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§ 0. INTRODUCTION

Throughout this paper, we fix an n-dimensional compact
complex connected manifold X with a cohomology class

heH (X) such that

R

K:={w|w is a Kihler form on X 1in the class h }

is nonempty. Let woeK and consider the K-energy map u : K > R

of the Kdhler manifold (x,wo) introduced in [9]. Now the
main purpose of this paper is to define a natural Riemannian

structure on K such that

(0.1) u 1is a convex function on K ,i.e., Hess u is positive

semidefinite everywhere on. K (cf. § 5);




(0.2) sectional curvature of K 1is explicitly written in

terms of Poisson brackets of functions and moreover it

is always nonpositive (cf. § 4).

We next assume that

E: = {w€K | w has a constant scalar curvature }

is nonempty. Recall that the Albanese map a : X —> Alb (X)

of X naturally induces the Lie group homomorphism a @
aut®(x) —> aut®(Alb(x)) (= Alb(X)) , where Aut’(x) (resp.
AutO(Alb(X))) denotes the identity component of the group of
holomorphic automorphisms of X (resp. Alb(X)) . Then by a
theorem of Fujiki [5], the identity component G of Ker a

has a natural structure of a linear algebraic groué. Let K Dbe
a maximal compact subgroup of G , and we decompose E into

G-orbits
E =U, Ei (disjoint union) .

In view of a theorem of Lichnerowicz [8], one sees that :

i) G 1is a reductive algebraic group,

ii) each Ei is an Auto(X)—orbit, and




iii) there exist eiEEi , 1€I , such that the isotropy

subgroup of G at each ei coincides with K .

Then a combination of ii) with a result of Calabi [4] shows
that each Ei is a connected component of E in terms of a
suitable topology of E . Furthermore by iii) , such a connected
component Ei of E is G-equivariantly diffeomorphic to the
Riemannian symmetric space G/K . Now, restricting our Riemannian

structure of K to E , we obtain :

(0.3) each Ei is isometric to the Riemannian symmetric space

G/K endowed with a suitable metric, and furthermore,

Auto(X) acts isometrically on Ei (cf. § 6).
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my sincere gratitudes to the Max-Planck-Institut fiir Mathematik
for the hospitality and constant assistance all through my stay

in Bonn.



§ 1. NOTATION, CONVENTION AND PRELIMINARIES.

(1.1) _Fix an element wuj, of K once for all and express it

as

in terms of holomorphic local coordinates (21,....,zn) of X
For each real-valued c” function wECw(X)m. on X , we put
wg (@) = wy /=1 339 , and write it in the form

u)o(q))=/-——1 z g(tp)ag dz% a dzB ,

_ - _ _ _ . _ a2 a, B
where gae(w) 9.8 ¥ 9%E ' %3 being aaaB wi—a w/3z3z2") .
B

We furthermore denote by ) Ric(w)ag az% @ dz the Ricci

tensor of the Kihler form mo(m). Put

Ric(e) := /=1 ] Riclw) 7 dz° az® .
. o

Then Ric(y)/2n represents c1(xiR and we have Ric(®)= V-1
33log det(g z(®)) . Let g (p) (resp. nw) be the correspon-

ding scalar curvature (resp. Laplacian on functions) :

Ba

ag(w):

I gt " Ric(o) 7 .

T gl B 2%/02%020

8]
1}
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where (g(w)BQ) is the inverse matrix of (g(w)ué) .

We now put

H: = {p €C (X)Rl wo(m)EK }o.
Note that the natural map

H —> K, © > uy ()

is surjective.

(1.2) (i) A mapping ¢ : t€l[a,b] —> thCm(X)R (often denoted

by ¢ = {wt|a§tsb} ) is said to be smooth (or a smooth path) if

the mapping ¢ : [a,b] x X —> R defined by

@o(t,x): = o (x), (t,x) € [a,b] x X,
is a ¢ map. For such a smooth path ¢ = {mtlastgb} ¢ We put ét:=
3¢, /3t and Gt:= acht/at2 . Then the corresponding paths {étl
astsb}, {6t|ast§b} in Cw(x)R are again smooth. We further-

more define ¢ € C ([a,b] x X)m by

®lt,x) := ¢ _(x) = (dp/3t) (t,x), (t,x)€la,b] x X .



If there is no fear of confusion, ¢ and 0, (resp. ¢ and
@, ) are used interchangeably. (To be precise, 0, = wl{t}xx

€ C (X)R and ©, = m]{t}xxe C (X)R via the identification of
{t}IxX with X .)

(ii) A mapping 06 : t€ [a,b] +—— etE K (often denoted by

0 = {etlaét§b} ) is said to be smooth (or a smooth path) if

there exists a smooth path ¢ = {wtlagtsb} in H such that
b, = wo(wt) . Note that the concept of smoothness of paths
in K doesn't depend on the choice of wy - To each such

smooth path‘ 0 = {g_lastsb} , we associate a c” (1,1)=-form

e ]
8 on [a,blxX by

e(t,X) = et(X) ’ (t,X) € [alb]xx .

We put 6, = aet/at , and let ¢ be the C° (1,1) -form on

t
[a,blxX defined by

e(t,x) := 6,(x) , (t,x) € [a,blxX .

(1.3) (cf. [9]). For each o€H , we set Qo(w) e = mo(w)n/n!.

We then define the real constants Vol(X) and (which

%
depend only on the class h ) as follows :

Vol(X) := jxno(o) ’

o, i< 2nf ey (0u" T/ (=1 1vor (1)) .



To each pair (9',0")€ HxH (resp. (9',9")€ Cm(x)Rxc”(ij) ,

we associate a real number M(g',0") (resp. L{v',o")) by
b .
(1.3.1) M(p',0"): = —ja {fxwt(c(wt)-oo)ﬂo(wt)/Vol(X)} dt ,
b [ -
(1.3.2) (resp. L(p',¢@") := Ia 1fxcptao(cpt)/Vol(x)} at) ,

where {mtlastsb} is an arbitrary piecewise smooth path in

H (resp. CQ(X)R) such that @, = ¢' and Py = ¢" . Then
L(gp',o") (resp. M(9',9")) 1is independent of the choice of
the path {thaStsb} and therefore well-defined. Recall that

M (resp. L ) satisfies the 1-cocycle condition. Furthermore,

for all 9y, ¥, € H (resp. ©q0 9, € C (X)m) and all C1, C,
€ER (reép. CER) . In view of (1.3.3) above, M : HxH — R
factors through KxK . Hence we can define the mapping M : KxK

—> R (denoted by the same M ) by

M(w',u") 1= M(op',0") (w',w" € K) ,

where o¢',o" are elements of H such that wo(w') = '



and wo(w") = W . Then the mapping
p : K—R, wr—> plw) == M(wo,w)

is called the K-energy map of the Kdhler manifold (X,mo) .

Moreover we put

H := {@ € H|L(0,p) = 0} .

We now have the following identifications :

= K

b ol §

(1.3.5)

P <> “’0("’)'

~

(1.3.6) H = K xR H x R

n

p <> (WO((«D)’ L(ol(p)) <> ((D-L(or(p)l L(O,(D)) .

(1.4) At each point g of H , we can identify C“(X)mb with

the tangent space THE of H at & via the isomorphism

(1.4.1) c""(X)IR = TH,

n <> (£ + sn)

a_
3s |s=0



where s€ [-e,e]l +—> E + sn € H is a smooth path in H with
a sufficiently small e > 0 . In terms of this identification,

and also by (1.3.5), we have

-~

(1.4.2) TKmo(g) = TH, = {n €C (X) gl Sy n2gy(e) = 0}

V=1 35“ <> n ,

~

whenever £ € H . Note here that
Y=1 33n = 2 mo(E + tn) .,

Let ¢ = {mtlastﬁb} be a smooth path in H . We denote by
Pdiff([a,b], $*TH) the space of (real) c” sections of the
induced bundle ¢*TH of the tangent bundle TH of H . Then

ryieellasbl, o*TH)  is naturally identified with c”(la,b] x X) g

via the isomorphism

(1.4.3) C”(fa,b] x X)p = Tgicp(la,bl, 0*TH)

p > ¥ = {wt|a$tsb},
where wt denotés, for each t, the function in C“(X)IR defined by

velx) = wlt,x) (x € X) ,

and is regarded as an element of TH in terms of the

O
isomorphism of (1.4.1).

(1.5) Let £ € H . We then define the linear maps VE:Cw(X)c
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v (n) :=(1/2)] g(g) **ng 2/02° (nec” (X))

o/ B B @
We(n) :=(/=1/2) | g(e) “(nua/azs--nga/az“) (nec™ (X)g)

in terms of holomorphic local coordinates (21,....,zn) on

X , where n_ := 3.n = 2n/32% and ng := 3gn = an/2z® . To

each pair (n',n") € CQ(X)m x Cw(X)m/ we associate a function

(n')n ]E € C (X)p by

(1.5.1) (n',n ]E 2= (Wg(n'))(n ) .

Recall that [ , ]E is nothing but the Poisson bracket of c”

functions on the sympletic manifold (X,wo(g)) , and the

mapping W, : Cm(X)m_——> Fdiff(X,TX)ER is a Lie algebra homo-

g
morphism. Hence for all n,n',n" € Cm(X)m , we have

(1.5.2) Wg([n',n ]ﬁ) = [Wg(ﬂ')r Wg(n" )] ’

(1.5.3) Ix[n,n']gn" 2, (8) = [y n[n',n"]EQO(E) .

(1.6) (See calabi [4] and also Bando [1]). For each ¢ € H ,
let < , >0 {p-forms on X } x {p-forms on X } —> Cm(X)]m ’
p=1,2,...,n, be the natural Hermitian pairings induced from

the Kdhler metric wo(g) . We now consider the operator
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L : T X g — C”(X)p Of Lichnerowicz [8] defined by

(1.6.1) L.y := (o )2w+ </=1 33y, Ric(g)>, + <5w,'5cr(£)>5 ,

£

with y € C”(X)p . Recall that, in view of Calabi [4; p.100],

- 2
SIER' AR = [, v(L v)e,(E) .
e Ll (kg (e)) X TR0

Then, taking the real parts of both sides, we obtain

. _ 2
(1.6.2) 413 v (v) |l

- (Re L ¥) 8 ()
L2 (X, 0y (€)) Fav A

for all ¢ € c°°(x)m and ¢ € H , where

_ 1 —
(1.6.3) Re mgw =3 (I.Ew +1L5w) .

(1.7) A Euclidean lattice is, by abuse of terminology, a

triple (&, A, (( , ) ) of an R-vector space t , its
lattice A (so that t = A gzm) , and a positive definite
symmetric B-bilinear form (( , ) on ¢t . Two Euclidean
lattices (', A', (C , N, (" A" , « , N ) are
called isometric if there exists a bijective R-linear map

j: k' = " such that

i) j(A') = A" , and
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ii) W 3(a), JB) N" = (eo,8)' for all «a,B,€ E' .

For Euclidean lattices (tv,Av, o ))v)’ v=1,2,...,r, we

have their direct sum & (¢ ,A , ( , ) ) which is just

Y

. ; r r r
the Euclidean lattice ($v=0 tv, ev=0 Av, $v=o(( ’ »v) .
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§ 2. NATURAL RIEMANNIAN STRUCTURE OF H AND K .

This section is crucial in our later study of the geometry
of # and K. Especially, a natural Riemannian "metric" on H (and
also on K) together with the compatible connection will be

defined.

(2.1) We regard H as a "Riemannian manifold" by defining

the bilinear form << , >>E : THE x TH£(=C°°(X)R x Cm(X)R)
—> R for each & € H as follows :
(2.1.1)  <<ngyng>>p 3= fnqnyRg (E)/VOL(X) ,  nqyny€C (X

(see (1.4.1) for the identification of TH_ with c” (X)) -
The restriction of this pairing << , >>E (where gEQ ) to
Tﬁg (cf. (1.4.2)) is again denoted by the same << , >>g '
and in terms of this, ﬁ is also a "Riemannian manifold”.
We furthermore endow R with the Euclidean metric << , >>
by the formula

<<a,b>> = ab for all a,be R .

Then the isomorphism (cf. (1.3.6))

-~

H .= H x R

P <> (@‘L(Ol(p)r L(0,v))
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is an "isometry of Riemannian manifolds". Now, in view of
(1.3.5), K 1is also a "Riemannian manifold". Namely, for
each w€K , we define the bilinear pairing << , >> : TK

x TKm —> R by
- - - n
(2.1.2) <<¥/-1 33n1, V-1 aan2>>w : fxn1n2w /(n!vol(X)) ,

where n,, n, € (n€C(X)plf, ne= 0} (=TK ) (cf. (1.4.2)) .

(Note that this pairing is independent of the choice of Wy .)

(2.2) Let {wt|astsb} be a smooth path in H . Recall that

we have the function wecw([a,b]xx)m_ defined by
(2.2.1) o(t,x) = o (x),  (t,x) € [a,b]xX .

To elements y=yp(t,x), n=n(t,x) in Cw([a,b]xX)R , we associ-

ate <<yn>>o € C“([a,b])R by

(2.2.2) <<w,n>>w(t) := fxwtntno(wt)/Vol(X) = <<wt’"t>>mt

where for each te€la,b] , Yy and n, are the functions in
c”(X)gp defined by
(2.2.3) wt = wl{t}xx and Ny = “'{t}xx

via the identification of ({t}xX with X .
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(2.3) (i) For a piecewise smooth path ¢={wt|astsb} in H ,

we define its arclength Lgth(¢) and energy Engy(¢) as

follows :
by .2 172, »° 1/2
(2.3.1) Lgth(¢):={f (jx(wt) no(wt)/vOl(x)) dt=f (<<®.®>>w) 24¢,
a a
b . 2 \ b
(2.3.2) Engyl(e):=][ (Ix(wt) Qo(wt)/Vol(X)/ dt=[ <<é,¢>>wdt.
a a

(ii) Let e={et|astsb} be a piecewise. smooth path in K . We

then define the real numbers Lgth(0), Engy(e) by

(2.3.3) Lgth(e):=Lgth(¢) and Engy(0) :=Engy(¢)

14
where ¢={wt|astsb} is the unique piecewise smooth path in ﬁ

such that wo(wt) = et for all t .

(2.4) We shall next define the corresponding "Riemannian
connection" of H . Fix an arbitrary smooth path ®={wt|astsb}
.in H . Uéing the notation of (i) of (1.2), we define the real
D

vector field 3¢ ©°P [a,b]xX by

(2.4.1) p:=d/3t- 17 gt ¥ o 27328 + G73/22%)

Note here that, though ¢ is in Cm([a,b]xx)R (instead of
CQ(X)R) , we can still define (g(w)Ba) as the inverse matrix
of (gag + mag) . Now via the identification of Cm([a,b]xx)R

with rdiff([a,b], o*TH) (cf.(1.4.3)), we define
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(2.4.2) V. : Fdiff([a,b], d*TH) —> Fdiff([a,b], o*TH)

as the operator induced by g% from the following commutative
diagram:

~

yipgllasbl, o*TH) =

O

2
at
v v

c”(la,bIxX)p

(2.4.3)

n

Tqipgfarbl, o*TH) c“([a,b]xX)R 3

The operator Vé (resp. %% ) is called the covariant differen-
tiation on rdiff([a,b], 3*TH) (resp. Cm([a,b]xx)R) along the

path ¢=(wt|a§t§b} .

(2.4.4) DEFINITION:

wEij[a,b]xX)R is said to be parallel
0={p, |astsb} if o v

along =

0 in Cm([a,b]xx)R .

(2.4.5) DEFINITION: Let gec”(X)m(; TH, ) . Then v=p (t,x)

© ¢}
€C ([a,b]xx)R is said to be a parallel translation of ¢

along ®={wt|a§t§b}

if the following conditions are satisfied:

i) V]t=a © £ 7
ii) ¢ 1is parallel along ¢ .

Note that, for each EECQ(X)R_, there exists a unique parallel

translation of ¢ along ¢ . In fact, denoting by gS:=exp(s§%)
(a-ts<ssb-t) the local 1-parameter group of

[a,b]xX generated
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by %% , one can easily see that

‘P(tlx) = E(Prz(ga_t'(trx))), (tlx)e[alb]xx ’

is the unique parallel translation of & along ¢ (where

przz[a,b]xx —> X denotes the projection to the second factor).

We shall now show the compatibility of our connection

with the "Riemannian metric" defined in (2.1) and (2.2).

(2.5) THEOREM: Let ¢={wt|a§tsb} be a smooth path in H .

Then in terms of the notation in (2.2) and (2.4), we have

o <D D
<Y, N>> = <<y n>>g <<y, FE N>,

for all lp,nec“([a,lo]x)nm .

PROOF: We first observe that, though ¢ is in Cm([a,b]xx)m
(instead of’ Cw(x)R) , we still have the following notational

analogue of (1.1) :

2, (0) = wo(w)n/n! t= (wg+/=T 33 ©) */nt
5y *% 1 gle) B%3%/32%z28 |, (c£. (2.4)) ,
where no(w) (resp. 9 ) is regarded as a c” 2n-form on

[a,b]xX (resp. an operator on C“([a,b]xx)m) . Then
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i <<§% vin>> + <<y, g% n>>

| =J'X{u3—2—12g(w) Ea(cbau)g + “E’E"’a) }ng, (©) /Vol(X)
+fx{ﬁ-2—12g(w) go‘(cbmng + ‘bE“a) }wno(w) /Vol (X)
=IX{@-2_1(Dm(@w)-(nwé)w—(uww)é)}nno(w)/Vol(X)
+i=27" (o (én) = (3 _8) n= (3 n) ) } ¥8g (@) /VOL(X)

=f (g (vn) + (8 ®) yn} 2, (9) /VOL (X)

|a
TN

& (Lernog (o) /vor(x) ) = & <cu >,

(2.6) In concluding this section, we define the natural "Riemanni
connection" of K . First consider a smooth path ¢={wt|astsb}
in H . Note that, for an element v={yp_|astsb} of

Fdiff([a,b], ¢*TH) , the following are eguivalent :

i) v € (la,bl, ¢*TH) ;

Taifsf
ii) the corresponding wécm([a,b]xx)m. (cf.(1.4-3))
satisfies <<w,1>>w=0 in Cw([a,b])lR {see (2.2.°

for the definition of ¢ );

iii) thTﬁw for all te€la,b] .
t
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Now, the next observation is crucial to our definition of

the connection on K .

(2.6.1) PROPOSITION: Let ¢ Dbe as above, and suppose that

w={wt|a5tsb} € Pdiff([a,b], ¢*TH) . Then véw € rdiff([a,b],

o*TH) .

PROOF: 1In view of the commutative diagram (2.4.3), it suffices
D _ . © : D ..

to show <<3E-w,1>>w—0 in C ([a,b])R . Obviously, 'EE_1'O

and <<w,1>>w=0 . Then by Theorem (2.5),

D _d -
<<3E—w'1>>w—dt<<w’1>>w—0 '

as required.

Fix an arbitrary smooth path e={et|a§t$b} in K . Recall that
there exists a unique smooth path ¢={wtla$t§b} in # such

that dt=wo(wt) for all t . Now, via the identification of

i with K (cf. (1.3.5)), we have the operator

v.

§ ¢ Fdiff([a,b], *TK) —> Pdiff([a,b], 0*TK)
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induced by vLb from the following commutative diagram:

(2.6.2) Vé <:—?L Vé

rgieg(lasbl, 0*TK) = ryipe(lasbl, o*TH) .

Then one immediately sees that this operator Vé does not depend

on the choice of w, (and depends only on {et|aSt§b}) .
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§ 3. GEODESICS IN H AND K

In this section, we shall define the concept of geodesics
in H (and also in K ) in terms of the "Riemannian connection"
of § 2, and then prove Theorem (3.5) which provides us with a

typical example of an infinitely extensible geodesic in K .

(3.1) (i) Let ¢={wt|astsb} be a smooth path in H . We
denote by ¢ the element of rdiff([a,b], ¢*TH) which sends
each te€la,b] to ét . Then ¢ is called a geodesic in H

if one of the following equivalent conditions is satisfied:

(i-1) V.é =0 in

5 Tgieg((a/bl, e*TH)

. ) D . . L . | [
(i-2) 3@ = 0 in C ([a,b]xX)R (i.e., ¢ 1is parallel
along ¢ ) ;

(i-3) & =} g(w)Baéuég on [a,blxX .

(ii) Let e={et|astsb} be a smooth path in K . We denote

by 6 the element of Pdiff([a,b], 0*TK) which sends each

tela,b] to ét . Recall that there exists a unique smooth

path ¢={wt|astsb} in H such that et=m0(wt) for all t .

Now, © 1is called a geodesic in K if one of the'following

equivalent conditions is satisfied:

(1i-1) vgé = 0 in rg c(la,b], O*TK) ;

(ii-2) ¢ 1is a geodesic in H .
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(3.2) Fix an arbitrary subset N of H . Let veEN . Then
a function n in C (X)R is said to be tangent to N at
v if there exists a smooth path {o |-estse} in H , for

some ¢>0 , with the following properties:

i) ®g =V i
1) Pple=g = " 7
iii) thN for all t€l-¢,el .

As a generalization of THE and Tﬁg in (1.4), we now put

TNv := {nec“(xymln is tangent to N "at v} .

Let ¢={wt|ast§b} be a smooth path in H satisfying thN

for all t . Then ([a,b], ®*TN) denotes the set of all

Taifs
y (={wtlast§b}) € Fdiff([a,b], ¢ *TH)

such that € TNw for all t .

v
t t

(3.2.1) N is said to be totally convex in H if every geodesic

{wtlastgb} in H with o_,0, € N always lies in N .
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(3.2.2) N is said to be totally geodesic in H if for every

smooth path {wtlastsb} in H sitting in N , the operator
V¢ preserves the subset Pdiff([a,b], *TN) of Pdiff([a,b],
o*PH) . If N is a finite-dimensional Riemannian c” mani-
fold (in terms of .the metric and the smooth structure induced
from those of H ), then one can easily show that N is
totally geodesic in H if and only if every geodesic of the
Riemannian manifold N is at the same time a geodesic of H .

-~

(3.3) REMARK. (i) By Proposition (2.6.1), H 1is totally

geodesic. We shall now show that H is totally convex: Let

{wtlaStsb} be a geodesic in H such that o¢_, @, € H . Then
for every t€la,bl ,

a2 a D

g;i L(O,wt)=<aE <<w'1>>w)(t)=<<<§E w,1>>w)(t) =0 .
Furthermore L(O,wa) = L(O,mb) = 0 . Hence L(O,mt) =0 (i.e.,

0, €H) for all te€la,b] .

(ii) Let E€H . Suppose that both wg (cf. § 1) and & are

c” in terms of the natural real analytic structure of X .

Then for every nECw(X)R , there exists a real analytic function

v=p(t,x) € Cm([—e,e]xx)m for some sufficiently small e>0

such that
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a) (D,t‘___o =€ ’

b) @lt=0 n , and

c) {wt|-€§t$€} is a geodesic in H ,
= w _
where o, := wl{t}xx €C (X)m‘(te[ e,el) .

This is actually an immediate consequence of the fact
that by Cauchy-Kovalevskaja existence theorem, the equation

_ Ba. .+
¢ = 1 gle) "o, b3

with the initial conditions o|,_g £ and ¢It=0 = n has
a unique solution ¢=¢(t,x) in Cm([-e,e]xx)R for some

e>0 .

(3.4) NOTATICN: To each holomorphic vector field YEr(X,

0(TX)) on X , we associate a real vector field Y}m

Y+Y . Recall that (/=1 Y)p = J-Yp , where J is the complex .

structure of X . Let g be the Lie subalgebra of T (X,0(TX))
corresponding to the Lie subgroup G of Auto(x) (see Intro-

duction for the definition of G ). For each w€K , we put
R, := {YEglea(m) =0} ,

p, ®= /=T kR = (V=T Y|vek 1,

w

where LY (w) denotes the Lie derivative of w with respect
R
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to the vector field . By writing o as w,(§) (for some
® 0

£ € H) , we have

P
]

r(X,0(TX)) n {V (£)|£ € /=T CT(X)g]} .

o
]

, = T, 0(TX)) n {Vg(f)lf € C (X)p} (cf. (1.5)) ,

(see for instance, Kobayashi [7; p. 941])

(3.5) THEOREM: Let w€K and 0#Y € B, Put gt:=exp(tYR)

(t€R) . Then {gt*wltER} is a geodesic in K

PROOF: Fix Eg€H. Note that there exists a unique

-~

smooth path {wtlastsb} in H such that gffm=m0(wt) for
all t . By setting Zt := th(mt) , we have

. =(dej =J/= "(.D
(3.5.1) L(Zt) (wg (o)) = gy tugle))=/-T 33 "t

R t'R

-2 (. 2 \ . |
= 3T 1m0(wt))\- EE(génﬂ/ = LYR(wo(wt)) .

In particular, Zt-Y € I(X,0(TX)) (cf.-Kobayashi [7; p. 93]) .

Note that ¥

- _ -1
e ) pg*m—Ad(gt )p, . Hence for all ¢t ,

t t

Y=(Ad(g;1))Y € pm c { V(p (f)leCm(X)g} ’

0@ t

and in particular



_
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Z,-Y € {vw(f)|fec (X)m} N r(x,0(Tx)) =g

£ mo(wt) .

In view of (3.5.1), it follows that

(3.5.2) 2.-Y €k n = {0} , (tela,bl) .

o]
wo(cot) wo(wt)

We now cbtain

- e - a - - 3
V=1 33 (pt(— EE(/:T aamt)) = 3€(LYR(w0(wt))) (cf. (3.5.1))

=LYR(/':'T aad,t) = /=1 BB(Ym(bt)

=/=1 323((2 ) (cf. (3.5.2)) ..

£ R®:
D . - e - . = N
Hence (EE w)(t) = 0, (Zt)cht C(t), for some function

C(t)ECw([a,b])R . Then by ¢_ € H , we finally obtain

_ 4 _(d_ . \
0 = It L(O,wt) = \dt<<w’1>>w}(t)

=(<<§%—é,1>>w)(t) = C(t), (t€E R) .

(3.6) THEOREM: Let YEHO(X,O(TX)) be such that L%R(w0)=0 .

- Furthermore suppose that ¢={wt|a$tsb} is a smooth path in

H such that Yth=0 in C (X)R for all t ., Then



for all weca([a,b]xx)R .

PROOF: We here use the notation of (1.2), (2.4) and (2.5).

on [a,b]lxX , we put
0 = (1//71) | g(o) B (a/22%) a(2/02")

and by (3¢,u’) (resp. (3¢,w’)) , we mean the contraction of

3¢ (resp. 3¢ ) with w'. Then the covariant differentiation

é% along the path {wt[aétgb} is written as
D - _a__ V—1 { ~ e v . v \
at = at + 2 \(a‘plw ) (a(p'w )}

Since [¥R,§%] = 0 , the proof is reduced to showing

[V, (36,0Y)] = 0 = [¥g, (36,0")] .

" Note here that

Ly (“’o(“’” = Ly (wo) + /=1 aa(Ych) =0 .
R R .
Hence L (mv) = Q0 ., Therefore
Y

-— A\ - . v - v
Yo, 30, )] = L ((3w, )) = (L (3p) yu')
[Yp (30,0 Yp w Yo

(2 (3 vy o
-(at{a(me)},w ) 0 .
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Similarly, we have [YR,(aé,mV)] =0 .

(3.6.1) REMARK: Let K(=G) be the same as in Introduction,
and assume that we have chosen a K-invariant w, . Let HK ’

0
ik, k¥ be respectively the set of all K-invariant elements

of H , H, K . Then almost all results in this paper are re-
formulated in terms of these K-invariant objects. Theorem

(3.6) above assures the validity of such K-invariant versions

of our results.
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§ 4. TORSION AND CURVATURE OF THE NATURAL CONNECTION.

The main purpose of this section is to prove (0.2) of
Introduction. We shall also show that the torsion of our

connection is zero.

(4.1) Fix an arbitrary point & of H . Let n1,n2€C°°(X)R

(= THE) . Consider a function
@=9(s,t,x) € C ([-e,e] x [-e,elxX)p
such that the following conditions are satisfied:

1) ws1,t1:=m|(s,t)=(s1,t1) belongs to H whenever
s1,t1 € [-e,e] .

ii) ©g,0 ~ £ .

N 22 _ 29 _

iii) TS (s;t)=(0’0)—n1 and T (s,t)=(0,0)'“2 .

(Such a ¢ always exists, because we can choose o(s,t,x)=
E(x)+sn1(X)+tn2(x) , (s,t,x) € [-e,elx[-e,e]lxX , with O<e<<1.)
Note that, by formal definitions, the torsion

T : TH € TH —> TH

and the curvature
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R : TH ® TH —> Hom (TH,TH)

of our connection on H are given by

D (39\_ D (3¢
T‘“1'"2)5'{3§ (3”/ 5t \ S)}I(S:t)=(°'°) '
D

3s ot  at as)l(s,t)=(0,0) !

at the point ¢ . Since K 1is identified with the totally
geodesic "submanifold" H in H (cf. (i) of (3.3)), the
torsion and the curvature of our connection on K is just

the restriction of t and R above to TK@TK(=TH®T9) . We

now have:

(4.2) THEOREM: =0 , i.e., r(n1.n2)E =0 for all n,,

n, € Cm(x)m and £ € H . (Thus our connection on H 1is the

unique one satisfying both =0 and (2.5).)

(4.3) THEOREM: R(ﬂ1,n2)€(n3) = [[n1,n2]E , n3]E for all

NqrNgrNg € Cm(x)m and all E€H .

PROOF OF (4.2): We denote by (....)l0 the restriction of

(....) to (s,t)=(0,0) . Then

_[D (29\_ D (3¢
r(n1:nz)5 - {EE (EE) t (35)}‘0

[=>}
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={a/as- 271y g(w)B“((am/as)ua/azB+(am/as)§a/aZ“)}(aw/at)|0

-{a/at- 2'12 g(w)B“((aw/at)aa/az8+(am/at)§a/az“)}(aw/as)IO

PROOF OF (4.3): Fix ¢t€H and X €X arbitrarily. We then
choose holomorphic local coordinates (21,...,Zn) centered

at X such that
gle) 5(xg)=8 , and d(g(g) 7) (x4)=0

for all a,8 € {1,2,...,n} . Note that, when evaluated at Xy

r

39 () °Y I 1 -
3s “\3s/ .- _—(“1)67 '
ﬁ (s,t)=(0,0) GYI(SIt)'—'(OIO)
3g (@) &7 ee(n.) -
at - 28y °
(s,t)=(0,0)

\.

Hence, at the point Xg o

R(n1ln2)6 = \as € 7t BS/I(S,t)=(0,0)
a1 5

-1
=470 I, Ung) ng) g3/02 4 (n ) 5 (n,) =a/027)
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+1271 T ge) B ny) a702% L 271 | gte) *Viny) go/a2)]
f27" ] g0 (g ga/02* , 27 1 g(e)®Viny) 2/22°]

=[W€(n1), Wg(“z)] = Wg([n1,n2]E) (cf. (1.5)) .

Thus we have

R(n1,n2)£(n3) = {WE([n1,n2]g)}(n3)

=[[n1,n2]E ' n3]E (cf. (1.5.1)) .

Q.E.D.

of H . Let

(4.4) DEFINITION: Fix an arbitrary point &

nqeny be R-linearly independent elements of Cw(X)R(sTHE).
Regard P:= Rw1 + sz We then define

the sectional curvature K(P)g of H at & along the plane

as a 2-plane in THE .

section P by

—<<R(n1 rnz) £ (n1) ’ n2>>£

(4.4.1) K(P)£:= >
<<T'11rn1>>€<<n2,n2>>g—(<<n1,n2>>6) .
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(4.5) THEOREM: At each point ¢ of H ,

K(P)E s 0

for every 2-plane P= Rn,+Rn, in THE (where Nqrly €

C“(x)m are R =-linearly independent). Furthermore,

K(P)E=0 if and only if [n1,n2]£=0 .

PROOF: In view of (4.3) and (4.4.1),

K(P) = 3
<<n1,n1>> <<n2,n2>> -(<<“1'“2>>g)

£ g

—<<lnqenyles Ingonyle>>, (c£.(1.5.3)).

=

<<n1,n1>> <<n2,n2>>£-(<<n1,n2>>€)

£

Since the denominator is always positive, we have K(P)ESO

Clearly, K(P)€=d if and only if [n4.n,1.=0 .

(4.5.1)"REMARK: Recall that K 1is identified with the totally
geodesic "submanifold" H of H . Hence by (4.5) above, the

nonpositivity of sectional curvature is true also for K
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§ 5. CONVEXITY OF THE K-ENERGY MAP u .

In this section, several facts related to the convexity

of u will be given. We begin by showing:

(5.1) LEMMA: For every smooth path

{wtlastsb} in H , we
have, for all t , the following:
D _ -
(5.1.1)  <<b, a0, )>>wt—"'(4/VOl(X))” v, )“L (X, 04 (0)) *
2 D
(5.1.2) —suluw, (@, ))= =<<z+9,, ol@)=a0y>>
qc2 0ttt 3t 't t 707 e,
+(4/vol(x)) | 3v (wt) IIL (X,0g(0))
where

PROOF: From a straightforward computation, one obtains

? _ 2 = =" .
sgd(wt)- (E!(p ) ©p </=-1 233 © s Rlc(wt)>
t t
in terms of the notation of (1.6). Hence
Lo(e )= -Re L _ ¢
sl ‘Pt e cpt“’t .

Now by (1.6.2) applied to E=wt

and ¢=®t , the required
identity (5.1.

1) immediately follows. For (5.1.2), recall
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that

é%u(wo(wt))= - <<¢tpo(wt)—oo>>wt (cf. (1.3.1)).

Then by Theorem (2.5),

2
d = - D ° - - n _—D
20 g o)) - by (o) mag>r m<hpr e )2,

Together with (5.1.1), we finally obtain (5.1.2).
Q.E.D.

In view of [9;(3.2)], the following is an immediate

consequence of (5.1.2):

(5.1.3) COROLLARY (cf.[9;(6.3)]): If w is a critical

point of u : K —> R , then the inequality

2
g—iu(et)
dt

20
lt=o>

holds for every smooth path {etl—sstsE} in K such that

We &hall now show that E is totally convex in K

(see Introduction for the definition of E ):

(5.1.4) COROLLARY: Let {Btlagtsb} be ‘a geodesic in K

such that both ea and eb belong to E . Then there exists
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la,b]3t> g, € aut® (x)

— *
such that et—gtea for all t , and hence all et belong

to E . In particular, E 1is totally convex in K .

PROOF: For each t€la,b], we write et as mo(wt) for

some unique wteﬁ . Then by (5.1.3),

dz
—-—z—u(et) 2 0 (tE[a,b]) .
dt

On the other hand, by ea,ebeE , we have

d
=+ ul6,.) =0 .
dt £ | e=b

a
rr
=
)
n
"

Hence u(et)=C for some CeER independent of t .

In particular, in view of (5.1.2),

£ _2

- 2 -
0 =9 (e ) =—2—15v, | (where V_:=V_ ($))
at Vol (X) L (X 0y (0,)) P

and therefore VtGF(X,O(TX)) for all t€[a,b] . Note that
we have the unique smooth solution {yt € AutO(X)|a$tsb}

of the equation

y.¥y = - 2V, (astsb)
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with the initial condition ya=idx . Now, for all ¢t ,

Yt+e:*e

*
3 L £ Y 8 : 0, ., =01
ey e )=y *(y, )*1lim t o+ lim vy *( tve t
3ttt "t t t e->0 € e >0 t+e e

=yt*"'2Lvt‘°t’ RCANCIES iy (21 (6y) +/=T 23 )

sy {280ty o)+ /T 250 = 0 -

* - * -
yt et = Ya ea" ea (tE[a,b]) .

Hence

(5.2) REMARK (see also Calabi [4] and Bourguignon [3]):
Suppose that there exists a critical point ¢£€H of the

functional

(5.2.1) C : H—R, y+H—> C(w):=<<o(w),c(w)>>w .

We now put wt:=é+tc(£) (-estse) . Then by (5.1.1),

- 2
(4/vol (X)) |l 3v_(ao(eN) ] 2 :
2 (XINO(E))

. D - D
=<<wt’3€°(wt)>> <<o(wt),at0(wt)>>

o, |£=0 0, | t=0

.14 =
=7 ac t=o<<°(‘pt)'°(‘pt)>>wt 0
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Thus Vg(o(s))GF(X,O(TX)) . Hence we obtain the following well-
known fact: either o¢(g) 1is a constant on X or

0+ VY (a(E))Er(X,0(TX)) .

Until the end of this section for simplicity, we write
u(mo(w)) as ulp) for all @e€H . Note that u(@)=M(0,9) in
terms of the notation of (1.3). Let du be the "1-form" on

H defined by
. d
du(wt) = 3c wle)

where {wt|astsb} is an arbitrary smooth path in H . We shall

now show the convexity of u .

(5.3) THEOREM: u:H —> R is a convex function, i.e., Hess ¥

is positive semidefinite everywhere on H .

PROOF: Fix an arbitrary point & of H . Let nec”(x)m(;THE) .
Choose a smooth path {¢t|‘€5t5€} in H such that ¢t|t=0=n

(say, let o =£+tn) . Then in view of (5.1.2), we obtain

2
d D .
(5.3.1) (Hess u) (n,n)= —=ulow.) =(dy) , Clgze,) )
£ 3t2 t |£=0 €3t g
= 2
=(4/Vol (X)) || V|| 7, 2 0 .

L (X 04 (€))



-39-

(5.3.2) REMARK: Since K is identified with the totally

geodesic "submanifold" H of H (cf.(3.3)), the above theo-

rem shows that up:K —> R 1is also a convex function.

(5.3.3) REMARK: Fix an arbitrary point £ of H . Let Nys

n,€ C“(X)R(zTHE) . Then from (5.3.1), one easily obtains

2

(Hess u) . (n,,n.)= (4/Vol(X)) Re(3V_(n.),3V_(n,)) .
e 12 VT L2 (% (6))

(5.3.4) REMARK (cf. Bando [1]): Let {9t|'€15t5€j} be an
arbitrary smooth path in K such that eer .

shows that (dz/dtz)(u(et))|t=030 and is >0 whenever the

Then (5.3.1)

path {6, } is transversal to the orbit {g*eolg€G}(={a*et|
a € Auto(X)}) at t=0 (see Introduction for the definition

of G ). Therefore each connected component of E forms a

single G-orbit in E . (This fact was first obtained by

Calabi [4] with an effective use of the functional

C:K — R instead of that of 1y ).
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§ 6. NATURAL RIEMANNIAN STRUCTURE OF E .

Throughout this section, we assume E#¢ and fix an arbi-
trary component E0 of E . Recall that E0={g*e|g€G} for all

8EE (cf. (5.3.4)). We now endow E (and hence E0 ) with the

0
natural Riemannian metric induced from the one on K (cf. (2.1))
EO is then a finite-dimensional Riemannian manifold diffeomor-
phic to G/K , and for every smooth path e={et|astsb} in E0 ’
its arclength Lgth(0) (both in terms of the metric of EO and
of K ) is given by

b - 2 1/2
Lath(0)=f {[; (o) 2aglep) /Yol } Tt
‘ a

where each ®, is the unique element of ﬁ such that et=m0(wt)
Note that Lgth(6) does not depend on the choice of wq (and de-

pends only on © ).

(6.1) DEFINITION: A bijection X:K —> K 1is called an isometry
of K if for every smooth path O={et|ast5b} in K , Aa(@) :=
{k(et)laitﬁb} is again a smooth path in K with ©Igth(x(e)) =

Lgth(e) .

(6.2) THEOREM: For each g € Auto(x) , the mapping K 3 w >

g*s € K is an isometry of K .

PROOF: Let e={et|astsb} be a smooth path in K and we write

8 as mo(wt) (¢, € HY for all t . Consider the function n

t t g
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in H uniquely determined by the properties g*w0=w0(ng) and

n +g*wa€H . We put y, :=n +g*wt (astsb) . Then g*et=wo(wt) .

g g
Furthermore
b . b
L0,y )=] {watno(wt)/Vol(X)}dt=I IX{(g*ét)g*(no(wt))/Vol(X)}dt
a a
b

=IaIX{étQO(‘pt) /Vol(X) }dt = L(0,0,.)=0

Hence wteﬁ . We finally obtain

Latn(g*e)=f {f, (b) 0 (v rvorn | at
. a

by . (2 1/2 .
=Ia1fx‘g*“’t’ g*(no(cpt))/VO:L(x)} dt = Lgth(e) .

Q.E.D.

(6.2.1) COROLLARY: The Riemannian manifold E0 is G-equi-~

variantly isometric to the Riemannian symmetric space G/K

endowed with a suitable metric, and furthermore, Auto(x) acts

isometrically on E0 .

PROOF: Since K is a maximal compact subgroup of the reductive
algebraic group G (cf. Introduction), it follows that (G,K)

is a Riemannian symmetric pair (cf. Helgason [6; p. 209]). Then

A

in view of (6.2), the homogeneous space E0 has a natural struc-

ture of a Riemannian symmetric space (cf. Helgason [6; proposition

3.4, p. 2091).
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(6.3) THEOREM: EO (and hence E ) is totally geodesic in K .

PROOF: Fix an arbitrary element o of E0 , and let R, be as
in (3.4). Since E0 is Riemannian symmetric, every geodesic

y(t) in 'Eo through w(=y(0)) is written in the form
v(t) = (exp(t¥p))*w (tem)

for some 0O#Y € R, - This is at the same time a geodesic in K

by Theorem (3.5).

(6.4) Recall the decomposition of E 1into connected components:

E =U E. (disjoint union) .
. i
i€l
We shall now associate, to each Ei » & Buclidean lattice (t,A,
« ))i ) (which is uniquely determined by Ei up to isometry)
as follows:

Let w be a point of Ei » and T an arbitrary maximal
torus in the isotropy subgroup Kw of G at w . Put t:=Lie T

We then have the exponential map

exp : &t — T(=t/A)
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where T is written as /A for some lattice A in & . In

view of the natural inclusions

V=1 & < /=1 hm =§, = T(G/Km)[e] = (TEi)mc TKw ’

(2.1.2)) induces

the pairing << , >> ¢ TKm x TKm —> R (cf.

the positive definite bilinear form («

by

’ ))i :t £ x &t —R

( 11,12))i:=<</:T TV=T 1> 0 LT T,EE)

We shall now show that, up to isometry, our Euclidean lattice

(t,A, (C , );) does not depend on the choice of w and T

Let w' € Ei , and T' be a maximal torus in Kw. . Put t':=

Lie T' . Then there exists an element g of G such that

i) g*uw = o' (i.e., Rg(w)=w') , and

iy) T = g-1T g s

where Rg denotes the isometry of K sending each 6 € K
to Rg(e):=g*e € K . In view of the commutativé diagram

exp
K, > V=1 &t 2 &t —>T (= t/A)

(Ry) «

Q Ad(g-1)l Q J(Ad(g”)
exp
TK > /7T E'E B T (= EY/AT)

Y
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1

we easily conclude that Ad(g ') induces an isometry of the

Euclidean lattices (t,A, (( , ))i)’ (' ,A', ))'i) considerec
(6.4.1) REMARK: Let K be the same as in Introduction, and
choose a w € Ei such that Kw=I<. Recall that G/K is diffeo-
morphic to RN (for some N ) and hence simply connected. Con-

sequently, Ei(= G/K) 1is written as a product

of Riemannian symmetric spaces, where M_ is of Euclidean type,
and Mv (1svsr) are irreducible and of noncompact type. Now the

K-actions on Mv's induce the natural group homomorphism

Yy : K — TTI\i:1 Isometry (M ) .

Note that the identity component of Ker y 1is the compact
torus which is maximal in the center 2(G) of G. Using the

notation of (6.4), we consider

Y| : T —> gﬂ(:=y(T))é TT:=1Isometry(Mv) .

Then for each vz1 , there exists a toral subgroup Tv of
_ r
Isometry(Mv) such that To=T*xTyXeeooxT & TTV=1Isometry(Mv) .

Put tV:=Lie T, and o« , . ==«

i,v ’ ))ilt (0Osvsr) , where
Vv
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we regard each tv as a Lie subalgebra of t via the natural

isomorphism

t = (Lie(Ker y))® t0=(Lie(Ker Y))® t1$ t2$.....@ tr .

Let K be the lattice of t, obtained as the image of A

under the natural linear map t —> t0(=t/Lie(Ker ¥Y)) . For

each v20 , corresponding to the exponential map
exp : b —> Tv(=tv/Av) ’

we obtain the lattice Av in tv as its kernel. It then

follows that

i) A is a sublattice of AO of finite index, and

. _ r
il) (hoerr (( ’ ))i,O)-$v=1(tv'Av’ (( ’ ))l,\)) .

-

(6.4.2) REMARK: In a forthcoming paper [10], we shall make some

studies and computations of these Euclidean lattices.
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§ 7. APPENDIX.

As in the case of "finite-dimensional Riemannian geometry",
Theorems (2.5) and (4.2) allow us to obtain variational formulas
for energies of paths in H (cf. (7.2), (7.3)). We shall also
show that there are no conjugate points on any geodesic of H .
(In this appendix, we restrict ourselves to a very simple situa-
tion in order to avoid tedious routine works caused by going

too much general.)

(7.1) DEFINITION: Let ¢={mt|astsb} be a smooth path in H .

(i) =y (u;t,x)€C ([-e,e] x [a,b] x X is called a 1-para-

meter variation of ¢ if the following conditions are satis-

fied:

(1-1) for all te€la,bl ,

Yo,t %t

(i=2) @ =0, and wu’b=wb for all u€l-¢,€] ,

where Yu tECQ(X)m denotes the function defined by

14

wu,t(X)=w(u;t,x) (x € X) .

(ii) w=y(u,v;t,x)e€C ([-e,el x [-e,e] x [a,b] x X)m is called

a 2-parameter variation of ¢ if the following conditions are

satisfied:
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(ii-1) w0,0,t=wt for all t€l[a,b] ,

(ii-2) v [0 and wu,v,b=mb for all u,v€l-€,€]

u,v,a ‘a

where xpu'v'tECQ(X)R denotes the function defined by

" (x) = y(u,v;t,x) (x € X) .

u,v,t

(7.2) THEOREM (First variational formula):

Let ¢={wt|a§tsb} be a smooth path in H , and let y=y(u;t,x)

€ ¢ ([-e,e] x [a,b] x X)R be a 1-parameter variation of ¢ .

Then

b
14 = o <<¥ D
(7.2.1) 5 du(Engy({wu'tIaﬁtéb}>>|u=0— Ia<<au|u=0,35w>>wdt .

PROOF: In view of Theorems (2.5) and (4.2), it follows that

b
(7.2.2) =f <<%, —>> dt
a

’
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(7.3) THEOREM (Second variational formula):

Let ¢={wt|ast§b} be a geodesic in H , and let

p=yp(u,v;t,x) € Cm([-e,e]X[-e,EIx[a,b]XX)m

be a 2-parameter variation of ¢ . Then

2
1 3
(7.3.1) = ( Engy ({y Iastsb}))
b D2 . .
= -Ia<<w2’ —3;7 W1- R(@rw1)w(W)>>wdt ’
h W= ¥ € c”([a,b]xX)
where ¥4°° Ju] (u,v)=(0,0) ' R’
Woi= ¥ € c”([a,blxX)
2° 3v| (u,v)=(0,0) ’ R '
2
D D/ D
and —_— W,:= ——(—— W ) .
anc 52 at\at 1
D2(3 \ D D 3y
PROOF: Since —3\3u) = 3% 30 3t (cf. (4.2)), and since
ot
Ay Y D D D D .
R(T: 3_u) = 3¢ 34~ 30 3t ' it follows that

It
b
- 3y D D 3y
=] <<3v’ 3u 3€ 3Ly e .
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Evaluating this at (u,v)=(0,0) , we obtain

b 2
D - -
(7.3.2) - <<W,, —3 W1 - R(w,W1)w(w)>>mdt
a ot
b
- D D 3y
= Ia<<wz' (au 3E t)l(u v)=(0,0)>>¢%F -

on the other hand, in view of (7.2.2),

1 B(Ib< 3y 3y dt) = Ib<<aw D 3., dt
3 < =) <<3vr 3E 3¢
2 3v\’_ at! bt T, o ¢ a °V 3t Vy,v,t
and therefore, by (2.5),
l 32 (I <<.a_i). ﬂ'. > dt)
’
2 3uav at’ 3t vy VLt
b D 3y D 2dy 39 D D a3y
== (<<—— 2L, = =I>> o<t = = —>> dat .
a su av’ 3t 2 wu,v,t av’ du a9t at wu,v,t
We evaluate this at (u,v)=(0,0) . Note that ¢ 1is a geodesic.
Then
2 b
1 2 dy Y
(7.3.3) 5 (I <<=t 3E dt) -
2 3Jugv\’_~at’ 3t Yy,v,t | (u,v)=(0,0)

\ i
30 3t 3t)| (u,v)=(0,0)""0 dt .
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(7.4) DEFINITION: Let <b={(pt|a=<.t.<.b} be a geodesic in H
and let a',b' € R be such that asa'<b'sb . Then y=y(t,x)

€ c"([a',b']xX)p is called a Jacobi field along ¢ if

-_2 ‘P = R(‘bl”’)w(b .

Two elements O e B of H are called conjugate along ¢
if there exists a nontrivial Jacobi field y=y(t,x) € Cm([a',

b']xX)R along ¢ such that =0 and w|t=b'=0 in

‘p|t=al"
C (X)R .

(7.5) THEOREM: Let ¢={wt|ast$b}- be an arbitrary geodesic

in H . For any a',b' with asa'<b'sb , P and L cannot

be conjugate along ¢ .

PROOF: Suppose that y=y(t,x) € Cm([a',b'lxx)R satisfies the

equation

D2

— s ¥ = R(‘bﬂp) (b
32 ®

with the boundary condition

w|t=a'=o and w|t=b'=0 in C (X)g -

D ® . . .
Then <<=E Viv>> € C ([a',b'])R is a monotone increasing

)
function in t , because
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2
d D _ D D D
IE <3E w,w>>w—<<;;7 Viu>> H<<mE ¥, 3E V>,
=<<R(Q,y) ©, p>> <y, 2 y>>
AT M 0) ot ! st ®
D D
2 <<3p Vs 3§ V2>, 20 (CE. (4.5)) .

Note that

D = 0 =<<
<<3E w,w>>wlt=a,— 0 =<<3% w’w>>m|t=b' .

Now, on the whole [a',b'] ,

d _ D _
?,E--<<‘p,q;>>(p = 2<<3€ w,w>>m—0 .

Thus we conclude that

<<q:,q;>>(p = <<YP,P>> o,

olt=a'"

-

i.e., =0 in c“([a,b]xX)R ]
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§ 8. CONCLUSION

As a final remark to the whole paper, we should say that
some of the ideas given above are valid also for Riemannian
analogues in conformal differential geometry. In fact, Bour-
guignon [2] independently studied similar topics ("generali-
zations of Kazdan-Warner's invariant”) from different

viewpoints.
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