) for any 7 € T. Then ¢(7) € Gy, (38),7s,0-1(c(7)) = 1
and c(m172) = ¢(r1)e(r2) for any 11,72 € I'. Let C(r) € 1+ J,(A) C A be
Liftings of ¢(r) of the type above. By a cohomological triviality of the Galois
module K,,,, there exists C; € Ag,,,, such that C; = 1modJ,(Ag,,,) and
TC] = C(T)Cl mod J,+1(A[{”P )

Now we have for F3 = C1 Fy:

1-F3 = W(T)Fa mod Ja+1(AKuP)’

AFg = (F3 ® F3)Cg mod J,+1(AK“P ® AK‘”),
where C; = 1mod J,(Ag,,, ® Ak,,,) and

AC, = (C] & 01)02 mod J,.H(AK“’ ® AK.:p)'

For every r € T, (1C4 )C'l—1 mod J,41(Ak,,,) i8 an s-diagonal element, therefore,
70y = Cy, i.e. C; € (A® A)mod J,41(Ak,,, ® Ak,.,). Similarly, as in the prove

of lemma 2.1, we can obtain the existence of C3 € A such that C3 = 1mod J,(A)
and AC; = (C; ® C3)Cy mod J,1(A ® A). So, for F = C; ' Fy we have:

7F = 7(7)F mod J,41(Ak,., ),

AF = F ® Fmod J,41(Ak,., ® Ax..,)-

It now follows, that E = F() F~1mod Je+1(Ak,,,) is the I-invariant element of
GK,.,(s), hence Emod J,4,(Ak,,,) = € € Gg(s). f weset f = Fmod J,1(Ak,., )
then m = m, g,,.

So, the proposition and the theorem of n.2 are proved.

1.3. Ezamples and applications.

1.3.1. Theorem n.2 means nothing in the case s = 0 because for every f.a.b. 4
over F, we have G, (0) = Gk(0) = 1.

Consider the first nontrivial case where our theorem works. Let A = F,[D]
where D is an indeterminate, with a filtration by the ideals J,(A) = (D?),s > 0,
and coalgebra structure given by AD = D® 1+ 1® D,e(D) = 0. It is easy
to verify that for s = 1 and this choice of f.a.b. our theorem gives us the usual
Artin-Schreier theory. Indeed we have the identifications Gy, (s) = Fp, Gx(1) = K
given by correspondences 1 + aD mod (D?) — a, where a € F, or a € K. The
equivalence relation Ry on G (1) is transformed here to the relation R on K:

ay =aymodR iffay=a;+¥ —b forsomebde K.
So 7, can be considered as a one-to-one correspondence
m : K/R — Hom(T',F,),

9



where I' = Gal(K,¢p/K). It follows from the construction of 7, that for any a € K
the homomorphism xy = wj(amodR) mapsany 7 € I' to x(r) =T —-T € F,
where T? — T' = a. Of course, 7] is also an isomorphism of groups.

Let us take any 1 < s < p. It is easy to show that for these s

Gk(s) = { ezp(aD)mod J,(A) | a € K},

where ezp(l) = ). {"/n!is the truncated exponent. It means that the reduction
0<n<p
maps r,, ,, : Gg(s1) — Gk(s2), for 1 < 35 < 3; < p, are one-to-one mappings
and therefore the f.a.b. A satisfies the condition (Cp—;). But this means also that
theorem n.2 for the f.a.b. A and arbitrary 1 < s < p gives nothing more than the
Artin-Schreier theory.
It may be shown that

Gk(p) = {ezp(aD?)mod Jp41(A4) | a € K}.

Therefore, 71 : Gx{(p) — Gk(1) is the zero mapping, so the f.a.b. A does not
satisfy the condition (Cp).

1.3.2. Let W = SpecB be the scheme of Witt vectors. We can assume that
B = Z,[Yy, Y1,...,Yy,...] and the operations on W are given by means of the Witt
polynomials: wa(Ya,...,Y,) =Y +le”“_1 +...+p"Y,, n>0.

Let W=Wg F, be the reduction of W modulo p. We have W = SpecA, where
A=F,[Xo,X1,...,Xp,..] and X, =Y, ® 1 for n > 0. The bialgebra structure on
A is induced by the bialgebra structure on B. Introduce the grading of A by the
conditions d(X, ) = p™ for n > 0. Then the ideals

Jo(A) = {a € Ald(a) 2 s}
for s > 0 define a decreasing filtration of A. So we have the structure of an f.a.b.

on A.
Let E € Z,[[Y]] be the power series equal to

exp(Y +YP/p+ ..+ YP" [p" +..)
(the Artin-Hasse exponent). We can consider the collection of variables
X =(Xo, X100, Xn,..)

as the element of the ring W(A) and define

EX) =[] EX.).

n>0
E(X) is the element of a completion of A in the topology induced by the grading
d. If K is a field of characteristic p then the collection of the coordinates of the
product of Witt vectors w and X will be denoted by wX.

10



Proposition. Let s be a natural number, G4 k(s) be the group of s-diagonal
elements of the fa.b. Ay = A® K. Then

Gak(s) = {E(@X)mod J,,1(Ak) | © € W(K)}.

Proof. We remark, that elements of the F,-module
M, = {m € K[Xo,..., Xa,...] | d(m) < s}

give the full set of representatives of the elements of a Ax/J,4+1{AK) in Ax. Let
L]
e € Ax/Js41(Ak)and E = Y E; € M, be its representative, where E; for 0 <1 <
1=0

38 are isobaric polynomials of Xy, X},..., Xy, ... of the weight d = 1. The coaddition

A in A is given by the isobaric polynomials, therefore: e € G 4,k (s) iff Eo = 1 and

AE; = Y E; QE;, for 0 <i < s. This means that )  E;t' is a "curve”
irbia=i 0<i<s

for W modulo deg(s + 1), c.f.[Di]. Now our proposition follows from the explicit

description of all curves for the scheme of Witt vectors, [Di],n.7.

Corollary. The f.a.b. A satisfies the condition (C,,) for any natural number sq.

Corollary. For any field K of characteristic p and any natural number s, the
correspondence E(10X) — w gives an isomorphism

G4 x(s) — W,(K),

where W, is the group scheme of Witt vectors of finite length s over F,.

So this choice of f.a.b. A gives the following result of Witt, [Wt]:
If s 21 and K 1s ¢ field of characteristic p > 0 then there exists a one-to-one
correspondence

W(K)/(F — id)W,(K) — Hom(T',Z/p*Z)

(here F: W,(K) — W,(K) is the Frobenius morphism and, of course, this corre-
spondence is an isomorphism of groups).
Taking the projective limit over s we obtain the isomorphism

W(K)/(F — id)W(K) — Hom oni(T, Zy).

So, we have a full description of all Z,-extensions of K with an explicitly given
action of the Galois group.

1.3.3. Let p be a fixed prime, £ be a nilpotent finite dimensional Lie algebra
over F,. We assume that the nilpotency class of £ is less than p.

Let A = A, be the envelopping algebra of L. We remark that there exists a
canonical embedding £ C A. For any field K of characteristic p the coalgebra
structure on Ax = A® K is given uniquely by the conditions: A({)=1®1+1®!1
and e(l) =0 for l € L. If J(Ax) = Kere, then we define the decreasing filtration
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{Js(Ak)} of Ak for all s > 0 by J,(Ak) := J*(Ak). It is easy to see, that A is an
f.a.b.
Let ~ _ _
log(T)= > (-1)NT-1)/i

1<i<p—1

be the truncated logarithm. It is clear, that for s < p the correspondence a — @a
defines a one-to-one correspondence between the sets 1 + J;(Ax)mod J,(Ax) and

Ji(Ax)mod J.(Ax).

Proposition. For s < p, the correspondence a — H}a defines one-to-one mapping
between Gk (s) and L ® K mod J,(Ak).

Proof. Let Lx = L®K, Ci(Lk) = Lk, and, for s > 1, C,(Lg) = [Cs=1(Lk), LK].
We have: Cp(£) =0 and, for any 81,82 > 1, [C,, (L), Cs,(L£)] C Chy4s,(L).

For any ! € £ we set: w(l) = maz{i|l € C;(L)}. Now choose a special basis
li,l2,...,In of Lx over K, where dimy L = N, satisfying the following condition:

(1|l € C(L)} is a K -basis of Cy(L) for all s < p.

The equivalent condition:

{lilw(l;) = s} is a basis of the supplementary vector space for C,41(L) in Cy(L)
for all s < p;

By the Birkhoff-Witt theorem the monomials {'13%...I3, where a; € NU {0} for

N
1<i< N, give a K-basis of Ax. We set w({]*32..13") = 3 a;w(l).
=1

Lemma. For any s the set {I7'I3*..13Y | w({{'13*..01\) > s} gives a basis of
Js(Ag) over K.

Proof. By definition I € J,()(Ak) for any | € L. Hence, any monome I7'13?.. .13}
of w-weight > s is in J,(Ax). Conversely, the ideal J(Ax) = Ker(e) is generated
by the set {l; | w(l;) = 1}. Therefore, it is sufficient to prove that every product
lLiy..l;, , where 8y > s, 1 < 44,4, < N, w(ly,) = ... = w(l;, ) =1, can be
expressed as a sum of monomials I3'[;?...13" which have w-weight > s;. If i; <
i3 <... <1, then l,-l...:',-.‘ is one of these monomials of w-weight s; > s. So, here is
nothing to prove. If the sequence of indices 1,12, ...,1,, does not grow, we must use
the commutator relations for presenting [;,...l;, as a sum of monomials from the
Birkhoff-Witt basis. These relations are of the following kind: I'l" = I"l' + " a;l;,

where I',1" € {l1,13,...,In}, all @; € K and o; = 0 if w(l;) < w(l') + w(l") (this
follows from the special choice of the basis Iy,13,...,I5). It is clear, that these
relations are able to give us only monomials of the weight > s;. The Lemma is
proved.

We continue the proof of the proposition. Let a € Gk (s) and @ € Ax be such
that a = @ mod J,41(Ak). Consider b = log(a). Then

Ab=b®14+1@b mod J,; (A @ Ak)
Let b = Y b;, where every b; is a linear combination of the monomials from

i>1
the Birkhoff-Witt basis with the w-weight equal to :. We note that the elements
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13132 ... k"@l'l"lg’...l%", where a;,b; € NU{0} for 1 <t < N, give the Birkhoff-Witt
basis of the envelopping algebra of Lx @ Lx. Obviously, for any ¢, A(b) - (b ®
1+ 1@®b;) can be expressed as a linear combination of such monomials with the w-
weight equal to 1. So, we have: A(b;)—(b; ®1+1Q®b;) is equal to 0 or has w-weight
equal to ¢. By the condition we have: A(D) —(b®1+1®b) € J,41(Ax @ Ak). It
follows now from the above lemma that

w(Ab—(b®1+1@b)) =w(d (Abi— (i ®1+1@b)) 2 s+1.
i>1

Hence, for i < s we have Ab; = b; ® 1 + 1 ® b;. This means that b; € Lk for
t < s, ¢.f.{B], and the proposition is proved.

Corollary. The f.a.b. A satisfles the condition (Cp_,).

By means of the characteristic p-case of the Campbell-Hausdorff formula (c.f.[B])
we can conclude:

Corollary. The correspondence L — Gy, (L) gives us an equivalence of the cate-
gory of Lie F,-algebras with class of nilpotency < p and the category of p-periodic
groups with class of nilpotency < p.

After these preparations we are able to apply theorem n.1.2 to the explicit de-
scription of the Galois extensions of K with arbitrary p-periodic Galois group of
nilpotency class < p.

Let ¢ € Gk(s), s < p and #,(e) be the corresponding conjugacy class in
Hom(T', G, (s)). Let ly,...,1, be the part of the special basis of £ from the above
proposition which consists of the elements with w-weight equal to 1. Then for the
reduction r, 1(e) of e we have: r, 1(e) =1+ wily + ... + walp mod J2(Ak), where
wy,...,w, € K. '

Proposition. The conjugacy class 7,(e) consists of epimorphisms iff the images
of wy,...,w, in K/(F — id)K are linearly independent (here F is the Frobenius
morphism of K).

Proof. For s =1 it can be easily checked by the usual Artin-Shreier theory.

Let s > 1, f: I' — Gy, (s) be any homomorphism from the class 7,(e). G, (s)is
a p-group, hence f factors through the quotient I' — I'(p), where I'(p) is the Galois
group of the maximal p-extension of K. As the one-to-one correspondences 7, and
7, from our theorem agree one with another under the reduction mapping r, ; we

can conclude that the composition I'(p) — GF,(s) ~— Gy,(1) is an epimorphism.
But

Ker(Gr, (s) — Gr,(1)) =[G, (s), G, (3)]

go our proposition follows from the well-known property of p-groups:
let T1,Ty be profinite p-groups, then the homomorphism m: I'y — Iy is an
epsmorphism iff it induces an epimorphism

Ty /T8y, Ty] — T3 /T3 [, Ty]
c.f.[Se2], Ch.1, n4.
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Example. In order to illustrate the above considerations we apply them to ex-
plicit construction of extensions of K with noncommutative Galois groups of order
p® for p > 2. Let £ be a Lie algebra over F, with F,-basis I;,13,l3 and rela-
tions (l,13] = I3,[h,13] = [l2,l3] = 0. We assume that w,,w; € K have lin-
early independent images in the quotient K/(F — id)K and take a 2-diagonal
element ¢ = E mod J2(Ak), where E = exp(wily + walz). The corresponding
extension L = K(T1,T3,T3) of K is given by F®) = FE mod J3(Ak,,,), where
F =exp(Til, + Tpl; + Tals).
By the Campbell-Hausdorff formula we obtain:

&Z(TPly + TPl + TPls) =
= E_JJ_};(Tlll + Tl + Tsl3)gf}3(w111 + ‘wglg) =
= Eﬁ)((T] + wl)ll + (Tg + wg)lg + (ngl/z - w1T2/2 + Tg)la)

Now we have the explicit equations of this extension:
Tlp = Tl + wy, TZP = T2 + wg,T; = T3 + (‘ngl - wng)/Z.

The action of Gal(L/K) =~ GF,(2) is given by the relation F — uF, u € Gy, (2).
For example, the generators u; = ezp(l,) and u; = exp(ly) of G,(2) act in the
following manner:

Uy . (T},TQ,T;;) H(Tl + 1,T2,T3 + Tg/?)
U2 :(Tl,Tg,T;;) = (TI,TQ + 1,T3 —T1/2)

2. Explicit construction of the Galois action (the case of a general field).

2.1. Let K be a field of characteristic p > 0 , T'x = Gal(K,.p/K}), let £ be a
finite dimensional Lie algebra over F, and A be the envelopping algebra of £ with
the structure of an f.a.b.,defined in n.1.3. We shall use the notations of n.1.3.

Let 3o < p, e € Gk(s0), My,(e) = {f € Gk,.,(30)|f® = fe} be the set from the
proof of theorem 1.2. We denote by d: A — N the grading of A and by {ca }aer
the special F,-basis of A which were defined in the proof of lemma 1.2.1.

Let f € M,,(e). We can take its (uniquely defined) representative

in Ag,,, and denote by M,,(e) the F,-submodule in K,., generated by all f, with
d(ca) < so.

We have:

2.1a. M, (e) does not depend on the choice of the special basis {c4}qes. Also
it does not depend on the choice of f € M, (e).

2.1b. M, (e) is the T'k-invariant submodule of K,.,.

2.1c. If the homomorphism F : I'xy — AutM, (e) gives us an action of 'y on
M,,(e) then KerF = Gal(K,.p,/K,,(€)), where K, (e) is the minimal extension of
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K in K,.p such that the following implication is true: f € M,,(e) = f € Gk, (s0),
cf1.2. '

2.1d. For any 7 € ', F(r) is & unipotent automorphism of M,,(e) such that
(F(r) = id)***! = 0. Therefore it defines an endomorphism L(7) = logF(r) €
EndM,,(e).

Let the representative € of e be of the form

and suppose that the images of elements of the set {eqs|la € I,d(cy) = 1} in
K/(K — id) are linearly independent. We fix f € M,,(e). Then the homomor-
phism 7., : T'x — Gp,(so) from 1.2.5 is an epimorphism and defines an
isomorphism Gal(K,,(e)/K) =~ Gy, (so). By proposition 1.1.3, for any 7 € I'g
there exists a unique I, € £ such that =, ;,,(7) = ezp(l;) mod J,(A4).

We have:

2.1e. The correspondence I, + L(r) for 7 € Ty (c.f. 2.1d) defines & homo-
morphism of Lie algebras LF : L — EndM, (e), i.e. gives the action of the Lie
algebra £ on M, (e).

2.2. Let us treat the previous construction in the case of a free Lie algebra and
8 =p— 1.

So, let £ be a free Lie algebra over F, with free generators D,,...,Dy. We can
take the system

{Di,...D;,|1 €41,...,i, N,s 21}

as a special basis {cq}aer. It is easy to see that if § is a free group with free
generators g;,...,gn then the correspondence g; — ezp (D;)modJy(A), where i =
1,..., N, defines an epimorphism k : G — Gy, (p—1) and Kerh = GPC,(G), where
C,(G) is the subgroup of G, generated by all commutators of length p.

Let w),...,wny € K be such that their images in K/(F — id)K are linearly
independent. If we take

e=eip( y wD;) mod J,(Ak) € Gk(p—1)
1<i<N
then
E=1+4+ Z —l-w,'l...‘w,"l),'1 ..D;,

Let f € M,_1(e) and

f=1+ Y T,..D,..D;
1<s<p

11 4200y3,

Then the elements T;,, ;,, where 1 £ s < p, 1 < 13,...,i, < N, generate
M,_;i(e) and the equality f®} = fe gives the following equations for these elements
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w;,

T =T .6, + Til...i,_l"i'r o +2

i Wi,
s!

31,0080

The action of the Lie algebra £ on M,_;(¢) is given by the relations

LF(D;)(T,..i,) = 6(3,41)T;, .5,

for any 1 < 1,1,...,i, < N,1 < s < p, where §(1,1,) is the Kronecker symbol. It
gives the faithful action of £ = £/C,(L) on M,_1(e) (where C,p(L) is the ideal in
L generated by all commutators having length p).

We can identify Gal(K,-(e)/K) and Gg, (p ~ 1) by means of 7, ,.,. Then
we have the explicit description of the Galois action, which is given on generators
7i = ezp(D;) mod Jp(A),1 <1 < n by the following relation:

1 .. 1 ... .
7i(Te,.5,)=Ti,.i, + ﬁé(%'l)Tig...i. + 55@,11,!2)7':'3...-'. + ..

where 6(3,1;,...,41) i8 equal to 1 if ¢ = ¢; = ...i; and is equal to 0 otherwise.

Proposition. The system {T;, i, |1 € s <p,1 <1y,...,i, < N} is linearly inde-
pendent over K.

Proof. Let

be any nontrivial linear relation. Let us choose the ¢;, i+, # 0 with the largest
s'. Then the relation

LF(Dy)...LF(Dy )Y eiy. i, Tiy.5,) = @iy,

gives us a contradiction.

2.3. We can give the following profinite version of the previous construction.

Let V C K be a Fy-subspace, such that V+(F—td)K = K and VN(F-id)K =
0, where F : K — K is the absolute Frobenius map on K. Let us choose an
F,-basis {w;}ier of V.

For any finite subset R C I we denote by Vg the subspace of V' which is generated
by w;, 1 € R. Obviously, V = ILnVR. Let Vg = Hom(Vg,F,) be the dual vector
space for Vg. Then V* =lim Vy is the topological vector space over F, dual to V.
Let us denote by {D;}.es the topological F,— basis of V* dual to the basis {w;}ier.

For any finite subset R C I we denote by Lr the free Lie algebra with the system
of (free) generators {D;}icgr. Then £ = l‘ir_nﬁ r is a profinite free Lie algebra over
F, with the module of free generators V*. Let Ar be the envelopping algebra of
Lr, then A = limAp is the (topological) envelopping algebra of L. We assume
that all Ar and A are equipped with the structure of f.a.b (c.f. 1.3.1). We also
shall use the notation of n.1.3 for all constructions related to A. The notation for
all similar constructions related to Agr will be equipped with the indice R.
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Let
er = ezp(y_ wiD;)mod Jo(Ak,r) € Gk,r(p — 1)
i€R
and e = l‘ir_neg € Gk(p—1). Choose f € l‘iilMp_l(eR) and denote by fr the

R R
projections of f to M,_;(er) for any finite subset R C I. Then we have a system
of epimorphisms 7. s ,-1,r : Tx — GF,,r (p — 1) which gives an epimorphism
Tyo= l(iinr,'m,..l,a :Tx — Gr,(p—1). It is clear that 7 can be factored through

R
the quotient I'x — Tk(p), where 'k (p) is the Galois group of the maximal
p-extension K(p) of K. It is well known, c.f.[Se2, ch.2, n.2], that I'(p) is a free
pro—p-group and from [Se2, Ch.1, n.4] we obtain that 7 defines an epimorphism
7(p): T(p) — G, (p — 1) such that Ker m;(p) = *(p)Cy(T(p))

Let i
f=1+4 Z Ti, .., D ..D;,

1e<p
f1,..,0, €1

be the representative of f. Then we have:
2.3a. AUlT;, . 4, arein K(p)rp(”)c'(r(”)).
2.3b.The system {T;, ;|1 £ s < p,iy,...,1, € I} 13 linearly independent over K.
2.3c.The Fy,-module M generated by all T}, _;, is invariant by the Galois action.
2.3d.There is an action of the profinite Lie algebra L on M, LF : L — EndM,
given by the following relation on free generators D;, 1 € I:

LF(D")(T"L.-"-) = 6(i1i1)Tiz---l'.'

Let T(w;,,...,w;,) = T;, . i,, where1 < 8 < p,t1,...,i, € I. Define T(vy,...,v,) €
M for vy,...,v, € V by multilinearity: if v; = ) aj;w;, for i = 1,...;s, where
jeJ
a;j € F, and almost all are equal to 0, then

T(v1,y...,0,) = 2 ayj,...0.5, T(wj,...,wj,)
Jyeesds

In this notation we have:
2.3e. M = Br1<scpM, where M, = {T(vy,...,v,)|v1,...,v, €V}
23 If De V" then

LE(d)(T(v1, .y vs)) = (D, v1)T(v2, ..., vs)

for any vy,..,v, € V.
2.3g. T(v1,...,v,) satisfy the following equation:

V1...Y,

T(v1, ey 00)P =T(v1,..cyv4) + %T(vg, o Vs) . o
2.3h. Let 1 €Tk and I, € L be such that
() = Bl JmodJ,(A).
Then 1, is uniquely defined modulo Cp(L) and 7|pq = ezp(LF(l.)).
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3. Explicit construction of the Galois action (the case of a local field).

Let k be a local field of characteristic p > 0, complete with respect to a discrete
valuation and with residue field &k ~ Fp. Then K is isomorphic to the fraction field
of the power series ring over k. We fix some uniformising element of this ring in
the form t7!, ¢t € K.

We shall give some modification of the previous construction which will be useful
later in the study of the ramification filtration.

3.1. Structural element e° and constants n(ry,...,r,).

Let
Q*(p) = {r EQ | » >0,(r,p) =1}.

For any finite subset R C Q*(p) consider a free Lie Fy-algebra L% having a set
of free generators {D?|r € R}. Then UimL% = L° is a pro-free Lie Fp-algebra with
R
the set of free generators {D}|r € Q*(p)}. If Ag is an f.a.b. related to £} then
A° = l‘inAjIz is an f.a.b. related to L°.

R
We call an element e® € A° mod J,(A°) structural if

(1) e €Garp,(p—1)
(2) e=1+ S D? mod Jo(4°)
reQ+(p)

It is clear that e° = li:}_le?{, where e € Gaey,(p—1) and e = 14 3> D}
reER

mod J2(A%).
As before we can consider a uniquely defined representative E° € A% of e® of
the form

E° =1+ Z n(r1y .., 7a)D5 Dy
1€as<p
rl,...,r.EQ+(p)

where n(r1,...,r,) € F, for any ry,...,r, € Q*(p).
These constants n(ry,...,r;) will be called the structural constants (related to a
structural element e°).
Examples.
(1) If we take
E=ap Y DY)
reQt(p)

then ¢ = E°modJ,(A°) is a structural element and for its structural

constants we have: 1

N(r1y .y Ts) = i

(2) If we take
E= [[ ep(D?)
reQ+(p)
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with respect to the natural ordering in Q*(p), then e° = E°modJ,(A°) is
structural and its structural constants are given by the following equalities:

1

s11(s2 — 81 (81— 81-1)V

N1,y .. Ts) =

ifry, = ... = Tgp < Ta4l = o0 =Ty < ot X Ty_141 = o0 = Ty, ,where
1<s81 <8< ...<s=3s,and

N(ry,....,rs) =0

otherwise, i.e. if r; <r; < ... < r, is not true.

Proposition. A collection of constants n(ry,...,r,) € Fp, where ry,...r, € Q*(p),
1 < s < p, is a collection of structural constants iff:

(1) for any r1 € Q*(p), n(r1) =1;
(2) if 1,382 are natural numbers such that s = s; + s; < p then

U(rls-'-ral )7]("31+1""y"33) = Z '7(7‘::(1),---,'}(3,)),
UEPII.J’

where P,, ,, is the subset of permutations of order s; such that o(i) < o(j),
wherel <i1<j<syors;+1<1<j< 3.

Proof. 1t follows from the fact that in the coalgebra A° we have:

A(Drl"'D"o:) = Z Dra"'l(l)".Drr"’l(ll) ®Drc‘1(11+1)"'Dr¢_1('2)

0L <o
GEP.lx 22

We assume until the end of this paper, that some structural element e° and its
structural constants n(rq,...,r,), where 1 < s < p,ry,...,r5 € QF(p), are fized.
3.2. Let K,., be any fixed separable closure of K, I' = 'y = Gal(K,cp/K).

For any natural number N we consider the extension Ky = K(tn) C K,ep,

N
where t ~1 = {. The system of these fields K is an inductive system of the

subfields in K,.p, and 121}( N = Ky is the maximal tamely ramified extension of

K. Now K,., can be cogsidered as a maximal p-extension of Ky,. Its Galois group
I = Gal(K,.p/K\) is called the subgroup of higher ramification of I' and as was
mentioned earlier is a free pro-p-group.

In order to apply the construction of n.2.3 we can assume that elements ¢ty €
K., N > 1, satisfy the following condition: for any natural numbers N;, N2 such

N (I-1)N
that Ny|N; we have: ty, = t}v"l'P THetp * where N; = IN,.

Let Q*(p) be the set defined in n.3.1. Obviously, every r € Q*(p) can be written

in the form r = F"ﬂl—"i' with some natural numbers m, N, where (m,p) = 1. We use
this fact to define t™ := T} for r € Q*(p). It is easy to see that this definition does

not depend on the above choice of m and N.
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Now consider the vector space

V = @ ktr C Kt,-
reQt(p)

over Fp, then V +(F ~id)K,, = K, and VN(F —id)K;, =0, where F: K — K
is the absolute Frobenius endomorphism of K. Let {w;}ier be some basis of k over
Fp, then

{wit'lie I,r e Q*(p)}
is an F,-basis of V. As earlier we consider the dual vector space

V*=Hom(V,F,)= [[ Hom(kF,),
reQ*(p)

for V and the profinite free Lie algebra £ with the F,-module of free generators
ve.
Let
E°=1+4) n(r1,..,rs)D;,..D5,

be a representative of a fixed structural element e°(cf. 3.1 ). We write E° =
E°({D;},eq+(p)) if we want to consider E° as a function of variables D7, r € Q*(p).
Consider the element

E=E°({)_wit"Dir}rea+(»)
ie]

of Ak,, = A® K, where A is an f.a.b. related to £, and
{Di.li € I,r € Q*(p)}

1s a basis of V* dual to basis

{wit"|i € I,r € Q% (p)}

of V.
It is clear that E does not depend on the choice of basis {w;|t € I} of k over
Fp, e = E mod J,(Ak,,) € Gk,,(p—1) and

E=1+4+ Z ’7(7'1"“’r’)wil~--wi.tr‘+"'+"‘D,'l,~l...D.',,-,.

1€s<p
$1,000, €T

r1ye7 €Q(p)

3.3. Let K = K,I:,,C"U). As earlier we have:
3.3a.The set

{Tilrl...i,r, Iil) ---,ia € I7 T13:eTa € Q+(P), 1 S $ < P}

generates an I-invariant Fp-submodule M in K. This set is linearly independent
over Ky, (therefore, this set is F,-basis of M).
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3.3b. The elements Ti r, i,r,, where i1,...,1, € I,ry,...,r, € QT(p),1 < s < p,
satisfy the relations

T'.l: Flaber, T"l"'l---"n"n +T"l"1~~~i.-1f'.-1wiatr'n(rﬂ) +"'+wl'1"'wi.trl+m+r"7(r11 ...,f‘,).
3.3c. The Lie algebra L acts on M and this action LF : L — EndM is given
on its generators D; .1 € I,r € Qt(p) by the relation

L(Di,r)(Tt'l r ...i,r.) = 6(’, 1.l )6(1‘, r )Tigrg‘..i.r. .

3.3d. For any 7 € I there ezists I, € L, uniquely defined modulo C,(L), such
that 7| pq = expLF(l,).

As earlier we define T, i, = T(wi,r1,...w;,,r,) for all ¢,...,¢, € I,
r1,.Ts € Q¥(p),1 < s < p and define elements T(ay, 71, ...,a,,7,) € M for any
ay,...,a, € k by multilinearity. We have:

for any oa,...,a, € k,r1,...,75 € QF(p):

3.3e.

T(al:rla "'aaurs)P = T(O.’l,'f'], ...,Cl',,f‘,)+

+T (1,71, ey g1y Tam1 )t n(r,) + ... + ay..opt (e r,)

3.31. IfD = (D(r))rEQ+(p) eV* = H Hom(k,Fp),-
reQt(p)
then

LF(DYT(a1,7r1y.ys,7s)) = (D(r1),00)T (02,72, ...,4,7,).

Remark.

We obtain a similar description for part of the maximal p-extension of K if
everywhere we replace K, by K and Q*(p) by Z*(p) = {n € N|(n,p) = 1}.

4.The "ramification” filtration of the Lie algebra L.

Let £ be the profinite free Lie algebra over F, defined in n.2.3 and L=CL] Cp(L),
where C,(L) is the ideal of L generated by all commutators of length p. We define
in this section a decreasing filtration {£("},50 of £ by its ideals L ™, where
v € Q,v > 0. This filtration will be related to the ramification filtration of the
Gal(K,.p/K) in n.7 below. We use the notation of n.3.

41. Let V= @ kt" C K, be the vector space over F, from n.2.4. For
reQ+t(p)

any finite subset R in Q% (p) and natural number N we introduce the vector space
Van = @ Ft" over Fp, where ¢ = p"¥. Obviously, each Vg n can be identified
réR

with a subspacein V and V = li_n:.VR, N. Let Lp n be a free Lie algebra over F,
R,N
with an F;,-module of free generators Vi y = Hom(Vg n,Fp). Then {Lr,n}r N is
a projective system and l‘i_n_lﬁ r,N = L, where L is the free profinite Lie algebra over
R,N
F, from n.2.4. We set also ER_N = Lr,N/Cp(Lr,n). It is clear that l(iilER,N =L
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4.2. The elements Dy(ry,0,r2,mq,...,75,m;) of LR N.
Let N > 1, ¢ = p". Then

Hom(F,,F,) C Hom(F, @ Fy,F,) = EBdN Hom,(Fg,F,)

where Hom,(F,,F,) consists of all additive morphisms ¢ : F; — F, such that
@(a) = a?" ¢(1) for any a € F,. Now any f € Hom(F,,F,) can be identified with

the sum Y.  fn where all f, € Hom,(F,,F;) and the conjugacy condition
n mod N
fat+1 = fF holds for all nmod N. We note that for any -f € Hom(F,,F,) there

exists a unique 8y € F, such that f(a) = Try, s, (afy) for any a € F,. It is easy
to see that in the above decomposition f = Y fn, we have fn(1) = ﬂ;n.

n
In the same way we can consider tensors F' € H om(]F?‘,]Fp) where s is any
natural number. Such an F may be identified with the sum

z Fn;...n,
all n;mod N

where

Fﬂl_.,ﬂ. G Homnl,...,n. (F?J9Fq)

and Homy, ..., (F;@", F,) is a group of multilinear mappings such that

Foi nog,na)=a o™ Fo . (1,.,1)
for all a; € F,; and the conjugation conditions F2 = Fp,+1,..,n,+1 hold. If FF =

ny...N0,

f1®...® f, for f; € Hom(Fy,F,),1 <i < s, then Fy, o, (1,..,1) = B% .05 .

Let A € F, and m3,...,m; be any integers such that 0 < m3,...,m; < N. We
shall use the same notation for their residues mod N. Using the above considera-
tions we introduce a tensor

F\(m3,...,m}) € Hom(F®*,F,)
defined by the following conditions:
Fax(m3,...,m7)o,ms,...m? (1,..,1)=2A
and
Fix(mg,...,m})o,mq,....m, =0

for any residues my,...,m, mod N such that (mgs,...,m,) # (m3,...,m}).
The above tensor can be expressed as a sum of elementary tensors

FA(m;: ‘-°)m:)= E fli ®.0 fai

where all f;; € Hom(F,,F,). If R is some finite subset of Q*(p), r1,...,r, € R, we
use the above expression to define the element Dy(ry,0,72,m3,...,r,,m3) of Lr N
by the following equality:

Dz\(rl 0, r2,m;1 <y Tay m:) = Z[[Dn Jrio D"z.fzi]v seny D"o,fu‘]

It is clear that this element does not depend on the above chosen expression of
F\(m3,...,m$) as a sum of elementary tensors.
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4.8. The constants j(ry,ny,...,75,7,).
For a natural number s < p and ry,...,r, € Qt(p) we have the structural con-
stants 1(ry, ...,r,) € Fp from n.3.1. We set:

A(r1y ey Ta) = 0(ray s T1)

Consider the collection (ry, my, 73, mg,...,7y,m,), where s < p, ry,...,r, € Q¥ (p),
my,...,m, are nonnegative integers. We set

A(ri,mi,r2,ma, 7o, My) = (71, ey Tay JH(Tay 41y ooy Tag ooe H(rsy_y +1,000,74;)

fmp=..=m, <Myq1=..=Mmy, <..<mM,,_, =..=m, forl <s; <... <
81 = s, and
i(ri,m1,r2,ma2,...,75,m,) =0

otherwise, i.e. if m; < mjy < ... <m, is not true.

4.4. Definition of a filtration {E(")}.,>0.
Let R C Q*(p) be a finite subset, N > 1, ¢ = pV. For any v € @, 70 > 0,
A € Fy we define an element Fr n (70,A) € Lp n by the equality:

Frn(v0,A) =
= z (—1)'+lr1ﬁ(r1,0,rg,m2,...,r,,m,)D,\(rl,O,rg,mg,...,r,,m,).
1g<s<p
1.7, ER

0gma,...,m, <N
"1+;;137+---+;1'ﬁ.— =0

It is clear from the definition of the constants #(ry,0,rq,mg,...,7,,m,) that
among all possible presentations of v, in the form

only the ordered ones are important. N
Let vo € Q,vp > 0 . We define the ideals £3% of the Lie algebra L n as the
ideals generated by all Fg n(y0,A)modC. (ER,N) where 79 > vo and A € F,
N
q=p
It is clear that these ideals give a decreasing filtration in c RN We want to use
them to define the "ramification” filtration of the Lie algebra L= llm CR N. But

a priori it is not clear that for any fixed vy € Q a system of ideals {A‘(R, %} can

be included in a projective system {E r,N }- The following proposition provides us
with this property.

Proposition. For any finite subset R C Qt(p) and vy € R, vo > 0 there exists a
natural number No(R,vy) such that the connecting morphisms

ER,N, — ER,N,,Nlel
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of a projective system {ER,N} induce for N3 > N(R,ve) epimorphisms

E'(f;,ol% 1 - E(};.J,Dfalz'

The proof of this proposition will be given in n.5 below.
We use this proposition in order to set

L(vo) — LBI;,C'I\).'

N

&

for any vg € Q, v > 0.
5. Proof of proposition n.4.4.

Let R be some finite set in Q*(p), N > 1, k = F,. It is clear that it is sufficient
to prove the proposition for ideals E;"g, ® k in a projective system {L. RN®k}rN
of Lie algebras over k.

5.1. Let ¢ = pN.

Lemma. There exist two Fp-bases {a;}1<i<n and {fi}1<i<n of Fq such that for
any natural number n we have

Z ﬁf“ai = 6(71!0)’

1<i<N
where 6(n,0) =1 if n = 0mod N, and §(n,0) = 0 otherwise.

Proof. Let ag € Fy be such that the elements of {05'}0$£< N give a (normal) basis
of F, over F,,. It is easy to see that the basis {a;},<i<n, Wwhere a; = ag', 1<i:<N,
and its dual basis {8;}1<i<n satisfy the requirements of our lemma.

Let {ai}i<i<n and {Bi}i<i<ny be some bases from the above lemma. We can
construct a basis {fi}1<i<n of Hom(F,,F,) by taking f; € Hom(Fy,F,) such that
fi(a) = Trg s¥,(af;) for every @ € Fy. Thenforanyr € Rand 0 <n < N we
define the elements

Dr,n = Za?"Dr,f; € cR,N ® k.

It is clear that the family {D,n}rero0<n<n can be taken as a system of free gen-
erators of the Lie algebra Lgr n ® k over k.
Now the tensors Fy(m2,...,m?) from n.2 can be written in the following form

Fy(m3,...,m}) = 2 (a,-lorf:"2 crf.m' Y ®..9 fi,
ISI'],---,I'.SN

Therefore,

Di(r1,0,r2,m3,...,7,,ms) = Z Ap"[...[D,l,,,,Dmm],...,D
0<n<N ?

-]
ry,nt+msd?
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T e

where n 4+ m] are residues of n + m; from [0, N). Introduce for v € Q,7vo > 0 and
0 <n < N the elements of Lr Ny ® k:

Frn(v0,m) =
= > 0 i, 02 ma, e ) ADr i D, s D, )} -
1€s<p
ry,..,T,€ER

o0gma,....m, <N
rit byt T =70

It follows from the equality

Frn(r,A) = Y N Frn(y,n),
0<n<N

where A € Fy, that the ideal E(I;)f'_,z, ® k is generated by

Fr,N(v0,n)mod Cp(Lr,N ® k)

for all v > vp and 0 < n < N.

5.2. In order to write the generators Fr n(70,n) in a more symmetric form we
would like to change some notation.

For every integer n such that 0 < n < N we shall use the same symbol when
it is considered as its residue modulo N. For every collection n,,...,n, of integers
from [0, N') we define integers n;;, where 1 <¢,j < s, by conditions: n;; = n; — n;
mod N,n;; € [0,N).

We also want to use other notation for the constants f(r;, m;,ra,ma,...,r,,m,),
introduced in n.4.3. For every collection (ry,n,...,r,,n,), where ry,...,r, € R and
all the n; are residues modulo N, we set

ﬁ(rla Ny1y..yTsy na) = ﬁ(rly 711,72, 1M12 -y rnnla)

Remark. These constants j(r;,ny,...,7,,n,) reflect the idea of "circular” ordering
of residues n; mod N considered as lying on unit circle via the map:

nmod N — ¥ e{zeC||z|=1}.

Now the generators Fr n(%0,n1) can be written in the following form:

Fr,N(Y0,m1) =
= z (_1)‘+1r1ﬁ(rl 171,72, N2, .. Ts,s na)["'[Dfi,ﬂl ) D":,ﬂz]’ ey DT. .ﬂ.]
1<s<p
r1,..TER

ogng,...,n, <N
r1+;ﬂ7+---+;ﬂ7=‘m

5.3. We want to investigate the presentations of any given v € Q in the form

s
m,’

T2
y=r1+—77-+...+
pmi p
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where ry,...,7, € QT (p),ma,...,m, € NN {0}.
As usual R is a finite subset of Q% (p). For any rational 4 > 0 and integer s > 0
consider the set

M‘v.a(R) =

r
+..+—4.

- 2
= {(rl,...,r,;mg,...,m,) € R*xZ’ llo S m2 S e S MaY =" +p”": Pmo

The elements of M., ,(R) will be called the decompositions of ~.
Lemma. M, ,(R) is finite.

Proof. We use induction on s. For s =1 it is evident. Let s > 1 and let the subset
M, ,(r1,m32) C M,, = M, ,(R) consists of decompositions (ry,...,r,;mg,...,m,)
with fixed values of r; and m,. The mapping (ry,...,74;ma,...,m,) — (r2,...,75; M3 —
ma, ...,m, — m3) defines a one-to-one correspondence

My,s(r1ym2) — M(y—r,)pms,a-1-

R is finite, hence there exists a natural number Ny such that for every my; > Ny,
M(y—y,)pm2,0—1 = . Therefore,

Mys=U rer My,(r1,mz)

m2<No

is a finite union of finite sets. The Lemma is proved.

It follows now that the set M,(R) = Ui<s<pM~ () of all presentations of v in
the form ry+r2/p™2*+...+r,/p™*, where s < p,r1,...,7, € Rand0 < m3; < ... <m,
is finite.

5.3.2. Now we fix a rational number vy > 0 and a finite set R C Q*(p). Let
v€Q,v>0.

Definition.

N(R,v) = maz{m, | (r1,...,rs; m2,...,m,) € M (R)}.

Definition. A decomposition (ry,...,r,;ms,...,m,) € My(R) is (vo, R)-bad if
4 2 v and for all 1 < ¢ < s and numbers

r2 Ta—t

o + ...+ P

Ye=r1+

the following implication is true:
if v 2> vo then N(R,4;) 2 my_141, t.€. there ezists a decomposition

(r1y+r Tari N2,y oyt ) € My(R)

such that n!, > m,_41 (by definition m; =1).

The following properties are the immediate consequences of this definition:
a) A decomposition ¥ = r;, where r; € R, r; 2 vy, is (v, R)-bad;
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b) If (r1,...,7s;m2,...,m,) € My(R) and y—r,/p™* < vg then this decomposition
of v is (vo, R)-bad,;

c) If (ry,...,rs;ma,...,m,) € M, (R) is (vo,R)-bad and y; = v — r,/p™ 2 v
then (rq,...,rs—1; Mz, ..., My—1) € My (R) is also (vo, R)-bad ;

d) We obtain from b) and c) that if ¥ > vo and (ry,...,rs;ma,...,m,) € M,(R)
is not (vq, R)-bad then there exists the unique index s; < s such that the de-
compositions (71, ...,7s—1;M2, ey Ms=1) € My (R),0s(T15 o0y Tay +15 M2, o, Mgy 41) €

.r:_"“(R) are not (vg, R)-bad and (ry, ..., 7,,;m3,...,m,, ) € My _, (R) is (vg, R)-
bad. So, Ys—sy = Vo and N(Ra')’a—.u) <my 41 <...8<m,.

Definition. A rational number v will be called (vo, R)-bad if there exists a (vg, R)-
bad decomposition (r1,...,7s;ma,...,m,) € M,(R).
Definition. For any natural number N we set

M‘I(R1 N) = {(1‘1, vy Ty M2, .y ma) € MW(R)lma < N}

We obtain easily from d): ‘
e) For any given rational number 4, and natural number N there exists a finite
set J, (vg, R)-bad numbers 4{*), and collections

F(a) = (Tia), .--,ng); mga), ceey ms:))$

where a € J,t4 < p, rﬁ“), ...,rgj) €R,and 0 < mga) <..XZ mgf) are integers. For
these given data we have:
e1) N(R,v(*}) < m§°) for any a € J;
e;) If for a € J, M, is the set of all decompositions of the form
(a) (a) (@) (a)),

(P1y oy Ty 7Y yeeny To 32,y ey Mgy, TRy ey Ty
where (1,...,75,; M2, ...y My, ) € M) (R) and s; + t, < p, then
M. C M, (R,N);
e3) For any a;,az € J,a; # az we have
Mo, N M,, = 6;
es) agJMa = M., (R,N).

5.3.3.Lemma. For any finite subset R C Q*(p) and a rational number vy > 0 the
set of all (v, R)-bad numbers is finite.

Proof. By n.5.3.1 it is sufficient to prove ‘the finiteness of the set of all (vg, R)-bad
decompositions.
For any decomposition # = (ry,...,rs; m2,...,m,) € My(R) we define
mo(r) = maz{thy, > vo}
if this set is not empty and mg(7) = 0 otherwise, where numbers v; are taken from
the definition of a (v, R)-bad decomposition.
Now we take any (vo, R)-bad decomposition 7 = (r1,...,r5;ma,...,m,) € My(R)

and use an induction on mgy(7).
If mp(7) = 0 then

r
MN=7— " <%
P

m,
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Lemma. There exists § = 6(R,vg) > 0 such that

§=min{X =vy — (}% +..+ I%) [l <p,ryy..yrt € Rymy,...,my >20,X >0}

Proof. 1t is obvious.

We have r, /p™ > § from this lemma, so m, can only run through a finite set of
values. So there exists only a finite number of (vy, R)-bad decompositions 7 with
mo(m) = 0.

Now let # = (ry,...,rs;m2,...,m,) be a (vq, R)-bad decomposition and suppose
that our proposition is proved for all (vy, R)-bad decompositions 7' with my(7') <
mg, where mg = mo(w) > 1. By property 5.3.2¢c), my = (r1,...,7s—1; M2, ...,M,_1 ) i8
(vo, R)-bad. By the inductive assumption, such decompositions create only a finite
set and we can take

N* = maz{N(v', R)|there exists (vo, R)-bad m; € M.,(R) such that my(m;) < my}

We have m, < N* because 7 is (vo, R)-bad. Again, there is only a finite num-
ber of decompositions (ry,...,r,;m2,...,m,) such that s < p and m, < N*. The
proposition is proved.

5.3.4. Let
No(R,v0) = maz{N(R,7) | 7 is (vo, R)-bad } + 1.

Lemma. Let N 2 Ny(R,ve). Then an ideal E;:’g, ® k is generated by elements

Frn(v,n) mod Cp(Lr,n ® k), where 0 < n < N and « is (vo, R)-bad.
Proof. As was shown in 5.1, E(,:“,?, ® k is generated by elements

Frn(70,1) =

) e
r,,n+m,

= Z rl(—l)’“ﬁ(rl,O, ro, Moy .oy Tay My ). [Dry oy D
7€My (R,N)

~]’
ra,n+my

T

where 79 > v0,0 £ n < N,7 = (r1,...,r5;ma,...,m,) and, for 2 <1 < 35, n+m;
are the representatives of (n 4+ m;)mod N in [0, N).

Now we apply property 5.3.2¢). From the definition of the constants 7 (c.f. n.4.3)
and 7j (¢.f. n.5.2), for any decomposition

(rl,...,r,,,r&u),...,rgf:);mz,...,m,l,m(la), ...,mﬁj)) € M,
we have
7i(r1,0,r2,ma, ...,r,l,m,l,rga),mga), ...,rf:),msg)) =

(8) (@) ) o (a)y

n(rlsoarZamQa"'1r81)ma1)n(r }ml PRSAE LI PO
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Then the decomposition QJM“ = M., (R, N) gives the following equality:

Frn(vo,n) =

Z (—1)"""“"’11'11}(1'1,O,rg,mg,...,rS:),mSZ)) [ [D,.h,,,Drhm] ’""Dr,("),mf")] =
M,

Z(_l)tuﬁ(riazmgu!)"‘,rsfzmsf)) e ‘FR,N(’Y(Q)in")!D(a) ’_\-r“) "")D(a) ’-.\_(’a)
agJ ryntmy Fig MtmMe,

modulo Cp(Lr,N ® k).
This equality proves our lemma.
In order to finish the proof of proposition n.4 we need only state the following:

Lemma. Let N2 Z No(R, 00),N2|N1 and BN“N, : LR,N1 ® Ek— CR'N, ® k be

e

connecting morphisms of a projective system {Lp n @ k}. If 4o is (vo, R)-bad and
0<n< N, then

oNl.N:(]:R,Nl (701n))m0d CP(‘CRan ® k) = fR.N:('TOaﬁ)mOd CP(LR,Nz ® k)’

where 1 = nmod N, and 0 <7 < Nj.

Proof. This follows from the equality M, (R) = M, (R,N) for any (v, R)-bad
number 79 and N > No(R, vo).

The proposition of n.4 is proved.
6. Some standard facts about ramification filtrations.

Let K be a local complete discrete valuation field with perfect residue field k& of
characteristic p > 0. For a simplicity we suppose k to be algebraically closed. We
denote a separable closure of K by K,., and I' = Gal(K,.,/K) will be the absolute
Galois group of K.

6.1. Definition of a ramification filtration,[SeS/,[De].

Let L be a finite Galois extension of K, I'y;x = Gal(L/K), v, be a valuation
of L such that vy(7) = 1, where 7 is any uniformiser of L. For any real number
z > 0 we set

PL/K,:; = {T € FL/K | ‘UL(T’N' _ ‘}T) 2 T+ 1}

Then all 'y /i ; are normal subgroups of I' /. Because k is algebraically closed
I'z/k0 =T'pyk. So we have a ramification filtration of I'y /i in lower numbering.

Let .
Yk (z) =/ [P/ :Tijk,c) 'da
0

be the Herbrandt function. The relation 'y, = I"(L"/) 1> Where v = 1 g (z) for

z 2 0, gives the ramification filtration {F(Lv/)K}UZU of 'k in upper numbering,
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Now for every tower of Galois extensions Ly D L, 3 K the natural epimorphism

I'r,yk — T'L,/Kk gives an epimorphism F(L'vl.)/K FL ,/ K for every v 2> 0. Hence it

is possible to define a ramification filtration {T K)},,>0 of the absolute Galois group
I'k by the equality:
T =Lml{")y, for any v> 0.
L
The ramification filtration of any separable extension of K may be defined in
the same way. So we have:
(1) a decreasing filtration {Fg}’)}vzo of normal subgroups in 'k, such that
F(O) — PK; (U) — {c}
(2) for every sepa.ra.ble extension L/K with the Galois group I'y/k, a natural
morphism 'y — T’k gives an epimorphism I’(Kv) P(L"/) i for every
v 2 0 :
3) I= U I‘( Yisa pro-p-group and Kaep = K, is the maximal tamely ramified
extensxon of K.
6.2. Let L/ K be arbitrary finite separable extension. A number v(L/K) is called
the largest upper ramification number of L/K if the following implication is true:
I‘g}') acts trivially on L & v > v(L/K)
The existence of v(L/K) follows from the left-continuty of the ramification fil-
tration.
The above definition of the Herbrandt function was given in the case that L/K

is a Galois extension. Deligne, [De], extended this definition to the case of arbitrary
finite separable extensions. We have the following properties:

(1) é1/k(z) is a piecewise-linear convex function;
(2) if (a,¢1/K(a)) is the last vertex of the graph of ¢, x, then v(L/K) =

ér/x(a);
(3) if K C L C L, is a tower of finite separable extensions then

L, /k =L, /LPL K

(for the Galois extensions c.f.[Se3], for general case c.f.[De]).

6.3.We say that L/K has the unique ramification number yo, if (yo,$L/x(v0))
is the unique vertex of the graph of ¢,k (z). In this case:

for0<z <y

br/k(z) = { B+ vo, for a2 w0

It is clear that here yy = v(L/K).

Lemma. Let charK = p > 0, N € N, ¢ = p" and r* € Q*(p) be such that
r*(q¢ — 1) € N. Then there exists an extension K' of K such that

(1) [K': K] =g;
(2) K'/K has the unique ramification number r*.
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Proof.
Let r* = ;’_2—1-, where m € N, (m,p) = 1. Choose some t € K, such that ¢~! is an
uniformiser of K. Consider extensions '

KCKyCKy

where Ky = K(ty),t% ' =t and K% = Kn(Ty), where T? — T = 3. If 'y =
Gal(Kn/K) and I = Gal(K}y/K), then the natural epimorphism I'' — T has
a section s : ' — IV, It is easy to see that the field K' = K;G(FN ) satisfies the
conclusion of the lemma.

Remark. We can choose T in a such a way that K' = K(T971).
From n.6.1.2 we obtain the following properties.
(1) Let K € Ky C Ky C ... C K, = L be a tower of finite separable extensions
such that Ky/K is tamely ramified (we write eg = [Kj : K]) and for any
1 <t < n, K41/ K, is the Galois extension with unique ramification number
¢ >0 Ifzy <29 <..< 1z, then

1 I9 — Ty Tn — Tp-—1
JK) = — F27% 4 SnT7On1
o(Kn/K) = — (”1+ Ko T T Ko :Ko])

(2) Let K C L; C L7 be a tower of finite separable extensions, Ly /K has the
unique ramification number yo and v(Lz/L;) = v;. Then

v(L2/K) = maz {yg,ﬁ +y0}

6.4. The following example will be useful in n.7 below.

Example. Let charK = p and t € K be such that t~! is uniformiser of K.
(1) Let r € Q*(p),N € N,¢ = p", a € k\{0} and L = K, (T), where T? - T =
at”. Then v(L/K) =r.
(2) Let A= 3 a.t" € K, where a, € k and almost all are equal to 0. If

reQ*(p)
L4 = K(T), where TP — T = A, then

v(La/K) = maz{r | a, # 0}.

(8) We have also a slight generalisation of (2):
let
N21lg= PN:B = Z ar,ntrpns

reQt(p)
0<n<N

where a,,» € k and almost all are equal to 0. Then for Lg = K(T'), where
T!— T = B, we have:

v(Lp/K)=maz{r | ayn #0forsome 0 <n < N }.
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7. The main theorem.

Let K be a complete local discrete valuation field of characteristic p > 0, with
residue field & ~ F,. As before, let ' = Gal(K,.,/K) and {T(},50 be the
ramification filtration of I'. If I is the subgroup of higher ramification we set
F=r/I PC,(I) and denote by {T™},50 the image of the ramification filtration of

[in I'. We also fix t € K such that ¢! is uniformiser of K.

Let eo be structural element from n.3.1 and let n(ry,...,r,), where 1 < s < p,
r1,...,7s € Q¥ (p), be its structural constants.

Let £ be a profree Lie Fp-algebra from n.3.2, L= L/Cy(L) and let A be an f.a.b.
related to £. Then the (p — 1)-diagonal element e € G¢ k,,(p — 1), which has the
representative element of the form

E=1+ Z N1y ey )4y e g ¥ D LD,
LY ,:--,f.§Q+(P)

| SR 1,E

(cf 1n.3.2), determines a conjugacy class of isomorphisms of the groups I =
I/IPCy(I) and G r,(p — 1). We fix one of them by fixing f € G k,.,(p — 1)
such that f(P) = fe, (cf. n.1). We use this isomorphism below for the identifica-
tion of the groups I and Ger,(p—1).

Under this assumption we have the one-to-one mapping

egip: L —I= gof(”).
v

For any positive rational number v > 0 we set £(v) = ézp " (I")). Then £L(v)
is the ideal of the Lie algebra £. So, we have a decreasing filtration of the ideals
L(v)in L.

Theorem. The fltration {£("},5q of £, defined in n.4, coincide with the above
filtration {£(v)}v>0-
Proof.

7.1. Characteristic properties.
Let J C £ be any ideal and let A; be an f.a.b. over F, related to the Lie algebra

L/J. 1t is clear that the quotient morphism £ — £/J gives a morphism of f.a.b.
objects A — Aj. For any field L of characteristic p we also have the surjective
homomorphism of groups

Gelp—1) — Gy (p— 1)
Let es be the image of e under the homomorphism
GL',,K.,(P -1)— GE/J,K,,(P - 1)

and let f; be the image of f under the homomorphism

Geky(P—1) — G g, (= 1)

sep
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We have: fsrp ) = fsey, f; determines an identification of the groups I /ezp(J)
and Gz, ;p (p—1) and this identification agrees in the obvious sense with the above

identification of I and Gy, (p — 1) defined by f£.
Let Kp_1(es) be the field of definition of f (c.f. n.1). The following proposition
follows immediately from the above construction.

7.1.1. Proposition. For any vo € Q,vy > 0, the ideal E(U[)) is the minimal

element in the set of ideals J C L, such that the largest upper ramification number
v(K,-1(es)/K) of the extension Kp_1(es)/K is less than vq.

Let R be any finite subset in Q*(p), N € N and Lg, n be the Lie Fp-algebra from
n.4.1. Then £ = IEER,N and for any vy € Q,v > 0, L(vg) = EEL:R,N(UO), where
L(vg) is the inverse image of E(vo) under the quotient £ — £ and £ r,N{vo) is the

image of L(vo) under the projection L — Lpg n.
Analogously, we define elements

CR’N E GCR,N’Ktr(p - 1) a‘rld fR,N E GCR,N,chp(p - 1)’

such that e = limeg,y and f = lim fa,v. We know that the field of definition

of f is equal to K = K,I:,,c’(l). Let Kp n be the field of definition of fg n (in
the notation of n.1.2.3 we have: K = K,(p— 1) and Kr N = Kep y(p—1)), then
K =limKpn.

For the corresponding ideals Lr n(vg) of Lg,n we have the same minimal prop-
erty as in proposition 7.1.

For any 1 < s < p we denote by C,41(LR,n) the ideal of Lr N generated by all
commutators of length > s + 1 and set Lg n,s(vo) = Lr,N(v0) + Cot1(LR,N).

We denote by Kp n , the field of definition of

leN e GCE,NyKlup(s) C (AR,N ® Kup)mOd J8+11

where Ap n is an f.a.b. related to Lr y and J,41 = J,4+1(AR,N)® K,ep. Obviously,
Kgr N, C Kpn and Kg n,, is the maximal Galois extension of K inside Kp n
having the higher ramification subgroup of class nilpotency s.

For any ideal I such that C,41(Lr,n) C I C Lg,n denote by Kg v ,(I) the field
of definition of fr y mod(IAp N ® K,cp + Jo41). As earlier, we have the following
proposition:

7.1.2. Proposition. Lg n ,(vo) is the minimal element in the set of ideals I, such
that C,+1([,R,N) clIcC LR,N and

v(Krn(I)/K) < vp.

7.2. Restatement of the main theorem.
Let R be a fixed finite subset in Q*(p). Let § = 6(R,vo) > 0 be the minimum
of all positive values of the expression

™ i
vy — ;;;-I----'FF )
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where 1 <! < p, ry,...,r; run over R and my,...,m; run over NU {0} (c.f. 5.3.3).
Choose N(R,vo) € N such that for any N > N(R,vo) there exists r* = r*(N) €
Q*(p) satisfying the following conditions:
(1) r*(¢ — 1) € N, where ¢ = p";
(2) ™ < vy
(3) r* > ==;Fe (vo — 6), where No = Ny(R,vo) is the natural number
from Prop. 4.4.

Now proposition 7.1.2 shows that the following proposition implies our theorem.

Proposition. For any N > N(R,v),1 < s < p, and ideal I such that
C,+1(£R,N) clIc CR,Na
we have:

v(Krno()/K) <vo © L3{% modCyyi(Lr,n)C ImodCopi(Lr,n)-

Remark.
Until the end of n.7 we use the following more simple new notation:
C, for the ideal C,(Lg, n) of commutators of length > sin Lg n,1 < s < p;
A for an f.a.b. Az, over F, related to Lg N;
Ay for an fa.b. Agy  ® L, where L is a field, charL = p;
Aaep for ACR,N,K..,;
Ja for JJ(ACR,N,K“,)vl <s< D
J3(Osep) for the O, p-submodule Jy(Acy ) @ Osep in Azy o K
1 < s < pand O,,p is the valuation ring of K,.p;
J, for JJ(ACR‘N,K.“,)$1 <s<p
K, for the field Kg n,, of definition of fp y mod J,4;,1 <8 < p, cf. n.7.1;
L,(vo) for the ideal Lg N 4(vo) from n.7.1;
K,(vo) for the field KR,N’,(LR’N"(UO)).

7.8. Some identities.

7.3.1. Let {D,n | r € R,0 < n < N} be the system of generators of the Lie
k-algebra Lr n ® k, which was introduced in 5.1. It is clear that the representative
E ¢ Ak, of e, v € Gzp y k.. (p — 1) can be written in the form

where

2ep)?

EF=14+ Z T](f‘l,...,T,)tr‘+"'+r'Drl,o...D,-' 0.
1€s<p
r1,..,T,ER

Let F be the representative of fg n, then we have:
FP = FEmod Jj.
7.3.2. Let Ey = EE®..E®" ™). Then

— "l e n‘
En=1+4 z N(r1, N1y ey Ty n g2 Htnir™ p Dy, a, mod JIp
1€<s<p

ri,--,rs€ER
OSTH proesThy <N
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where the constants n(ry,n1,...,7,,n,) are defined as follows:

7](7‘1,”1, seoy Ta,y 1’1,) = n(rl; vy Tay )77(7'51-1-1) ey 1',,)...1](1",,_14.1, very ru)a

ifn)=..=n, <ngy41=...=n,, <..<Ny_,41 =..=1n,, where 1 < 53 <
82 < ...< 8 =3 and

7](1'] 31y .0y Ty, ﬂ.) = 05
otherwise.

Remark. The constants n(r1,n,,...,7s,n,) are obtained from the constants n(ry, ...,r,)
in the same way, as the constants f(ry,n,,...,r,,n,) were obtained from the con-
stants f(ry1,...,7s) = n(r,,...,r1) in n.4.3.

For ¢ = p" and the above element Ex we have the following equivalence:
F9 = FEymod J,.
7.3.3. Let F* = F®, then F = F*E®_ E®"™) mod J,, i.e.

FO=F 1+ Y nri,ng,e,re,n )t +4me™ D Dy, n,)mod J,,.

1<as<p
r1,.,T,ER
0<n| ,...,ﬂ,(N

7.3.4. Let

E(] =F-1= Z 7](1‘1,...,1",)tr1+ +r'Dr1' D,-“[).

1€s<p
1.7 ER

From the equivalence
FP) _ F = FEymod J,,

we obtain
FO - F= Z (FEo)®") mod J,.

0<n<N

7.4. The field K'.
Let N > N(R,v),q = p" and r* € Q*(p) be some numbser, related to N in the
definition of N(R,vg).

We denote by K' the extension of K, which has the Herbrandt function of the
form:
for0<z<r*

, forz2r*

:B,
Pk = { pr 4 ozort
q
(cf. 6.3).
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7.4.1. Lemma. There exists a t; € K' such that
(1) ;! is a uniformiser of K';

(2) t= tgel, where e, = gﬁ', (_71._tl-,-'(‘1—1)) )

Proof. It may be proved by Hensel’s lemma from the explicit construction of the
field K', c.f. n.6.3.

It is clear that there exists (unique) isomorphism f of the fields K and K’, which
is the identity on their residue fields and sends ¢ to ¢;. The following property of
the extension K'/K will be useful later.

7.4.2. Lemma. Let L/K and L'/K' be finite extensions such that there exists an
isomorphism of fields g : L — L' which prolongs f, i.e. gk = f. Then v(L/K)
and v(L'/K) are both < vy or v(L'/K) < v(L/K).

Proof. 1t follows from the property (2) n.6.3.

7.4.3. The following property is related to a special choice of an r* and will be
useful below.
Let M,_:(R)=

r r
={7te~r=pT‘l+.-.+PT’_,1 <s<p, r1,..7s ER, ml,-..,m.eNu{O}}

and let Oy, = Ok, be the valuation ring of the field K|, = K, K'. Then we have
the following

Lemma. Ify € M,_1(R),y < vy, then
—r*(g—1 —r*(p—1 Ng
t'{" r*(g-1) €1 r*(p—1)p 0. cO..

Proof. This follows immediately from the condition (3) of 7.2.

7.5. Some identities.

7.5.1. Let 1 <s<p, r,..,rs € B, 0<ny,..,.,n, < N. We use the constants
N(r1,m1, .., Tsy 1), 7(r1, 0, ..., 75, 1, ) and #j(r1, 1y, ..., T4, 1, ), which were defined in
n.7.3.2, n.4.3, n.5.2, respectively.

We use the agreement about indices from n.5.2, i.e. for any natural numbers
n,...,n, we denote by n;;, where 1 < 1,5 < s, the reduced residue of n; — n;
modulo N, i.e. n;; is uniquely defined by the conditions:

ni; =n;—njmodN, 0 <n;; <N.
We have:
ﬁ(rlynly'")raans) = n(ru"')rl)a if ny = ... =1y,
and

11,71, ..y Tays) = H(r1, 011, ooy Tsy 14 ).

We introduce new constants n*(ry,nj,...,r,,n:), where 1 < s < p, ry,...,7, € R,
ni,...,ny € (0,N].
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Definition.

'?'("1, ";a oy Tay n:) = ﬁ(rl yeeey rn)ﬁ(r81+11 evy Ta,)---ﬁ(ra,_1+1, ey T,l),

fnf=..=n; >n; ,=..=n; >..>n; 41 =..=n;,wherel <s; <
87 < ... < 8 = 8 (we recall, that A(ry,...,7,,) = n(rs,,...,m1), c.f. n.4.3), and

» * *
n*(r1,n},...,rs,n3) =0
otherwise, i.e. if n] > ... > n} 1s not true.

We have:
o - . * N _ - * » *
3(T1, Ry Ty ) = 0°(r1, 01, o, Ty iy ) = 0(r1, N—njy, r2, N—n3y, ..., 15, N—nj) ),

where n}; are the residues modulo N of n; —n; from (0, N} (it is sufficient to remark
that for any ¢,; we have nj; = N —nj;).
7.5.2. For the constants n(r;,n;,...,r,,n,) we have the following analogue of

lemma 3.1.

Lemma. If 5,3, are natural numbers such that s = s; + 83 < p, then

T,’(f’], Ny, ...Tsy, nsl)rl(rsl-i-l)nal-i-l, eey ragann) = Zn(ra(l)s Ng(1)s s Ta(s2)) no(s;))s
T€F 4y

where P,, ,, is the subset of permutations of order sy such that o(i) < o(j),where
1<i1<j<s0rs)+1<1 <) <89,

Proof. This follows from the fact that

1+ E N(r1,n1,y s Tay 13 ) Dy ny oo D, o,
1gs<p
T1,..,TsER
0gny,...,n, <N

is the representative of a (p — 1)-diagonal element.

Remark. The meaning of the right side of the above formula is very simple:

the collections of variables are numerated by all inclusions of the first set of
indices {1,...,s,} into the second set {s; + 1,...,39}, which conserve the natural
orderings of these sets.

Remark. By the same reasoning the analogous statement is true for the constants
A(ri,n1,...,ra,n,s) and n*(r1,ny, ..., 15,03 ).
7.5.3. Let s be any natural number.

Definition. A subset ®, of “connected” permutations of order s consists of all
one-to-one mappings ¢ : {1,...,8} — {1,...,8} such that for any 1 £ s; £ s the
set {o(1),...,0(s1)} consists of s; sequential integers.
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Lemma. For any indeterminates Dy, ..., D, we have:

[.[D1,D2),.., D) = 3 (=1)77 D7 Dyoi (1) D1 gy Do-1(a).-
cEd,

Proof. It may be proved by some combinatorial arguments.
754. let1<s<p,ry,..yr, ER,0<ny,...,n, <N,
Definition. For 1 <t < s we set

Bt(rl;nl:"',runa): Z ﬁ(rcr(l)ana(l)v"'ara(a)’"a(a))'

cEP,
e(l)=t

Example.
B](Tl,nl) = ﬁ(rl,nl) = 1,

Bg(f‘],ﬂ],rg,ng,r;;,n;;) = ﬁ(rg,ng,rl,nl,rg,na) + ﬁ(rg,ng,ra,na,rl,nl),
Bl(rlanli'"ara)ns) = ﬁ(rlanla"')runa))

B,(f‘],nl yeeegTay n,) = ﬁ(r,,n_,, cray T‘l,ﬂ.l).

Lemma. For any v, € Q, v0 > 0 and natural number n* we have:

Z rlﬁ(rlanl’ ...,T,,n,)[...[D,-l,nl,D,-, ,"2]’ "'7Df'- ."-] =

T1,..,TsER
ogns,...,n, <N
ny=n"*

r1+;;213-+...+;;17=1

§ E t+1
— (_1) + rtB'(rl’nl, ...,T,,ﬂ,)Drl'nl...D,-“u‘.
1<t<a ri,.,r,€R
Ognl,...,ng_l,nﬁ.),...,u.(N
ne=n"

P

Proof. This follows from lemma 7.5.3.

7.5.5.
Lemma.
Bt(T],n],...,Tl,nl) + 6(ﬂt,ﬂg+1)B¢+1(7‘1 ,ﬂ],...,f‘l,ﬂ]) =
E »* L] L] * -
= 0*(re, Ny s T1, RN (r!+lant+1,tv"'arbnl,t)v
where

1, ifnc= N1,

6(ne, neqr) = {

0, otherwise .
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Proof. Let ny # ny4q, then

B!(rlanl,---arhn!) = Z ﬁ(rhnh---,rcr(i)ana(i)a“°sra(l)$na(l)) =

o€,
e(1)=t

= Z n‘(rtan:u'--ara(i))n;(i),n'")+ Z 77‘(7'¢+11n:+1,b-"’ro'{i)an;(i),ta-") =
ocd, o€d;
o(l)=t o(1)=t

(all summands of the second sum are equal to 0, because ng,, , < ny, =0)

e n* * - " * *
=7 ("h"tta---a"lvnlt)fl (rf+lsnt+1,h"'9r13nl,t)

by the lemma and remarks of n.7.4.2.
The same arguments gives the proof in the case ny = ngyy;.

7.5.6.

Definition.

By(r1,n1,...,Tsyny), for ng 2 ... 2 ny,

B:(rl,nl,..., Tsy n,) = {

0, otherwise.

Example.
L]
Bi(r1,n1,...,75,0) = 0(Ts,Nay .0y T1, 1),

*x
B;(rljnls "':raana) = Ba(rlynly"-vruna)a
»
Bt (rl,nl, rey ra—l;na—l,rno) = Bt(rlanla ---,r,_1,n,_1,r,,0).
Remark.
*
B¢ (Tlanl’ "-yra)na) = Bt(rlynl!"'ira)na)a
if ny 2 n,.

Lemma. If nyyy <ng, 1 2>t+1, then
Bi(r1,n1y e ri,m) + 8(ng, nega ) By (r1,nay o rng) =
= ﬁ(rtant:"'3rl)nl)B;(rt+lant+l$"-:rhn'l)-

Proof. If nyyy 2 ... 2 n; is not true, then the both sides are equal to 0.

If N4 2 - 2 n;, then for any t+1 S u S [ we have Ntu = Ne,t41 + Ne41,u OF
(equivalently) nj , = (niy, = N) +nj 141

Therefore,

/o * - . S YN * *
n (nt+1,t+17nt+2,t+11 ~-»"1,t+1) =7 (“t+1,nnt+2,n ---»nl,t)'

Now our lemma follows from lemma 7.5.5.

7.5.7.
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Proposition. We have the following identity:
B;(rl,ﬂl,, Ty nu) - B:(rl P18y eeey ra—lana—l,s)n(ru naa)"‘
+B:(T1,ﬂ.1,, ey Ta—2, na-—2,a)’7(ra—l yNRa—1,8,Ta, nu) — ..+

+(_1)'_t+lB¢‘(rl AL FTRITPRA 3 nts)’](r8+l PRLIZ S W TRISPR A P na)+

+(_1)3_‘ﬁ(rn Ngyeeny rl}”l)lﬂ,:...:ﬂ., = 0,

where by definition n(rs,ns,...,T1,71)|n.=...=n, i equal to n(r,,n,,...,r1,n1), if
ng = ... = n,, and is equal to 0, otherwise,

Proof.

1st step. Let t = 1. Then in evident notation we must prove:
1, s 1) = (8 = 1, ey () + (8 = 2,00 (5,5 = 1) + .o

+(=1)"n(1)n(2,...,8) = (=1)°%(8, ..., 1)|n,=...=n,

It follows from the lemma and remark of n.7.4.2 that the left-hand side of the
above equality is equal to

(=1)"n(1,...;8) = (=1)"n(r1,n1sy s Ts, ss)-
It follows from definition of the constants n (c.f. n.7.3.2 ), that
N(r1, gy Ta,Nas) #0 & n1=..=n,
and, if n; = ... = n,, then
N(T1,M1ay ooy Tay Nag ) = T1(Tay Mgy ooy T1, M1 ).
Ond step.

Let ny, # neg1,.- If ney < nigy,s, there is nothing to prove.
If n¢, > neq1,4, then we can apply lemma n. 7.5.6 :

B;(1,..,)=7(t,..,1)By(t +1,...,]).
Therefore the left side of the identity 1s equal to
(., 1)} [B(t +1,..,8) = By (t+1,...,s = )n(s) + .. + (=1)* T n(t + 1,...,8)] =0,

by the first step.
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3rd step.

Let ny = n¢+1. Then we can assume, that ny = nypy = ... = Ny # et
By the 2nd step we have the assertion of our lemma, where t is replaced by ¢ + .
Now we can apply lemma of n.7.5.6 and obtain the assertion of our lemma by some
induction arguments.

7.6. Consider the extension K' of K from n.7.4. We can assume, that K,., is
chosen in such a way, that K C K' C K,.,. Then A C Ay C Ag,,, and we use
these inclusions for the identification of A o and Ag,, -

On the other hand, consider the isomorphism f of the fields K and K’ from
n.7.4.1. f can be extended to isomorphisms K,., and K;ep, Ax and Ak, Ak
and A Ki,,» respectively. The composition of the last isomorphism Ag,,, — Ak
with the above identification of Ak, , and Ak, will be denoted by the same
symbol f.

The following facts are the obvious consequences of this definition.

(1) Let

scp
IIP'

sep

E=14 > n(ri,cor)t?¥ 47D, ..D;, 0 € Ax,,

1€a<p
ri,..,.FaE€R

(c.f. n.7.3), then

E'=fEB)=1+ Y (1m0t ¥"D, o..D,, 0 € Ak;,,

1<y
ry,..,T.ER

where K|, = K'K,,.
h(2) Consider F € Ag,,, from n.7.3 and set f(F) = F', Ey = f(Ey) = E' — 1.
Then
F'® = F'E'mod Jp,

F'@O = F*(1 4+ Z D(r1y 11y ey Taym P ¥ DDy, ) mod Ty,
1<a<p

ry,..orsER
0<ny,..,n, <N

F@—F'= 3 (FE)P) mod J,.
0<n<N

(3) For 1 < s < p the field of definition of F'mod J,4, is equal to Kp 5, =
f(KRr,nN,s). The field of definition of 7' mod(L,(vo)A,ep + Jot1) €quals to K (v) =
f(K,(vo)) - the maximal Galois extension of K’ inside K y, which has the higher
ramification subgroup of class of nilpotency < s and upper ramification numbers
< vg.

7.7. Inductive assumption.
We use an induction on s* in order to prove the following statements for 1 <
s* < p. Obviously, our theorem follows from the following statement.
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Proposition. Let 1 < s* < p. Then
(2) Lae (v0) = LGS + Cor;
(b) Kue(v0)K' = Ko (vo);
(c) F=

= 7@ 4 X(s*)mod (c,.(vo)A,,, + Y tTeT01,(0,,) + J.'-u) ,
IE T

where X(s*) =

P
n o o
= z Fre™) (1) 1B (ry 0y, .y ray 1) [t:(;rh- ;"1_) el — 1)] X
1<t<ogs"

T150.4T,ER
0€n1,ee,n, <N

regapttHl rep™*
X Cl .--cl. Df'l,n]"'Dl'. ’"'(mod Ja‘+l).

(we use the agreement about indices from n.7.5.1);
(d) A(s*)o =

pN

ottt
=z: z (*1)’+'B¢(r1,n1,...,r,,n,) [t:(?rh- P ) CI‘ - 1)})(
1€s5s" 1€t
0gn,...,n, <N
T1,.oTsER

re41p N-nt,

N-ng 41
Xey .

LPy
..el ry,n ..-Dr“n‘

is the element of £+ (vo)A,ep + Elsa@- t"'.("")J,(O,cp) + Jye 1.

7.8. The case s* = 1.
This case is very simple. We take an element F in the form:

F=1+ Y TouDrnmodly.

T€ER
0<n<N

Then the equivalence (c.f. n.7.3.4)

FO-F= Y (FE)*V= Y "D amodJ;
ogn<N Osvéle

gives the equations
Tf-',n - Tr,n =t"F,

where r € R,0 < n < N and we conclude from n.6.4, that £,(ve) ® kmod J; is
generated by
{Din|72v5, 0<n< N}
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But this set is the set of generators of (E(,;‘}a, ® k)mod C; ® k, c.f. n.5.1. So,

L1(vo) mod Gy = L% mod C.

We have also
Eo=E .+ t7"(ef — 1)Dromod Jo,
r€ER

where Ej, was defined in n.7.6. Let 7' € Ag
identity from n.7.3.4 gives

be the element from n.7.6, then the

FO_r= Y B = Y [(E{,)(W]“)-xu)z

0gn<N 0<n<N

= [(}-f)(q) — J?’] @ — X(1)(med J3),

where .
X()=- Y [t (ef -1 Dy
0<n<N
reR
We set

F=F9 £ X(1)+ Y mod J;,

where V{9 —Y = A(1),
A= 30 AW

0gn<N

and

A(1)o = 3 [#7(ef — 1)) Do

réR
One may check that

A(1)p € £1(v0)Agep + ™" PV 1(0,cp).

Indeed, if r > vg, then Do € £1(vy) @ k, as was shown earlier. If r < vy, then
t5 " (-1 ¢ t " (P_I)O;,. (c.f. n.7.4.3), therefore,

[t9(ef — 1)])* Dyp € t™7 P J1(0,4ep).
Now it is clear, that Y € £,(vo)A,ep + t_r'(’_l)ll(o,cp). Therefore,
F=F9 4 X(1)mod £1(vo)Asep + " PV (O4ep) + T

The fact, that X(1) is defined over K', implies the equality K1(vo)K' = K/(vo).

7.9. Some calculations.

Let so be such that 1 < sp < p and assume, that our inductive assumption
(Prop. of n.7.7) is valid for all 1 < s* < sy.
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7.9.1. Proposition. Let Ey be the element from n.7.3.4, then

EO € Caq—l(UO)Aup + Z tr“-]a(oaep) + J.lg'
1<a<a0

Proof. We use the following Lemma:

Lemma. Letr € R, 5, e N0 <n< N and r > s r*. Then
Dr,n € ([:ao—l(vﬂ) + Ca) ® ka

where s = min{s; +1,s0}.

Proof. By 7.7(a) L,,—1(vo) = £§{’_°,{,+C,,,, 80 £,,-1(vo)®k mod C,, @k is generated
(as an ideal) by the elements Fgr n(v,n), where v > v5,0 < n < N (cf. n.5).
Now we can apply induction on s; to show that, if r > s;r*, then Fp n(r,n) =
D, modC, ® k, where s = min{s; + 1,s¢}. The Lemma is proved.

Now the above Proposition can be proved as follows. The expression for Fy mod J,,
is a linear combination over F, of the terms ittt D, 0...Dy 0, where 1 <
l < sy, r1,...,71 € R. We use induction on ! to show that these terms are in

Loo-1(v0)Asep + Licpcsot” "Jo(Osep)-
If I=1 and (s; + 1)r* > r; > 3;7* the above lemma gives

Dfl,O € Lao—l(vo) ®k+ Jax+l(osep) + Jsm
therefore,
t" Df: 0 € ﬁao—l(UO)Ascp + t(hﬂ)r. Jrau+1(0-'-;ep) + Jao-

Let [ > 1 and (s + 1)r* > r; +... + r; 2 sr*. By the inductive assumption we
have:
if (s +1)r* >r1 + ...+ 11—y 2 817, then

¥ tn-1D 00Dy 0 € Lagm1(v0)Asep + DT, 11(04ep) + i
It follows from the above inequalities that r; > (s — s; — 1)r*, therefore,
t" Dy, 0 € Log—1(v0)Asep + gle—e)r” Jo=2,(Osep) + Jao,
and we obtain
ttAnD 6Dy € Lag—1(v0)Asep + 10TV T, 11(04ep) + Joo.-

As a corollary of the above Proposition we obtain the following equivalence:

}-Eo = (}—'(q)+X(30—1))E0 mod (E,o_l(vo).fl + E t—r.(Pda)J,(Oup) + J,°+1) .

1<ag80
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7.9.2. Calculation of X(sp — 1)E,.
We write X (sp — 1) in the following form: X(sq — 1) =

ne

r r p
t:(;'h--'-"'*-;"ﬁ"_)(e;'t - 1) %

Yo Fr(Cym By ey Ty )

1€tEm<sy
0gny,. B <N
Lt w-,me

n
Tegrp it e ptm
X €, €] Dy, ny-Dy, n, (mod Jy, ).

For fixed m we have:

rm41+...+r rm Y
Eo = Z T](Tm+1,...,1',)tg( + .)81 +l...6; D,—m+1,0...Dr“0(mOdJ,D).

m<a<m+tagp
P4l T ER

This can be written in the following form:

m41+o o+,
EO - Z q(rm'*'l’nm"‘lah ey Ta, naa)tg(r + " )X

m<a<m-+ag
Tm41,-TeER
ognm"'l'l yeesTha—1,0 <N

n n
Tag1p mLE r phee
Xe, Y D, . iinmire-Dryn,, (mod Jy ),

because
Nrm+1,--37s)y, fOr npy1 = ... = n,,
7]("m+lsnm+l,n'"srnn’u) = .
0, otherwise,
Therefore,
.X(S(] - 1)E0 =
— *(phte t+1
= > FrO™) ()™ B (r) Ty s (Pt s ooy Ta) X
1<iEm<a<sg
0-<.,"1.;-“;"|—1,J<N
Nt a= =0,y ,=0
f1,...,Ts€ER
( ) p“‘l
g(srir+tetr ), repaptttlhe  p ptes
X |t, el — 1) e €y X

X D"l 7, "’D"a LTI (mOd J’D+l)

(multiplying X (sp—1) by the component of Ey with index s we use indices ny,, ..., s
in the expression of X (s — 1)).
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7.9.8. Calculation of F'(9 Ey.
We use the convention that the empty sum is equal to 1. Then

1 ' rp it o ptmel
f(Q)-_-]:* Z tll m-t ’?(rl)nl)-"srm—lsnm—l)x

1€<m<ag
0<ny..nma1 <N
ryyeorm-1€R

x Drl,nl---Drm_l,nm_l(mOd J-'o)‘
For fixed m we have:

E, = E(',(Q) + Z tg(r'"+"'+r’)n(rm, vt )elt — Ve ...el’ Dy 0...Dy, 0

mgiga<m+t g
Py ER

and, as before, this may be written in a form:

_ g g(rm+...try)
EO - Eo + E tl( m ¢ rl(rmanm,a: ...,r,,n,,)x
mtga<m—+ap
r1,.4,T,ER

Petdl,s Tas
Te P“t.- re41p r.p
X(el - 1) el ...Cl .D .D,-“n".

m \Nms"

Therefore,
FOE, = (.T'E('])(Q)+

. P“h
9’(1{r+.-'+“;1—)
1% b 4 prte
+ Z -7: ’](rlanlu---)rm—l&nm—l,a)n(rm+lanm+l,h'--yrnna,a) [tl
1Emgtgagag
Rlyyafm—1,s#0
rly---rrneR

T Pte reqrpities r,p"ee
X (elt - l)p el * "'61. Drl 1"1."'Dr.n“a.l(m0d J’D'l']-)'

We remark, that

E n(rl yM1sy ey Tm—1, nm—l,s)ln“ ,...,nm_l'.#ﬂn(rm; nm-}-l,n ey Tay naa) =
1gmgt

- ﬁ(runsr ---y"lanl)|m=---=n.'

7.9.4. We can apply the identity of proposition n.7.5.7 to calculate the sum of
FODE, and XE,. We obtain:

. Nie
FEo= ), FrOT(—1)"™*By(ry,n,.., e n,)x
1€t<agao
0gny,...,n, <N
rlp---)rleR
. p"ll
gl =+ o Rtgl,e n,
X tl(’ ' P )(c';‘ -1) e’ g x

X Drl W1, "'Drl 1uc,a(m0d J’O"'l)'
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Therefore,

( ) »
FO_F= [.7:"(9) - .7'-‘] ! +A; mod (E;o-l(vo)-]l + Z t=" (P—a)Jc(anp) + Jog+1

1<eg 0
where
neg,+n
A= z FrE T 1) B (11,0 ey Tay 1) X
1gt<aKa0
ogny,..., n, <N
Ti,.-TeER
P”ll+”‘
q "f 1 +...+ H' "t+),a+"a Nga+n
X [tl(’ ‘ ? ")(c;‘ -1) ey ¥ ey P T

X 1),--1 ,n; ...D,-. T, (mod J80+1 )

7.10. Let X; € Ak,,, be such, that X{? — X; = A,. Then the above calculation
gives

F=7F® 4 X, mod (ﬁ.o-1(vo)«71 + Z 77 (P70 J,(04ep) + J,.,+1) .

1€a<s0

Let I be any ideal of the Lie algebra £ such that I D C,41(L). It is clear from
Proposition of n.7.2, that £,,(ve) is the minimal element in the subset of such ideals
having the following property:

the field of definition of F mod(IA,.p+Js,+1) has the upper ramification numbers
< vg.

By induction we can assume that I D (£,,-1(ve)J1) N L.

Proposition. £, (vy) is the minimal element in the set of all ideals of the Lie
algebra £ such that

(a) IAsep D) an—l(vO)Jl + Jsu-l-l;

(b) field of definition of X1 mod(IA,.p -+ Jso+1) has the upper ramification num-
bers < vq.

Proof.
It is clear that £, (vo) satisfies the condition (a) of the proposition.
Let I be an arbitrary ideal of £ satisfying (a). Let F = F" 9} +Y;. Then

X1 =Yimod (5.0—1(00)«]1 + Y T, (0,e) + J:o-i-l) -
1€a<90

The field of definition of X mod(IA,.p + Jso+1) has largest ramification numbers
< vg if and only if the field of definition of ¥; mod(IA4,.p + J,,+1) has the largest
ramification numbers < vg. Let £(I) be the field of definition of ¥; mod(I4,., +
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Jao+1) and K(I) be the field of definition of F mod(IA,cp + Jso41)), then K'(I) :=
S(K(I)) will be the field of definition of ' mod(JA,ep + Jso+1) (isomorphism f :
K,.p — K},, was defined in n.7.6). The equality F = F9 1+ Y; gives K(I) C
K'(INL(I) and L(I) c K(I)K'(I). So, our proposition follows from Lemma 7.4.2.

7.11. Some calculations.
7.11.1. Let (c.f. n.7.7(c))

-X(SO) = z F‘(Pn‘)(—l)a-*-tB:(rl:nl)-*':r-ﬂ)nB)x
1<tgsCao
0gny,...,n, <N
r1,..,T.€ER

n

r r P '
(R +-+5747) eTt — 1)] r

q N el N,
+1iP TP
x |t, €, - D, n,...-Dy, n,.

This sum consists of all members of the above expression for A; which satisfy the
additional condition n, 2 n,.
Let X, = X(s0) + X, then

X0 - Xj = 4 - (X(SO)(") —X(SO)) = A,

where A} =

png+N

ne i+ R
= Z}-u(p +N)(—1)"+t+le(r1,n1, oy r,,n,) lt‘:(;r}‘r ;“4—) (e? _ 1)] 8

1gtgagao
Ogﬂl yer Py <N
ri,..,rER

reprptt YT R

X € A "Dy nye-Dy, n,(mod Jug41).

It is easy to see that
, re(q) ™) -
A= Y [FOa0)]
ogm<N

where A(3p)p is given by the formula in n.7.7(d) with s* = s,.

Lemma.

F*—1le¢ an—l(UO)ASGP + Z t;"‘]a(oup) + Jao'

1$_6<80 '

Proof. This follows from the equality F'* = F'(P) the equivalence F'?) = F'E'mod J,
(c.f. n.7.6) and Proposition 7.9.1.

From this lemma and inductive assumption 7.7(d) it follows, that

Pm m -
> [P0 -] AT € Lus(wo) i+ Y 47TV (Ouey) + Tuoa
osm<N 1{3{30
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(we use, that A(so)o = A(sp — 1) mod J,,), therefore,

Az Y AGso) ) mod | Lap—i(vo) i+ Y TP I(04ep) + Tagn

ogm<N 1€a5 8
Let X' € A,.p be such that
X;:(q) - X! = Z A(So)gp )
0gLm<N
Obviously,

X;’ = X{ mod an—l(vo)-fl + Z t—r.(p_a)Js(anp) + Jao+1

1€sg90
and we have the following reduction:

Proposition. £, ,(ve) is the minimal element in the set of all ideals of the Lie
algebra L such that

(a) IAaep ) l:ao—l(vo)-]l + Jao+l;

(b) field of definition of X{ mod(IA,¢p+ Js,+1) has the upper ramification num-
bers < vy.

7.11.2. We remark, that By(ry,ni,...,rs,n,) and D, n,,..., D, n, depend on
the residues of n,,...,n, modulo N. We change indices in the above expression
of A(s¢)o. In every summand we introduce new indices: we use the index ny
instead of N — ny = n},. Then Bi(r1,ny,...,7s,n,) = By(r1,n},,..., 74,13, goes to
By(ry1,n1,...,7,n,) and one can rewrite the expression for A(sg)o in the following

form:
A(so)o = Z A()o 8177,
~v€Q
where

A(’)’)o = Z Z (—1)’+‘B¢(r1,n1,...,r,,n,)x

1€a<s0 1<t
0<ny,....,n, N ne=
T,e,TCR

P T g

r "torpgrpmttl o p™
x(ef = 1) "'t we1'? "Dy nyoo Dy, o,

7.11.3. For a positive rational number v and a natural number n* such that
0 < n* < N, we introduce the elements A, n« of Ay, given by the following
expression:

Ayne = Z Z (=1)**'By(r1,n1, .., Ta, 1y ) X

1< 1 gi(t;
0<ny,..,n,En* 0y ==ne=0t
Tl,...,f.ER "‘]-17"33-}1#"‘

bR =y

1P
X [(eI‘ - 1)6I‘+l+ +r'z] Drllnl'"Drllnl

(we use an abreviation n,y=n, —n; € [0,N) for 1 <! < 3).
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Proposition.

A(’]")O = A’Y»N + z A"fosNA'Thml + Z A‘TO-NA‘TI.smlA'Y!,mI + ... | mod J-!a-H‘

N>m;>0 N>mi>ma2>0
Yo, N1 EQ Yo,Y1,7Y2 EQ
‘Yo+pv’;’m—l='r 1u+ﬁ+ﬁy,ﬁ=7

Proof. For any collection (ry,n4,...,75,n,), where ry,...,r, € R,0 < ny,..,n, < N,
and index t, such that t £ t;, where ny, = n* := max{n;,...,n,},ne,41 # n*, we
set

A(l)(rl,nl,...,r,,n,;t) =

+.4re, P
= (-——1)"“3,(1‘1,nl,...,r;,,n;,)n"(n,“,ntﬁ], ey TayTly) [(e}" - l)e;"+1 r"]

Remark.

If the index t; is not uniquely defined, then all the AV (r;,n,,...,r,,n,;t) are
automatically equal to 0.

From the definition of the constants By(ry,ny,...,7s,1,) (c.f. n.7.5.4) it follows
that

B:(rl,nl,...,r,,n,) = Bt(rlanls AT )ﬂ'("tg+1,ﬂt,+1, ”‘sraans)

and, therefore,

1 .
A’)‘DrN = Z Z:A( )(rlanly"':rasna)t)Drl,nl-"Dr.,n,-
1810 11Kty
0<ny,...,n, N ne,=N
rl;'"!rleR ﬂ¢2+|#N

:N"-'n—1+...+;}r'_‘r=‘70

Let ry,...,7s € R,ny,...,n, € N. If n* = max{n,,...,n,},ni=n*fort; <i <ty
and ng, —1,n¢,41 ¥ n*, then we obtain the following identity from lemma n.7.5.5 :

t rit.trg rig1to+re
Z (—1) Bt(rl,nl,...,r,,n,) [61 P - € =
t1 <t<ts

+..4
= Z (—1)‘r)'(r¢_1,n¢_1, oy T I (Pe, Rty ey Tay 1) (e;' Tkl 1) .
1€i<t

For fixed index s, and any collection (r,41,n4+1,...,75,n;) and an index u such
that s + 1 € u € uz, where n,, = n* := max{n,41,...,7;}, Nu,+1 # n*, we set

2
A( )(ra+l)na+la ...,Ti,ﬂg;U) =

] wat..try P
= (_1)8+un‘(rﬂ—11nu—la ---,Ta+1,na+1)77'("u,nm ...,T;,ﬂ-,i) [e; - 1]
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Now the above identity means that

= +u 4(2 .
Ay ne = Z Z (-1 Al )(ra+lsna+1$"';rian'h”)DT.+1,H.+1"'D"J,":'
s+1LiCo+9p s+1guuy
0<n,41,...,m3En" nu3=n"
rn+h-~-;rleR n.,’.‘.;;én'

iy b=y

The coefficient of Dy, n,...Dy, n, in the expression of ) Ay, NA+, n+ is equal
YoM
to the sum ) Cy .y, where
i<y

Ciu= AN(ri 0y, oy re,ng AP (repr, negay o Ty ns U+
+A(l)(1‘1,ﬂ1, ---y"t+1,ﬂt+1;t)A(Q)(f¢+2,ﬂt+2, seey "s,ns;u) + ..

o+ A(])(rhnl&"'$ru—])ﬂu—1; t)A(z)(rnrnus AP TXLIT u)'

For u # t3 we have the following identity:

- "
E 1 (Tt,+1,nt,+l,'--:runa)’? (ru—lynu—la---,ra+lan'a+1) = 01
t2€a<u

c.f. n.7.5.5. This means that C;, =0, if t + 1 # u.

Therefore,
Z A‘YO:NA'VI )n. =
Yo Y1
'To+;w7:_’“;r='r
Fotreg] P
_ ? r regrT... 7
= Z (-1)° Z (=1)'Bi(r1,n1, ..y Teyy14,) [(61' —l)e, 2] X
1<s<80 L iy
0<ny,...,n, &N ngy=...=n,=N
. rl,...,r.ErR nt2+l="'="‘3=n"
PT-_ln—l++:r_‘,',:='TO n¢1_|_<N

n,3+1<n‘

Teg41tetre P
x'i'(’"t:+la”t=+1a -"aria)nfa) [el ? ?— 1] Dfl ,ﬂl'"D"nﬂa mod J-’o+1'

Now we obtain, that

ATsN + Z: A7D,NA7llm1 =

N>mi>0
Yo,Y1
70+;N7:’,,.—1'=‘r
—_ -t
= E E: (_1) * B'(rlinls'"ﬁraana)x
lsdsao t) g!sf;
0<ny,...,n, &N Ny == ng,=N
. T13:009Ts GR n.,+1=...=n,3=m,
T —
pN'}"l +...+PN__“. =%o ﬂ:l..liéN
Rrg41#my
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N
regrtetreg 12 Tia41  Tig1P )
X [(6;' - l)el ',] [61‘z ...61'.] Drl’nl .nDr“n. mOd J3°+lo

Proceeding in the same manner, we obtain our proposition.

7.11.4. Let

Pl
B‘T,"' =Z: Z(—l)’"HBg(TI,1'11,...,1',,1’1,) [(c;.t - l)c;‘+1+m+r.] D"'l,ﬂl
1Csa0 15K
n=..n,=n"

rl,...,r.ER
ri4..+r,=v
c), = *(ry,m ri,ny)D D
¥,n* = n ayttay iy 14 78] rpny e ran,.
1€8<80
0<ny,...,n,<n*
r1,.,T+€ER
r e
s+t =y
C(?) — (_1)3 t( ).D D
¥,n® 7T,y Ty, 1, ry,ne e, n,
1<a<ay
0<ny,...,n,<n*
ri,.4r,€ER

;r';-h-+---+;*£7=‘f

By the definition we set C'é'l,)‘. = C{E?,),. = 0.

Proposition.
1 2
A‘Y,n" = E C.S“?nt BTO;"' CS[:?"‘ .
71,7, 72€Q
f+vo+ra=+y
Proof.

It is sufficient to remark, that
if ry,...,7, € R,ny,..,n, € N,n; = n* = max{n;,...,n,} for t; €1 <
N4, ~1,Ne,+1 # n°, then for ¢ <t < ¢, we have:
Bi(r1,n1, .. Tayny) =

] *
=n (Ttl-l,ntl-l,---,7‘1,711)3:—:1+1(Tt1,ﬂt,,---,l"t,,ﬂt,)n (rt,+1,ﬂt,+1,---,1‘

7.11.5. Consider the expression for A, ;. from n.7.11.3. Since

— 1 —r. —_— _r. .
e1 = ezp (_r_*tl (e 1)) eF, [tl (¢ 1)]

»
. . - -1
we can present A. .. as a power series of variable ¢’ (-1,

Agpe = 3 Aye(m) [t;"(q'”]mpn. .

m21
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The coefficients Ay -(m), where 1 £ m < p, depend only on the residue

Ay e mod [tl_"r.(q_'l)]p J1(Osep). Therefore, they can be computed by means
of the following equivalences:

ert Tt — ezp (_ ret ...+ tl—r'(q-—l)) mod [t—pr‘(q—l)]p" '

1 r* 1 tre

The same remark can be done for the coefficients By n+(m), 1 < m < p, of the
expression

By = Y Byne(m) [t;"(q‘”]m’". .

m21

Proposition. Let 1 <m < p-— 2. Then

> Agne(DAgy e (m) = (m+ 1) Ay ne(m +1)-

n,72€Q
Mn+r2=y

. Z C'(f?n"YOB'ro.n‘(m)C(g) - mod Jyo41.

v

1,70, 72€Q
Y1+vot+va=7vy

Proof.
We have: A, ,-(1) =

-1
= (1) E Z:(_l)s+tBt(1’lanla"-yrnna)rfDﬂ,ﬂl"'D"n"-'

1lr*
1€s<90 t it
0<n‘,...,n,<n‘ n,l.—_,.,:n,z:n'
r1,...,r,€h “sl—l."¢,+1¢ﬂ'

;;',Lr+...+';§‘.7=“r

From the lemma of n.7.5.5 we obtain the following identity:

Z (_1)tBt(r11nl: ey Ty na)r! =

t Sty

= Z: (1) 0™ (re, ey ooy T, )N (i1, Rt 1y oy Ty R )Tty + o 7).

t1<t<13
For any collection (ry,n,,...,r,,n,) and index ¢ such that ¢ 2 ¢;, where n,, =
n* ;= max{ny,..,n,},ny, 41 # n*, we set

E(l)(rl,nl,...,r,,n,;t) =

= (=1 (re, ey ooy T1, R )N (Feg 1, et 1y ooy Toy g )Tty o+ 72).

Remark.
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If the index t; is not uniquely defined, then the above expression for
EM)(r{,ny,...,m4,n,;t) is automatically equal to 0.
Then we have: A, p.(1) =

(1)
_ s+t (1 .
= 3 Y (1)HED(ry,ny,.0 70,103 8) Dyy iy Dy, i,
T 1€ag80 1, <t
0<ny,...,n, <n" ne, =n"
ry,..,T,ER "t,-l#".

s+ terr=m

For fixed index s consider the expression for A, n+(m) in the following form:

=n~ ;
A‘h,ﬂ' (m) = mlpem Z (_1)8+uBu—t(ra+11na+la ...,r;,n;)x
) a+1Kigatag ugugu;y
0<"l+11“‘1n'€". Ry) =...SRe,=n
Tog1, ., TsER nul_l,nu’+1¢n'

;;:—"l'q‘_-‘-+...+;1;f7=‘vz
X [(T'u +..+ "uz)m - (Tu+1 +...+ ru:)m] Dr.+1,ﬂo+1"'D"J.ﬂ:'

As earlier, we have an identity:

D (1) Bucs(Tats Rotty oo Tis ) (T + oo+ 70y)™ = (Fugt + oo+ 1g,)™] =

w1 Luguy
= Z (—1)"7)'(ru_1,nu_1,...,r,+1,n,+1)n*(ru,nu, ...,T‘;,ﬂ,")(f‘u + ..+ ru,)m.

st+1guCuy

For some fixed index s, any collection (r,41,74+41,...,75,7;) and an index u such
that s 4+ 1 < u < ug, where n,, = n* = max{n,41,..., "3}, Nu,+1 # n*, we set:

2
E( )(rs-l-la MNat1, ...,r;,n;) =

= (—1)"+5r]‘(ru__1,nﬂ..1,...,r,+1,n,+1)1]'(ru,nu, ey Ty 3Ty + oo+ 1gy)™

Then, A, ne(m)=

(=p~ > T

p— 2 N .

—_ m'r*m E( )(r,+1,n,+1, ey Tay ﬂa)Dr,+1,n.+1---Dr;,n;-
" a+1<i<o+ a0 s+1<ugu;
D<ﬂ,+1,‘..,n'<n° ﬂu,=ﬂ‘

r|+l|~“trleR n".},lgén‘

;;'5&?"""'"?"{7:72

Now the coefficient for D,, ,,...Dy, 5, in the expression of the sum
Y Ay ne(1)A4, ne(m) is equal to 3 F , where
Y172 t<u

Ft,u = E(l)(rlsnl, "':rtsnt;t)E(z)(rt-l-lant-i-l: "'}riini;u)-l-

54



+E(1)(r1,n1 yoees TH1s n‘+1;t)E(2)(r,+g,n¢+2, vy TayNa ) + ..
v F E(l)(rl,nl,...,ru_l,n,-l;t)E(a)(ru,n,,...,r;,n;;u).

As earlier, we obtain, that Fy . = 0, if u # ¢ + 1. Therefore,

Z Ay ne (D Ay ne(m) =
1,72
tya=v

—1)m+!
= - Z Z (=1)**n*(re,ne, .y 71, 1) X

mlr*m
1€s550 t Stta
0<ny,...,n, ﬁn' n,1=..,=n¢’—_-n‘

T € "h-ll"‘lz+1¢".

?".I{T+~~-+;|"i17=‘1
XT]‘(TH.I,H.“.I, ey Tay ﬂ.‘,)('f'gl + ...+ 1‘;)(1‘1.1.1 + ...+ Tty )m.

Now our proposition can be deduced from the following formulae:

(_l)m-l-l .
A‘Y n.(m+1) = ' E E (_1)8-}- ﬂt(rhnt, ...,rl,nl)x
’ =m+1
(m + 1)lp*m 1esge o

0<ny,...,n, &n’ ney =...=n‘==n‘

rlv"'vrle fig, —1,N¢ +1¢ﬂ.
ST+ = e

X'?‘("t+1,ﬂt+1, ...,1‘,,1’1,)(1':+1 + ...+ r‘z)m+lr

2
Z C‘(Y:?n‘ 703'7’0,11‘ (m)C‘(y;?n" =

",70,72€Q
MN+Yo+v2=7

—_ (_l)m 1 LR 2 0
T mlpem Z (_ Y (ry ey ey Ty )X
) 1€2< 80 t, €<ty
0<ny,...,n, En" ﬂ‘1=...=ﬂg:=ﬂ‘

r]l..-,r.ER nll—l’"t:-’-l#n.

ST+ R =Y

XN (Pe1y N1y ooy Tay o )Tty + oon 1 a1 + oo+ 1,)™

7.12. Let Ny = N(R,vo) be the natural number from the Proposition 4.4.
Proposition. If n* < Ny, then

n* . PNO
A‘Y."' [t‘lr/]p € ‘C80-1 (UO)AMP + Z [t’r ] Ja(oaep) + Jan-
1<

Proof.
The arguments of the Lemma n.7.9.1 give the following lemma
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Lemma. Ifry +...+1r, > s;r*, then
D"l,ﬂx"'DT-,ﬂ. € £Jo—1(U0) ®k+ Cl Q ks
where s = min{s; +1, 30}

‘Then the slight modification of the proof of Proposition 7.9.1 implies our Propo-
sition.

7.13. Proposition. If v > sor*, then

n* —f“ - P
Ae BT = Ao () [ D)7 mod (£ag-1(v0) 01 + Joot1)

Proof.

We have the following analogue of the Lemma n.7.12:
Lemma. If s> 2 and ry + ...+ r, 2 sor*, then

D"‘l,ﬂl ---Dr, 1, € E,o_l(vo)Jl (anp) + Jso-}-l(oaep)-
Proof.
Let (s+1)r* >r1+ ...+ r, 287" s +12 39, then
Drl,nl-..Dr._l,n,_l E an_l(vo) ® k + J’O’

therefore,
D"l ,ﬂl"'Dﬁ 1 € an—l(vo)‘fl(oaep) + Jao+l(0up)-
If sy +1 < s, then we have r, > (sp — (8; + 1))r*, therefore,

Dr,,n, € 530—1(00) ® k + Jao—al(oaep)

and we obtain the conclusion of our Lemma.
From this Lemma it follows that

Ayt = = Doype m0d(Lag=1(v0)J1(Osep) + Joo41(Osep)

(Dyne =0,if ¥ ¢ R).

The same arguments show that
A'f,n‘ (1) = —’;:'D‘r,n‘ mOd (Eag—l(UO)Jl(anp) + Jao+1(0np)) .

7.14. Proposition. Let v < sor*, n* > Ny. Then

Ayne (1) = Ayne (1) Z )m — [tg"'—r‘(q—l)]p

1<m<p

mod ( so-1()1 + ) [_r (b= o]p" Js(Osep) + J-’o+1) :

".

1€sgag

Proof.

56



I
r=spre—

7.14.1. Lemma. Let n* > Ny . Then for any v € Mp_1(R) (c.f. 7.4.3) we have:

- (g— p”. - (p—a)p™ Pn.
Ay e (1) [tg" (¢ 1)] € Lyg—1(v0)Asep+ Z [tl"(” )p o] To(Osep) .
1<e<80
Proof.
Lemma 7.5.4 (c.f. also n.7.11.5) gives

1
) A"'y"' (1) = _r_.fR,ﬂ‘ (7’ 0) mOd J30+1 )
where the elements Fg n-(7,0) were defined in n.5. If ¥ > v, then

Aqynr (1) € L% ® kmod(Cypir ® ).

Therefore, Ay n+(1) € L,,-1(vo) ® k for v 2> vg (cf. 7.7(a)).
If v < vg, then .
¢ (e-1) ¢ tr" (p—1)p o,

(c.f. 7.4.3). Therefore,

—r® Pa —r* (p—1}pN »
Ay () [0 € [0 (00ep) €

—r*(p—-s)p™o P"
c 3 [T 2O
1€s<3g

7.14.2. Lemma. If n* > Ny, then

a1 P
By (1) [0 € Logma(v0)duept

+ Z [tl‘f'(P—u)p"o]P" [t"%]p"' Tron(Oons)+ s

1<21,32<99

Proof.
The arguments of the proof of the proposition 7.12 give

L)

Con BT € LumiC)Asep+ 3 [#F] Ju(Ouep) + Jun

1€a<a

where C.S,'B,., t = 1,2, were defined in n.7.11.4.
From the Proposition 7.11.4, it follows that

A= Y OBy (102, mod Jy1.
T1,70,72
T+vo+v2=y

The set {¥ | By,n» # 0 } is finite. Now our Proposition can be proved by induction
on v from the above equality.
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7.14.3. Lemma. For any 1 <m < p and n* > Ny we have:
(a) .
Aype(m+1) [t{*“"‘“’"‘""]’ €

—r*(p—2a)p™¥0 Pn‘
€ Lag—l(UO)Aup + Z [tl (p=2)p ] Jl(oup) + Jao;
1<a<ap

(b)

L

—(m r*(g— "
B, e (m) [ti” (m+1)r(q 1)] €.

e f’ao—l(vO)Aaep + Z [tl—r‘ (P—J)PNo]pn J.(O.ep) N Jao'

1<a<ap

Proof.

This statement can be proved by an induction on m.
Assume that this is proved for some m such that m 41 < p. Then we have from
Proposition 7.11.4 that

1 2
Avmr(m)y= > By (m)CP,. mod Jyp41.
Y14+70,72
T+vo+va=y

By an induction on v, as in the above Lemma, we obtain that

—_mr*(g—1}1P
By ne(m) [ttlrr r* (g 1)] €

- n.

—* (p—a)pN01P " [s,2%1P
€ Ly-1(v0)Asep + E [tl r*(p—a)p °] [t 2%‘ Jor483(0sep) + Jsq-

1€9,,52<480

ﬂ.

—r*(q=1)]? .
Multiplying both sides of this expression by [tl (a=1) we obtain the formula

(b) of our Proposition. The formula (a) follows now from Prop. 7.11.5.
7.14.4. Lemma. Let 1 <m < p, n* > Ny, then

- r*(g— P". - o 1y1P"
(m + 1) Ay e (m + 1) [tr]nr (m+1)r*(q 1)] = — 4By pe(m) [tciw (m+1)r* (g 1)]

—r*(p—s)pNo p".
mod (Cﬁo—l(vo)']l + Z [tl (p=2)p ] Ja(Oacp) + Jao-{-l) .

lglgao

Proof. This follows from the above Lemma, relation of Proposition 7.11.5 and a
trivial remark that, for any v > 0, Ay .+(1), CS:,),.,C.(,??,. € Ji.
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7.14.5. Lemma. If1 <m < p and n* > Ny, then

. L

. P”
Ay ne(m) [tqv (m+1)r* (q—l)] = B, p+(m) [t;’"'("""l)' (q—l)]

1€a<90

—r*(p—a)p”o ‘P".
mod (L,o_l(uo)J1+ > [Erer J,(O,,P)+J,°+l).

Proof.

This Lemma can be deduced from the relation of Proposition n.7.11.4 in the
same way, as Lemma 7.14.4 was deduced from Proposition 7.11.5.
7.14.6. In order to finish the proof of our Proposition we remark that

Ayne 11T =

Z Ay ne(m) [tg7_mr.(q_l)] 4 mod [t§7—Pr.(q—l)]pn. J1(Osep).

1€m<p

By the condition v < sor*, we obtain:

gy—pr*(g—1) <qlp—1)r* —pr*(¢g—1) = —r*(g — p) < —r*(p — 1)p™

(we have: ¢ = p" and N > Ny, cf. n......).
Therefore, the above equivalence is valid modulo

ao—l(UO)Jl + Z [ -—r "(p-o)p OJPn J.(O,cp) + J,°+1

18500

and the above lemmas give the formula of our Proposition.

7.15. Proposition. For any v € M,_,(R) we have:
(a) if v > sor*, then

1 —r*(g—1]9
Ao [ = = Fan(,0) [ 6]

mod (ﬁao—l(UO)Jl + Z t—"'(p—-’)Ja(O‘“p) + Jao+1) 3

IS T T
(b)if v < s¢r*, then
)m -1

A 7T = ~2 Fan(r0) Y EL

m21

[tq‘r mr (q—l)]

mod (£,°_1 (Uo)Jl + E t_r.(p_’)J,(Oup) + J,°+1) .

1gaga0
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Proof.

This follows immediately from the above propositions 7.12-7.14 and the formula
of the Prop. 7.11.3.
7.16. Let I be an ideal in £ such that (c.f. n.7.10)

IAacp 2 Cao—l(UU)Jl + Jao+1

and let X{' € A,.p be the element from Proposition n.7.11.1.

Proposition. The field of definition of X{'mod I A,.p has upper ramification num-
bers < vy over K, if and only if Fp n(y,n) € I@k fory>0and 0 <n < N.

Proof.

By the definition,
X{I(Q) _ X{’ — Z A(So)gp )’

ogm<N

where (cf. n.7.11.2)

Yo AT = Y AT ™ =
€Q

ogm<N ~
0Em<N
—r (a—1)19P" et (a_1319P"
= Z Fr,N(v,m) [t'i"7 (e 1)] + z Fr,n(v,m) Z [tf" mirtle 1)]
ogm<N ogm<N ﬂn}l
T>sor® v<20r*

mod (ﬁ,o_l(‘vo).fl + Z t—"'(P—J)Ja(O’ep) + J,°+1) .

1<a590

Let
Yo{I) = max{ v | Fr,n(7,m) ¢ I forsome 0 <m < N }.

If v9 < vg, then ¢gyo — 7*(¢ — 1) < 0 and X' mod(IA,., defines the trivial
extension of Kj,.

If yo 2 wvo, then gy — r*(g — 1) > 0 (cf. n.7.4.3) and the field of definition
of X{' mod(IA,.p, which we denote by L"(I) has the largest upper ramification
number equal to vp. Indeed, it follows from n.6.3 that v(L"(I)/K') = ¢vo—r*(q—1),
hence

-r*(g—-1)—r*
q

o(L"(D)/K) = 12 +r* =10,
Therefore,

ID Lao(vo) < fR,N('Y,m) € I ® k for all “Yo > vp.

This gives the inductive assumption 7.7(a) for s* = 8¢+ 1. All other assumptions
are the easy consequences of the above formulae.
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