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EULER CHARACTERISTICS OF CATEGORIES AND

HOMOTOPY COLIMITS

THOMAS M. FIORE, WOLFGANG LÜCK, AND ROMAN SAUER

Abstract. In a previous article, we introduced notions of finiteness obstruc-
tion, Euler characteristic, and L2-Euler characteristic for wide classes of cate-

gories. In this sequel, we prove the compatibility of those notions with homo-

topy colimits of I-indexed categories where I is any small category admitting a
finite I-CW -model for its I-classifying space. Special cases of our Homotopy

Colimit Formula include formulas for products, homotopy pushouts, homo-

topy orbits, and transport groupoids. We also apply our formulas to Haefliger
complexes of groups, which extend Bass-Serre graphs of groups to higher di-

mensions. In particular, we obtain necessary conditions for developability of a
finite complex of groups from an action of a finite group on a finite category

without loops.
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0. Introduction and Statement of Results

In our previous paper [15], we presented a unified conceptual framework for
Euler characteristics of categories in terms of finiteness obstructions and projective
class groups. Many excellent properties of our invariants stem from the homological
origins of our approach: the theory of modules over categories and the dimension
theory of modules over von Neumann algebras provide us with an array of tools and
techniques. In the present paper, we additionally draw upon the homotopy theory
of diagrams to prove the compatibility of our invariants with homotopy colimits.

If C : I → CAT is a diagram of categories (or more generally a pseudo functor into
the 2-category of small categories), then our invariants of the homotopy colimit can
be computed in terms of the invariants of the vertex categories C(i). In particular,
our Homotopy Colimit Formula, Theorem 4.1, states

(0.1) χ
(
hocolimI C;R

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ);R)

under certain hypotheses. The set Λn indexes the I-n-cells of a finite I-CW -model
EI for the I-classifying space of I, that is, we have a functor EI : Iop → SPACES
which is inductively built by gluing finitely many cells of the form morI(−, iλ)×Dn

for λ ∈ Λn, and moreover EI(i) ' ∗ for all objects i of I. Similar formulas hold
for the finiteness obstruction, the functorial Euler characteristic, the functorial L2-
Euler characteristic, and the L2-Euler characteristic.

Motivation for such a formula is provided by the classical Inclusion-Exclusion
Principle: if A, B, and A ∩B are finite simplicial complexes, then one has

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).
1
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However, one cannot expect the Euler characteristic to be compatible with pushouts,
even in the simplest cases. The pushout in CAT of the discrete categories

{∗} ← {y, z} → {∗′}

is a point, but χ(point) 6= 1 + 1− 2. On the other hand, the homotopy pushout in
CAT is the category whose objects and nontrivial morphisms are pictured below.

y //

��

∗′

∗ zoo

OO

The classifying space of this category has the homotopy type of S1, so that

χ(homotopy pushout) = χ({∗}) + χ({∗′})− χ({y, z})

is true. In fact, the formula for homotopy pushouts is a special case of (0.1): the
category I = {1← 0→ 2} admits a finite model with Λ0 = {1, 2} and Λ1 = {0}, as
constructed in Example 2.6. See Example 5.4 for the homotopy pushout formulas
of the other invariants.

The Homotopy Colimit Formula in Theorem 4.1 has many applications beyond
homotopy pushouts. Other special cases are formulas for Euler characteristics of
products, homotopy orbits, and transport groupoids. Our formulas also have rami-
fications for the developability of Haefliger’s complexes of groups in geometric group
theory. If a group G acts on an Mκ-polyhedral complex by isometries preserving
cell structure, and if each g ∈ G fixes each cell pointwise that g fixes setwise, then
the quotient space is also an Mκ-polyhedral complex [10, page 534]. Let us call
the quotient Mκ-polyhedral complex Q. To each face σ of Q, one can assign the
stabilizer Gσ of a chosen representative cell σ. This assignment, along with the
various conjugated inclusions of groups obtained from face inclusions, is called the
complex of groups associated to the group action. It is a pseudo functor from the
poset of faces of Q into groups. In the finite case, the Euler characteristic and
L2-Euler characteristic of the homotopy colimit can be computed in terms of the
original complex and the order of the group. We prove this in Theorem 8.30. Ho-
motopy colimits of complexes of groups play a special role in Haefliger’s theory, see
the discussion after Definition 8.9.

In Section 1, we review the notions and results from our first paper [15] that we
need in this sequel. Explanations of the finiteness obstruction, the functorial Euler
characteristic, the Euler characteristic, the functorial L2-Euler characteristic, the
L2-Euler characteristic, and the necessary theorems are all contained in Section 1
in order to make the present paper self-contained. Section 2 is dedicated to an as-
sumption in the Homotopy Colimit Formula, namely the requirement that a finite
I-CW -model exists for the I-classifying space of I. We recall the notion of I-
CW -complex, present various examples, and prove that finite models are preserved
under equivalences of categories. Homotopy colimits of diagrams of categories are
recalled in Section 3. The homotopy colimit construction in CAT is the same as
the Grothendieck construction, or the category of elements. Thomason proved that
the homotopy colimit construction has the expected properties. We prove our main
theorem, the Homotopy Colimit Formula, in Section 4, work out various examples
in Section 5, and derive the generalized Inclusion-Exclusion Principle in Section 6.
We review the groupoid cardinality of Baez-Dolan and the Euler characteristic of
Leinster in Section 7, and compare our Homotopy Colimit Formula with Lein-
ster’s compatibility with Grothendieck fibrations in terms of weightings. We apply
our results to Haefliger complexes of groups in Section 8 to prove Theorems 8.30
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and 8.35, which express Euler characteristics of complexes of groups associated to
group actions in terms of the initial data.
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1. The Finiteness Obstruction and Euler Characteristics

We quickly recall the main definitions needed from [15] in order to make this
article as self-contained as possible. See [15] for proofs and more detail.

Throughout this paper, let Γ be a category and R an associative, commutative
ring with identity. The first ingredient we need is the theory of modules over
categories developed in [20], and recalled in [15]. An RΓ-module is a contravariant
functor from Γ into the category of left R-modules. For example, if Γ is a group G
viewed as a one-object category, then an RΓ-module is the same as a right module
over the group ring RG. An RΓ-module P is projective if it is projective in the usual
sense of homological algebra, that is, for every surjective RΓ-morphism p : M → N
and every RΓ-morphism f : P → N there exists an RΓ-morphism f : P →M such
that p ◦ f = f . An RΓ-module M is finitely generated if there is a surjective RΓ-
morphism B(C) → M from an RΓ-module B(C) that is free on a collection C of
sets indexed by ob(Γ) such that

∐
x∈ob(Γ) Cx is finite. Explicitly, free RΓ-module
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on the ob(Γ)-set C is

(1.1) B(C) :=
⊕

x∈ob(Γ)

⊕
Cx

RmorΓ(?, x).

A contravariant RΓ-module may be tensored with a covariant RΓ-module to obtain
an R-module: if M : Γop → R-MOD and N : Γ → R-MOD are functors, then the
tensor product M ⊗RΓ N is the quotient of the R-module⊕

x∈ob(Γ)

M(x)⊗R N(x)

by the R-submodule generated by elements of the form

(M(f)m)⊗ n−m⊗ (N(f)n)

where f : x→ y is a morphism in Γ, m ∈M(y), and n ∈ N(x).
Finite projective resolutions of the constant RΓ-module R play a special role in

our theory of Euler characteristic for categories. A resolution P∗ of an RΓ-module
M is said to be finite projective if it has finite length and each Pn is finitely generated
and projective. We say that a category Γ is of type (FPR) if the constantRΓ-module
R : Γop → R-MOD with value R admits a finite projective resolution. Categories in
which every endomorphism is an isomorphism, the so-called EI-categories, provide
important examples. Finite EI-categories in which aut(x) is invertible in R for each
object x are of type (FPR). Further examples of categories of type (FPR) include
categories Γ which admit a finite Γ-CW -model for the classifying Γ-space EΓ (see
Section 2 and Examples 2.4, 2.5, 2.6, and 2.7). In fact, such categories Γ are even
of type (FFR): the cellular chains on a finite Γ-CW -model for EΓ provide a finite
free resolution of R. In general, if a category is of type (FFZ), then it is of type
(FFR) for any associative, commutative ring R with identity.

A home for the finiteness obstruction of a category Γ is provided by the projective
class group K0(RΓ). The generators of this abelian group are the isomorphism
classes of finitely generated projective RΓ-modules and the relations are given by
expressions [P0]− [P1] + [P2] = 0 for every exact sequence 0→ P0 → P1 → P2 → 0
of finitely generated projective RΓ-modules.

Definition 1.2 (Finiteness obstruction of a category). Let Γ be a category of type
(FPR) and P∗ a finite projective resolution of the constant RΓ-module R. The
finiteness obstruction of Γ with coefficients in R is

o(Γ;R) :=
∑
n≥0

(−1)n · [Pn] ∈ K0(RΓ).

We also use the notation [R], or simply [R], to denote the finiteness obstruction
o(Γ;R). The finiteness obstruction, when it exists, does not depend on the choice
P∗ of finite projective resolution of R.

The finiteness obstruction is compatible with most everything one could hope
for. If F : Γ1 → Γ2 is a right adjoint, and Γ1 is of type (FPR), then Γ2 is of type
(FPR) and F∗o(Γ1;R) = o(Γ2;R) (here the group homomorphism F∗ is induced by
induction with F ). Since an equivalence of categories is a right adjoint (and also
a left adjoint), a particular instance of the previous sentence is: if F : Γ1 → Γ2

is an equivalence of categories, then Γ1 is of type (FPR) if and only if Γ2 is, and
in this case F∗o(Γ1;R) = o(Γ2;R). The finiteness obstruction is also compatible
with finite coproducts of categories, finite products of categories, restriction along
admissable functors, and homotopy colimits, as we prove in Theorem 4.1. If G is a
finitely presented group of type (FPZ), then Wall’s finiteness obstruction o(BG) is
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the same as o(Ĝ;Z), which is the finiteness obstruction of G viewed as a one-object

category Ĝ with morphisms G.
We will occasionally work with directly finite categories. A category is called

directly finite if for any two objects x and y and morphisms u : x→ y and v : y → x
the implication vu = idx =⇒ uv = idy holds. If Γ1 and Γ2 are equivalent
categories, then Γ1 is directly finite if and only if Γ2 is directly finite. Examples of
directly finite categories include groupoids, and more generally EI-categories.

A key result in the theory of modules over an EI-category is Lück’s splitting of
the projective class group of Γ into the projective class groups of the automorphism
groups autΓ(x) for x ∈ ob(Γ). We next recall the relevant maps and notation. For
x ∈ ob(Γ), we denote R autΓ(x) by R[x] for simplicity. The splitting functor at
x ∈ ob(Γ)

Sx : MOD-RΓ→MOD-R[x],(1.3)

maps an RΓ-module M to the quotient of the R-module M(x) by the R-submodule
generated by all images of R-module homomorphisms M(u) : M(y) → M(x) in-
duced by all non-invertible morphisms u : x → y in Γ. The right R[x]-module
structure on M(x) induces a right R[x]-module structure on SxM . Note that SxM
is an R[x]-module, not an RΓ-module. The functor Sx respects direct sums, sends
epimorphisms to epimorphisms, and sends free modules to free modules. If Γ is di-
rectly finite, then Sx also preserves finitely generated and projective. The extension
functor at x ∈ ob(Γ)

Ex : MOD-R[x]→MOD-RΓ(1.4)

maps an R[x]-module N to the RΓ-module N ⊗R[x] RmorΓ(?, x). The functor Ex
respects direct sums, sends epimorphisms to epimorphisms, sends free modules to
free modules, and preserves finitely generated and projective. If Γ is directly finite,
and P is a projective R[x]-module, then there is a natural isomorphism P ∼= SxExP
compatible with direct sums.

Theorem 1.5 (Splitting of K0(RΓ) for EI-categories, Theorem 10.34 on page 196
of [20]). If Γ is an EI-category, then the group homomorphisms

K0(RΓ)
S //

E
oo SplitK0(RΓ) :=

⊕
x∈iso(Γ)

K0(R autΓ(x))

defined by
S[P ] = {[SxP ] | x ∈ iso(Γ)}

and
E{[Qx] | x ∈ iso(Γ)} =

∑
x∈iso(Γ)

[ExQx],

are isomorphisms and inverse to one another. They are covariantly natural with
respect to functors between EI-categories.

Remark 1.6 (Lemma 3.15 of [15]). If Γ is not an EI-category, then the splitting
homomorphism S : K0(RΓ)→ SplitK0(RΓ) may not be an isomorphism. However,
S is covariantly natural with respect to functors between directly finite categories.

The splitting functors Sx allow us to define the notion of RΓ-rank rkRΓ for finitely
generated RΓ-modules, which in turn allows the definition of the functorial Euler
characteristic, as we explain next. We assume a fixed notion of a rank rkR(N) ∈ Z
for finitely generated R-modules N such that rkR(R) = 1 and rkR(N1) = rkR(N0)+
rkR(N2) for any sequence 0→ N0 → N1 → N2 → 0 of finitely generated R-modules.
If R is a commutative principal ideal domain, we use rkR(N) := dimF (F ⊗R N),
where F is the quotient field of R. Let U(Γ) be the free abelian group on the set
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of isomorphism classes of objects in Γ, that is U(Γ) := Z iso(Γ). The augmentation
homomorphism ε : U(Γ)→ Z adds up the components of an element of U(Γ).

Definition 1.7 (Rank of a finitely generated RΓ-module). If M is a finitely gen-
erated RΓ-module M , then its RΓ-rank is

rkRΓ(M) :=
{

rkR(SxM ⊗R[x] R) | x ∈ iso(Γ)
}
∈ U(Γ).

Definition 1.8 (The (functorial) Euler characteristic of a category). Suppose that
Γ is of type (FPR). The functorial Euler characteristic of Γ with coefficients in R is
the image of the finiteness obstruction o(Γ;R) ∈ K0(RΓ) under the homomorphism
rkRΓ : K0(RΓ)→ U(Γ), that is

χf (Γ;R) :=

∑
n≥0

(−1)n rkR(SxPn ⊗R[x] R) | x ∈ iso(Γ)

 ∈ U(Γ),

where P∗ is any finite projective RΓ-resolution of the constant RΓ-module R. The
Euler characteristic χ(Γ;R) of Γ with coefficients in R is the sum of the components
of the functorial Euler characteristic, that is

χ(Γ;R) := ε(χf (Γ;R)) =
∑

x∈iso(Γ)

∑
n≥0

(−1)n rkR(SxPn ⊗R[x] R).

For example, if G is a finite groupoid, then χf (G) ∈ U(G) is (1, 1, . . . , 1), and
χ(G) counts the isomorphism classes of objects, or equivalently the connected com-
ponents, of G.

Remark 1.9. In the first version of [15], the definition of χ differed from the one
in this paper, namely χ(Γ) was defined in [15] to be χ(BΓ). Future versions of
[15] will be updated so that χ(Γ) agrees with Definition 1.8 of the present paper.
Theorem 1.10 below has been reformulated to match the notation of the present
paper.

Theorem 1.10 (Corollary 4.19 of [15]). Let Γ be a directly finite category of type
(FPR) and BΓ the geometric realization of its nerve. Suppose that R is Noetherian.
Then Hn(BΓ;R) is a finitely generated R-module for every n ≥ 0, there exists a
natural number d with Hn(BΓ;R) = 0 for n > d, and

χ(Γ;R) = χ(BΓ;R) :=
∑
n≥0

(−1)n · rkR(Hn(BΓ;R)) ∈ Z

where χ(Γ;R) is defined in Definition 1.8.

The functorial Euler characteristic and Euler characteristic have many desirable
properties. They are invariant under equivalence of categories and are compatible
with finite products and finite coproducts. As we prove in Theorem 4.1, they are
also compatible with homotopy colimits.

The L2-Euler characteristic, which is in some sense the better invariant, can be

defined similarly by taking R = C and using the L2-rank rk
(2)
Γ rather than the RΓ-

rank. For this we need group von Neumann algebras and their dimension theory
from [21] and [22], as recalled in [15] for the purpose of Euler characteristics. If G
is a group, its group von Neumann algebra

N (G) = B(l2(G))G

is the algebra of bounded operators on l2(G) that are equivariant with respect to the
right G-action. If G is finite, N (G) is the group ring CG. In any case, the group ring
CG embeds as a subring of N (G) by sending g ∈ G to the isometric G-equivariant
operator l2(G) → l2(G) given by left multiplication with g. In particular, we can
view N (G) as a CG-N (G)-bimodule and tensor CG-modules on the right with
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N (G). If G is the automorphism group of an object in Γ, then we write N (x) for
N
(
autΓ(x)

)
.

The von Neumann dimension, dimN (G), is a function that assigns to every right
N (G)-module M a non-negative real number of ∞. It is the unique such function
which satisfies Hattori-Stallings rank, additivity, cofinality, and continuity. If G is
a finite group, then N (G) = CG and we get for a CG-module M the von Neumann
dimension

dimN (G)(M) =
1

|G|
· dimC(M),

where dimC is the dimension of M viewed as a complex vector space. A category
Γ is said to be of type (L2) if for one (and hence all) projective CΓ-resolutions P∗
of the constant CΓ-module C we have∑

x∈iso(Γ)

∑
n≥0

dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
<∞.

Note that the projective resolution P∗ of C is not required to be of finite length, nor
finitely generated. Examples of categories of type (L2) include finite EI-categories,
in particular finite posets and finite groupoids. Infinite categories can also be of
type (L2), for example any (small) groupoid with finite automorphism groups such
that

(1.11)
∑

x∈iso(G)

1

| autG(x)|
<∞

is of type (L2). The condition of type (L2) is weaker than (FPC), since any directly
finite category of type (FPC) is also of type (L2).

Definition 1.12 (The (functorial) L2-Euler characteristic of a category). Suppose
that Γ is of type (L2). Define

U (1)(Γ) :=

 ∑
x∈iso(Γ)

rx · x
∣∣∣∣ rx ∈ R,

∑
x∈iso(Γ)

|rx| <∞

 ⊆ ∏
x̄∈iso(Γ)

R.

The functorial L2-Euler characteristic of Γ is

χ
(2)
f (Γ) :=

∑
n≥0

(−1)n dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
| x̄ ∈ iso(Γ)

 ∈ U (1)(Γ),

where P∗ is any projective CΓ-resolution of the constant CΓ-module C. The L2-
Euler characteristic of Γ is the sum over x̄ ∈ iso(Γ) of the components of the
functorial Euler characteristic, that is,

χ(2)(Γ) =
∑

x∈iso(Γ)

∑
n≥0

(−1)n dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
.

If G is a groupoid such that (1.11) holds, then the functorial L2-Euler character-

istic χ
(2)
f (G) ∈

∏
x∈iso(G) R has at x ∈ iso(G) the value 1/| autG(x)|. The L2-Euler

characteristic is

(1.13) χ(2)(G) =
∑

x∈iso(G)

1

| autG(x)|
.

Definition 1.14 (L2-rank of a finitely generated CΓ-module). Let M be a finitely
generated CΓ-module M . Its L2-rank is

rk
(2)
Γ (M) :=

{
dimN (x)(SxM ⊗C[x] N (x)) | x̄ ∈ iso(Γ)

}
∈ U(Γ)⊗Z R =

⊕
iso(Γ)

R.
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Theorem 1.15 (Relating the finiteness obstruction and the L2-Euler characteristic,
Theorem 5.22 of [15]). Suppose that Γ is a directly finite category of type (FPC).
Then Γ is of type (L2) and the image of the finiteness obstruction o(Γ;C) (see
Definition 1.2) under the homomorphism

rk
(2)
Γ : K0(CΓ)→ U(Γ)⊗Z R =

⊕
x∈iso(Γ)

R

is the functorial L2-Euler characteristic χ
(2)
f (Γ).

The L2-Euler characteristic agrees with the groupoid cardinality of Baez-Dolan
[4] and the Euler characteristic of Leinster [18] in many cases. In particular, the
Baez-Dolan groupoid cardinality of a groupoid satisfying (1.11) is (1.13). See Sec-
tion 7 for more details.

The functorial L2-Euler characteristic and the L2-Euler characteristic have many
desirable properties. They are invariant under equivalence of categories and are
compatible with finite products, finite coproducts, and isofibrations and coverings
between finite groupoids. We prove in Theorem 4.1 the compatibility with homo-

topy colimits. In the case of a group G, the L2-Euler characteristic of Ĝ coincides
with the classical L2-Euler characteristic of G, which is 1/|G| when G is finite. The
L2-Euler characteristic is also closely related to the geometry and topology of the
classifying space for proper G-actions, namely the functorial L2-Euler characteristic
of the proper orbit category Or(G) is equal to the equivariant Euler characteris-
tic of the classifying space EG for proper G-actions, whenever EG admits a finite
G-CW -model.

The question arises: what are sufficient conditions for the Euler characteristic
and L2-Euler characteristic to coincide with the Euler characteristic of the classi-
fying space? This is answered in the following Theorem.

Theorem 1.16. If Γ is directly finite and of type (FFZ), then the functorial L2-
Euler characteristic coincides with the functorial Euler characteristic

χ
(2)
f (Γ) = χf (Γ;R)

for any ring R, and thus χ(2)(Γ) = χ(Γ;R). If R is additionally Noetherian, then

• Hn(BΓ;R) is a finitely generated R-module for every n ≥ 0,
• There exists a natural number d with Hn(BΓ;R) = 0 for n > d,
• The Euler characteristic of the space BΓ with coefficients in R is defined

and is equal to both the Euler characteristic and the L2-Euler characteristic
of the category Γ:

(1.17) χ(BΓ;R) = χ(Γ;R) = χ(2)(Γ).

Moreover, if Γ is merely of type (FFC) rather than (FFZ), then equation (1.17)
holds for any Noetherian ring R containing C.

Proof. Since Γ is of type (FFZ), it is also of type (FFR) for any ring R. For if R is
a ring and F∗ is a finite free ZΓ-resolution of Z, then F∗ ⊗Z R is a finite free RΓ-
resolution of R (each Fn⊗ZR is a finitely generated free RΓ-module because −⊗ZR
commutes with the finitely many direct sums in the Z-version of equation (1.1)).
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By [15, Lemma 3.5 (iv)], we have

rkR
(
Sx (Fn ⊗Z R)⊗R[x] R

)
= rkR

 ⊕
∐

y∈ob(Γ),y∼=x
Cy

R[x]

⊗R[x] R

= card

 ∐
y∈ob(Γ),y∼=x

Cy



= rkZ

 ⊕
∐

y∈ob(Γ),y∼=x
Cy

Z[x]

⊗Z[x] Z

= rkZ
(
SxFn ⊗Z[x] Z

)
.

and consequently, χf (Γ;R) = χf (Γ;Z) and χ(Γ;R) = χ(Γ;Z) for any ring R.
But Γ is of type (FPC), as it is of type (FFC), so by Lemma 5.23 (iii) of [15], the

CΓ-rank rkCΓ coincides with the L2-rank rk
(2)
Γ , and we have χ

(2)
f (Γ) = rk

(2)
Γ o(Γ;C) =

rkCΓ o(Γ;C) = χf (Γ;C) = χf (Γ;R) by Theorem 1.15 and the above. Summing up,

we have χ(2)(Γ) = χ(Γ;R).
If R is additionally Noetherian, then Theorem 1.10 implies χ(Γ;R) = χ(BΓ;R).
If Γ is merely of type (FFC) rather than (FFZ), and R is any Noetherian ring

containing C, then R is flat as a C-module and we may prove χf (Γ;R) = χf (Γ;C)
by the same arguement as above, except with Z replaced by C. The rest of the
proof of equation (1.17) for such R is the same as above. �

We may contrast the assumptions of (FFZ) and direct finiteness in Theorem 1.16
with the relaxed assumptions of (FPR) and direct finiteness. If we only assume type
(FPR) and direct finiteness, then χ(Γ;R) and χ(BΓ;R) coincide by Theorem 1.10,
but these may be different from χ(2)(Γ). For example, if G is a nontrivial finite
group, then it is of type (FPC) but not of type (FFC), and we have χ(BΓ;C) =
χ(Γ;C) = 1, but χ(2)(Γ) = 1

|G| .

Any category Γ which admits a finite Γ-CW -model in the sense of Section 2 is
of type (FFR) for any ring R, by an application of the cellular R-chain functor.
Thus, Theorem 1.16 applies to any directly finite category Γ which admits a finite
Γ-CW -model. For example, finite categories without loops are directly finite and
admit finite models (Lemma 8.4 and Theorem 8.5), so equation (1.17) holds for
instances for {j ⇒ k}, {k ← j → `}, and finite posets. The monoid N and group

Z, viewed as one-object categories N̂ and Ẑ, are also directly finite and admit finite
models (see Example 2.8), so we have

0 = χ(S1;R) = χ(BN̂;R) = χ(N̂;R) = χ(2)(N̂)

and
0 = χ(S1;R) = χ(BẐ;R) = χ(Ẑ;R) = χ(2)(Ẑ)

(BN̂ → BẐ ' S1 is a homotopy equivalence by Quillen’s Theorem A). The equa-

tions χ(N̂;R) = 0 = χ(2)(N̂) and χ(Ẑ;R) = 0 = χ(2)(Ẑ) also follow from Exam-

ple 5.3, since the finite models for N̂ and Ẑ in Example 2.8 each have one I-0-cell
and one I-1-cell.

We may use Theorem 1.16 to obtain an explicit formula for Euler characteristics
of finite categories without loops as follows. Let Γ be a finite category without
loops, and choose a skeleton Γ′. Let cn(Γ′) denote the number of paths

i0 → i1 → i2 → · · · → in
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of n-many non-identity morphisms in Γ′. Then cn(Γ′) is the number of n-cells in
the CW -complex BΓ′, and we have

(1.18) χ(Γ;R) = χ(2)(Γ) = χ(BΓ;R) = χ(BΓ′;R) =
∑
n≥0

(−1)ncn(Γ′).

See [18, Corollary 1.5] for a different derivation of this formula for Leinster’s
Euler characteristic χL(Γ) in the case Γ was already skeletal. See also Exam-
ples 5.3 and 8.7 where skeletality of I is not required.

Remark 1.19 (Homotopy Invariance). If F : Γ1 → Γ2 is a functor such that BF
is a homotopy equivalence, and both Γ1 and Γ2 are of type (FPR), and if

χ(Γ1;R) = χ(BΓ1;R) and χ(Γ2;R) = χ(BΓ2;R),

then clearly χ(Γ1;R) = χ(Γ2;R). However, it is possible for two categories to be
homotopy equivalent, one of which is (FPR) and the other is not, so that one has
a notion of Euler characteristic and the other does not. In Section 10 of [15] such
an example is discussed.

2. Spaces over a Category

An important hypothesis in our Homotopy Colimit Formula involves the idea
of a space over a category [13]. Namely, we assume that the indexing category I
for the diagram C of categories admits a finite I-CW -model for its I-classifying
space. Essentially this means it is possible to functorially assign a contractible
CW -complex EI(i) to each i ∈ ob(I), and moreover, these local CW -complexes
are constructed globally by gluing I-n-cells of the form morI(−, iλ)×Dn onto the
already globally constructed (n−1)-skeleton EIn. The Homotopy Colimit Formula
then expresses the invariants of the homotopy colimit of C in terms of the invariants
of the categories C(iλ) at the base objects iλ for EI.

The gluing described above takes place in the more general category of I-spaces.
A (contravariant) I-space is a contravariant functor from I to the category SPACES
of (compactly generated) topological spaces. As usual, we will always work in the
category of compactly generated spaces (see [34]). A map between I-spaces is a
natural transformation. Given an object i ∈ ob(I), we obtain an I-space morI(?, i)
which assigns to an object j the discrete space morI(j, i).

The next definition is taken from [13, Definition 3.2], where an I-CW -complex is
called a free I-CW -complex and we will omit the word free here. The more general
notion of I-CW -complex was defined in [14, 1.16 and 2.1]. See also [30].

Definition 2.1 (I-CW -complex). A (contravariant) I-CW -complex X is a con-
travariant I-space X together with a filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X =
⋃
n≥0

Xn

such that X = colimn→∞Xn and for any n ≥ 0 the n-skeleton Xn is obtained
from the (n − 1)-skeleton Xn−1 by attaching I-n-cells, i.e., there exists a pushout
of I-spaces of the form∐

λ∈Λn
morI(−, iλ)× Sn−1 −−−−→ Xn−1y y∐

λ∈Λn
morI(−, iλ)×Dn −−−−→ Xn

where the vertical maps are inclusions, Λn is an index set, and the iλ-s are objects
of I. In particular, X0 =

∐
λ∈Λ0

morI(−, iλ).
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We refer to the inclusion functor morI(−, iλ)× (Dn−Sn−1)→ X as an I-n-cell
based at iλ.

An I-CW -complex has dimension ≤ n if X = Xn. We call X finite dimensional
if there exists an integer n with X = Xn. It is called finite if it is finite dimensional
and Λn is finite for every n ≥ 0.

The definition of a covariant I-CW -complex is analogous.

Definition 2.2 (Classifying I-space). A model for the classifying I-space EI is
an I-CW -complex EI such that EI(i) is contractible for all objects i.

The universal property of EI is that for any I-CW -complex X there is up to
homotopy precisely one map of I-spaces from X to EI. In particular two models
for EI are I-homotopy equivalent (see [13, Theorem 3.4]). A model for the usual
classifying space BI is given by EI ⊗I {•} (see [13, Definition 3.10]), where {•}
is the constant covariant I-space with value the one point space and ⊗I denotes
the tensor product of a contravariant and a covariant I-space as follows (see [13,
Definition 1.4]).

Definition 2.3 (Tensor product of a contravariant and a covariant I-space). Let
X be a contravariant I-space and Y a covariant I-space. The tensor product of X
and Y is

X ⊗I Y =

(∐
i∈I

X(i)× Y (i)

)
/ ∼

where (X(φ)(x), y) ∼ (x, Y (φ)y) for all morphisms φ : i → j in I and points
x ∈ X(j) and y ∈ Y (i).

We present some examples of classifying I-spaces for various categories I.

Example 2.4. If I has a terminal object t, then a finite model for the classifying
I-space EI is simply morI(−, t).

Example 2.5. Let I = {j ⇒ k} be the category consisting of two objects and
a single pair of parallel arrows between them. All other morphisms are identity
morphisms. We obtain a finite model X for the classifying I-space EI as follows.
The I-CW -space X has a single I-0-cell based at k and a single I-1-cell based at
j. The gluing map morI(−, j) × S0 → morI(−, k) is induced by the two parallel
arrows j ⇒ k. Then X(j) = D1 ' ∗ and X(k) = ∗.

Example 2.6. Let I = {k ← j → `} be the category with objects j, k and
`, and precisely one morphism from j to k and one morphism from j to `. All
other morphisms are identity morphisms. A finite model for EI is given by the
I-CW -complex with precisely two I-0-cells morI(?, k) and morI(?, `) and precisely
one I-1-cell morI(?, j)×D1 whose attaching map morI(?, j)× S0 → morI(?, k)q
morI(?, `) is the disjoint union of the canonical maps morI(?, j)→ morI(?, k) and
morI(?, j) → morI(?, `). The value of this 1-dimensional I-CW -complex at the
objects k and ` is a point and at the object j is D1. Hence it is a finite model for
EI.

Example 2.7. Let I be the category with objects the non-empty subsets of [q] =
{0, 1, . . . , q} and a unique arrow J → K if and only if K ⊆ J . In other words I is
the opposite of the poset of non-empty subsets of [q]. Then I admits a finite I-CW -
model X for the classifying I-space EI as follows. The functor X : Iop → SPACES
assigns to L the space |∆[L]|, which is the geometric realization of the simplicial
set which maps [m] to the set of weakly order preserving maps [m] → L. The
space |∆[L]| is homeomorphic to the standard simplex with card(L) vertices. The
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n-skeleton Xn of X sends each L to the n-skeleton of |∆[L]|. The I-cells of X are
attached globally in the following way. The 0-skeleton is

X0 =
∐

J⊆[q],|J|=1

morI(−, J).

For n ≤ q, we construct Xn out of Xn−1 as the pushout∐
J morI(−, J)× |∂∆[n]| //

��

Xn−1

��∐
J morI(−, J)× |∆[n]| // Xn.

The disjoint unions are over all J ⊆ [q] with |J | = n+ 1. The J-component of the
gluing map is induced by the (n− 1)-face inclusion

|∆[K]| // ∂|∆[J ]| ∼= ∂|∆[n]|

for all K ⊆ J with |K| = n. Clearly X is a finite I-CW -complex. For each object
L of I, we have X(L) = |∆[L]| ' ∗, so that X is a finite model for EI.

Example 2.8. Infinite categories may also admit finite models. Let I = N̂ be
the monoid of natural numbers N viewed as a one-object category. A finite model

X for the N̂-classifying space has X0(∗) = morN̂(∗, ∗) = N and X1(∗) = [0,∞).

This model has a single N̂-0-cell morN̂(−, ∗) and a single N̂-1-cell morN̂(−, ∗)×D1.

The gluing map N× S0 → N sends (n,−1) and (n, 1) to n and n+ 1 respectively.
Similarly, the group of integers Z viewed as a one object category admits a finite

model Y with one Ẑ-0-cell and one Ẑ-1-cell, so that Y0(∗) = Z and Y1(∗) = R.

Remark 2.9. Suppose a category I admits a finite I-CW -model for EI. Then
the cellular R-chains of a finite model provide a finite free resolution of the constant
RI-module R, so I is of type (FFR). If I is additionally directly finite and R is
Noetherian, then χ(BI;R) = χ(I;R) = χ(2)(I) by Theorem 1.16.

Remark 2.10 (Bar construction of classifying I-space). There exists a functorial
construction EbarI of EI by a kind of bar construction. Namely, the contravariant
functor EbarI : I → SPACES sends an object i to the space Bbar(i ↓ I), which is
the geometric realization of the nerve of the category of objects under i (see [13,
page 230]). An equivalent definition of the bar construction in terms of the tensor
product in Definition 2.3 is

(2.11) EbarI = {∗} ⊗I Bbar(? ↓ I ↓??),

from which we prove that EbarI is an I-CW -complex. The I ×Iop-space Bbar(? ↓
I ↓??) is an I × Iop-CW -complex (see [13, page 228]). For each path

i0 → i1 → i2 → · · · → in

of n-many non-identity morphisms in I, Bbar(? ↓ I ↓??) has an n-cell based at
(i0, in), that is a cell of the form morI(?, i0)×morI(in, ??)×Dn. By [13, Lemma 3.19
(2)], the tensor product EbarI in (2.11) is an I-CW -complex: an (m+n)-cell based
at i is an n-cell of Bbar(? ↓ I ↓??) based at (i, j) and an m-cell of the CW -complex
∗(j) (see [13, page 229]). More explicitly, for each path of n-many non-identity
morphisms

(2.12) i0 → i1 → i2 → · · · → in

the I-CW -complex EbarI has an n-cell based at i0.
Though the bar construction is in general not a finite I-CW -complex, it is in

certain cases. For example, if I has only finitely many morphisms, no nontrivial
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isomorphisms, and no nontrivial endomorphisms, then there are only finitely many
paths as in (2.12), and hence only finitely many I-cells in EbarI.

The bar construction is also compatible with induction. Given a functor α : I →
D, we obtain a map of D-spaces

Ebarα : α∗E
barI → EbarD,

where α∗ denotes induction with the functor α (see [13, Definition 1.8]). If T : α→ β
is a natural transformation of functors I → D, we obtain for any I-space X a
natural transformation T∗ : α∗X → β∗X which comes from the map of I-D-spaces
morD(??, α(?))→ morD(??, β(?)) sending g : ??→ α(?) to T (?) ◦ g : ??→ β(?).

Lemma 2.13 (Invariance of finite models under equivalence of categories). Suppose
I and J are equivalent categories. Then I admits a finite I-CW -model for EI if
and only if J admits a finite J -CW -model for EJ . More precisely, if F : I → J
is an equivalence of categories and Y is a finite J -CW -model for EJ , then the
restriction resF Y is a finite I-CW -model for EI.

Proof. For any functor F : I → J , we have an adjunction

indF : I-SPACES � J -SPACES : resF

defined by

indF (X) := X(?)⊗I morJ
(
??, F (?)

)
resF (Y ) := Y ◦ F (?).

The I-space resF (Y ) is naturally homeomorphic to Y (?)⊗J morJ
(
F (??), ?

)
. But

since we are assuming F is an equivalence of categories, it is a left adjoint in an
adjoint equivalence (F,G), and we have natural homeomorphisms of I-spaces

resF (Y ) ∼= Y (?)⊗J morJ
(
F (??), ?

)
∼= Y (?)⊗J morJ

(
??, G(?)

)
∼= indG(Y ).

Since indG is a left adjoint, so is resF , and resF therefore preserves pushouts. Note
also

resF morJ (?, j) = morJ
(
F (?), j

) ∼= morI
(
?, G(j)

)
.

If Y is a finite J -CW -model for EJ with n-skeleton∐
λ∈Λn

morJ (−, jλ)× Sn−1 −−−−→ Yn−1y y∐
λ∈Λn

morJ (−, jλ)×Dn −−−−→ Yn,

then X := resF Y is a finite I-CW -complex with n-skeleton∐
λ∈Λn

morI
(
−, G(jλ)

)
× Sn−1 −−−−→ Xn−1y y∐

λ∈Λn
morI

(
−, G(jλ)

)
×Dn −−−−→ Xn.

Clearly, resF Y is contractible at each object i, since resF Y (i) = Y (F (i)) ' ∗. �

3. Homotopy Colimits of Categories

Definition 3.1 (Homotopy colimit for categories). Let C : I → CAT be a covariant
functor from some (small) index category I to the category of small categories. Its
homotopy colimit

hocolimI C
is the following category. Objects are pairs (i, c), where i ∈ ob(I) and c ∈ ob

(
C(i)

)
.

A morphism from (i, c) to (j, d) is a pair (u, f), where u : i → j is a morphism in
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I and f : C(u)(c) → d is a morphism in C(j). The composition of the morphisms
(u, f) : (i, c)→ (j, d) and (v, g) : (j, d)→ (k, e) is the morphism

(v, g) ◦ (u, f) = (v ◦ u, g ◦ C(v)(f)) : (i, c)→ (k, e).

The identity of (i, c) is given by (idi, idc).

Thomason proved in [35] that hocolimI C actually has the properties one would
expect of a homotopy colimit in the category of small categories. The homotopy
colimit construction for functors in Definition 3.1 is often called the Grothendieck
construction or the category of elements.

Remark 3.2. If C is merely a pseudo functor, then it of course still has a ho-
motopy colimit. A pseudo functor C : I → CAT is like an ordinary functor, but
only preserves composition and unit up to specified coherent natural isomorphisms
Cv,u : C(v)◦C(u)⇒ C(v ◦u) and Ci : 1C(i) ⇒ C(idi). Moreover, Cv,u is required to be
natural in v and u. The objects and morphisms of the homotopy colimit hocolimI C
are defined as in the strict case of Definition 3.1. The composition in hocolimI C is
defined by the modified rule

(v, g) ◦ (u, f) = (v ◦ u, g ◦ (C(v)(f)) ◦ C−1
v,u(c))

while the identity of the object (i, c) is given by

(idi, C−1
i (c)).

The homotopy colimit of a pseudo functor C : I → CAT is an ordinary 1-category
with strictly associative and strictly unital composition.

Remark 3.3. For a fixed category I, the homotopy colimit construction hocolimI −
is a strict 2-functor from the strict 2-category of pseudo functors I → CAT , pseudo
natural transformations, and modifications into the strict 2-category CAT .

Example 3.4 (Homotopy colimit of a constant functor). If C : I → CAT is a
constant functor, say constantly a category also called C, then hocolimI C = I × C.

Example 3.5 (Homotopy colimit for I with a terminal object). Suppose I has a
terminal object t and C : I → CAT is a strict covariant functor. Then hocolimI C is
homotopy equivalent to C(t) as follows. This is analogous to the familiar fact that
C(t) is a colimit of C. The components of the universal cocone

(3.6) π : C ⇒ ∆C(t)

are C(i → t). Applying hocolimI − to (3.6) and composing with the projection
gives us a functor F

hocolimI C
hocolimI π

//

F

**I × C(t)
prC(t)

// C(t)

(i, c) � // C(i→ t)(c).

The functor G : C(t) → hocolimI C, G(c) = (t, c) is a homotopy inverse, since
F ◦ G = idC(t) and we have a natural transformation idhocolimI C ⇒ G ◦ F with
components

(i→ t, idC(i→t)) : (i, c) // (t, C(i→ t)c).

Let H denote the homotopy colimit of the I-diagram of categories C. We now
construct an I-diagram of H-spaces EH with the property that its tensor product
with EI is H-homotopy equivalent to a classifying H-space for H. This I-diagram
of H-spaces EH will play an important role in the inductive proof of the Homotopy
Colimit Formula Theorem 4.1.
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Construction 3.7 (Construction of EH). Let C : I → CAT be a strict covariant
functor, and abbreviate H = hocolimI C. Define a functor

EH : I → H-SPACES(3.8)

as follows. Given an object i ∈ I, we have the functor

α(i) : C(i)→ H(3.9)

sending an object c to the object (i, c) and a morphism f : c→ d to the morphism
(idi, f). We define

EH(i) = α(i)∗E
bar
(
C(i)

)
.

Consider a morphism u : i→ j in I. It induces a natural transformation T (u) : α(i)→
α(j) ◦ C(u) from the functor α(i) : C(i) → H to the functor α(j) ◦ C(u) : C(i) → H
by assigning to an object c in C(i) the morphism

(u, idC(u)(c)) : α(i)(c) = (i, c)→ α(j) ◦ C(u)(c) = (j, C(u)(c)).

From Remark 2.10 we obtain a map of H-spaces

T (u)∗ : α(i)∗E
bar
(
C(i)

)
→ α(j)∗C(u)∗E

bar
(
C(i)

)
and a map of C(j)-spaces

Ebar
(
C(u)

)
: C(u)∗E

bar
(
C(i)

)
→ Ebar

(
C(j)

)
.

Finally, for the morphism u in I, we define EH(u) : EH(i) → EH(j) by the com-
posite

α(i)∗E
bar
(
C(i)

) T (u)∗−−−−→ α(j)∗C(u)∗E
bar
(
C(i)

) α(j)∗(E
bar
(
C(u)
)

−−−−−−−−−−−→ α(j)∗E
bar
(
C(j)

)
.

Define the homotopy colimit of the covariant functor EH of (3.8) to be the
contravariant H-space

hocolimI E
H := (i, c) 7→ EI ⊗I

(
EH(i, c)

)
.(3.10)

Lemma 3.11. Consider any model EI for the classifying I-space of the category
I. Then the contravariant H-space EI ⊗I EH of (3.10) is H-homotopy equivalent
to the classifying H-space EH of the category H := hocolimI C.

Proof. We first show that for any object (i, c) in H the space EI ⊗I
(
EH(i, c)

)
is

contractible. The covariant functor EH(i, c) : I → SPACES sends an object j to

α(j)∗
(
EbarC(j)

)
(i, c) = α(j)∗

(
EbarC(j)

)
(?)⊗H morH

(
(i, c), ?)

)
=

(
EbarC(j)

)
(?)⊗C(j) morH

(
(i, c), (j, ?)

)
=

(
EbarC(j)

)
(?)⊗C(j)

 ∐
u∈morI(i,j)

morC(j)
(
C(u)(c), ?

)
=

∐
u∈morI(i,j)

(
EbarC(j)

)
(?)⊗C(j) morC(j)

(
C(u)(c), ?

)
=

∐
u∈morI(i,j)

(
EbarC(j)

) (
C(u)(c)

)
.

Since
(
EbarC(j)

) (
C(u)(c)

)
is contractible, the projection∐

u∈morI(i,j)

(
EbarC(j)

) (
C(u)(c)

)
→ morI(i, j)

is a homotopy equivalence. Hence the collection of these projections for j ∈ ob(I)
induces a map of I-spaces

pr : EH(i, c)→ morI(i, ?)
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whose evaluation at each object j in ob(I) is a homotopy equivalence. We conclude
from [13, Theorem 3.11] that

EI ⊗I pr: EI ⊗I EH(i, c)
'−→ EI ⊗I morI(i, ?).

is a homotopy equivalence. Since EI ⊗I morI(i, ?) = EI(i) is contractible, this
implies that for any object (i, c) in H the space EI ⊗I

(
EH(i, c)

)
is contractible,

as we initially claimed.
It remains to show that EI ⊗I EH has the H-homotopy type of an H-CW -

complex. It is actually anH-CW -complex. The following argument, that EI⊗IEH
has the homotopy type of an H-CW -complex, will be used again later.1

We have a filtration of EI

∅ = EI−1 ⊆ EI0 ⊆ EI1 ⊆ . . . ⊆ EIn ⊆ . . . ⊆ EI =
⋃
n≥0

EIn

such that

EI = colimn→∞EIn
and for every n ≥ 0 there exists a pushout of I-spaces∐

λ∈Λn
morI(−, iλ)× Sn−1 −−−−→ EIn−1y y∐

λ∈Λn
morI(−, iλ)×Dn −−−−→ EIn.

(3.12)

Since −⊗I Z has a right adjoint [13, Lemma 1.9] we get

EI ⊗I EH = colimn→∞EIn ⊗I EH

as a colimit of H-spaces. After an application of − ⊗I EH to (3.12), we obtain
pushouts of H-spaces∐

λ∈Λn
EH(iλ)× Sn−1 fn−1−−−−→ EIn−1 ⊗I EHy y∐

λ∈Λn
EH(iλ)×Dn −−−−→ EIn ⊗I EH

(3.13)

where the left vertical arrow and hence the right vertical arrow are cofibrations
of H-spaces. By induction we may assume that EIn−1 ⊗I EH has the homotopy
type of an H-CW -complex. Since the vertical maps are cofibrations, by replacing
it with a homotopy equivalent H-CW -complex we do not change the homotopy
type of the pushout (the usual proof for spaces goes through for H-spaces). Hence
we may assume that EIn−1 ⊗I EH is a H-CW -complex. We may also assume
that fn−1 is cellular: since the vertical maps are cofibrations, by replacing fn−1

by a homotopic cellular map, which exists by [13, cf. Theorem 3.7], we also do not
change the homotopy type of the pushout. See [33, Theorem 7.1.8] for a proof of this
statement for spaces which translates verbatim to the setting of H-spaces. If fn−1

is cellular, diagram (3.13) is a cellular pushout. Hence we completed the induction
step, showing that EIn ⊗I EH has the homotopy type of an H-CW -complex.

It remains to show that EI ⊗I EH has the homotopy type of a H-CW -complex:
choose H-CW -complexes Zn and H-homotopy equivalences gn : Zn → EIn⊗I EH.
By iteratively replacing Zn by the mapping cylinder of

Zn−1
gn−1−−−→ EIn−1 ⊗I EH → EIn ⊗I EH

ḡn−→ Zn,

1This is a well-known standard argument, which we present only so that the reader easily sees
that it works in the setting of H-spaces.
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where ḡn is a homotopy inverse of gn, one finds a new sequence of homotopy equiv-
alences g′n : Zn → EIn ⊗I EH (with the modified H-CW -complexes Zn) such that
g′n|Zn−1 = g′n−1. �

4. Homotopy Colimit Formula for Finiteness Obstructions and Euler
Characteristics

In this section we prove the main theorem of this paper: the Homotopy Colimit
Formula. It expresses the finiteness obstruction, the Euler characteristic, and the
L2-Euler characteristic of the homotopy colimit of a diagram in CAT in terms of
the respective invariants for the diagram entries at the base objects for cells in a
finite model for the I-classifying space of I. Analogous formulas for the functorial
counterparts of the Euler characteristic and L2-Euler characteristic are included.
The Homotopy Colimit Formula is initially stated and proved for strict functors
C : I → CAT , but we prove that it also holds for pseudo functors D : I → CAT in
Corollary 4.2. The full generality of pseudo functors is needed for the applications
to complexes of groups in Section 8.

4.1. Homotopy Colimit Formula.

Theorem 4.1 (Homotopy Colimit Formula). Let I be a small category such that
there exists a finite I-CW -model for its classifying I-space. Fix such a finite I-
CW -model EI. Denote by Λn the finite set of n-cells λ = morI(?, iλ)×Dn of EI.
Let C : I → CAT be a covariant functor. Abbreviate H = hocolimI C. Then:

(i) If I is directly finite, and C(i) is directly finite for every object i ∈ ob(I),
then the category H is directly finite;

(ii) If I is an EI-category, C(i) is an EI-category for every object i ∈ ob(I),

and for every automorphism u : i
∼=−→ i the map iso(C(i))→ iso(C(i)), x 7→

C(u)(x) is the identity, then the category H is an EI-category;
(iii) If for every object i the category C(i) is of type (FPR), then the category

hocolimI C is of type (FPR);
(iv) If for every object i the category C(i) is of type (FFR), then the category

hocolimI C is of type (FFR);
(v) If for every object i the category C(i) is of type (FPR), then we obtain for

the finiteness obstruction

o(H;R) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

α(iλ)∗(o(C(iλ);R)),

where α(iλ)∗ : K0(RC(iλ)) → K0(RH) is the homomorphism induced by
the canonical functor α(iλ) : C(iλ)→ H defined in (3.9);

(vi) Suppose that I is directly finite and C(i) is directly finite for every object
i ∈ ob(I). If for every object i the category C(i) is additionally of type
(FPR) then we obtain for the functorial Euler characteristic

χf (H;R) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

α(iλ)∗(χf (C(iλ);R)),

where α(iλ)∗ : U(C(iλ)) → U(H) is the homomorphism induced by the
canonical functor α(iλ) : C(iλ) → H defined in (3.9). Summing up, we
also have

χ
(
H;R

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ);R).
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If R is Noetherian, in addition to the direct finiteness and (FPR) hypothe-
ses, we obtain for the Euler characteristics of the classifying spaces

χ
(
BH;R

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(BC(iλ);R);

(vii) Suppose that I is directly finite and C(i) is directly finite for every object
i ∈ ob(I). If for every object i the category C(i) is additionally of type
(L2), then H is of type (L2) and we obtain for the functorial L2-Euler
characteristic

χ
(2)
f (H) =

∑
n≥0

(−1)n ·
∑
λ∈Λn

α(iλ)∗
(
χ

(2)
f (C(iλ))

)
,

where α(iλ)∗ : U (1)(C(iλ))→ U (1)(H) is the homomorphism induced by the
canonical functor α(iλ) : C(iλ)→ H defined in (3.9), and we obtain for the
L2-Euler characteristic

χ(2)(H) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(2)(C(iλ)).

Proof. (i) Consider morphisms (u, f) : (i, c) → (j, d) and (v, g) : (j, d) → (i, c) in
H with (v, g) ◦ (u, f) = id(i,c). This implies vu = idi and g ◦ C(v)(f) = idc.
Since I and C(i) are by assumption directly finite, we conclude uv = idj and
C(v)(f) ◦ g = idC(v)(d). Hence

(u, f)◦(v, g) =
(
uv, f◦C(u)(g)

)
=
(
uv, C(uv)(f)◦C(u)(g)

)
=
(
uv, C(u)(C(v)(f)◦g)

)
=
(
uv, C(u)(idC(v)(d))

)
=
(
idj , idC(u)

(
C(v)(d)

)) = (idj , idd).

(ii) Consider an endomorphism (u, f) : (i, c)→ (i, c) inH. Since I is an EI-category,

u : i → i is an automorphism. Since C(u)(c) = c by assumption, we can choose an

isomorphism g : c
∼=−→ C(u)(c). Hence fg is an endomorphism in C(i). Since C(i) is

an EI-category, and g is an isomorphism, f is also an isomorphism. Since u and f
are isomorphisms, (u, f) is an isomorphism.

(iii) and (v). We say that an RH-chain complex C∗ is of type (FPR) if it ad-
mits a finite projective approximation, i.e., there is a finite length chain complex
P∗ of finitely generated, projective RH-modules together with an RH-chain map
f∗ : P∗ → C∗ such that Hn(f∗(i, c)) is bijective for all n ≥ 0 and (i, c) ∈ ob(H). If
C∗ is of type (FPR), define its finiteness obstruction

o(C∗) :=
∑
n≥0

(−1)n · [Pn] ∈ K0(RH)

for any choice P∗ of finite projective approximation. This is independent of the
choice of P∗ and the basic properties of it are studied in [20, Chapter 11]. If 0[R]
is the RH-chain complex concentrated in dimension zero and given there by the
constant RH-module R, then H is of type (FPR) if and only if 0[R] is of type (FPR)
and in this case

o(H;R) = o(0[R]) ∈ K0(RH).

Consider a finite I-CW -complex X. We want to show by induction over the
dimension of X that the RH-chain complex C∗(X ⊗I EH) is of type (FPR) and
satisfies

o
(
C∗(X ⊗I EH)

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

α(iλ)∗(o(C(iλ);R)),

where Λn denotes the set of n-cells of X and iλ is the object at which the n-cell
λ = morI(?, iλ)×Dn of X is based.
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The induction beginning, where X is the empty set, is obviously true. The
induction step is done as follows. Let d be the dimension of X. Then Xd is
obtained from Xd−1 by a pushout of I-spaces∐

λ∈Λd
morC(−, iλ)× Sd−1 //

��

Xd−1

��∐
λ∈Λd

morC(−, iλ)×Dd // X = Xd.

Applying − ⊗I EH to it yields, because EH(i) = α(i)∗E
bar
(
C(i)

)
, a pushout of

H-spaces with a cofibration as left vertical arrow∐
λ∈Λd

α(iλ)∗E
bar
(
C(iλ)

)
× Sd−1

��

// Xd−1 ⊗I EH

��∐
λ∈Λd

α(iλ)∗E
bar
(
C(iλ)

)
×Dd // X ⊗I EH.

In the sequel we can assume without loss of generality that Xd−1 ⊗I EH and
X ⊗I EH are H-CW -complexes and the diagram above is a pushout of H-CW -
complexes, since this can be arranged by replacing them by homotopy equivalent
H-CW -complexes (see the proof of Lemma 3.11). We obtain an exact sequence of
RH-chain complexes

0→ C∗(Xd−1 ⊗I EH)→ C∗(X ⊗I EH)→
⊕
λ∈Λd

ΣdC∗
(
α(iλ)∗E

barC(iλ)
)
→ 0.

Consider λ ∈ Λd. Since C(iλ) is of type (FPR), we can find a finite projective
RC(iλ)-chain complex P∗ whose homology is concentrated in dimension zero and
given there by the constant RC(iλ)-module R. Since C∗(E

barC(iλ)) is a projective
RC(iλ)-chain complex with the same homology, there is an RC(iλ)-chain homotopy

equivalence f∗ : P∗
'−→ C∗

(
EbarC(iλ)

)
(see [20, Lemma 11.3 on page 213] and

o(C(iλ);R) = o(P∗) =
∑
n≥0

(−1)n · [Pn] ∈ K0(RC(iλ)).

Obviously

α(iλ)∗f∗ : α(iλ)∗P∗
'−→ α(iλ)∗C∗

(
Ebar

(
C(iλ)

))
= C∗

(
α(iλ)∗E

barC(iλ)
)

is an RH-chain homotopy equivalence. Hence C∗(α(iλ)∗E
barC(iλ)) and, by the

induction hypothesis, C∗(Xd−1 ⊗I EH) are RH-chain complexes of type (FPR).
We conclude from [20, Lemma 11.3 on page 213] that C∗(X ⊗I EH) is of type
(FPR) and

o
(
C∗(X ⊗I EH)

)
= o
(
C∗(Xd−1 ⊗I EH)

)
+
∑
λ∈Λd

o
(
Σdα(iλ)∗C∗(E

barC(iλ))
)
.

This implies together with the induction hypothesis applied to Xd−1

o
(
C∗(X ⊗I EH)

)
=

d−1∑
n=0

(−1)n ·
∑
λ∈Λn

α(iλ)∗(o(C(iλ);R)) +
∑
λ∈Λd

(−1)d · α(iλ)∗(o(C(iλ);R))

=

d∑
n=0

(−1)n ·
∑
λ∈Λn

α(iλ)∗(o(C(iλ);R)).

This finishes the induction step.
Assertions (iii) and (v) follow by taking X = EI.
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(iv) This proof is analogous to that of assertion (iii).

(vi) By (i) and (iii), the category H is directly finite and of type (FPR). Then an
application of rkRH to the formula for o(H;R) in (v) yields the formula for χf (H;R)
in (vi) by the naturality of rkR− with respect to the functors α(iλ) between directly
finite categories [15, Lemma 4.9].

An application of the augmentation homomorphism ε : U(H)→ Z to the formula
for χf (H;R) yields the formula for χ(H;R). We also use the naturality of the
augmentation homomorphism, that is, the commutativity of diagram (4.5) in [15]
for F = α(iλ).

If R is additionally Noetherian, then Theorem 1.10 applies, and the Euler char-
acteristics of the categories agree with the Euler characteristics of the classifying
spaces.

(vii) The proofs for the functorial L2-Euler characteristic and the L2-Euler char-
acteristic are somewhat more complicated since the property (L2) is more general
than (FPR), and the L2-Euler characteristic comes from the finiteness obstruction
only in the case (FPR). The proofs are variations of the proofs for assertions (iii)
and (v). Instead of using [20, Lemma 11.3 on page 213], we now use the basic
properties of L2-Euler characteristics for chain complexes of modules over group
von Neumann algebras [15, Lemma 5.7]. For example, we use [15, Lemma 5.7 (iv)],
which says for any injective group homomorphism i : H → G and N (H)-chain
complex C∗, we have χ(2)(C∗) = χ(2)(indi∗ C∗), provided the sum of the L2-Betti
numbers of C∗ is finite. The injectivity hypothesis is easily verified: for every ob-
ject i ∈ ob(I) and object x ∈ C(i) the functor α(i) : C(i) → H clearly induces an
injection autC(i)(x)→ autH(i, x). This finishes the proof of Theorem 4.1. �

Corollary 4.2. Theorem 4.1 on homotopy colimits holds for pseudo functors D : I →
CAT .

Proof. We first remark that the pseudo functorD : I → CAT is equivalent to a strict
functor C : I → CAT in the following sense. As usual, we denote by Hom(I,CAT)
the strict 2-category of pseudo functors I → CAT , pseudo natural transformations
between them, and modifications. The pseudo functor D is equivalent to a strict
functor C as objects of the 2-category Hom(I,CAT). For example, we may take C
to be the strict functor

i 7→ morHom(I,CAT)(I(i,−),D).

The equivalence between C and D in Hom(I,CAT) has two useful consequences.
Since

hocolimI : Hom(I,CAT)→ CAT

is a strict 2-functor, it sends any equivalence between C and D to an equivalence in
CAT between the categories hocolimI C and hocolimI D. Another consequence of
the equivalence between C and D is that for every i ∈ I, the categories C(i) and D(i)
are equivalent. With these observations we reduce Corollary 4.2 to Theorem 4.1.

(i) Suppose D(i) is directly finite for every i ∈ ob(I) and I is directly finite.
Since direct finiteness is preserved under equivalence of categories [15, Lemma 3.2],
and C(i) is equivalent to D(i), we see that C(i) is directly finite for every i ∈
ob(I). Hence hocolimI C is directly finite by Theorem 4.1 (i). Since hocolimI D is
equivalent to hocolimI C, it is also directly finite, again by [15, Lemma 3.2].

(ii) Suppose that I is an EI-category, D(i) is an EI-category for every i ∈ ob(I), and

for every automorphism u : i
∼=−→ i the map iso(D(i)) → iso(D(i)), y 7→ D(u)(y) is

the identity. Since EI is preserved under equivalence of categories [15, Lemma 3.11],
and C(i) is equivalent to D(i), we see D(i) is an EI-category.
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We claim that for each automorphism u, the functor C(u) also induces the iden-
tity on isomorphism classes of objects of C(i). Let φ : D → C be a pseudo equiva-
lence, that is, an equivalence in the 2-category Hom(I,CAT). For x ∈ C(i), there
is a y ∈ D(i) and an isomorphism x ∼= φi(y). We have isomorphisms

C(u)(x) ∼= C(u)φi(y) ∼= φiD(u)(y) ∼= φi(y) ∼= x,

and C(u) induces the identity on isomorphism classes of objects of C(i). Then
hocolimI C is an EI-category by Theorem 4.1 (ii), and so is hocolimI D, again by
[15, Lemma 3.11].

(iii) and (iv) similarly follow from Theorem 4.1 (iii) and (iv), since property (FPR),
property (FFR), and the finiteness obstruction are all invariant under equivalence
of categories [15, Theorem 2.8].

(v) Suppose D(i) is of type (FPR) for every i ∈ ob(I). Then every C(i) is also of
type (FPR), since property (FPR) is invariant under equivalence of categories [15,
Theorem 2.8]. As in (3.9), we have for each i ∈ I the functor

αD(i) : D(i)→ hocolimI D
which sends an object d to the object (i, d) and a morphism g : d → d′ to the
morphism (idi, g ◦ D−1

i (d)). From a pseudo equivalence ψ : C → D we obtain a
strictly commutative diagram

(4.3) C(i)

ψi

��

αC(i)
// hocolimI C

hocolimI ψ

��

D(i)
αD(i)

// hocolimI D

for each i ∈ ob(I). Since the finiteness obstruction is invariant under equivalence
of categories [15, Theorem 2.8], we may use Theorem 4.1 (v) for C to obtain

o(hocolimI D;R) = (hocolimI ψ)∗(o(hocolimI C;R))

= (hocolimI ψ)∗

∑
n≥0

(−1)n ·
∑
λ∈Λn

αC(iλ)∗(o(C(iλ);R))


=
∑
n≥0

(−1)n ·
∑
λ∈Λn

(hocolimI ψ)∗ ◦ αC(iλ)∗(o(C(iλ);R))

=
∑
n≥0

(−1)n ·
∑
λ∈Λn

αD(iλ)∗ ◦ (ψiλ)∗(o(C(iλ);R))

=
∑
n≥0

(−1)n ·
∑
λ∈Λn

αD(iλ)∗(o(D(iλ);R)).

(vi) follows from (i), (iii), and (v) in the same way that Theorem 4.1 (vi) follows
from Theorem 4.1 (ii), (iii), and (v).

(vii) Suppose that I is directly finite and D(i) is directly finite for every object
i ∈ ob(I). Suppose also for every object i ∈ I the category D(i) is of type (L2). By
the proof of Corollary 4.2 (i) above, the values of the strict functor C are directly
finite categories. If Γ1 and Γ2 are equivalent categories, then Γ1 is both directly
finite and of type (L2) if and only if Γ2 is both directly finite and of type (L2) [15,
Lemma 5.15 (i)]. Since each D(i) is directly finite, of type (L2), and equivalent to
C(i), we see that each C(i) is also directly finite and of type (L2). So we may now
apply Theorem 4.1 (i) and (vii) to C and conclude that hocolimI C is directly finite
and of type (L2). Again using the preservation of the direct finiteness and (L2)
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under equivalence [15, Lemma 5.15 (i)], and the equivalence of hocolimI C with
hocolimI D, we see hocolimI D is both directly finite and of type (L2).

To prove the formulas for χ
(2)
f and χ(2), we use [15, Lemma 5.15 (ii)], which says:

if F : Γ1 → Γ2 is an equivalence of categories, and both Γ1 and Γ2 are both directly

finite and of type (L2), then U (1)(F )χ
(2)
f (Γ1) = χ

(2)
f (Γ2) and χ(2)(Γ1) = χ(2)(Γ2).

We apply this to the equivalences ψi and hocolimI ψ, and use the commutativity
of diagram (4.3). For readability, we write (hocolimI ψ)∗ for U(hocolimI ψ) and
α(iλ)∗ for U (1)(α(iλ)), et cetera.

χ
(2)
f (hocolimI D) = (hocolimI ψ)∗χ

(2)
f (hocolimI C)

= (hocolimI ψ)∗
∑
n≥0

(−1)n ·
∑
λ∈Λn

α(iλ)∗
(
χ

(2)
f (C(iλ))

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

(hocolimI ψ)∗ ◦ αC(iλ)∗
(
χ

(2)
f (C(iλ))

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

αD(iλ)∗ ◦ (ψiλ)∗
(
χ

(2)
f (C(iλ))

)
=
∑
n≥0

(−1)n ·
∑
λ∈Λn

αD(iλ)∗
(
χ

(2)
f (D(iλ))

)
.

The formula for χ(2) follows by summing up the components of the functorial L2-
Euler characteristics. �

4.2. The Case of an Indexing Category of Type (FPR). The Homotopy
Colimit Formula of Theorem 4.1 can be extended to the case, where I is of type
(FPR) and not necessarily of type (FFR) as follows (recall that the existence of a
finite I-CW -model for EI implies I is of type (FFR), since cellular chains then
provide a finite free resolution of R. ). The evaluation of the covariant functor

EH : I → H-SPACES

of (3.8) at every object i ∈ I is an H-CW -complex. Composing it with the cellular
chain complex functor yields a covariant functor

C∗(E
H) : I → RH-CHCOM

whose evaluation at every object in I is a free RH-chain complexes. Since by as-
sumption C(i) is of type (FPR), C∗(E

H)(i) is RH-chain homotopy equivalent to a
finite projective RH-chain complex for every object i ∈ I. Since RmorI(?, i)⊗RI
C∗(E

H) is RH-isomorphic to C∗(E
H), we conclude for every finitely generated pro-

jective RΓ-module P that P⊗RIC∗(EH) is RH-chain homotopy equivalent to finite
projective RH-chain complex and in particular possesses a finiteness obstruction
o
(
P ⊗RI C∗(EH

)
∈ K0(RH) (see [20, Theorem 11.2 on page 212]). Because of [20,

Theorem 11.2 on page 212] we obtain a homomorphism

αC : K0(RI)→ K0(RH), [P ] 7→ o
(
P ⊗RI C∗(EH)

)
.

The chain complex version of the proof of Lemma 3.11 shows that the RH-chain
complex C∗(I) ⊗RI C∗(EH) is a projective RH-resolution of the constant RΓ-
module R. Choose a finite projective RI-chain complex P∗ and an RI-chain

homotopy equivalence f∗ : P∗
'−→ C∗(I). Then f∗ ⊗RI id : P∗ ⊗RI C∗(EH) →

C∗(I)⊗RIC∗(EH) is an RΓ-chain homotopy equivalence of RΓ-chain complexes and
P∗ ⊗RI C∗(EH) is is RH-chain homotopy equivalent to finite projective RH-chain
complex by [20, Theorem 11.2 on page 212]. This implies

o(Γ;R) = o
(
P∗ ⊗RI C∗(EH)

)
.
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We conclude from [20, Theorem 11.2 on page 212]

o
(
P∗ ⊗RI C∗(EH)

)
=
∑
n≥p

(−1)n · o
(
Pn ⊗RI C∗(EH)

)
Since o(I;R) is

∑
n≥p(−1)n · [Pn], this implies

Theorem 4.4 (The Homotopy Colimit Formula for an indexing category of type
(FPR)). We obtain under the conditions above

αC
(
o(I;R)

)
= o(H;R).

Remark 4.5. See Section 7 for a comparison with Leinster’s Euler characteristic
and his results.

5. Examples of the Homotopy Colimit Formula

We now present several examples of the Homotopy Colimit Formula Theorem 4.1.
These include the cases: I with a terminal object, the constant functor, the trivial
functor, homotopy pushouts, homotopy orbits, and the transport groupoid. For
the transport groupoid in the finite case, see also Example 8.33.

Example 5.1 (Homotopy Colimit Formula for I with a terminal object). Suppose
that I has a terminal object t and C : I → CAT is a functor. Then morI(−, t)
is a finite I-CW model for EI. If every category C(i) is of type (FPR), then
o(H;R) = α(t)∗(o(C(t);R). If I and C additionally satisfy the hypotheses of The-
orem 4.1 (vi), then χf (H;R) = χf (C(t);R) and χ(H;R) = χ(C(t);R), as we antic-

ipated in Example 3.5. Similar statements hold for χ
(2)
f and χ(2) in the L2 case.

Example 5.2 (Homotopy Colimit Formula for a constant functor). Consider the
situation of Theorem 4.1 in the special case where the covariant functor C : I →
CAT is constant C ∈ CAT . Suppose that I admits a finite I-CW -model for EI.
Then we may draw various conclusions about the homotopy colimit H = I × C.
If I and C are of type (FPR), then so is I × C. If I and C are of type (FFR),
then so is I × C. The statements in Theorem 4.1 provide us with formulas in

terms of C for o(I × C;R), χf (I × C;R), χ(I × C;R), χ
(2)
f (I × C), and χ(2)(I ×

C). We recall that the invariants o, χf , χ, χ
(2)
f , and χ(2) are multiplicative [15,

Theorems 2.17, 4.21, and 5.17].

Example 5.3 (Homotopy Colimit Formula for the trivial functor). Consider the
situation of Theorem 4.1 in the special case where the covariant functor C : I →
CAT is constantly the terminal category, which consists of a single object and
its identity morphism. Then hocolimI C agrees with I, as we see from Exam-
ple 3.4. Obviously C(i) is of type (FFR), its finiteness obstruction is [R] ∈ K0(R) =
K0(RC(i)) and both its Euler characteristic and L2-Euler characteristic equals 1.
We obtain from Theorem 4.1

o(I;R) =
∑
n≥0(−1)n ·

∑
λ∈Λn

[RmorI(?, iλ)] ∈ K0(RI);

χf (I;R) =
∑
n≥0(−1)n ·

∑
λ∈Λn

iλ ∈ U(Γ);

χ(I;R) =
∑
n≥0(−1)n · |Λn| ∈ Z;

χ
(2)
f (I) =

∑
n≥0(−1)n ·

∑
λ∈Λn

iλ ∈ U (1)(I);

χ(2)(I) =
∑
n≥0(−1)n · |Λn| ∈ R.

Example 5.4 (Homotopy pushout formula). Let I be the category with objects
j, k and ` such that there is precisely one morphism from j to k and from j to `
and all other morphisms are identity morphisms.

I = { k j
g

oo h // ` }
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By Example 2.6, the category I admits a finite model for the classifying I-space
EI.

A covariant functor C : I → CAT is the same as specifying three categories C(j),
C(k) and C(`) and two functors C(g) : C(j) → C(k) and C(h) : C(j) → C(`). Let
H = hocolimI C be the homotopy colimit. Let α(i) : C(i) → H be the canonical
functor for i = j, k, `. Then we obtain a square of functors which commutes up to
natural transformations

C(j)
C(g)

//

C(h)

��

α(j)

""EEEEEEEEE
C(k)

α(k)

��

C(`)
α(`)

// H.

It induces diagrams which do not commute in general

K0(RC(j))
C(g)∗

//

C(h)∗

��

α(j)∗

''NNNNNNNNNNN
K0(RC(k))

α(k)∗

��

K0(RC(`))
α(`)∗

// K0(H)

and

U(C(j))
C(g)∗

//

C(h)∗

��

α(j)∗

&&MMMMMMMMMM
U(RC(k))

α(k)∗

��

U(RC(`))
α(`)∗

// U(H).

Suppose that C(i) is of type (FPR) for i = j, k, `. We conclude from Theorem 4.1 (iii)
that H is of type (FPR) and

o(H;R) = α(k)∗
(
o(C(k);R)) + α(`)∗

(
o(C(`);R))− α(j)∗

(
o(C(j;R)); ∈ K0(RH);

χf (H;R) = α(k)∗
(
χf (C(k);R)

)
+ α(`)∗

(
χf (C(`);R)

)
− α(j)∗

(
χf (C(j);R)

)
; ∈ U(H);

χ(H;R) = χ(C(k);R) + χ(C(`);R)− χ(C(j);R); ∈ Z;

χ
(2)
f (H) = α(k)∗

(
χ

(2)
f (C(k)

)
+ α(`)∗

(
χ

(2)
f (C(`))

)
− α(j)∗

(
χ

(2)
f (C(j))

)
; ∈ U (1)(H);

χ(2)(H) = χ(2)(C(k)) + χ(2)(C(`))− χ(2)(C(j)); ∈ R.

Example 5.5 (Homotopy orbit formula). Suppose that a group G acts on a cat-

egory C from the left. This can be viewed as a covariant functor Ĝ→ CAT whose

source is the groupoid Ĝ with one object and G as its automorphism group. Let
H = hocolimĜ C be its homotopy colimit, also called the homotopy orbit. Notice
that H and C have the same set of objects.

Suppose there is a finite model for BG of the group G, or equivalently, a finite

model for the Ĝ-classifying space EĜ of the category Ĝ. Let χ(BG) ∈ Z be its
Euler characteristic. Let α : C → H be the canonical inclusion. Suppose that C is
of type (FPR). Then we conclude from Theorem 4.1 (iii) that H is of type (FPR)
and we have

o(H;R) = χ(BG) · α∗
(
o(C;R)

)
∈ K0(RH);

χf (H;R) = χ(BG) · α∗
(
χf (C;R)

)
∈ U(H);

χ(H;R) = χ(BG) · χ(C;R) ∈ Z;

χ
(2)
f (H;R) = χ(BG) · α∗

(
χ

(2)
f (C;R)

)
∈ U (1)(H);

χ(2)(H;R) = χ(BG) · χ(2)(C;R) ∈ R.

Example 5.6 (Transport groupoid). Let G be a group and let S be a left G-set.
Its transport groupoid GG(S) has S as its set of objects. The set of morphisms from
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s1 to s2 is {g ∈ G | gs1 = s2}. The composition is given by the multiplication in G.
Denote by S the category whose set of objects is S and which has no morphisms
besides the identity morphisms. The group G acts from the left on S. One easily
checks that GG(S) is the homotopy orbit of S defined in Example 5.5.

Recall [15, Lemma 6.15 (iv)]: if Γ is a quasi-finite EI-category and for any
morphism f : x → y in Γ, the order of the finite group {g ∈ aut(x) | f ◦ g = f} is
invertible in R, then Γ is of type (FPR) if and only if iso(Γ) is finite and for every
object x ∈ ob(Γ) the trivial R[x]-module R is of type (FPR). Thus, category S is
of type (FPR) if and only if S is finite. Suppose that S is of type (FPR) and there
is a finite model for BG. Obviously o(S;R) is given in K0(RS) = ⊕SK0(R) by the
collection {[R] ∈ K0(R) | s ∈ S}.

Suppose for simplicity that G acts transitively on S. Fix an element s ∈ S.
Let Gs be its isotropy group. Since S is finite, Gs is a subgroup of G of finite
index, namely [G : Gs] = |S|. The transport groupoid GG(S) is connected and the
automorphism group of s is Gs. Hence evaluation at s induces an isomorphism

ev : K0(RGG(S))
∼=−→ K0(R[Gs]).

The composition

K0(RS)
α∗−−→ K0(RGG(S))

∼=−→ K0(R[Gs])

sends o(S;R) to |S| · [RGs], where α : S → GG(S) is the obvious inclusion. Hence
Example 5.5 implies

ev
(
o(GG(S);R)

)
= χ(BG) · |S| · [RGS ] ∈ K0(RGs).

Since BG has a finite model, BGs as a finite covering of BG has a finite model.
The cellular RGs-chain complex of EGs yields a finite free resolution of the trivial
RGs-module R. This implies

ev
(
o(GG(S);R)

)
= χ(BGs) · [RGs] ∈ K0(RGs).

Hence we obtain the equality in K0(RGs)

χ(BGs) · [RGs] = χ(BG) · |S| · [RGS ] = χ(BG) · [G : Gs] · [RGs].

This is equivalent to the equality of integers

χ(BGs) = χ(BG) · [G : Gs].

This equation is compatible with the well-know fact that for a d-sheeted covering
X → X of a finite CW -complex X the total space X is again a finite CW -complex
and we have χ(X) = d · χ(X).

For the transport groupoid in the finite case, see also Example 8.33.

6. Combinatorial Applications of the Homotopy Colimit Formula

The classical Inclusion-Exclusion Principle follows from the Homotopy Colimit
Formula Theorem 4.1. We can also easily calculate the cardinality of a coequalizer
in SETS in certain cases. These are different proofs of Examples 3.4.d and 3.4.b of
[18].

Example 6.1 (Inclusion-Exclusion Principle). Let X be a set and S0, . . . , Sq finite
subsets of X. Then

|S0 ∪ S1 ∪ · · · ∪ Sq| =
∑
∅6=J⊆[q]

(−1)|J|−1 ·

∣∣∣∣∣∣
⋂
j∈J

Sj

∣∣∣∣∣∣ .
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Proof. Let I be the category in Example 2.7 and consider the finite I-CW -model
for its classifying I-space constructed there. We define a functor C : I → SETS by
C(J) :=

⋂
j∈J Sj . The functor

hocolimI C // colimI C = S0 ∪ S1 ∪ · · · ∪ Sq
is an equivalence of categories, since it is surjective on objects and fully faithful.
We have

|S0 ∪ S1 ∪ · · · ∪ Sq| = χ(S0 ∪ S1 ∪ · · · ∪ Sq)
= χ(hocolimI C)

=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ))

=
∑
n≥0

(−1)n ·
∑

J⊆[q] and |J|=n+1

χ(C(J))

=
∑
n≥0

(−1)n

 ∑
J⊆[q] and |J|=n+1

∣∣∣∣∣∣
⋂
j∈J

Sj

∣∣∣∣∣∣


=
∑
∅6=J⊆[q]

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Sj

∣∣∣∣∣∣
 .

�

Example 6.2 (Cardinality of a Coequalizer). Let I be the category

a
f

//

g
// b

and C : I → SETS a functor such that:

(i) the maps Cf and Cg are injective,
(ii) the images of the maps Cf and Cg are disjoint, and

(iii) the sets Ca and Cb are finite.

Then the coequalizer colim C has cardinality |Cb| − |Ca|.

Proof. The assumptions that Cf and Cg are injective and have disjoint images imply
that the functor

hocolimI C // colimI C
is fully faithful. Clearly it is also surjective on objects, and hence an equivalence
of categories. The category I has a finite I-CW -model for its classifying I-space,
constructed explicitly in Example 2.5. By Theorem 4.1, we have

χ(colimI C) = χ(hocolimI C)

=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ))

= χ(Cb)− χ(Ca)

= |Cb| − |Ca|.
�

7. Comparison with Results of Baez-Dolan and Leinster

We recall Baez-Dolan’s groupoid cardinality [4] and Leinster’s Euler character-
istic for certain finite categories [18], compare our Homotopy Colimit Formula with
his result on compatibility with Grothendieck fibrations, prove an analogue for in-
dexing categories I that admit finite I-CW -models for their classifying I-spaces,
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and finally mention a Homotopy Colimit Formula for Leinster’s invariant in a re-
stricted case.

7.1. Review of Leinster’s Euler Characteristic. Let Γ be a category with
finitely many objects and finitely many morphisms. A weighting on Γ is a function
q• : ob(Γ)→ Q such that for all objects x ∈ ob(Γ), we have∑

y∈ob(Γ)

|morΓ(x, y)| · qy = 1.

A coweighting q• on Γ is a weighting on Γop. If a finite category admits both a
weighting q• and a coweighting q•, then

∑
y∈ob(Γ) q

y =
∑
x∈ob(Γ) qx. For a discusion

of which matrices have the form (|morΓ(x, y)|)x,y∈ob(Γ) for some finite category Γ,

see [2] and [3].
As proved in [15], free resolutions of the constant RΓ-module R give rise to

weightings on Γ.

Theorem 7.1 (Weighting from a free resolution, Theorem 7.6 of [15]). Let Γ be a
finite category. Suppose that the constant RΓ-module R admits a finite free resolu-
tion P∗. If Pn is free on the finite ob(Γ)-set Cn, that is

(7.2) Pn = B(Cn) =
⊕

y∈ob(Γ)

⊕
Cyn

RmorΓ(?, y),

then the function q• : ob(Γ)→ Q defined by

qy :=
∑
n≥0

(−1)n · |Cyn|

is a weighting on Γ.

Corollary 7.3 (Construction of a weighting from a finite I-CW -model for the
classifying I-space, Corollary 7.8 of [15]). Let I be a finite category. Suppose that
I admits a finite I-CW -model X for the classifying I-space. Then the function
q• : ob(I)→ Q defined by

qy :=
∑
n≥0

(−1)n(number of n-cells of X based at y)

is a weighting on I.

As explained in Section 7.5 of [15], we use this Corollary to obtain several of
Leinster’s weightings in [18] from I-CW -models for I-classifying spaces. If I has a
terminal object, then we obtain from the finite model in Example 2.4 the weighting
which is 1 on the terminal object and 0 otherwise. The category I = {j ⇒ k} in
Example 2.5 has weighting (qj , qk) = (−1, 1). The category I = {k ← j → `} in
Example 2.6 has weighting (qj , qk, q`) = (−1, 1, 1). Lastly, the category in Example
2.7 has weighting qJ := (−1)|J|−1.

Weightings and coweightings play a key role in Leinster’s notion of Euler char-
acteristic. See also [9].

Definition 7.4 (Definition 2.2 of [18]). A finite category Γ has an Euler charac-
teristic in the sense of Leinster if it admits both a weighting and a coweighting. In
this case, its Euler characteristic in the sense of Leinster is defined as

χL(Γ) :=
∑

y∈ob(Γ)

qy =
∑

x∈ob(Γ)

qx

for any choice of weighting q• or coweighting q•.
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The Euler characteristic of Leinster agrees with the groupoid cardinality of Baez-
Dolan [4] in the case of a finite groupoid G, namely they are both∑

x∈iso(G)

1

| autG(x)|
.

The Euler characteristic of Leinster agrees with our L2-Euler characteristic in some
cases, as in the following Lemma.

Lemma 7.5 (Lemma 7.3 of [15]). Let Γ be a finite EI-category which is skeletal,
i.e., if two objects are isomorphic, then they are equal. Suppose that the left autΓ(y)-
action on morΓ(x, y) is free for every two objects x, y ∈ ob(Γ).

Then Γ is of type (FPQ) and of type (L2), and has an Euler characteristic in the
sense of Leinster. Furthermore, the rational L2-Euler characteristic in [15, Remark
5.21] coincides with Leinster’s Euler characteristic of Definition 1.12:

χ(2)(Γ;Q) = χL(Γ).

Moreover, these are both equal to∑
l≥0

(−1)l ·
∑

x0,xl∈ob(Γ)

∑ 1

| aut(xl)| · | aut(xl−1)| · · · · · ·| aut(x0)|
,

where the inner sum is over all paths x0 → x1 → · · · → xl from x0 to xl such that
x0, . . . , xl are all distinct [15, Example 6.33].

This concludes the review of Leinster’s and Baez-Dolan’s invariants and how they
relate to our L2-Euler characteristic. Next we turn to a comparison of homotopy
colimit results.

7.2. Comparison with Leinster’s Proposition 2.8. Leinster’s result on homo-
topy colimits, rephrased in our notation to make the comparison more apparent, is
below.

Theorem 7.6 (Proposition 2.8 of [18]). Let I be a category with finitely many
objects and finitely many morphisms, and C : I → CAT a pseudo functor. Assume
that hocolimI C has finitely many objects and finitely many morphisms. Let q• be a
weighting on I and suppose that hocolimI C and all C(i) have Euler characteristics.
Then

χL(hocolimI C) =
∑

i∈ob(I)

qiχL(C(i)).

For example, if I = {k ← j → `}, then I admits the weighting (qj , qk, q`) =
(−1, 1, 1) as discussed above. If C : I → CAT is a pseudo functor, and the homotopy
pushout has finitely many objects and finitely many morphisms, and hocolimI C
and all C(i) have Euler characteristics, then Leinster’s result says that the homotopy
pushout has the Euler characteristic χL(C(k)) + χL(C(`))− χL(C(j)).

Leinster’s Proposition 2.8 tells us how the Euler characteristic is compatible
with Grothendieck fibrations. We can remove the hypothesis of finite from that
Proposition, at the expense of requiring a finite model, as in the following theorem
for our invariants.

Theorem 7.7. Let I be a finite category. Suppose that I admits a finite I-CW -
model X for the classifying I-space of I. Let q• : ob(I) → Q be the I-Euler
characteristic of X, namely

qi :=
∑
n≥0

(−1)n(number of n-cells of X based at i).
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Let C : I → CAT be a functor such that for every object i the category C(i) is of type
(FPC). Suppose that I is directly finite and C(i) is directly finite for all i ∈ ob(I).
Then

χ(hocolimI C) =
∑

i∈ob(I)

qiχ(C(i)).

If each C(i) is of type (L2) rather than (FPR), we have

χ(2)(hocolimI C) =
∑

i∈ob(I)

qiχ(2)(C(i)).

Proof. By Theorem 4.1 (vi), we have

χ(hocolimI C) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ))

=
∑
n≥0

(−1)n ·
∑

i∈ob(I)

(number of n-cells of X based at i)χ(C(i))

=
∑

i∈ob(I)

∑
n≥0

(−1)n(number of n-cells of X based at i)χ(C(i))

=
∑

i∈ob(I)

qiχ(C(i)).

The statement for χ(2) is proved similarly from Theorem 4.1 (vii). �

Remark 7.8. Whenever χ(colimI C) = χ(hocolimI C), Theorem 4.1 and Theo-
rem 7.7 can be used to calculate the Euler characteristic of a colimit. Indeed, the
hypotheses of Examples 6.1 and 6.2 guaranteed the equivalence of the colimit and
the homotopy colimit, and this equivalence was a crucial ingredient in those proofs.
For example, under Leinster’s hypothesis of familial representability on C, each
connected component of hocolimI C has an initial object, so

χ(hocolimI C) = χ(colimI C)

(recall that colimI C is the set of connected components of hocolimI C whenever C
takes values in SETS). This is the role of familial representability in his Examples
3.4.

As a corollary to our Homotopy Colimit Formula for the L2-Euler characteristic,
we have a Homotopy Colimit Formula for Leinster’s Euler characteristic when they
agree.

Corollary 7.9 (Homotopy Colimit Formula for Leinster’s Euler characteristic). Let
I be a skeletal, finite, EI-category such that the left autI(y)-action on morI(x, y)
is free for every two objects x, y ∈ ob(I). Assume there exists a finite I-CW -model
for the I-classifying space of I. Let C : I → CAT be a covariant functor such that
for each i ∈ ob(I), the category C(i) is a skeletal, finite, EI and the left autC(i)(d)-
action on morC(i)(c, d) is free for every two objects c, d ∈ ob(C(i)). Assume for every
object i ∈ ob(I), for each automorphism u : i → i in I, and each x ∈ iso(C(i)) we

have C(u)(x) = x.
Then H := hocolimi∈I C is again a skeletal, finite, EI-category such that the left

autH(h)-action on morH(g, h) is free for every two objects g, h ∈ ob(hocolimi∈I C),
and

χL(H) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

χL(C(iλ)).
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Proof. The category H is an EI-category by Theorem 4.1 (ii). Skeletality and
finiteness of H follow directly from the skeletality and finiteness of I and C(i), and
the definition of H. The hypotheses on C(i) imply that χ(2)(C(i)) = χL(C(i)) by
Theorem 7.5, and similarly χ(2)(H) = χL(H). Finally, Theorem 4.1 (vii), which
is the Homotopy Colimit Formula for the L2-Euler characteristic χ(2), implies the
formula is also true for Leinster’s Euler characteristic χL in the special situation of
the Corollary. �

8. Scwols and Complexes of Groups

As an illustration of the Homotopy Colimit Formula, we consider Euler charac-
teristics of small categories without loops (scwols) and complexes of groups in the
sense of Haefliger [16], [17] and Bridson-Haefliger [10]. One-dimensional complexes
of groups are the classical Bass-Serre graphs of groups [32]. For finite scwols, the
Euler characteristic, L2-Euler characteristic, and Euler characteristic of the clas-
sifying space all coincide, essentially because finite scwols admit finite models for
their classifying spaces. The Euler characteristic of a finite scwol is particularly easy
to find: one simply chooses a skeleton, counts the paths of non-identity morphisms
of length n, and then computes the alternating sum of these numbers.

Scwols and complexes of groups are combinatorial models for polyhedral com-
plexes and group actions on them. The poset of faces of a polyhedral complex is a
scwol. Suppose a group G acts on an Mκ-polyhedral complex by isometries preserv-
ing cell structure, and suppose each group element g ∈ G fixes each cell pointwise
that g fixes setwise. In this case, the quotient is also an Mκ-polyhedral complex,
say Q, and we obtain a pseudo functor from its scwol of faces into groups. Namely,
to a face σ of Q, one associates the stabilizer Gσ for a selected representative σ of
σ. Inclusions of subfaces of Q then correspond to inclusions of stabilizer subgroups
up to conjugation. This pseudo functor is the complex of groups associated to the
group action.

However, it is sometimes easier to work directly with the combinatorial model
rather than with the original Mκ-polyhedral complex, and consider instead ap-
propriate group actions on the associated scwol, as in Definition 8.11. Then the
quotient category of a scwol is again a scwol, and the associated pseudo functor
on the quotient scwol is called the complex of groups associated to the group ac-
tion. Any group-valued pseudo functor on a scwol that arises in this way is called
developable.

Our main results in this section concern the Euler characteristics of homotopy
colimits of complexes of groups associated to group actions in the sense of Defi-
nition 8.11. Theorem 8.30, concludes that the Euler characteristic and L2-Euler
characteristic of the homotopy colimit are χ(X/G) and χ(2)(X )/|G| respectively, G
and X are finite. These formulas provide necessary conditions for developability.
That is, if F is a pseudo functor from a scwol Y to groups, one may ask if there are
a scwol X and a group G such that Y is isomorphic to X/G and F is the associated
complex of groups. To obtain conditions on χ(X ), χ(2)(X ), and |G|, one forms
the homotopy colimit of F , calculates its Euler characteristic and L2-Euler charac-
teristic, and then compares with the formulas of Theorem 8.30. A simple case is
illustrated in Example 8.31. Another application of the formulas is the computation
of the Euler characteristic and L2-Euler characteristic for the transport groupoid
of a finite left G-set, as in Example 8.33. We finish with Theorem 8.35, which
extends Haefliger’s formula for the Euler characteristic of the classifying space of
the homotopy colimit of a complex of groups in terms of Euler characteristics of
lower links and groups.
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One novel aspect of our approach is that we do not require scwols to be skele-
tal. We prove in Theorem 8.24 that any scwol with a G-action in the sense of
Definition 8.11 can be replaced by a skeletal scwol with a G-action, and this pro-
cess preserves quotients, stabilizers, complexes of groups, and homotopy colimits.
Moreover, if the initial G-action was free on the object set, then so is the G-action
on the object set of the skeletal replacement.

We begin by recalling the notions in Chapter III.C of [10], rephrased in the
conceptual framework of 2-category theory.

Notation 8.1 (2-Category of groups). We denote by GROUPS the 2-category of
groups. Objects are groups and morphisms are group homomorphisms. The 2-cells
are given by conjugation: a 2-cell (g, a)

H

a

!!

a′

== G(g,a)

��

is an element g ∈ G such that ga(h)g−1 = a′(h) for all h ∈ H. The vertical
composition is (g2, a2)� (g1, a1) = (g2g1, a1) and the horizontal composition of

H

a

!!

a′

== G(g,a)

��

b

!!

b′

==K(k,b)

��

is (kb(g), ba).

Definition 8.2 (Scwol). A scwol2 is a small category without loops, that is, a
small category in which every endomorphism is trivial.

Example 8.3. The categories {j ⇒ k} and I = {k ← j → `} of Examples 2.5
and 2.6 are scwols. Every partially ordered set is a scwol, for example, the set of
simplices of a simplicial complex, ordered by the face relation, is a scwol. The poset
of non-empty subsets of [q], and its opposite category in Example 2.7, are scwols.
The opposite category of a scwol is also a scwol.

Lemma 8.4. Every scwol is an EI-category and consequently also directly finite.

Proof. Every endomorphism in a scwol is trivial, and therefore an automorphism,
so every scwol is an EI-category. By [15, Lemma 3.13], every EI-category is also
directly finite.

For a direct proof of direct finiteness: if u : x→ y and v : y → x are morphisms in
a scwol, then vu and uv are automorphisms, and hence both vu = idx and uv = idy
hold automatically. �

Theorem 8.5 (Finite scwols admit finite models). Suppose I is a finite scwol.
Then I admits a finite I-CW -model for its I-classifying space in the sense of
Definition 2.2.

Proof. By Lemma 2.13, we may assume that I is skeletal.
Since I has only finitely many morphisms, no nontrivial isomorphisms, and

no nontrivial endomorphisms, there are only finitely many paths of non-identity

2Bridson-Haefliger additionally require scwols to be skeletal [10, page 574]. However, we do
not require scwols to be skeletal, since we prove in Theorem 8.24 that general statements about
scwols can be reduced to the skeletal case.
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morphisms. Thus the bar construction of EbarI Remark 2.10 has only finitely
many I-cells. �

Corollary 8.6. Any finite scwol I is of types (FFR) and (FPR) for every associa-
tive ring R with identity. Moreover, any finite scwol is also of type (L2).

Proof. The cellular R-chains of the finite model in Theorem 8.5 provide a finite, free
resolution of the constant module R. By Theorem 1.15, any directly finite category
of type (FPC) is of type (L2). Scwols are directly finite by Lemma 8.4. �

Example 8.7 (Invariants coincide for finite scwols). Let I be any finite scwol.
Then by Corollary 8.6 it is of type (FFR), and by Theorems 1.10 and 1.16, we have

χ(I;R) = χ(BI;R) = χ(2)(I).

If Γ is any skeleton of I, then by (1.18),

(8.8) χ(Γ;R) =
∑
n≥0

(−1)ncn(Γ),

where cn(Γ) is the number of paths of n-many non-identity morphisms in Γ. But
by [15, Theorem 2.8 and Corollary 4.18], type (FFR) and the Euler characteristic
are invariant under equivalence of categories, so χ(I;R) = χ(Γ;R) and all three
invariants χ(I;R), χ(BI;R), χ(2)(I) are given by (8.8).

We now arrive at the main notion of this section: a complex of groups. We will
apply our Homotopy Colimit Formula to complexes of groups.

Definition 8.9 (Complex of groups). Let Y be a scwol. A complex of groups
over Y is a pseudo functor F : Y → GROUPS such that F (a) is injective for every
morphism a in Y. For each object σ of Y, the group F (σ) is called the local group
at σ.

In 2.5 and 2.4 of [16] and [17] respectively, Haefliger denotes by CG(X) the
homotopy colimit of a complex of groups G(X) : C(X) → GROUPS. Bridson-
Haefliger use the notation CG(Y) in [10, III.C.2.8]. The fundamental group of a
complex of groups G(X) in the sense of [10, Definition 3.5 on p. 548] equals the
fundamental group of the geometric realization of CG(X) [10, Appendix A.12 on
p. 578 and Remark A.14 on p. 579]. Categories which are homotopy colimits of
complexes of groups are characterized on page 283 of [17]. From the homotopy col-
imit CG(X), Haefliger reconstructs the category C(X) and the complex of groups
G(X) up to a coboundary on pages 282-283 of [17]. Every aspherical realization
[17, Definition 3.3.4] of G(X) has the homotopy type of the geometric realization of
the homotopy colimit, denoted BG(X) [17, page 296]. The homotopy colimit also
plays a role in the homology and cohomology of complexes of groups [17, Section 4];
a left G(X)-module is a functor CG(X)→ ABELIAN-GROUPS.

We return to our recollection of complexes of groups and examples that arise
from group actions.

Definition 8.10 (Morphism from a complex of groups to a group). A morphism
from a complex of groups F to a group G is a pseudo natural transformation F ⇒
∆G, where ∆G indicates the constant 2-functor Y → GROUPS with value G.

A typical example of a complex of groups equipped with a morphism to a group
G arises from an action of a group G on a scwol, as we now explain.

Definition 8.11 (Group action on a scwol, 1.11 of [10]). An action of a group G
on a scwol X is a group homomorphism from G into the group of strictly invertible
functors X → X such that
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(i) For every nontrivial morphism a of X and every g ∈ G, we have gs(a) 6=
t(a),

(ii) For every nontrivial morphism a of X and every g ∈ G, if gs(a) = s(a),
then ga = a.

Example 8.12. The group G = Z2 acts in the sense of Definition 8.11 on the scwol
X pictured below.

x
h //

g

��

z

y x′
g′

oo

h′

OO

The group Z2 permutes respectively x and x′, g and g′, and h and h′. The objects
y and z are fixed. This action of Z2 on X is a combinatorial model for a reflection
action on S1.

Example 8.13. Consider the scwol X pictured below. The group G = {±1} n Z
acts on X in the sense of Definition 8.11 where −1 ·m := −m and n ·m := m+ 2n.

· · · // −2 −1 //oo 0 1 //oo 2 · · ·oo

This action of {±1} n Z on X is a combinatorial model for the reflection and
translation action on R.

Lemma 8.14 (Consequences of group action conditions). If a group G acts on a
scwol X in the sense of Definition 8.11, then the following statements hold.

(i) If σ is an object of X and g, h ∈ G, then gσ ∼= hσ implies gσ = hσ.
(ii) If a is a morphism in X and g, h ∈ G, then gs(a) = hs(a) implies ga = ha.
(iii) If σ ∼= τ , then the stabilizers Gσ and Gτ are equal.

Proof. For statement (i), gσ ∼= hσ implies σ ∼= (g−1h)σ, so σ = (g−1h)σ by Defini-
tion 8.11 part (i), and gσ = hσ.

For statement (ii), gs(a) = hs(a) implies (h−1g)s(a) = s(a) and (h−1g)a = a by
Definition 8.11 part (ii), and finally ga = ha.

For statement (iii), suppose σ ∼= τ and gσ = σ. We have

τ ∼= σ = gσ ∼= gτ.

Then τ = gτ by (i), and Gσ ⊆ Gτ . The proof is symmetric, so we also have
Gτ ⊆ Gσ. �

Definition 8.15 (Quotient of a scwol by a group action). If a scwol X is equipped
with a G-action as above, then the quotient scwol X/G has objects and morphisms

ob(X/G) := (ob(X ))/G

mor(X/G) := (mor(X ))/G.

Composition and identities are induced by those of X .

Remark 8.16 (III.C.1.13 of [10]). The projection functor p : X → X/G induces a
bijection

(8.17) {a ∈ mor(X )|sa = x} // {b ∈ mor(X/G)|sb = p(x)}

for each x ∈ X . If G/X is connected and the action of G on ob(X ) is free, then
p is a covering of scwols. That is, in addition to the bijection (8.17), p induces a
bijection

(8.18) {a ∈ mor(X )|ta = x} // {b ∈ mor(X/G)|tb = p(x)}

for each x ∈ X .
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Lemma 8.19 (Quotients of skeletal scwols are skeletal). If X is a skeletal scwol,
and a group G acts on X in the sense of Definition 8.11, then the quotient scwol
X/G is also skeletal.

Proof. Suppose σ is isomorphic to τ in X/G. We show σ is actually equal to τ .
If a : σ → τ is an isomorphism with inverse b, then there are lifts a : σ → τ and
b : τ → σ′ in X , and an element g ∈ G such that g(ba) = idσ. Since g fixes the
source of ba, the group element g fixes also ba, so ba = idσ and σ′ = σ. Since ab is
an endomorphism of τ , it is therefore idτ . By the skeletality of X , we have σ = τ ,
and also σ = τ . �

Lemma 8.20 (Quotient of path set is set of paths in quotient). Suppose X is a sc-
wol equipped with an action of a group G in the sense of Definition 8.11. Let Λn(X )
respectively Λn(X/G) denote the set of paths of n-many non-identity composable
morphisms in X respectively X/G. Give Λn(X ) the induced G-action. Then the
function

Λn(X )→ Λn(X/G)

(a1, . . . , an) 7→ (a1, . . . , an)

induces a bijection Λn(X )/G→ Λn(X/G).

Proof. Remark 8.16 implies that a path (a1, . . . , an) in X consists entirely of non-
identity morphisms if and only if the projection (a1, . . . , an) in X/G consists en-
tirely of non-identity morphisms, so from now on we work only with non-identity
morphisms. Note

(g1a1, g2a2, . . . , gnan) = (g1a1, g1a2, . . . , g1an)

by Definition 8.11 (ii). For injectivity, we have (a1, . . . , an) = (b1, . . . , bn) if and
only if for some gi ∈ G

(g1a1, g2a2, . . . , gnan) = (b1, . . . , bn),

which happens if and only if for some g ∈ G
(ga1, ga2, . . . , gan) = (b1, . . . , bn),

(take g = g1). For the surjectivity, we can lift any path (a1, . . . , an) by first lifting
a1 to a1, then a2 to a2, and so on using Remark 8.16. �

Definition 8.21 (Complex of groups from a group action on a scwol, 2.9 of [10]).
Let G be a group and X a scwol upon which G acts in the sense of Definition 8.11.
Let p : X → X/G denote the quotient map.

Haefliger and Bridson-Haefliger define a pseudo functor F : X/G→ GROUPS as
follows. In the procedure choices are made, but different choices lead to isomorphic
complexes of groups. For each object σ of X/G, choose an object σ of X such that
p(σ) = σ (our overline convention is the opposite of that in [10]). Then F (σ) is
defined to be Gσ, the isotropy group of σ under the G-action.

If a : σ → τ is a morphism in X/G, then there exists a unique morphism a in X
such that p(a) = a and sa = σ, as in (8.17). For a we choose an element ha ∈ G
such that ha · ta is the object τ of X chosen above so that p(τ) = τ . An injective
group homomorphism F (a) : Gσ → Gτ is defined by

F (a)(g) := hagh
−1
a .

Suppose a and b are composable morphisms of X/G. We define a 2-cell in
GROUPS

Fb,a : F (b) ◦ F (a)⇒ F (b ◦ a)

to be (hbah
−1
a h−1

b
, F (b) ◦ F (a)) as in Notation 8.1.
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The pseudo functor F : X/G → GROUPS is called the complex of groups as-
sociated to the group action of G on the scwol X . This complex of groups comes
equipped with a morphism to the group G, that is, a pseudo natural transformation
F ⇒ ∆G. The inclusion of each isotropy group F (σ) = Gσ into G provides the
components of the pseudo natural transformation.

Example 8.22. The quotient scwols for the actions in Examples 8.12 and 8.13 are
both {k ← j → `}, and the associated complexes of groups are both

Z2 {0}oo // Z2.

Remark 8.23. If a group G acts on a scwol in the sense of Definition 8.11, each ob-
ject stabilizer is finite, and the quotient scwol is finite, then the associated complex
of groups F : X/G→ GROUPS satisfies all of the hypotheses of the Homotopy Col-
imit Formula in Theorem 4.1 (vi) and (vii) for pseudo functors in Corollary 4.2 (vii).
See Examples 8.12, 8.13, and 8.22.

Even without finiteness assumptions, it is possible to replace scwols with skeletal
scwols and preserve much of the accompanying structure, as Theorem 8.24 explains.

Theorem 8.24 (Reduction to skeletal case). Let G be a group acting on a scwol
X in the sense of Definition 8.11. Let Γ be any skeleton of X , i : Γ → X the
inclusion, and r : X → Γ a functor equipped with a natural isomorphism ir ∼= idX ,
and satisfying ri = idΓ. Then there is a G-action on the scwol Γ in the sense of
Definition 8.11 such that following hold.

(i) The functor r is G-equivariant.
(ii) The induced functor r on quotient categories is an equivalence of categories

compatible with the quotient maps, that is, the diagram below commutes.

(8.25) X r //

pX

��

Γ

pΓ

��

X/G
r

// Γ/G

(iii) The inclusion i : Γ → X preserves stabilizers, that is Giγ = Gγ for all
γ ∈ ob(Γ). Note that the inclusion may not be G-equivariant.

(iv) Choices can be made in the definitions of FX and FΓ (the complexes of
groups associated to the G-actions on X and Γ in Definition 8.21), so that
the diagram below strictly commutes.

(8.26) X/G r //

FX %%KKKKKKKKKK
Γ/G

FΓ

yyttttttttt

GROUPS

(v) The functor (r, id) is an equivalence of categories

(r, id) : hocolimX/G F
X // hocolimΓ/G F

Γ.

(vi) If G acts freely on ob(X ), then G acts freely on ob(Γ).

Proof. To define the group action, let Aut(X ) and Aut(Γ) denote the strictly invert-
ible endofunctors on X and Γ respectively, and consider the monoid homomorphism

(8.27) ϕ : Aut(X )→ End(Γ), F 7→ r ◦ F ◦ i.
This is strictly multiplicatively because the natural isomorphism of functors

r ◦G ◦ F ◦ i = r ◦G ◦ idX ◦F ◦ i
∼= (r ◦G ◦ i) ◦ (r ◦ F ◦ i),
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and skeletality of Γ imply ϕ(GF ) agrees with ϕ(G)ϕ(F ) on objects of Γ, so each
component ϕ(GF )(γ) ∼= ϕ(G)ϕ(F )(γ) is an endomorphism in the scwol Γ, and is
therefore trivial. By naturality, ϕ(GF ) and ϕ(G)ϕ(F ) agree on morphisms also.
Consequently, ϕ takes values in Aut(Γ) and is a homomorphism ϕ : Aut(X ) →
Aut(Γ).

We define a G-action on Γ as the composite of the action G → Aut(X ) with ϕ
in (8.27). We indicate the action of g on Γ by ϕ(g)γ and the action of g on X by
gx. For simplicity, we suppress i from the notation when indicating the G-action
in X on objects and morphisms of Γ, so for example, if a is morphism in Γ, then
gs(a) actually means gis(a) throughout.

To verify Definition 8.11 (i) for Γ, suppose a is a nontrivial morphism in Γ and
ϕ(g)s(a) = t(a), that is rgs(a) = t(a). Then gs(a) ∼= t(a) in X , but gs(a) 6= t(a) (for
if gs(a) = t(a), then a must be trivial by Definition 8.11 (i) for X ). Let b : t(a) →
gs(a) be an isomorphism in X and consider the composite ba : s(a) → t(a) →
gs(a). Then gs(ba) = gs(a) = t(ba), so ba must be trivial by Definition 8.11 (i)
for X . Consequently a = b−1 is a nontrivial isomorphism in Γ, and we have a
contradiction to either skeletality or the no loops requirement. Thus ϕ(g)s(a) 6=
t(a), and Definition 8.11 (i) holds for Γ. The verification of Definition 8.11 (ii) is
shorter: if a is a nontrivial morphism in Γ and ϕ(g)s(a) = s(a), that is rgs(a) =
s(a), then gs(a) ∼= s(a), and gs(a) = s(a) by Lemma 8.14 (i) for X . Finally, ga = a
by Definition 8.11 (ii) for X , rga = a as a is in Γ, and ϕ(g)a = a. The action
of G on Γ satisfies Definition 8.11 and we may form the quotient scwol Γ/G as in
Defition 8.15, which is skeletal by Lemma 8.19.

(i) For the G-equivariance of r, let f : x→ y be a morphism in X and consider the
naturality diagram.

rgirx
rgirf=ϕ(g)r(f)

//

∼=
��

rgiry

∼=
��

rgx
rgf

// rgy

The vertical morphisms must be identities by skeletality of Γ and the no loops
condition, so ϕ(g)r(f) = r(gf). Equivariance on objects then follows by taking
f = idx.

(ii) Diagram (8.25) commutes by definition of r. The functor r is surjective on
objects because pΓr and pX are. The functor r is fully faithful since the equivariant
bijection r(x, y) : morX (x, y) → morΓ(r(x), r(y)) induces the equivariant bijection
r(pXx, pX y).

(iii) Let γ ∈ ob(Γ), and suppose giγ = iγ. Then

ϕ(g)γ
def
= r(giγ)

= r(iγ)

= γ

and Giγ ⊆ Gγ . Now suppose ϕ(g)γ = γ. Then r(giγ) = γ by definition, and
giγ ∼= iγ in X , which says g · iγ = iγ by Lemma 8.14 (i), and Gγ ⊆ Giγ .

(iv) We claim that choices can be made in the definitions of the associated complexes
of groups FX and FΓ (see Definition 8.21) so that diagram (8.26) strictly commutes.
First choose a skeleton Q of the quotient X/G, define FX on object in the skeleton
Q, and then extend to all objects in X/G. For every q ∈ ob(Q), select a q ∈ ob(X )
such that pX (q) = q and define FX (q) = Gq. We remain with the choice of
the selected preimage q of q throughout. If σ ∈ ob(X/G) and a : q ∼= σ is an
isomorphism in X/G, then also define FX (σ) = Gq. This is allowed, since a : q ∼= σ
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implies existence of morphisms a : q → gσσ and b : σ → gqq in X , and the composite

q a // gσσ
gσb // gσgqq

is trivial by Definition 8.11 (i). The opposite composite is also trivial, as it is a
loop, and we have q ∼= gσσ in X . Then by Lemma 8.14 (iii), Gq = Ggσσ and we may
define FX (σ) = Gq because pX (gσσ) = σ. In particular, the selected preimage of σ
in X is gσσ and we select ha = eG for a : q ∼= σ in Definition 8.21, so FX (a) = idGq .
We remark that the isomorphism a is the only morphism q → σ because there are
no loops in X/G, so the element gσσ is uniquely defined as the target of the unique
morphism a with source q and pX -image a.

We next define FΓ on objects of Γ/G using the equivalence r and the definition of
FX on objects of Q. For q ∈ ob(Q), we also define FΓ(r(q)) = Gq. This is allowed:

for r(q) = r(q) we choose r(q) as the selected preimage in ob(Γ), and ir(q) ∼= q in
X , so Gr(q) = Gir(q) = Gq by (iii) and Lemma 8.14 (iii). Every γ ∈ ob(Γ/G) is of

the form r(q) for a unique q ∈ Q, so FΓ is now defined on all objects of Γ/G, and
we have FΓ ◦ r = FX on all objects of X/G.

We must now define FX and FΓ on morphisms so that FΓ◦r = FX for morphisms
also. The idea is to first define FX on morphisms in the skeleton Q, then extend to
all of X/G, and then define FΓ on morphisms of Γ/G. If a : q1 → q2 is a morphism
in Q, then there is a unique morphism a in X with source q1 and pX (a) = a. Select
any ha such that hata = q2. Then we define an injective group homomorphism
F (a) : Gq1 → Gq2 by

F (a)(g) := hagh
−1
a .

If b : σ1 → σ2 is any morphism in X/G, then there exists a unique a in Q and a
unique commutative diagram with vertical isomorphisms as below.

q1
a //

∼=
��

q2

∼=
��

σ1
b

// σ2

Then we choose hb to be ha, and we consequently have F (a) = F (b). If c : r(q1)→
r(q2) is a morphism in Γ/G, then there is a unique a : q1 → q2 in Q with r(a) = c
and we choose hc to be ha. Manifestly, we have FΓ ◦ r = FX . The coherences of
FX and FΓ are also compatible, since they are determined by the ha’s.

(v) From (ii) we know r is a surjective-on-objects equivalence of categories and
from (iv) we have FX = FΓ ◦ r. From this, one sees

(r, id) : hocolimX/G F
X = hocolimX/G F

Γ ◦ r // hocolimΓ/G F
Γ

is an equivalence of categories.

(vi) If the action of G on ob(X ) is free, then for each γ ∈ ob(Γ), the group Gγ = Giγ
(see (iii)) is trivial, and G acts freely on ob(Γ). �

Remark 8.28. In Theorem 8.24, it is even possible to select a skeleton so that the
inclusion is G-equivariant, though we will not need this. See Section 9.

In [15, Theorems 5.27 and 5.33], we proved the compatibility of the L2-Euler
characteristic with coverings and isofibrations of finite connected groupoids. The-
orem 8.29 is an analogue for scwols (see Remark 8.16).
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Theorem 8.29 (Compatibility with free actions on finite scwols). Let G be a finite
group acting on a finite scwol X . If G acts freely on ob(X ), then

χ(X/G) =
χ(X )

|G|
and χ(2)(X/G) =

χ(2)(X )

|G|
.

Recall χ and χ(2) agree for finite scwols by Example 8.7.

Proof. By Theorem 8.24 (i), (ii), and (vi), we may assume X is skeletal.
A consequence of Definition 8.11 (ii) (independent of skeletality) is that an el-

ement g ∈ G fixes a path a = (a1, . . . , an) in X if and only if g fixes sa1, so
Gsa1 = Ga. Then G acts freely on Λn(X ), since it acts freely on ob(X ).

The scwol X/G is skeletal by Lemma 8.19, and by Example 8.7 and Lemma 8.20
we have

χ(2)(X/G) =
∑
n≥0

(−1)ncn(X/G)

=
∑
n≥0

(−1)n|Λn(X/G)|

=
∑
n≥0

(−1)n|Λn(X )/G|

=
∑
n≥0

(−1)n
|Λn(X )|
|G|

=
1

|G|
∑
n≥0

(−1)n|Λn(X )|

=
1

|G|
∑
n≥0

(−1)ncn(X )

=
χ(2)(X )

|G|
.

�

A complex of groups is called developable if it is isomorphic to a complex of
groups associated to a group action. A classical theorem of Bass-Serre says that
every complex of groups on a scwol with maximal path length 1 is developable.
The following gives a necessary condition of developability of a complex of groups
from a scwol and group of specified Euler characteristics.

Theorem 8.30 (Euler characteristics of associated complexes of groups). If a finite
group G acts on a finite scwol X in the sense of Definition 8.11, and F : X/G →
GROUPS is the associated complex of groups, then

χ(hocolimX/G F ;R) = χ(X/G;R)

and

χ(2)(hocolimX/G F ) =
χ(2)(X )

|G|
=
χ(X ;C)

|G|
=
χ(BX ;C)

|G|
.

Proof. By Theorem 8.24 (i), (ii), (iv), and (v), we may assume X is skeletal. Then
X/G is also skeletal by Lemma 8.19.

Let Λn(X ) respectively Λn(X/G) denote the set of paths of n-many non-identity
composable morphisms in X respectively X/G. Then by Lemma 8.20, the sets
Λn(X )/G and Λn(X/G) are in bijective correspondence.

We will also use that fact that an element g ∈ G fixes a path a = (a1, . . . , an) in X
if and only if g fixes sa1, so Gsa1 = Ga. This is a consequence of Definition 8.11 (ii).
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By Theorem 8.5, EbarX and Ebar(X/G) are finite models for the skeletal scwols
X and X/G, and the n-cells are indexed by Λn(X ) and Λn(X/G), respectively. For
each path (a1, . . . , an) in X , there is an n-cell in EbarX based at sa1. A similar
statement holds for X/G and Ebar(X/G).

Now we may apply the Homotopy Colimit Formula to the associated complex
of groups F : X/G → GROUPS by Remark 8.23. For the Euler characteristic, we
have

χ(hocolimX/G F ;R) =
∑
n≥0

(−1)n ·

 ∑
a∈Λn(X/G)

χ(F (sa1);R)


=

∑
n≥0

(−1)n ·

 ∑
a∈Λn(X/G)

1


=

∑
n≥0

(−1)n|Λn(X/G)|

=
∑
n≥0

(−1)ncn(X/G)

= χ(X/G;R).

For the L2-Euler characteristic on the other hand, we have

χ(2)(hocolimX/G F ) =
∑
n≥0

(−1)n ·

 ∑
a∈Λn(X/G)

χ(2)(F (sa1))


=

∑
n≥0

(−1)n ·

 ∑
a∈Λn(X/G)

1

|Gsa1 |


=

∑
n≥0

(−1)n ·

 ∑
a∈Λn(X )/G

1

|Ga|


=

∑
n≥0

(−1)n ·

 ∑
a∈Λn(X )/G

|orbit(a)|
|G|


=

1

|G|
∑
n≥0

(−1)n ·

 ∑
a∈Λn(X )/G

|orbit(a)|


=

1

|G|
∑
n≥0

(−1)n|Λn(X )|

=
1

|G|
∑
n≥0

(−1)ncn(X )

=
χ(2)(X )

|G|
.

�

Example 8.31. By the classical theorem of Bass-Serre, any injective group homo-
morphism

(8.32) G0 → G1
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is a developable complex of groups. The L2-Euler characteristic of the homotopy
colimit of (8.32) is 1/|G1| by Example 5.1. Theorem 8.30 then says we must have

|G|
|G1|

= χ(2)(X ) = χ(BX ;C)

if (8.32) is to be developable from a scwol X by an action of G in the sense of
Definition 8.11. Thus (8.32) is not developable from any scwol X whose geometric
realization has Euler characteristic 0, such as {j ⇒ k}. Nor can (8.32) be developed
from any scwol X with χ(BX ;C) negative. The integer |G| must also be divisible
by |G1|, since χ(BX ;C) is always an integer. Moreover, the Euler characteristic
of X must be less than or equal to |G|. This trivial example illustrates how one
can find necessary conditions on X and G if a given complex of groups is to be
developable from X and G.

Example 8.33 (Euler characteristics of transport groupoid in finite case). Let X
be a finite set and G a finite group acting on X. Considering X as a scwol, we clearly
have an action in the sense of Definition 8.11. The associated complex of groups
F : X/G→ GROUPS assigns to orbit(σ) the stabilizer Gσ. The homotopy colimit
hocolimX/G F is equivalent to the transport groupoid GG(X) of Example 5.6, so

χ
(
GG(X);R

)
= χ(hocolimX/G F ;R) = χ(X/G;R) = |X/G|.

For the L2-Euler characteristic, on the other hand, we have

χ(2)
(
GG(X)

)
= χ(2)(hocolimX/G F ) =

χ(2)(X)

|G|
=
|X|
|G|

,

a formula obtained in [4].

We also generalize the following formula of Haefliger for the Euler characteristic
of the homotopy colimit of a (not necessarily developable) complex of groups.

Theorem 8.34 (Corollary 3.5.3 of [17]). Let G(X) be a complex of groups over a
finite ordered simplicial cell complex X. Assume that each Gσ is the fundamental
group of a finite aspherical cell complex. Then BG(X) has the homotopy type of a
finite complex and its Euler-Poincaré characteristic is given by3

χ(BG(X)) =
∑

σ∈ob(C(X))

(1− χ(Lkσ))χ(Gσ).

The terms in Haefliger’s theorem have the following meanings. An ordered sim-
plicial cell complex X is by definition the nerve of a skeletal scwol, denoted C(X).
The notation BG(X) signifies the geometric realization of the nerve of the homo-
topy colimit of the pseudo functor G(X) : C(X) → GROUPS. An aspherical cell
complex is one for which all homotopy groups beyond the fundamental group van-
ish. The lower link Lkσ of the object σ is the full subcategory of the scwol σ ↓ C(X)
on all objects except 1σ.

Theorem 8.35 (Extension of Corollary 3.5.3 of [17]). Let I be a finite skeletal
scwol and F : I → GROUPS a complex of groups such that for each object i of I,
the group F (i) is of type (FFZ). Then

χ(B hocolimI F ) =
∑

i∈ob(I)

(1− χ(BLki))χ(BF (i)),

3Haefliger’s original formula has, instead of the lower link Lσ , the upper link Lσ , which is
the full subcategory of the scwol C(X) ↓ σ on all objects except 1σ . However, this is merely a
typo, for if we use the upper link Lkσ and consider the example C(X) = {k ← j → `} with
pseudo functor G(X)(`) := Z and G(X)(j) := G(X)(k) := {0}, then χ(BG(X)) = χ(S1) = 0 but∑

(1− χ(Lkσ))χ(Gσ) = 1.
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where B indicates geometric realization composed with the nerve functor.

Proof. All hypotheses of Theorem 4.1(vi) are satisfied. The skeletal scwol I is
directly finite by Lemma 8.4 and admits a finite I-CW -model for its I-classifying
space by Theorem 8.5. Each group C(i) is automatically directly finite, and assumed
to be of type (FFZ). The bar construction model EbarI in Remark 2.10 has an
n-cell based at i for each path of n-many non-identity morphisms in I

i→ i1 → i2 → · · · → in.

Each such path in I corresponds uniquely to a path of (n − 1)-many non-identity
morphisms in the scwol Lki beginning at the object i→ i1. Thus

1− χ(BLki) = 1−
∑
m≥0

(−1)mcm(Lki)

= 1−
∑
m≥0

(−1)mcard{(m+ 1)-paths in I beginning at i}

= 1−
∑
n≥1

(−1)n−1card{n-paths in I beginning at i}

= 1 +
∑
n≥1

(−1)ncard{n-paths in I beginning at i}

=
∑
n≥0

(−1)ncard{n-paths in I beginning at i}.

Then by Theorem 4.1 (i), Theorem 4.1 (iv), Theorem 1.16, and Theorem 4.1 (vi),
we have

χ(B hocolimI F ) = χ(hocolimI F )

=
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(F (iλ))

=
∑

i∈ob(I)

(
1− χ(BLki)

)
· χ(F (i))

=
∑

i∈ob(I)

(
1− χ(BLki)

)
· χ(BF (i)).

�

Remark 8.36. The assumptions in our Theorem 8.35 on the groups F (i) are
related to the assumptions in Theorem 8.34 on the groups Gσ in that any finitely
presentable group of type (FFZ) admits a finite model for its classifying space.

9. Appendix

Let G be a group acting on a scwol X in the sense of Definition 8.11. In con-
nection with Theorem 8.24, we remark that it is possible to choose a skeleton Γ0

of X , a G-equivariant functor r : X → Γ0, and a natural isomorphism η : ir ∼= idX
so that

• the inclusion i0 : Γ0 → X is G-equivariant,
• ri0 = idΓ0 , and
• for every object x ∈ ob(X ) and each g ∈ G, we have ηgx = gηx.

To prove this, we first choose the object set of Γ0 via an equivariant section of the
projection π : ob(X )→ iso(X ), which assigns to each object of X its isomorphism
class of objects. Let Θ denote the set of G-orbits of iso(X ). For each G-orbit θ ∈ Θ,
we use the axiom of choice to select an element xθ ∈ θ. For each θ, select then
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a π-preimage s(xθ) := xθ of xθ. On the orbit of each xθ we define the section s
by s(gxθ) := gxθ. This is well defined, for if g1xθ = g2xθ, then g1xθ ∼= g2xθ, and
g1xθ = g2xθ by Lemma 8.14 (i). Define the skeleton Γ0 to be the full subcategory
of X on the objects in the image of the equivariant section s : iso(X )→ ob(X ).

For each xθ, and each x ∈ xθ, choose an isomorphism ηx : xθ → x. For gx, we
define ηgx as gηx. Next, we define a functor r : X → Γ0 on objects x ∈ ob(X ) by
r(x) := sπ(x) and on morphisms f : x→ y by r(f) := ηy ◦f ◦η−1

x . Then η is clearly
a natural isomorphism, the inclusion i0 : Γ0 → X is G-equivariant, and ri0 = idΓ0

.
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