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Abstract

A Riemannian resp. complex manifold X is called Liouwille if it carries no nonconstant
bounded harmonic resp. holomorphic functions. It is called Carathéodory if the points
of X are separated by bounded harmonic resp. holomorphic functions. We present some

remarks on regular Liouville and Carathéodory coverings over a Riemannian resp. complex
manifold.

Acknowledgment
The authors thank Max-Planck-Institut fiir Mathematik in Bonn for hospitality.

The research of the first author was partially supported by Fund of the Israel Science
Foundation and by the Fund for the promotion of research at the Technion.

Vladimir Lin
Department of Mathematics, Technion, Haifa 32000, Israel

e-mail: vlin at techunix.technion.ac.il

Present address: Max Planck Institute for Mathematics, Gottfried-Claren-Strasse 26,
53225 Bonn, Germany

Present e-mail: vlin at mpim-bonn.mpg.de

Mikhail Zaidenberg
Université Grenoble I, Institut Fourier et Laboratoire de Mathématiques associé au CNRS,
BP 74, 38402 St. Martin d’Heres—cédex, France

e-mail: zaidenbe at puccini.ujf-grenoble.fr



INTRODUCTION

A Riemannian manifold resp. a complex space X is called Liouwville if it carries no
nonconstant bounded harmonic resp. holomorphic functions. It is said to be Carathéodory,
or Carathéodory hyperbolic, if the points of X are separated by bounded harmonic resp.
holomorphic functions. We present some remarks on regular Liouville and Carathéodory
coverings over a Riemannian resp. complex manifold.

In §1 we start with a short survey on the Liouville property of regular, that is, Galois,
coverings; some new observations are exhibited as well (see Corollary 1.8 and Proposition
1.11). Tt is known that a nilpotent Galois covering! over a compact manifold is always
Liouville, whereas for solvable coverings, in general, this is not the case. In the intermediate
class of polycyclic coverings, the situation changes drastically when passing from compact
Riemannian or, in particular, Kahler manifolds to general compact complex manifolds.

In §2 we extend some known results on the Liouville property of nilpotent coverings to
a more general class of coverings with FC-nilpotent Galois groups.

§3 and §4 are devoted to examples of non-Liouville and, especially, Carathéodory cov-
erings over compact manifolds with relatively small Galois groups. Namely, in §3 for
arbitrary compact Riemann surface Y of genus ¢ > 2 we construct a metabelian covering
X = Y over Y with a Carathéodory covering Riemann surface X. This is based on a
construction due to Lyons and Sullivan [LySu].

In §4 we study in some details the properties of the universal covering m: X — Y
of an Inoue surface [In]. This is a compact non-Kahlerian complex surface ¥ with a
polycyclic fundamental group G = 7(Y') (= the Galois group of the above covering), and
the universal covering X is equivalent to the product of C and the upper half plane H.
Thus, X is neither Liouville nor Carathéodory. Concerning the geometry of this covering,
we show the following:

a) there are a point g € X and an element s € G such that zp is not contained in
the H°(X)-convex hull of the set {g~'sgzo | ¢ € G}; that is, there exists a bounded
holomorphic function on X such that sup cq .f(g_lsg:r,o)| <1 and |f(zo)| > 1;

b) any point z € X belongs to the H*°(X)-convex hull of its own G-orbit with the point
zo being deleted.

In what follows, all manifolds will be smooth and connected. All complex spaces will
be reduced and connected.

i, e. aregular covering with a nilpotent Galois group.

Typeset by Ap4S-TEX



2 VLADIMIR LIN, MIKHAIL ZAIDENBERG

§1. LIOUVILLE-TYPE PROPERTIES OF COVERINGS: A SURVEY

This brief survey is neither complete nor chronological; it contains only some selected
results on Liouville-type properties. We do not touch on the case of harmonic functions
on a discrete group with a probability measure, which is closely related to our topic {see
e. g. [Av, Ma, VeKa, Kal]).

Coverings over a compact base

1.1. Theorem [LySu, Kal). LetY be a compact Riemannian manifold and X —5'Y be a
Galois covering with the Galois group G. Then
a) X is Liouville whenever G is polycyclic? or of subezponential growth.

b) If G is nilpotent, then X carries no nonconstant positive harmonic functions.’

c) G must be amenable whenever X ts Liouville.

1.2. Remarks. 1. In [LySu] a solvable non-Liouville covering was constructed over
arbitrary hyperbolic compact Riemann surface R. This shows that in general Theorem
1.1{(a) does not hold for nonpolycyclic solvable coverings of compact manifolds. This
example will be discussed in more details in §3.

2. A holomorphic function on a Kahler complex manifold is harmonic with respect to
the Laplace-Beltrami operator related to the Kahler metric. Hence, Theorem 1.1(a) holds
also true for holomorphic functions on coverings over compact Kéhler manifolds. Actually,
the class of Hermitian metrics on complex manifolds with the property of harmonicity of
holomorphic functions is wider; it includes, in particular, Gauduchon metrics [Ga, Ka2].

3. Theorem 1.1{a) does not hold for holomorphic functions on general compact complex
manifolds. As a counterexample one may consider the universal covering X of the Inoue
surface Y ([Li]] see §4 below for details). The Galois group G in this example is a semidirect
product of Z* (which is a normal subgroup in G) and Z. Thus, X is not Liouville whereas
G is a metabelian (i. e. a two-step solvable) polycyclic group. However, nilpotent coverings
over compact complex spaces are Liouville ([Li]; see Theorem 1.6 below).

4. Since a finite covering of a compact manifold is compact, the statements (a), (b} of
Theorem 1.1 hold also true for any finite extension of G whenever G is as in these state-
ments. (Indeed, given a group extension 1 - G - G — K — 1 with a finite K and a

é-covering x5z , we have the corresponding tower of Galois coverings X Sy Kz ,
where Y = X/G is compact.)

We say that a group G is almost nilpotent® (resp. almost solvable, almost polycyclic,
etc.) if it contains a nilpotent (resp. solvable, polycyclic, etc.) subgroup of finite index.
Such a subgroup may clearly be assumed being normal. Thus, by Theorem 1.1(a),(b), an
almost polycyclic resp. an almost nilpotent covering over a compact Riemannian manifold
is Liouville resp. carries no nonconstant positive harmonic function.

2i. ¢. G admits a finite normal series with cyclic quotients. An equivalent condition: G is solvable and all

its subgroups are finitely generated (sce e.g. [Ha, Se]; in [Ha)] polycyclic groups were called supersolvable).
3See also [Gui, Ma).
dor virtually nilpotent, or also nilpotent-by—finite.
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1.3. Definition. A Riemannian manifold X is called recurrent if it carries no nonconstant
bounded subharmonic function. Nonrecurrent manifolds are called transient. Recall (see
e.g. [SNWC, Gri, LySu]) that X is recurrent if and only if it does not possess positive
Green function; the latter property is, in turn, equivalent to the recurrence of the canonical
random motion on Y. In [Li] a Riemannian manifold resp. a complex space X is called
ultra- Liouville if any bounded continuous subharmonic resp. plurisubharmonic function
on X is constant. Actually, for Riemannian manifolds these two properties are equivalent.

As an example of a noncompact ultra-Liouville complex space one may consider a con-
nected Zariski open subset Y of a compact complex space Y (for instance, any quasiprojec-
tive complex variety Y'). Indeed, every bounded plurisubharmonic function on Y admits
a plurisubharmonic extension to ¥ (see e.g. [BoNa}) and, hence, by maximum principle,
it is constant. Note that a smooth quasiprojective complex varicty, being endowed with
a Riemannian manifold structure, may be transient. For instance, this is so for Y = C*,
n > 2, with its Euclidean metric.

The following recurrence criterion for Galois coverings of compact Riemannian manifolds
was proved in [LySu] for abelian groups, and in general setting in [VSCC, X.3] (see the
references therein®).

1.4. Theorem [LySu, VSCC]. Let X — Y be a Galois covering over a compact Rie-
mannian manifold Y with the Galois group G. Then X 1is recurrent if and only if G is a
finite extension of one of the groups 1, Z or Z2.

In what follows we call a group G as in Theorem 1.4 a Varopoulos group.

Coverings over a noncompact base

1.5. Definition®. Given a Riemannian manifold resp. a complex space X, we denote by
I(X) the group of all its homotheties” Homo (X) resp. the group of all its biholomorphic
automorphisms Aut (X).

Let G be a subgroup of I(X); we say that the action of G on X is ultra-Liouville if there
is no nonconstant G-invariant bounded continuous subharmonic resp. plurisubharmonic
function on X. Note that in the case when the quotient ¥ = X/G exists in the same
category, the G-action on X is ultra-Liouville if and only if Y is ultra-Liouville.

Denote by Z(G) the center of a group G. Let
1=20(G)<Z(G)=21(G)Z:(G)<d--- 1 2Z,(G)<a--- QG

be the upper central scries of G, i. e. Z,(G) is the total preimage of Z(G/Z,-1(G))
under the natural surjection G = G/Z,,_1(G), n=1,2,... . The upper central series is

Sfor the case of Riemann surfaces see e.g. [My, Ne, Ro, Mo, Ts].

6cf. Definition 1.3 above.

"By a homothety of a Riemannian manifold (X, d) we mean a transformation ¢ : X —= X such that
d{gz, gy) = Cd{=, y) with some constant C = C(g) which does not depend on z, y € X.
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continued transfinitely in the usual way, by defining Za(G) = Ug, Zp(G), when o is a
limit ordinal.

The group G is called w-nilpotent if it coincides with the union Z,(G) = |J, ey Zn(G)-
G is called hyper-nilpotent if G = ), Zo(G), where o runs over all the ordinals.

The following theorem was proved for w-nilpotent coverings of Riemannian manifolds

in [LySu], and in its present form in [Li], by different methods.

1.6. Theorem [LySu, Li]. Let X be a Riemaennian manifold resp. a complez space, and
let G be a hyper-nilpotent subgroup of I{X). The space X ts Liouville whenever the G-
action on X is ultra-Liouwville. In particular, X is Liouwlle if there is a hyper-nilpotent
covering X — Y with the base Y being an ultra-Liouville Riemannian manifold resp. an
ultra-Liouville complex space.

1.7. Remark. By the maximum principle, any cocompact G-action® on X is ultra-
Liouville. Therefore, for w-nilpotent coverings over a compact Riemannian manifold Y the
last assertion of Theorem 1.6 follows from Theorem 1.1(a) (but not vice versa!). Indeed,
being a quotient of a finitely generated group m,(Y'), the Galois group of a regular covering
over Y is finitely generated, too. But a finitely generated w-nilpotent group is nilpotent
and polycyclic (see e.g. [Ha, Se]). However, unlike Theorem 1.1, Theorem 1.6 applies also
to ultra-Liouville actions which are neither free nor properly discontinuous nor cocompact.

From Theorems 1.4, 1.6 we obtain such a corollary.

1.8. Corollary. Let X — Y be a Galois covering over a compact Riemannian resp.
Kahler manifold Y with the Galois group G. If G is an extension of an almost hyper-
nilpotent group by a Varopoulos group, then X is Liouwlle.

1.9. Remarks. 1. Corollary 1.8 does not apply to general compact complex manifolds.
Indeed [Li], let X — Z be the universal cover over the Inoue surface I (see Remark 1.2.3
and §4). The semidirect decomposition G =2 Z3 X Z provides us with the tower of Galois

coverings X -Z9Y 23T, Would Y be ultra-Liouville, then, by Theorem 1.6, the abelian

3
covering X Z,Y would be Liouville, which is wrong. Hence, v 51 yields an example of
a non-ultra-Liouville Z-covering of a compact complex surface Z.

2. Even in the Riemannian setting, an analog of Corollary 1.8 does not hold any more for
coverings over a noncompact base Y. Consider, for instance, the maximal abelian covering
X — Y over the punctured Riemann sphere Y = P!\ {3 points}. The Riemann surface X
can be realized as the curve in C? with the equation e 4+ e¥ = 1. The covering projection
X —-Y =C\({0, 1} is (x, y) — €”. The Galois group G of this covering is isomorphic
to H (Y; Z) = Z?. Tt is known [McKSu, LyMcK] that X is transient, and hence is not
ultra-Liouville, whereas G = Z? is a Varopoulos group. Note that X in this example is
Liouville (see [De, Wa, Sh] or Theorem 1.6).

84, e. an action such that GT = X for some compact set T C X.
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1.10. Definition. Let G be a group acting on a set X, and let CX be the vector space
of all complex valued functions on X. The corresponding G-action on C¥X is denoted by
f = f9, f9(z) = f(gz). We say that an element g € G is a period of a function f € CX,
or f-period, if f is g-invariant, i. e. f(gz) = f(z) for all z € X. For a function f € CX
the set of all its periods form a subgroup in &, which is denoted by G. It is a stationary
subgroup of f with respect to the G-action on CX. For a subspace F C CX denote by
G 7 the intersection of all the subgroups G, f € F. We call G the group of F-periods,
or simply the period group. It is easily seen that Gr is a normal subgroup of G if F is
G-invariant,.

From now on, we denote by H = H(X) the spacc Harm™(X) resp. H®(X) of all
bounded complex valued harmonic resp. holomorphic functions on a Riemannian manifold
resp. complex space X. Clearly, H(X) is an I(X)-invariant subspace of C¥; for any
subgroup G C I{X) the H-period subgroup Gy is normal in G.

For a subgroup G C I(X) and an element s € I(X) we denote by [s, G] the subgroup
of I(X) generated by all the commutators [s, g] = sgs~1g~!, g € G.

The next proposition contains some new observations concerning harmonic {holomor-
phic) functions on coverings over an ultra-Liouville base.

1.11. Proposition. a) Let the action of a subgroup G C I(X) on a Riemannian manifold
resp. on a complezx space X be ultra-Liouville. Then any G-orbit in X s a uniqueness set
for the function space® H(X).

b) If the induced diagonal G-action g: (z,y) — (9z, gy) on X x X is ultra-Liouville,
then X is Liouwille.

1.12. Remark. It follows from Proposition 1.11(b) that a complex space X is Liouville
whenever the action of some subgroup G C 7(X) is almost doubly transitive on X, meaning
that the induced diagonal G-action on X X X possesses a dense orbit. This simple observa-
tion yields yet another proof of the classical Liouville Theorem (the affine transformation
group Aff (C) = Aut (C) is doubly transitive on C).

The following theorem provides us with an important information about the period
group of a bounded harmonic resp. holomorphic function. Actually, this more general
result stays behind the proof of Theorem 1.6.

1.13. Theorem [Li, Thms. 2.10, 3.9]. Let, as before, X be a Riemannian manifold
resp. a complex space, and let G be a subgroup of the group I{X) = Homo (X) resp.
I(X) = Aut (X). Assume that one of the following two conditions is fulfilled:

* G 15 amenable and its action on X is ultra-Liouville;

x G-action on X is cocompact.

Let f be a bounded harmonic resp. holomorphic function on X. Suppose that an element
s € I{X) satisfies the condition [s,G] C I(X ) (see 1.10). Thens € I(X)y. In other words,
if f is invariant under all the commutators [s, g], g € G, then [ is also s-invariant.

%. e,if @ €H, £o € X, and ¢ | Gxg =0, then ¢ = 0.
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1.14. Remark. Under the hypothesis of Theorem 1.13, ecither of the above conditions
(%) implies:

1. The center Z(G) of G is always contained in the H-period subgroup G, where # is the
space Harm®(X) resp. H*(X) of all bounded harmonic resp. holomorphic functions on
X. Moreover, the transfinite induction shows that the members Z,(G) of the transfinite
upper central series of G are contained in G4. Thus, the union Zyn(G) = |, Z4(G)
is contained in the H-period subgroup Gy as well. Hence, X is Liouville if G is hyper-
nilpotent or almost hyper-nilpotent. This proves Theorem 1.6.

2. If the center Z(G) of G is nontrivial, then the space X is not Carathéodory [Li]. In
particular, a regular covering X over a quasiprojective variety cannot be Carathéodory
hyperbolic whenever its Galois group is amenable and has a nontrivial center. We shall
see in §3 that the latter statement may be wrong (even for solvable coverings of compact
Riemann surfaces) if one omits the condition that the center is nontrivial.

3. If an element s € G is central in a finite index subgroup § C G (or, more general, lies
in the centralizer of such a subgroup in G) then s is an H-period: s € Gy [Li, Lemma 3.3
and Th. 3.4]. That is, if the conjugacy class s¢ = {g~lsg | g € G} of an element s € G
is finite, then any function h € H is constant on the s%-orbit sz of any point =z € X.
An element with the finite conjugacy class is called an FC-element; in §2 we study some
analogs, generalizations, and applications of this property.

Some proofs

Following the scheme suggested in [Li], we sketch here the proofs of Proposition 1.11 and
Theorem 1.13.

We denote by G the Stone-Cech compactification of a discrete topological space G, i.
e. the Gel’fand spectrum of the Banach algebra L*(G) of all bounded functions G — C.
Recall that the space 8G is compact and Hausdorff, and L*(G) = C(BG). For f € L*®(G)

we denote by f the unique continuous extension of f to G, and by M(f) C BG the peak
point set of the function f: .

M(f)= {5 € 6G | ‘f(g)\ = “f“C(ﬁG)} '

If G is a discrete group, then its right action onto itself extends to a right G-action on 8G.

Let X be a Riemannian manifold resp. a complex space, and let G be a subgroup of
the group J(X) (see 1.5). For any function h € H = H(X) (sce 1.10) we set {|h]|, =
sup,ex |h{z)|. Let K = K(X) denote the convex conc of all nonnegative bounded contin-
uous subharmonic resp. plurisubharmonic functions on X.
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1.15. Proposition [Li]. Let X,G, and H be as above. Assume that

(1) the G-action on X is ultra-Liouville, 1. e. the cone K contains no nonconstant G-
mnvariant function.

Let h € H. Set hy(g9) = h{gz) and Yplx) = ‘ E . Then
( ) (9 ) h( ) C(8G)
a) wp = const an ) bn (5G) Ph || l||x

¢) the peak point set M(h) = M(ﬁ:) C BG of the function hy does not depend on & € X
and is a G-invartant subset of BG;

d) for any G-invariant regular probability Borel measure ju on 3G the L*(p)-class [ﬂ;] of
the function E; does not depend onz € X.

If, in addition, the group G is amenable, then
e) BG carries a G-invariant probability measure p supported in M(h);

) h =0 whenever [E;] =0 in L%(pn) for a measure p as in (e).

Sketch of the proof. Note that the space H and the convex cone K satisfy the following
two conditions (i7), (z4):

(11) H contains all the constant functions, and for any ||-||-bounded subset F C ‘H the
function k%, k%(z) =supscr |f(z)|?, belongs to the cone K;

(i3t) for any closed ball B in the space BC(X) of all complex valued bounded continuous
functions on X the sets HN B and XN B are closed in BC(X) with respect to the compact
open topology.

Thus, by (i17), ®? € K. Since the function % is G-invariant, (a) follows from (i).
Clearly,

————
hz

©n = on(z) =

= ||hg|poory = sup Jh(gz)| < sup |h(y)| = [|h]] v .
0@6) hell oo (g gEGI (92)] yEXI W) = lIhllx
Would the latter inequality be strict, then for some z, € X we would have

wn < [h(zo)| < sup [h9(zo)| = sup |h{gzo))|
9€EG 9€G

= pp(o) = @n,

= sup |he, (g)] = C(8G)

g€CG

iz

which is impossible; this proves (b).

Given z, € X and a point & in the peak point set M (ﬁ;:), consider the function

hée () = hg(€o). It follows from (4id) that this function is in H, and the function | (z)]
attains its maximal value |||y at the point z = z,. The Maximum Principle

(tv) h = const whenever h € H and |h(z,)| = |||y for some point z, € X

implies that hé = const. Hence,
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lia(£o) Frag (€0)] -

=[1Pllx =

= [h‘f" (:v)l = |h,E° (zo)

This shows that §, € M (ﬂ;) for any z € X, which proves the first assertion of (¢). The
constant function h%e is certainly G-invariant, and hence hé°9 = hé° for any g € G. This

H;j(gog)‘ = [h&9(zo)| = |[hé(zo)| = [Ihlly and &g € M(a,) = M(h), which
proves the second assertion of (c).

yields

Given a G-invariant regular probability Borel measure p on SG, define the function

oo™
L3) BG

It is G-invariant, and it follows from (4i) and (i) that ®2 € K; by (i), ®2 =const. Fix
a point z, € X, and consider the mapping X 3 z+— F(z) = [E;] € L?(1) and the inner
product ¥(z} = (F(z), F(z,)). It follows from (zii) that ) € H. Clearly,

¥ X R, ¥ = [k] nl©)] due).

(@)l < WF @)l g2y IF (o)l 2y = B(2)P(w0) = P (z0) and  |th(wo)| = *(zo) ;

hence, by the Maximum Principle (iv), (F(z),F(z,)) = const. Set a = F(z,) and
b= F(z); then we have (b, a) = ||a]|® and ||b]| = ||al]. Since the norm in the Hilbert space
L?(y) is strictly convex, this implies b = a, that is, F' = const. This proves (d).

The statement (e) follows from (c) and the Fixed Point Theorem for amenable groups
[Gre, Thm. 3.3.5] applied to the natural G-action on the convex compactum of all proba-
bility measures supported in the G-invariant set M (h).

Finally, (f) follows from (e). Indeed, the function I is continuous on C(BG), and hence
P;;] = () implies T | supp ¢ = 0. Since supp e € M(h) = M(E), it follows that iy = 0
for any z € X. Thus, . = 0. O

1.16. Remark. Let X be a topological space endowed with a G-action preserving a
subspace H C BC(X) and a convex cone K C BCgr(X). Assume that the conditions
(2) = (iv) introduced above are fulfilled. All the assertions of Proposition 1.15 hold true
in this more general setting. This yields analogs of Theorems 1.6 and 1.13 for certain
equivariant second order elliptic operators on smooth manifolds and for harmonic functions
on discrete groups (see [Li, 2.15)).

1.17. Proof of Proposition 1.11. (a} is an immediate consequence of Proposition 1.15(a, b).
To prove (b), fix a function h € H(X). Note that the function

hiz, y) = h(z) — My) € H(X x X)

vanishes on the diagonal A C X x X, and therefore, it vanishes on any G-orbit contained
in A. By our assumption, the diagonal action of G on X x X satisfies the condition of (a)

and leaves the diagonal A invariant. Thus, by (a), h= 0, and hence i = const. Therefore,
X is Liouville. 0
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1.18. Proof of Theorem 1.13 for amenable G and an element s € G. Actually, as in
the proof of Proposition 1.15, the only important assumption about the space H and the
convex cone K is that the conditions (i)-(iv) mentioned above are fulfilled. We deal with
a function f € H and an element s € G such that fI* €1 = f where fl*9(z) = f([s, g]z).
Thus,

fealg) = flgsz) = f(sgz) = f*(92) = (/*)=(9)
for all g € G and all £ € X, and hence

———

F=(fs for allzeX. (%)

Set h = f? — f € H. We must show that i = 0. Let  be a measure as in Proposition
1.15(e). Since it is G-invariant, Proposition 1.15(d) implies that the L2(j)-class [ﬁ] does

not depend on z € X. In particular, [f;] = [f;] and

o = Te] = [ = R = [Fe] =[] =0

—

Combined with (+) this leads to [( Y — fz] = 0. Thus, Iy = [(( fo = f)m)] = 0. Propo-
sition 1.15(f) implies that & = 0. O

If the element s € I(X) we deal with is not contained in the subgroup G, it can happen
that there is no an amenable subgroup in I{X) containing both s and G. To treat this
case one should work with actions in function spaces which are not induced by any action
in X (see {Li] for details).

As to the case of a cocompact G-action, the proof of Theorem 1.13 given in [Li] is
mainly based on the compactness principle and a version of the Harnack inequality. This
approach goes back to E. Dynkin, M. Malyutov, and G. Margulis who considered bounded
and positive harmonic functions on nilpotent groups (see [DyMa, Ma}).

§2. LIOUVILLE PROPERTY OF FC-NILPOTENT COVERINGS

Here we give a generalization of Theorem 1.13 on the period subgroup, based on the notion
of the upper FC-series of a group [Hai]. Namely, we show that the period subgroup of the
bounded harmonic resp. holomorphic functions on a covering of an ultra-Liouville manifold
contains the union of members of the upper FC-series of the covering group (see (2.1) and
Corollary 2.5 below). This leads to a generalization of Theorem 1.6 resp. of Corollary 1.8
on the Liouville property of coverings (see Corollary 2.6 below).

2.1. Definitions. 1. FC-groups and FC-series. A group G is called FC-group [Ba] (see
also [Ku, To]) if the conjugacy class of each element of G is finite. For example, any almost
abelian group or a group with a finite commutator subgroup is so [Neu]. Both of the latter
classes contain the proper subclass of groups with a central subgroup of finite index [Neu]
(see also [Er; To, Thm.1.1]). It is known [Ba; To, Thm. 1.4] that the quotient G/Z(G) of
an FC-group G by its center is a periodic group.
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For any group G the union FC(G) of all finite conjugacy classes is a normal subgroup
of G. Clearly, FC(G) is an FC-group; it is called the FC-center of G [To]. By the upper
FC-series of G {Hai] one means the normal series

1 FC(G)a FC(G) - - aFCL,{(GYa -1 @G,

where FC,(G) = FC(G) and FCp41(G) is the total preimage of FC (G/FC,(G)) under
the natural surjection G — G/FC,(G), n > 1. Clearly, FC,(G) is a normal subgroup
of G; in fact, it is a strictly characteristicl® subgroup [Hai]. The upper FC-series may
be extended transfinitely [Du], by defining FCo(G) = s, FCp(G), when o is a limit
ordinal. Set FC,(G) = U ey FCr(G) and FCin(G) = {J, FCa(G), where a runs over
all the ordinals.

2. FC-nilpotent and hyper-FC-nilpotent groups [Hai, Du]. If G = FC,(G) and G #
FC,_1(G) for some n € N, then G is called FC-nilpotent of class n, or simply FC-nilpotent.
We say that G is w-FC-nilpotent resp. hyper-FC-nilpotent if G = FC,(G) resp. G =
FCim(G). Clearly, an w-FC-nilpotent group is locally FC-nilpotent, i. e. any finitely
generated subgroup of G is FC-nilpotent.

2.2. Remarks. 1. A nilpotent (resp. w-nilpotent, hyper-nilpotent, locally nilpotent)
group is FC-nilpotent (resp. w-FC-nilpotent, hyper-FC-nilpotent, locally FC-nilpotent).
It i1s easily seen that FC-nilpotence, w-FC-nilpotence, and hyper-FC-nilpotence and are
preserved under finite extensions and passing to a subgroup or to a quotient group. In
particular, a finite extension of a nilpotent group is FC-nilpotent. Vice versa, a finitely
generated FC-nilpotent group of class n is a finite extension of a nilpotent group of class
at most n [DuMcL, Thm. 2].

2. We say that a group G is normally generated by its elements gy, ..., g if G coincides
with the minimal normal subgroup << ¢1,...,g9x >> containing gi,..., gk, or, which is
the same, if the conjugacy classes of g1, ..., gx generate (G. It is easily seen that a normally
finitely generated w-FC-nilpotent group G is actually FC-nilpotent. If, in addition, all the
members FC;(G) of the upper FC-series of G are normally finitely generated, then G is a
finitely generated almost nilpotent group (and hence, G is an almost polycyclic group).

3. Any locally FC-nilpotent (and so any w-FC-nilpotent) group G is amenable. Indeed, G
is a union of the direct system of its finitely generated FC-nilpotent subgroups. Therefore,
by Theorem 1.2.7 in [Gre], the statement follows once we know that any finitely generated
FC-nilpotent group is amenable. The latter holds since a finitely generated FC-group is
almost nilpotent [DuMcL, Thm. 2] (see 1 above).

The following simple example shows that in general an FC-group that is not finitely
generated my be neither almost solvable nor almost w-nilpotent.

10A subgroup H C G is called strictly characteristic if ¢{H) C H for any surjective endomorphism
¢ G = G,
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2.3. Example. Let G = @, A, be the direct sum of the alternating groups 4, C Sy,
where S, stays for the symmetric group. It is an FC-group. Since the summands are
simple (hence, nonsolvable) groups, G is not almost solvable. To see that G is not almost w-
nilpotent suppose, on the contrary, that there exists a normal w-nilpotent subgroup H C G
of finite index. Clearly, for some n we have H N A,, # 1, and thus H N A,, is a nonunit
normal subgroup of the simple group A,,. Hence, HNA,, = A,,, that is, A, C H. However,
w-nilpotent group H, being the increasing union of the nilpotent subgroups Zp(H) (the
members of its upper central series), cannot contain a finite nonsolvable subgroup.

The concept of FC-nilpotence occurs convenient to establish the Liouville property of
some coverings. The following lemma is an easy consequence of Theorem 1.13.

2.4, Lemma. Let X be a Riemannian manifold resp. a complex space, H be the space
of all bounded harmonic resp. holomorphic functions on X, and G C I(X) be a subgroup
of the group I(X) = Homo(X) resp. I(X) = Aut(X). Suppose that one of the two
conditions of Theorem 1.18 s fulfilled, i. e. ecither

x G 1is amenable and its action on X is ultra-Liouville, or
*x the G-action on X is cocompact.

Let N < G be a normal subgroup, and let s € G be an element such that its image § in
the quotient group G/N has a finite conjugacy class. If N is contained in the H-period
subgroup Gy, then s € Gy, too.

Proof. By our assumption, the centralizer C of the element 5 € G/N is of finite index in
G/N. The total preimage C of C in G is a subgroup of finite index. Therefore (sec [Li,
Lemma 3.3]), C satisfies the same condition () as G. Furthermore, C contains both s
and N. Since 3 is central in C we have [s, C] C N C G. By Theorem 1.13, this implies
that s € Gy. O

2.5. Corollary. Suppose that one of the conditions (*) of Lemma 2.4 is fulfilled. Then
FCim(G) C Gy

Proof. Starting with the unit subgroup 1 C Gy, we procced by transfinite induction.
Assume that FCo(G) C Gy. Set N = FC,(G) < G. By Lemma 2.5, for any element
s € FCyu41(G) we have s € Gy, and thus FCuy1(G) € Gy. Furthermore, if « is a limit
ordinal and FCg(G) C Gy for all 8 < «, then FC(G) = Ugeo FCp(G) € Gn- By
induction, it follows that FCim(G) =, FCa(G) C Gx. O

2.6. Corollary!'. Let X — Y be a regular covering over a compact Riemannian resp.
Kahler manifold with the Galois group G. If G is an extension of e hyper-FC-nilpotent
group by a Varopoulos group, then X is Liouville.

2.7. Remark. As follows from Corollary 2.5, under one of the assumptions { *) of Lemma
2.4 the period subgroup G <1 G has the following property: the FC-center FC(G /Gy is
trivial, i. e. all the conjugacy classes of the elements of G/Gy different from e are infinite.
Clearly, the subgroup FCjin(G) < Gy has the same property. It would be interesting to
find an example (if it does exist) in which FCym(G) # Gx.

H¢f. Corollary 1.8 above.
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§3. ON SOLVABLE CARATHEODORY HYPERBOLIC
COVERINGS OF A COMPACT RIEMANN SURFACE

A complex space X is called Carathéodory hyperbolic if the algebra H*°(X) of the bounded
holomorphic functions on X separates the points of X. In [LySu] for arbitrary compact
Riemann surface Z of genus g > 2 there was constructed a non-Liouville Galois cover-
ing X — Z with a metabelian (i. e. two-step solvable) Galois group. Modifying the
construction of Lyons and Sullivan, we prove the following theorcm.

3.1. Theorem. For any compact Riemann surface Z of genus g > 2 there exists a
metabelian Carathéodory hyperbolic covering X — Z over Z.

Proof. There is a natural one-to-one correspondence between abelian coverings of Z and
those normal subgroups of 71(Z) that contain the commutator subgroup 71(Z) of m1(Z).
The mazimal abelian covering over Z is the Galois covering corresponding to the commu-
tator subgroup m1(Z); it dominates any other abelian covering of Z.

Let Y — Z be a covering over Z with a free abelian Galois group G of rankG > 3
(for instance, the maximal abelian covering). By a theorem of A. Mori [Mo] (see also [Ts,
Theorem X.46]), for an arbitrary point y € Y there exists a unique positive Green function,
say gy, with pole at y.

Let D C Y \ {y} be a simply connected domain. Then there is a conjugate harmonic
function gy, of g, in D, which is defined uniquely up to an additive real constant. Therefore,
the differential wy, = dfy, where f, = gy + g}, is a well-defined holomorphic 1-form on
Y\{y}. Its real part Rew, = dg, is an exact 1-form on Y'\ {y}. Hence, the real part of each
period f,y wy of wy, where v € Hi(Y \ {y}; Z), is zero. Thus, w defines a homomorphism
Hi(Y\{y}; Z) - iR

Fix a point 29 € Y \ {y}. For any particular choice of g, consider the function

os(2) = exp (2 fy(2) = exp (27 (£ ) + [ wy) )

0

This is a multi-valued holomorphic function on Y with values in the unit disc D. For
a given ¥y € Y any two such functions coincide up to a constant factor A € S, where
S1={xeC| |\ =1}. For any y € Y choosc, once forever, one of the functions ¢,.

Any two values of ¢, differ by a factor of the form exp (—271 I . wy) € 5!, where
v € Hi(Y; Z). More precisely, we have a well-defined character

a,: H(Y\{y}; Z)> v+~ exp (—2ﬂ/wy) e St
Y

Actually, it yields a character
ay: Hi(Y;Z) = St

Indeed, consider the exact sequence

0-Z- H(Y\{y};Z2)—> H(Y;Z)— 0,
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where the subgroup Z C H,(Y \{y}; Z) is gencrated by a very small circle o, in Y centered
at y. In a small disc 6, around y we have g,(z) = —3-log|z — y| + hy(z), where h, is a
single-valued harmonic function in &y; hence, f,(z) = —s=log(z — y} + f,(z), where f; is
a single-valued holomorphic function in 4. It follows that

27r/ wy =27r[ (—%dlog(z—y)—!—dfy) € 2miZ .

<

Thereby, exp (—27r fav wy) = 1, the restriction of the homomorphism «, to the kernel

subgroup Z in the above exact sequence is trivial, and @, can be pushed down to the
quotient group.

The set, of values of the function ¢, at a point z € Y\ {y} coinsides with a coset of the
subgroup Image (¢} in the multiplicative group C*, whereas all its values at the point y
are zero.

Let p: m(Y) — H1(Y; Z) = m1(Y) /71 (Y) be the canonical surjection. Set &, = a0 p.
The covering X, — Y over Y corresponding to the subgroup Ker &, < m(Y) is the
minimal one such that the function ¢, becomes single-valued when lifted to X,,. Set

K= n Kera, C Hi(Y; Z),
yeyY

and K = p=}(H) C 7,(Y). Let p: X = Y be the abelian covering over Y associated with
the subgroup K « m1(Y). Clearly, this is the minimal covering over Y such that all the
functions {¢y}yey become single-valued when lifted to X. Let E = {@}yey C H*(X)
be the collection of all the lifted functions. We will show that E separates the points of
X. Since X — Z is a metabelian covering this proves the theorem.

Denote by F, = p~(y) C X the fiber of p over y € Y. For any two distinct points
¥,y € Y the function i, vanishes identically on F,, and does not vanish at the points of
F,. Therefore, E separates the fibers {Fy}.

Thus, it is sufficient to show that F separates the points of each fiber F,. It is easily
seen that for ¢’ # v the function §, separates the points of F, if and only if Ker oy = K.
If the latter equality holds for a certain pair of distinct points y1, y2 € Y, then the points
of each fiber Fy,, y € Y, are separated by at least one of the functions &y;, ®,,. Hence,
the theorem follows from the next claim.

Claim 1. There exists a countable union C = UnEN C,. C Y of real analytic curves Cy, in
Y such that Ker a, = K for each point y € Y \ C.

The proof is based on the following statement!?:

Claim 2. The function of two complex variables g(y, y') = g,(y') is harmonic on the
complement (Y x Y)\ A, where A CY x Y is the diagonal.

121t should be well known; for the sake of completeness we give a simple proof,
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" Proof of Claim 2. By the symmetry property of Green function [Ts, Theorem 1.16), we
have g,(y') = gy (y) for any y # ¢, v,y € Y. Hence, ¢g(y, ¥') is a harmonic function in
each argument on (Y x Y)\ A. It is sufficient to show that it is harmonic as a function of
two complex variables in each bidisc d x ¢’ CC (Y xY)\ A, where 4, 6" are two small discs
in Y. Being harmonic in cach variable, the function ¢(y, ¥’) in the bidisc § x ¢’ satisfies
the Laplace equation Ay 4, g(y, ¥') = Ay9(y, ¥') + 8,,9(y, ¥') = 0, where Ay, A, are the
usual Laplacians. Therefore, g(y, ¥’) is harmonic in § x 6’ as soon as it is continuous there.

Since the function g(y, 0) is continuous in the closed disc d, the family g, = g,(v’)
of positive harmonic functions in &’ is equicontinuous in every smaller closed disc (the
standard proof of this fact follows by the Harnack inequality). This implies that g =
g(y, ¥') is a continuous function in § x ¢’, which completes the proof. O

Proof of Claim 1. Tt is sufficient to check our statement locally. Fix a small disc  C Y.
We will show that Kera, = K for all y € § outside of a countable union Cs C § of closed
real analytic curves in 4.

It follows from Claim 2 that in each local chart € in Y the coefficients of the holomorphic
1-form w,, are real analytic functions of y € Y\ Q.

Let a sequence {7V}, ey of 1-cycles in ¥ be a free basis of the homology group

Hh(Y;z)y2z> =Pz

1

We may assume that they do not meet the closed disc 6. The periods ¢, (y) = f% Wy,
n € N, are real analytic functions of y € §. For v = 2;;1 a;v; € Hi(Y; Z) we have

(mwy)= [ wy =) a5 [ wy=) ajci(y) = (a, c(y)),

where @ = (a1, ...,an, 0,...) and c(y) = (c;(y))52;- By the definition of the character
ay: Hi(Y; Z) - S, we have

Keray, = {y€ Hi(Y; Z) | (v, iwy) = (@, ic(y)) € Z} .
Set
L={ae€Z* | (a,ic(y)) € Z for all y€d}.

For each @ € Z°° \ L and for each k € Z consider the real analytic curve
Car={y€d | (@ icly)) =k} .

Put
C6 = U Ca’ k-
acZ>®\L; keZ

It is easily seen that for y € 6 \ Cs the subgroup Ker o, C H1(Y; Z) does not depend on y
and coincides with L. Furthermore, for any y € Cs we have Ker o, O L, and hence L = K.
This proves Claim 1 and completes the proof of Theorem 3.1. O
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§4. H®-HULLS IN A SOLVABLE COVER OF INOUE SURFACE

In this section we study in more details the universal covering m: X — Z over one of the
Inoue surfaces Z {In]. We start with a description of the Inoue surface.

Let A € SL (3; Z) be a matrix with one real cigenvaluec @ > 1 and two complex conjugate
eigenvalues 3,3 € C\ R (certainly |8| < 1). Let a = (ay,as,a3) resp. b = (b1, ba,b3) be a
real resp. a complex eigenvector of A corresponding to the eigenvalue o resp. S8.

Set H = {z € C | Imz > 0} (the upper halfplane) and X = H x C. Consider the
subgroup G C Aut X generated by the following four automorphisms g;:

go(z,w) = (a2 fw),  gi(zw) = (40w +b;), 1<7<3, (zw)e X =HxC,

The action of the group G on X is free, properly discontinuous, and cocompact. The
smooth compact complex surface Z = X/G is one of the Inoue surfaces [In].

The subgroup Gy C G generated by g1, 92,93 is isomorphic to Z3; this subgroup is
normal in G, and the quotient group G/Gy is isomorphic to Z. Thus, we have the exact
sequence

0— 2 —=G5Z—0, (1)

and the corresponding tower of the abelian coverings

GoxN®
X

Yiﬂ:, where Y = X/Gy .
In particular, G is a metabelian (i. e. two-step solvable) polycyclic group, and X — T is
a polycyclic covering with the Galois group G.

We intend to establish certain analytic properties of the covering X — 7 and its fibers.
To this end, we need some simple algebraic observations.

First, note that the sequence (1) splits; a splitting p: Z - G (7 o p =idgz) may be
defined by Z 3 m — ¢o* € G. Therefore, G is a semi-direct product Z3 X Z, and any
element g € G admits a unique representation of the form

1,72 T

9=957=9597'95295°, where m=171(9) €Z, r1,72,73 € L, 7= g7 95295 € Go.
Using this normal form, for any d € Z we can write

97 989 = (g5~ - 96 - (95'F)

~—1 —m d

=G5 g™ 98- 959 =9 909 = g1 95?97’

d /]
93 297" 96 - 91 952 95"

G

4.1. Lemma. The conjugacy class s¢ of the element s = g8 consists of all the transfor-

mations of the form
(z,w) — (adz + (a? - 1)(riaq + a2 + r3as3), 8w + (,Bd — 1)(r1by + 7abo + r3b3)) ,

where 1, 2, and r3 Tun over Z.
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Proof. Since the elements g;, 7 = 1,2,3, commute, the lemma follows from (2) and the
formulae

gfrggg;(z, w) = (a2 + (a* = V)raj, fw + (B — 1)rd;). O

4.2. Lemma. a) The real eigenvalue o of the matriz A is a nonquadratic irrationality.

b) The coordinates ay,aq,a3 of the corresponding eigenvector a are linearly independent
over Q.

¢) For any subgroup L C Z* of rank rkL > 2 and for any finite subset S C L we have

illf{|7'1(1,1 + 71209 +r3a3| | r= (?"1, T2, 7'3) e L— S} = (.

Proof. a) The characteristic polynomial P(z) = t*+pt*+¢t+1, p, ¢ € Z, of the unimodular
matrix A has no rational root except, possibly, of £1. Since «a, 8 # £1, the polynomial P
is irreducible over @, which proves (a).

b) Assume, on the contrary, that aj,as,as are linearly dependent over Q. Let A =
(a;j)§‘j=1, where a;; € Z. Then we have four linear relations of the form

T1a1 + Tog -+ raag =0

(@11 — a)aqy + a12ay -+ ayzaz =0
a210a1 + ((122 — O!)(Lg -+ aqzaz =0
3101 + a3 + ((133 - (.){)a,g =0

with some (ry,72,73) € Z3\ {0}. Since (a1, az,a3) # 0, we obtain the following three
equations {each of degree at most 2) for c:

™1 T2 T3 a1l — & a2 a13
det | a1 a9 —« Q93 =0, det T1 To T3 =0,
asi @32 figz — & 31 a3z Q33 — &
and
a1 — & ayg 13
det, Aot oy —a asz | =0.
T T2 T3

At least one of these equations must certainly be of degree 2 (for (rq,72,73) # 0), which
contradicts (a).

¢) As follows from (b}, the homomorphism
x:L3r=(ry,r2,73) = 1101 + 7202 + 1303 €R

is injective. Hence, M = x(L) C R is a free Abelian subgroup of rank rk M =tk L > 2.
The closure M of M in R coincides with R (for otherwise, M = Z and hence M 2 Z,
which contradicts the property rk M > 2). This implies (c). O
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4.3. Definition. The H®(X)-hull ¥ = H®—hullx(Y) of a set Y C X in a complex
space X is defined as follows:

Y = H®—hullx(Y) = {.’L € X | If(z)| <sup|f(y)| for all fe HW(Z)} .
yeY

4.4. Proposition (cf. Remark 1.14.3). Let, as in Lemma 4.1, s = g&. Suppose that
a® > 2. Then:

a) The s%-orbit s8(z,) = {97 sgTo | g € G} of the point o = (i,0) € X = Hx C
consists of all the points == (z,w) € X = H x C of the form

(z,w) = ((ad - 1)(1‘1(11 + T2 4 T3a3) + z'ad, (ﬁd - 1)(T1b1 + roby + Tgbg)) ,

where 11,179,173 € Z.
b) The bounded holomorphic function F(z,w) = 2(z + i)™ on X = H x C satisfies the
mequality
2
|F(zs)]=1> 3 > sup |F(z)].

€3 (zy)

In particular, the H*°(X)-hull 3_5.(_::::) of the s©-orbit s (x:,) does not contain the point z,
itself, and for any mean m on L™ (s%(z,)) we have F(z,) # m(F | s%(z.)).

Proof. (a) follows immediately from Lemma 4.1. In view the assumption a® > 2, (a)
implies that

: -1
sup |F(z)]=2 sup |(ad —1)(r1a1 + reag + r3a3) +i(a + 1)|

€85 (z,) T1,r2,r3€L
-1
=2 inf |(ad — 1)(r1a1 + r2az + r3az) + i(at + 1)| < 2 < g,
r1,r3,r3€Z “at41 3
which proves (b). a

The H®(X)-hull ¥ of a subset ¥ C X may be found as follows:
Y= E;;? x C,

where prgp: X = H x € — H is the natural projection and —p/r;? is the H°(H)-hull of the
subset prgY C H. In view of Lemma 4.3(b), we would like to pose the following question.

4.5. Question. For which subsets I' C G \ {e}
(%) any point x € X is contained in the H*(X)-hull I:G.) of its I'-orbit I'(z)?

Proposition 4.6 below provides examples of subsets I' C G \ {e} with the property (*).

Recall that the elements g1, g2, g3 form a free basis of the normal subgroup Gy = Z3 in
G. Any subgroup H C Gy is a free Abelian group of rank rk H < 3.
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4.6. Proposition. Let H C Gy be a subgroup of rank rk H > 2, and let T C H be the
complement of a finite subset’® S C H. Then z € ['(z) for any x € X. In particular,
z € G(z)— {z} foranyz € X.

Proof. By Liouville Theorem, any function f € H®(X) = H®(H x C) is of the form
f=7Fo pry, where f € H>(H). (3)
Hence, for any point = (z,w) € H x C and any element h = g7 g3%g3* € H, we have
hz = (z 4+ r1a1 + reag + r3a3 ,w + 71b1 + r2be + r3b3) (4)
and

f(he) = f(z + a1 + r2a2 + T3a3) . (5)

When h runs over H (resp. over the complement I' = H — S), the corresponding vector
r = (r1,72,73) € Z* in (4) and (5) runs over a sublattice HCz3 isomorphic to H (resp.
over the complement ' = H — S of a finite subset S C H ); in particular, tk H =rk H > 2.
Since f is a continuous function, it follows from (3), (5) and Lemma 4.3(c) that

f@) = f(z) € [T())

(the closure in C). Therefore,

|f ()| < sup |f(y)l,

veEl(x)

and hence z € IT;) O
4.7. Remark. Despite Lemma 4.3(b), the following fact holds!4

For any integer d # 0 and for any = € X, the s®-orbit s%(z) is a uniqueness set for
bounded holomorphic functions on X.

That is, f = 0 whenever f € H®(X) and f|s%(x) = 0. Indeed, any f € H®(X) is of
the form (3); hence, f|s%(z) = 0 implies f | pry [s9(z)] = 0. However, it follows from
Lemmas 4.3 and 4.5 that the point a%w € H is a limit point of the set

G

pry [s¢(z)] = {adz + (a® — 1)(r1ay + 1902 + 7303) |71, 72,73 € Z} CH.

Thus, fz 0, and so f = 0.

13The statement of the lemma is trivial if e € I'; to make it meaningful we may assume that e € S.
l4¢f, Proposition 1.11(a).
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