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'Abstract

Let E — M be an oriented real vector bundle of even rank over a smooth
compact manifold M of dimension N, with or without boundary. We show
that each section f of E gives rise to a primitive of the Euler form of £
away from the zero set of f. This leads to the generalized Hopf formula
for vector fields on a compact manifold. A very particular case of the Hopf
formula is the Gauss-Bonnet theorem on a compact manifold with boundary.
The proof is similar in spirit to that of Bott and Chern (Acta Math., 114
(1965)). We indicate how these techniques may be used to highlight the de
Rham cohomology of M in relation to the homotopy class of the mapping
A: M xO0M — RV \ {0}, where A is a defining mapping for the diagonal of
M x M and M the “interior” of M. As a consequence, we derive an explicit
formula for residues of closed differential forms in a shell.

AMS subject classification: primary: 55M20; secondary: 57R20, 58A10.
Key words and phrases: differential forms, Fuler characteristic, Hopf for-
mula,
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4 Section 1

1  Introduction

The classical Hopf formula says that if f : M — T(M) is a vector field on an
oriented compact closed manifold M and each critical point of f is isolated, then

2. deg(f.p) = x(M),

pe€f=10)

where deg(f, p) is the local degree of f at p and x(M) the Euler characteristic of
the manifold M (see for instance Milnor [M, p.37]). Thus, the sum on the left is
actually independent of the particular choice of the vector field f. We give a short
proof of the Hopf formula in the appendix.

For compact manifolds with boundary this formula is no longer true, even if f
has no critical points on the boundary.

Example 1.1 Let M = B, \ By, where B, is a ball with center 0 in RY and
B, CC B, \ {0} is a smaller ball. Consider the vector field

T

f(z)

TN

1
= §V(:z$+...-|~:hv-?\,)

in 117[ Then, the only critical point of f in M is p = 0 and deg(f,0) = 1, while
X(M) =1+ (-1
O

The aim of this paper is to extend the Hopf formula to smooth vector fields on
a compact manifold with boundary.

Our generalization of the Hopf formula relies on the observation that the Euler
characteristic of a compact closed manifold is equal to the integral of the Euler form
of M. We then show that a smooth vector field f on a compact manifold M of
even dimension gives rise to a primitive of the Euler form of M away from the set
of critical points of f. This enables us to write the integral of the Euler form of M
as the sum of two terms, the first of the two is the integral of the primitive over the
boundary of M, the second being the sum of local degrees of f at the critical points.

In particular, we may consider as f the gradient of a defining function p of
the boundary of M. Then, by the Morse Inequalities, the sum of local degrees of
f at the critical points is equal to the Euler characteristic of M. In this way we
obtain what Bott and Chern [BCh| called the relative Gauss-Bonnet Theorem. Our
solution falls short of providing an explicit formula for the primitive.

If M is a bounded domain in RV with C? boundary, then the Euler form of M
is zero. The integral over the boundary in the Gauss-Bonnet formula is none other
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than the Poincaré indez of the unit outward normal vector to the surface M. With
the help of this formula, we prove that the rotation on the boundary of M of the
unit outward normal vector to M is equal to the Euler characteristic of M. Hence
the same remains valid for all smooth vector fields f on M whose restrictions to the
boundary of M are homotopic to the unit outward normal vector of 8M.

Starting with the Gauss-Bonnet formula, we introduce a family of double dif-
ferential forms on M x M which gives rise to an explicit homotopy formula for
differential forms on M.

If M is of the form of “Swiss cheese” My \ (MyU...UMy), where My C M’
and M; C M, satisfy appropriate convexity conditions, the homotopy formula yields
a residue formula for closed differential forms in M, with singularities in the holes
Mii=1,... L

We briefly sketch also the case of complex-valued vector fields indicating how
these techniques result in the Rouchet principle for holomorphic mappings.

2 Integration of the Euler form

Let £ — M be an oriented real vector bundle of rank 2n over a smooth manifold
M, with or without boundary.

Fix a Euclidean metric (-,-) on E and a connection 8 : CZ(E) — CZ(E®AY)
on E preserving the metric, i.e., such that d (u,v); = (Ou,v);+ (v, 0v);, € M, for
all u,v € C2(E) (see Fedosov [F, p.27] 1).

Denote by Q = @ 0 8 the curvature of the connection d; this is a global section
of C2(Hom (E, E) ® A?).

Given any local orthonormal frame ey, . .., €2, for E, the curvature is represented
by a skew-symmetric matrix

Q= (Qj)iz1,...2n

1=1,..,2n

whose entries are 2-forms (ibid., p. 28). The Euler form of E is the differential form
of degree 2n on M defined by

X(E) = Pfaffian (QL Q)

™
1 o
- W Z (_1) (11 inin) Qfljl v Qinjﬂ’
) (1.1 noin)

where the sum is taken over all rearrangements (iy,71,-..,%n,Jn) Of the numbers
(1,2,...,2n — 1,2n) and €, j,,..injn) 18 the parity of the rearrangement. In other
words, x(E) is the coefficient of proportionality in the relation

n!

An
1 {1 1
(5 Z gﬂ{jﬁg/\&j) =X(E)81A.../\egn;

LA connection with this property is called Euclidean.
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it 1s known that it is independent of the choice of the local oriented orthonormal
frame for F (ibid., p. 29).
We are interested in evaluating the integral

/., x&) (21)

for compact manifolds M, with or without boundary (the dimension of M must be
equal to 2n, since otherwise the integral is zero).

The cohomology class of the Euler form x(E) is known to be independent of the
particular choice of the Euclidean connection 0 on E (¢bid., p. 29). Therefore, if M
is closed (i.e., compact and without boundary), then integral (2.1) is a topological
invariant of M (i.e., it does not depend on the choice of the connection). It is called
the Euler number of the bundle £. In particular, if £ = T(M), then integral (2.1)
is equal to the Euler characteristic of M (the Gauss-Bonnet-Chern Theorem).

We now restrict our attention to the case where M is a compact manifold with
boundary. If such is the case, it is convenient to write M rather than M, thus letting
M stand for the “interior” of M.

Theorem 2.1 Suppose that E possesses a section f which vanishes at no point
of M. Then the Euler form of E is ezact, i.e., there is a differential form ¢(f) €
C®(A*1T*(M)) such that d¢(f) = x(E) on M.

Proof. Let i)
' T _
e(z) = , TEM,
/()]
be the section, lying on the unit sphere of E, which corresponds to f.
Consider the connection d; in the bundle E, whose value at a section u € CZ2(E)

is
dwu(z) = Gu(z) + e(z) (v, De), — de(z) (u, )z, €M
(it is worth mentioning that any two connections in £ differ by a global one-form
AT € C2(Hom (E, E)® A').)
For each u,v € C2.(E), we have

(Ou,v)s + (u,01v), = (Ou,v)s + (u,0¢e)(e,v); — (u, e)z(Je,v),
+ (u, 0v), + (0e,v)z(u, €)r — (e,v)(u, d€)s
= (Ou,v)z + (u,0v);
= d(u,v)s

i.e., ) is a Fuclidean connection. Moreover,
Oie(z) = OJe(z)+ e(z) (e, 0e)r — Oe(x) (e, €)z
= 0,

for (e,e): =1 and (e, 8e), = 3 d(e,e); = 0. Hence 8, vanishes at the section e.
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Now, we consider the homotopy between @ and 4, i.e., the family of connections
in the bundle £

= D4 t(e(,0) = de(-e)) (22)
depending on the parameter ¢t € [0,1]. Analysis similar to the above shows that 4,

is a Euclidean connection in F.
Letting § = 8, o 0, denote the curvature of the connection, we get, for each

u € Ci(E),
Qu = O00u+ t(0e(u,0e) + ed(u,de), — 00e(u,e); + Oe A d(u,€),)
—te(Ou,de); + tie (e, Be)x A (u, Oe), + (8e, Be)z(u, €)z)
—t0e A (Ou, €)z — t*e A ((e, €)z(u, e); + (De, e)(u, e);)
= Qu+ (2t —t3)de A (u,d¢); +t(e(Qe,u), — Ne(e,u).), | (2.3)
since (e, de), = 0 and (Je, de); = 0.

Denote by x(E) = Pfaffian (51; Q,) the corresponding Euler form of the bundle
E. As

Qle = al (816)

= 0,
we can assert that y; = Pfaffian (2—1; Ql) =0.
Indeed, complete the section e to a local orthonormal frame e,,..., e, for F,

with e; = e. In this frame, the curvature () is represented by a skew-symmetric
matrix (£;;) with @y; = Q3 = 0 for all 2,5 = 1,...,2n. From this, the desired
conclusion follows.

Thus,

x(E) = Xo(E)

= _/01 (%Xt(E)) dt.

Our next goal is to find a primitive for £ x,(E). To this end, we invoke the
variation formula for the curvature (cf. Proposition 1.2.4 in Fedosov [F]), according
to which % Q, = o,[', where

I'=e(,de); — de(,e);. (2.4)

Hence it follows that

d
— Pfaffian (L Qg) erN... A ey
27

dl
1 1l 1 (d 1 1 A
-t (555 (50 500 A (3 5 o @uens)

1) 2N

1 1 1 . 1 1
= (n—l)f (5 TL; 5; (B;I‘).'J-e,- /\Cj) A (5 § g

A(n—1)
(Qt),-je,- A ej) . (25)
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Note that the equality (2.5) remains valid for each oriented orthonormal frame
€1y ..,€z,. In particular, for each fixed (¢,z) € [0,1] x M, we may choose a proper
basis. Namely, given any point (¢,z) € [0,1] x M, take ey, ..., egn such that Gie; = 0
at this point. Then, the covariant derivative d; coincides with the exterior derivative
d at this point. By Bianchi’s identity, we obtain

sl |(t,:a:) = a!tht,:v)
0,

so equality (2.5) implies
d 1
m Pfaffian (g Qt)

1

T 2 (n-1)I(27)" (h‘jlgm)(—l)‘nm """ i (D (Wi (W)

Combining this with the above expression for x(E), we derive the desired prim-
itive for the Euler form in the form

1 1
o) = '/o 7 (n—1)I(2m)" |
X ST (=1 (D)4 (Q)igis - - - (U inga A, (2.6)

('-l rj] |-~A:‘£n|jn)

where I is given by formula (2.4) and §; by formula (2.3). This completes the proof.

: a

It follows from Theorem 2.1 that, if E possesses a section f vanishing at no

point of M, then integral (2.1) can be reduced to an integral over the boundary of
M. Namely, we have, by Stokes’ formula,

JoxB) = [ dé()
L. ). (27)

3 Kronecker formula

In the sequel, we restrict our attention to the case where £ is the tangent bundle of
M, ie., E=T(M). In this case, f is a vector field on M vanishing nowhere in M.
Consider the particular case where M is a bounded domain in R?** with a smooth
boundary M (possibly consisting of several connected components).
Identifying T'(M) with M x R™ and taking 8 = d as the original connection on
E, we see at once that

2 (2t —t*)de A (-, de)s,

= e de); —de(-, e,
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z)8/dz;, with f; a C* function on M, we get

_t)t'j = (2t - tz) de; A de;,
F);j = € dej — €5 de,-,

Writing f(z) = ¥, f;
(

f—'\b,—.\

where e;(z) = I{%’ 7 =1,...,2n. Thus, the primitive ¢( ) becomes
1 1 e
) = T f) =iy a
X Z (—1)5(‘1'j1""'i"'j") e,-lde_,-l A d8;2 A d8j2 AU A de,-n A dejn
(il j]l |iﬂsjn)

= Zl( 1)J leJde[_]]

T2n

where oy is the area of the unit sphere in R and de[j] is the exterior product of

the differentials dey, ..., de,, one after another except de;.
Since 2 = 0, it follows that x(T'(M) = 0. Hence, formula (2.7) means that
=0 1
4 =0, (1)

as a matter of course.

Equality (3.1) can be easily extended to the case where f is a vector field on
M with isolated critical points (if such is the case, the number of critical points
is finite). For this purpose, we cut out small neighborhoods B(p,€) of the points
p € f71(0) and apply formula (3.1) to the domain M \ U,es-1(0) B(p, €). This yields

(f) = Z /Mnaﬁ(pc (3.2)

‘/aM\Upef—l(o)B(P-E)

for each € > 0 small enough.

Corollary 3.1 Suppose M is a bounded domain with smooth boundary in R*®
and f is a smooth vector field on M whose critical points are isolated and do not
meet OM. Then,

[ #h=- % deglfip) (3.3)
pef—1(0)
Proof. Indeed, if p € M is an “interior” critical point of f, then we may choose

¢ > 0 such that the ball B(p, ¢) lies entirely in M and contains no critical points of
f different from p. Then, by the Poincaré formulu

f;

— = =147 3J

/MnaB(p,c) W) = jfﬁB(pc) O2n E( Y |f| d|f|[ d
' = —deg(/f, P)

(cf. for instance Example 6.1.11 in Tarkhanov [T2]). Thus, if f has no critical points
on the boundary of M, then equality (3.2) reduces to (3.3), as required.

a

The equality (3.3) is known as the Rronecker formula (ibid., Remark 6.1.8). We

emphasize that it remains valid also for domains in an odd-dimensional space RV,



10 Section 4

4 The generalized Hopf formula

We are now in a position to extend the Hopf formula to the case of compact manifolds
with boundary.

Theorem 4.1 Suppose f is a vector field of class C* on an oriented compacl
manifold M (with or without boundary), whose critical points are isolated and do
not meet the boundary. Then,

foxw@m = [ s+ X degls) (1.1)

pES=1(0)

Proof. Choose an ¢ > 0 such that the balls B(p, ), p € f71(0), lie in the
interior of M and do not meet each other. Applying formula (2.7 to the manifold
with boundary M \ Upes-1(0)B(p, €), we obtain

Xty = [ sH- X [ o),

/M\Upef—l(O)B(p") pef-1(0) B(p.e)

for all € < €.

We are going to pass to the limit in both sides of this equality, when ¢ — 0.
Since the Euler form x(7'(M)) is smooth on the whole manifold M, the limit of the
left-hand side does exist and is equal to [y x(T(M)).

Moreover, each summand fyg, ) #(f) has a limit, when ¢ — 0. Indeed, if
0 < € < " < €, then we get, by Stokes’ formula,

oo s=[ sl =1
8B(p,c") 3B(p.’) 3(B(pe" N\B(p:e'))

| /B(,,,w,\g(p,c.,x(T(“_’”'
< sup |x(T(M))] meas (B(p, ¢")).

Hence it follows that (faB(p.e) qS(f)) e is a Cauchy net, as e — 0.

The same argument shows that the limit lime—o f55(,) #(f) is actually indepen-
dent on the particular choice of the base (B(p,¢)),,, for the neighborhood system of
the point p. In particular, we may require B(p, €) to be the ball in local coordinates
at p.

From what has already been proved, it follows that

[oxwen = [ sn- X dm [ 6(1). (42)

M pef-1(0) " “OB(Pe) ‘
We are thus left with the task of identifying the individual limits in the right-hand
side of (4.2).
To this end, we recall that the definition of the form ¢(f) includes a Euclidean
connection & on the tangent bundle T'(M) (cf. = 8%in (2.3)). In order to evaluate
the limit

i [ 6, (43)
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we only need to know the connection & in a neighborhood of p. We claim that the
particular choice of this local connection does not affect the limit (4.3). As each
local Euclidean connection can be extended to a global one, what we have to show
is that, if & and 8, are two connections on T'(M), which agree close to the boundary
of M, and ¢, and ¢, are the corresponding differential forms (2.6), then

El_':fg BB(p,c)(¢2 $1) =0
Indeed, since &; = @, close to the boundary of M, we deduce from (2.6), (2.4)
and (2.3) that ¢, = ¢ near GM. Moreover, letting x1 and x; denote the correspond-
ing Euler forms of T(M), we have y2 — x1 = d¢, where ¢ is a smooth differential
form of degree n — 1 on M, vanishing close to the boundary of M. Let us fix a
smooth function x with a compact support in the ball B(p, €), such that y =1 in
a neighborhood of the point p. Then,

lim aa(p.c)(¢2_¢l) = lim BB(p,c)X(¢2_¢l)
= —lim [ dx A (¢2 — d1) + x d(d2 — é1)

«=0 JM\B(p.)
= = [ &A= )+ x0a=x),

for dy vanishes near the singular point p.
Since supp x CC M, we get, by Stokes’ formula,

/M x(xa—x1) = . X d¢
= —/M dx A ¢,

whence

fim [ (#1=60) = = [ dxA($-61-9)
= = [ dx=1DA(g2=¢1- )

= = [ (=D(g=dr=d)+ [ (x=) A d(¢2—1-¢)
= 0
because (¢o—d1—¢) = 0 on IM and d(dy—¢1—¢) = 0 on M. This is the desired
conclusion.
Finally, we can assume, by decreasing €y if necessary, that the restriction of
the bundle T(M) to B(p,e€) is isomorphic to B(p,¢) x R*. Consider the local
connection @ in T(M) given by the exterior derivative in B(p,¢). Then, as in

Section 3, the form ¢(f) in B(p, €5) becomes L—l i (1)  e; de[j], whence

1 2n X f
Iim = —lim -1)” L die
=0 JoB(p.) o) ~0 J9B(p.c) 02n Jz;( ) 11 |f|[ d

= - deg(fa p))
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which gives (4.1) when substituted in (4.2).
(]
Formula (4.1) contains the Hopf formula as a very particular case. Indeed,
if M is closed, then the integral over the boundary in the right-hand side of (4.1)
disappears and we deduce that the integral of the Euler form is equal to the algebraic
sum of the local degrees of the vector field f at its critical points.

5 The relative Gauss-Bonnet Theorem

Let M be an oriented compact manifold with boundary, of dimension N = 2n and
let M be embedded in a differentiable manifold M’ without boundary, of the same
dimension.

We denote by M the interior of M and by M the boundary of M. We assume
that M is a submanifold of codimension 1 and class C? in M’ (hypersurface).

There exists a real-valued function p € CE(M’) such that M = {z € M’ :
p(z) < 0} and dp(z) # 0 for =z € M.

If p; and p, are two functions with these properties, then there is a positive
function k& € CJ(M’) such that p, = kp; on M’'. In this way we obtain what is
referred to as the defining function of the oriented hypersurface M.

By a stationary point of p is meant a point z° € M’ such that dp(z°) = 0.
Recall that a number v € R is said to be a critical value of p if the preimage p~'(v)
contains no stationary points of p.

Lemma 5.1 Let [a,b], a < b, be a closed interval containing no critical values
of p and let p~'[a,b] be compact. Then, the hypersurface p~'(a) is C? diffeomor-
phic to p~1(b) and the manifold with boundary p~'(—o00,a] is C? diffeomorphic to

-1

Proof. The idea of the proof is to push p~'(b) down to p~'(a) along the
orthogonal trajectories of the hypersurfaces p(z) = constant. See Milnor [M, p.12].
O
Choose a Riemannian metric on M’ (i.e., an inner product in the fibers T0,(M")
of the tangent bundle); and let (f’, f), denote the inner product of two tangent
vectors, as determined by this metric. The gradient of p is the vector.field Vp on M’
which is characterized by the identity (f, Vp). = f(p) (= directional derivative of p
along f) for any vector field f. In classical notation, in terms of local coordinates
z = (z1,...,xN), the gradient has components Z.‘;V:l gijéqr%, where (¢*7) is the inverse
to the matrix (gi;) of the Riemannian metric. This vector field Vp vanishes precisely
at the stationary points of p.
When applied to the vector field f = Vpon M, Theorem 4.1 yields the following
result.

Theorem 5.2 Let M C M’ be an oriented compact manifold with C? boundary
and let p € CE.(M') be a defining function of OM. Then,

[ x@@n) = [ 4(9p)+ x(1). (51)
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If M is a compact closed manifold, then (5.1) becomes [y x(T(M)) = x(M)
which is the content of the Gauss-Bonnet-Chern Theorem, as above. For this reason,
we call Theorem 5.2 the relative Gauss-Bonnet Theorem.

To prove Theorem 5.2 we recall several results of the Morse theory. The best
general reference here is the book of Milnor [M].

By a Morse function on M’ is meant a smooth function u all of whose stationary
points are non-degenerate, i.e., the Hessian (af.-:al;,-) 1s non-singular at those points.
It can be checked directly that non-degeneracy does not depend on the coordinate
system.

According to the Morse Lemma (cf. ibid., p. 6), if p is a non-degenerate sta-

tionary point of u, then there are local coordinates £ = (z;,...,zn) in some neigh-
borhood of p, in terms of which the function u is given in that neighborhood by
u(s) = u(p) — 1 — .. — P+ 2l o+ T

The set of Morse functions is known to be dense in the space of all smooth
functions on M’ in the topology of uniform convergence along with a finite number
of derivatives on compact subsets of M.

s he number ¢ = index (u, p) is called the indez of the stationary point; obviously,
it is independent of the local coordinates. If by pushing p'(b) down to p~'(a) we
cross a stationary point of p of index ¢, then the set p~!(—o0, b] has the homotopy
type of p~'(—o0, a] with an i-cell attached (ibid., p. 14).

There is a close connection between the number of stationary points of a function
u on a compact closed manifold M’ and certain topological invariants of the manifold.
In particular, the number

S (=1) #{p € Vu7'(0) : index (u,p) = 1}

i>0

is actually independent of the function u, coinciding as it does with the Euler char-
acteristic of M’ ( Weak Morse Inequalities, cf. ibid., p. 29).

We are now in a position to deduce Theorem 5.2 as a consequence of Theorem
4.1 and the Morse theory.

Proof. We first observe that the equality (5.1) depends only on the restriction
of the function p to an infinitesimal neighborhood of the boundary of M. By as-
sumption, p has no stationary points near M. Therefore, we can assume without
loss of generality that p is a Morse function on M, for if not, we correct p away
from a neighborhood of M in M’

If p is a Morse function on M’, then the critical points of the vector field Vp
are non-degenerate and do not meet M. Hence it follows, by Theorem 4.1, that

Jox@@m) = [ 6o+ S deg(Vp,p) (5.2

pEV—1(0)NM

i Vp(p) = 0, then p is a stationary point of the function p. Let 7 be the index
of p. Then there are local coordinates * = (z4,...,zN) with center at p, such that
p(e) = plp) - 2% — ...~ 2t + ahy +... + 2
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To evaluate the local degree of Vp at p, we invoke formula (3.3) according to
which

9p
deg(Vp, p) ] )it 87”
£ jal=c GNJZ: Vol IVPI Ll
where ¢ is small enough. Thus,
deg(Vp,p) = (-1) [ LSyt g
’ el=eon = 0 2l 2]

= (-1).

Hence
Y. deg(Vp,p) = Y (-1)'#{pe Vp ' (0)N M : index(p,p) =1}
pEV=1(0) i>0 :
= z(-n*’#{i-cens in M}
= x(i),

the last equality being a consequence of Theorem 3.2 in Milnor [M, p.14].
When substituted into (5.2), this gives (5.1), which completes the proof.

6 Poincare index

In this section we briefly discuss a particular case of the relative Gauss-Bonnet
theorem, when M is a bounded domain in R with a boundary of class C?. We
need not assume that N is even.

Fix a defining function p € C? (R") of the surface M, so that M = {z € RV :
p(z) < 0} and dplygy # 0. As described in Section 3, we consider the differential
form
G0 $* et B g Ve

= Vol ‘1 7

The integral — [o57 ¢(Vp) is called the rotation of the vector field Vp on the
boundary of M. This is known also as the Poincaré indez of the cycle (Vp)ydM
with respect to the point 0. A simple verification shows that the integral is actually
independent of the particular choice of the defining function p for 9M. Thus, it can
be referred to as the rotation of the unit outward normal vector on dM.

$(Vp) =

Corollary 6.1 For each domain M CC RN with C? boundary, the rotation of
the unit outward normal vector on OM is equal to the Euler characteristic of M.

Proof. The assertion of the corollary amounts to the fact that

= [, $(VP) = x(M).
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For even N, this follows from (5.1) because x(T(M)) = 0. For odd N, the proof
runs just as in Theorem 5.2, with Theorem 4.1 replaced by Corollary 3.1.
3

7 Double differential forms K, (F)

Given N-dimensional vectors vy,...,v, with entries in an algebra, we denote by
Dn, ...~ (v1,...,v,) the determinant of order N whose first N; columns are vy, the
second N, columns are v, etc., the last N, columns are v, where Ny +...+ N, = N.
The determinant is calculated by columns, i.e., det(vi;) = ¥, (=1)vi1 ... vign
where ¢; denotes the parity of the rearrangement I = (7;,...,7x) of the integers
(1,...,N).

For a smooth mapping F = F(z,y,t) of an open set & C M’ x M’ x R! to RV,
we consider the double differential forms K (F),1 < ¢ < N, of degree g — 1 in z
and of degree N — ¢ in y and t, given by

K, (F) (1) D W e (o dové
q == 1-9"1.N—9 y )
on{g-1I(N—q)! f_’% dr% (dy-i-dt)%

(7.1)
Moreover, we set Ky = Ky = 0.
It is worth mentioning that these double forms were first introduced by the
third author in [T1] (see also Tarkhanov [T2, 6.1.8}).

Lemma 7.1 The form K,(F(z,y,t)) is the component of degree q— 1 in z of the
“pull-back” F* K, (z) times (=1)N=9=1) where we first have to take full differentials
inz,y and t, then to place all the differentials in x after the differentials in y and
t, and finally to declare the form to be a double one.

Proof. The proof is straightforward.

a

Recall that two continuous mappings fo, fi : T3 — T3 of topological spaces are
said to be homotopic if there exists a continuous mapping f; : Ti x [0,1] — T, which
coincides with f; for ¢ = 0 and with f, for t = 1.

If fo and f; are homotopic and differentiable, then one can choose the homotopy
f: to be differentiable too, roughly speaking, of the same class as fo and f; (see
Theorem 8 of Pontryagin [P, p.64]).

From the topological point of view, if smooth mappings fo, fi : 9M — RV\ {0}
are homotopic, then they have the same rotations on M (see Krasnosel’skii and
Zabreiko {KZ, p.16]). :

From the analytical point of view, it follows from the Poincaré formula that
Jowr FHK(2) — oK\ (2) = 0. Hence the difference f1K,(z) — flI¢)(2) is, by the de
Rham Theorem, exact on OM .

Our next objective is to extend this obvious observation to the double forms

Ky(F(z,y,t)).
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Lemma 7.2 Let F = F(z,y,t) be a mapping of an open set Q C M’ x M’ x R!
to RN, of class C*. Then the following equality holds on the set 0\ F~1(0) :

do Ko (F) + (=)™ (dy + di) Ko (F) = 0. (7.2)

Proof. Using Lemma 7.1 and the equality dK;(2) = —6(z)dz in RY 2, we
obtain

dy Ko(F) + (=1)"*" (dy + di) Kgpa(F)
(=)0, (=) IV FEG (2)) 4 (=1)™ (dy + d) ()UK (2))

(=1)Ne+ 4 FE I (2)
(=1)Ve F¥ §(2)dz
0

’

for (z,y,t) € Q\ F~(0), as desired.
O
For another proof of Lemma 7.2, see the proof of Lemma 1.2 in the book of
Aizenberg and Dautov [AD].

Lemma 7.3 If fo(z,y), fi(z,y) are homotopic mappings of the set M x OM to
RN\ {0}, of class C?, and fi(z,y), t € [0,1], is a C? homotopy between them, then,
for every0 < q < N —1, we have on M x OM:

Kor1(f1) = Kgra(fo)
=, (=0 [ ) = (<14 (-0 [ K (f) dt).
(7.3)

Proof. It suffices to integrate equality (7.2) over t € [0,1] and to take into
account that

1 1
d, /0 4t Ky (f) dt = — /0 dt] dy K, (f) dt.

8 Homotopy formula

Denote by [diagonal (M’ x M’)] the current of integration over the diagonal sub-
manifold of M’ x M’

Example 8.1 If M’ =R", then
[diagonal (M’ x M")] = (=1)" A"§(z)dz,

where z = A(z,y) is the mapping of RN x RY — RV, given by A(z,y) =y — .
d

?Here, 8(z) stands for the Dirac functional in RV,
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We call a C? mapping z = A(z,y) of M’ x M’ — R¥ defining for the diagonal
of M’ x M', if AV§(z)dz = (~1)N [diagonal (M’ x M")).

For a mapping A : M’ x M’ — RY, being defining is equivalent to the following
conditions:

e diagonal (M’ x M") = {(z,y) e M' x M': A(z,y)=0};
e det %(m,y) > 0 for each (z,y) € A, -

as well as a number of similar conditions on other maximal minors of the Jacobi
matriz %ﬁ‘ﬂ?.
.y

Example 8.2 Let M’ be an open set in RY and

¢1(93,y) (yl - ml)
A(x’y)z ) et bl

¢n(z,y) (yv — 2N)
where ¢; € CE (M’ x M"), 7 =1,...,N. Then,

ai(ﬂt,x) = ¢u(z,2) ... ¢wlz, 2),

det —
eta

so A is a defining mapping for the diagonal of M’ x M’ if and only if
éi1(z,z)...¢n(z,2) >0 forall ze M.
a

When working with holomorphic mappings of Stein manifolds, we are not able
to ensure the existence of such a mapping in general. Moreover, if M’ is not paral-
lelizable, one can deduce from the results of Schneider [S] that it is even impossible
to satisfy only the second condition.

To obtain a defining mapping for the diagonal of M’ x M’ in case M’ is par-
allelizable, we may use the following simple construction (cf. Khenkin and Leiterer
[KhL, 4.2.4)).

Lemma 8.3 There exists a smooth mapping A : M’ x M' — T(M') such that
the following conditions are fulfilled:
1) A(z,y) € To(M') for all (z,y) € M'x M’, i.e., A is a section of the pull-back
of the bundle T(M') by the mapping (z,y) — z of M' x M' — M’; and
2) for every fized x € M', we have A(z,z) = 0 and the mapping A(z,y) from
M' to T,(M') is a diffeomorphism in some neighborhood of y = .

Proof. According to the Whitney Theorem, M’ can be embedded as a sub-
manifold into a space RY' for some large but finite N’. In other words, there
exists a smooth one-to-one mapping f : M’ — R such that, for all z € M’,

the Jacobi matrix of f (with respect to local coordinates) has maximal rank. Let
Tf: T(M') — T(R"') stand for the tangent mapping of f which is locally defined
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by the Jacobi matrix of f. Then T f is injective, and so there exists a smooth bundle
homomorphism 7' (-1} : f(M’) x RN' — T(M') with the property that Tf-DTf
is the identity mapping of T'(M’). Set

Alz,y) =TSV (f(2), fly) = f(2)), (s,9) € M x M

Then it is clear that condition 1) is fulfilled. Moreover, it follows from the Taylor
formula that 2) is satisfied.
O
The double differential forms K (A) provide us with reproducing kernels for
differential forms on M’

Lemma 8.4 If M is a relatively compact open subset of M' with a piecewise
smooth boundary and u € C'(AIT*(M)), then

= o YW A Ko (A2, 9))
+ [ duly) A Ko (AGe,0)) +d [ uly) A Ky(Alz,9)) ={ USRS

(8.1)

Proof. From the invariance of the exterior derivative under a differentiable
change of variables it follows that the current A* K(z) satisfies the fundamental
equation

d A'Ky(z) = (=1)" [diagonal (M’ x M")]

on M’ x M'. Combining this with Lemma 7.1, we deduce that the family of double
forms K,(A), ¢ =0,1,..., N, is a fundamental solution of the de Rham complex on
M'. To complete the proof, it suffices to use Corollary 2.5.1 in Tarkhanov [T2].
. O
Having disposed of this preliminary step, we can now invoke Lemma 7.3 to
modify formula (8.1) thus arriving at a homotopy formula with an arbitrary “barrier
function.”

Theorem 8.5 Let M be a compact manifold with a boundary of class C* and
let f= f(z,y) be a C* mapping of M x M to RN\ {0}. If f is homotopic to the

mapping A on M x OM and fi,t€[0,1],4sa C? homotopy between f and A, then,
for every form u € CY(AIT*(M)), we have

u(z) = — /3 L 60) A Ky (f(2,9)) + hdu + dhu, € M, (8.2)

where

hu(a) == [ ul) APE @) + [ ul) A Ko (Alz, )
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Proof. Setting f; = A and fo = f, we decompose the kernel K 41(A(z,y)) on
the set M x &M in accordance with equality (7.3). Substituting this decomposition
into the integral over the boundary in (8.1) and using Stokes’ formula, we derive
(8.2), as desired.

a

Thus, any smooth deformation of the mapping A(z,y) on M x M leads to an
integral representation of differential forms in M.

Example 8.6 Suppose f = f(z,y) is a continuous mapping of M x M to
RN\ {0} such that {f, A)zy > —I|f||A] on this set. Then, f is homotopic to A.
Indeed, consider the continuous mapping fi =tA+ (1 —¢)f of M x M x [0,1] to
RM. In order to prove that f, # 0, we write

LI = AR+ 261 = t)(A, gy + (1 =) f?
(tlA] = (1 = 1)lf1)?

>
2 0,

whence the desired conclusion follows.

9 “Convex” manaifolds

In this section, we consider a sample application of Theorem 8.5. To begin, we
introduce a class of manifolds to be considered.

Definition 9.1 A manifold M is said to be convex if there ezists a"C'l mapping
b: OM — RN such that (b(y), A(z,y))(zy) > 0 for all (z,y) € M x M.

The important point to note here is that, in contrast to what was required in
Sections 7 and 8, we are going to apply the above results with f(z,y) = b(y) which
is of merely class C''. However, the same arguments still go when f is of class C!,
provided it depends on only one variable z or y.

Suppose M is convex and b is a mapping guaranteed by Definition 9.1. Using
Example 8.6 we conclude that the mapping 6: M x 9M — R™\ {0} is homotopic
to the mapping A on the set M x M. Moreover the homotopy constructed above
is fi(z,y) = tA(z,y) + (1 — t)b(y) which is smooth. Applying now Theorem 8.5 we

derive the following series of formulas valid for u € CY(AYT*(M)):
u(z) = — /aM w(y) A Kopr (b(y)) + hdu + dhu, z € M. (9.1)
Since b does not depend on =, the kernels K,41(b(y)) vanish provided ¢ > 0.

Therefore the equalities (9.1) all together mean that the operator h is a fundamental
solution, at positive degrees, of the de Rham complex on M.
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Example 9.2 Let M be a convex domain in R with twice differentiable bound-
a.ry. Choose a real-valued function p of class C? in a neighborhood of M, such that
= {z: p(z) < 0} and dp(y) # 0 for y € IM. Since the t.angent. hyperplane to
BM at a point y € M does not meet M, we have (Vp(y),y ~ z)(zy) > 0 on the set
M x M, where Vp is the gradient of . Thus taking b(y) = Vp(y), we see that M

meets Definition 9.1.
O

Thus Theorem 8.5 shows a way to find new fundamental solutions of the de
Rham complex on a manifold with boundary.

10 Residue formula

We now consider another method for achieving Ko (f(z,y)) = 0. If f(z,y) is
independent of y, then K,41(f(z,y)) = 0 for ¢ £ N —2! This works well for concave
boundaries by simply switching the variables z and y for convex manifolds. We
discuss in detail the simple case of convex domains in RY with convex “holes.”

Suppose M = M, \ (My U...U M), where My and M; CC M, are convex
domains with C? boundaries in RV,

For each 1 = 0,1,...,/, we choose a convex functions p; € CZ,(R") such that

M; = {z € RV : pi(z) < 0} and dp;(z) # 0 for z € OM;. Consider the mapping

f:MxdIM-— RN given by

Vooly) i (z,4) € M x Ol

—Vpiz) i (z,y) € M x 9.

By assumption, the tangent hyperplane to M, at a point y € dM; does not
intersect Mg. Moreover, for each : = 1,...,7, the tangent hyperplane to the hy-
persurface p, ! (pi(z)) does not meet OM; provided = ¢ M;. Hence it follows that
(f(z,9),¥ — T)(zy) > 0 on the set M x @M. Using Example 8.6 we deduce that the
mapping f M xdM — RM\{0} is homotopic to the mapping A on the set M x9M.
Moreover the homotopy constructed above is fi(z,y) = t{y—z)+(1—-1t) f(z,y) which
is smooth.

Applying now Theorem 8.5 we derive the following series of formulas valid for

u € CY(AIT*(M)):

u(e) = = [ ulw) A Ko (Vpoly)

I

—Z/aM VA Ko (Vpil2)) + hdu + dhu, ze€M.  (10.1)
=1

If ¢ > 0, then K,11(Vpo(y)) = 0 for (z,y) € M x dMp. Thus, (10.1) yields the
following “residue formula.”
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Theorem 10.1 Suppose 1 < ¢ < N. Then, for each closed differential form
u € CYAYT*(M)), we have

I
u(z) = — g fml_ wly) A Ko (Vpi(z)) + dhu, z € M. (10.2)

We emphasize that, if ¢ < N ~ 1, then K 41(Vpi(z)) =0forall: =1,...,1.
Thus, for such g, the sum on the right-hand side of (10.2) vanishes. On the other
hand, for ¢ = N — 1 this sum becomes

—i (f ) kn(@ata),

where ¢; is an arbitrary (N — 1)-dimensional cycle in M surrounding M; with mul-
tiplicity 1.

Corollary 10.2 If, for a closed form u € C*(AN'T*(M)), all the periods [, u,
1=1,...,1, are zero, then u = dhu in M.

Proof. This follows from (10.2).

11 Rouchet principle

We endow the real space R*™ with the complex structure z; = z; + v/—1zny;,
j =1,...,n, thus obtaining a complex space C". Under this structure, one considers
the complex derivatives 9/0z; = § (B/Ba:j - \/—_16/8$n+j), fory=1,...,n.

Let M be a bounded domain in C* with a boundary of class C%. As above, we
write M = {z € C" : p(z) < 0} with a suitable real-valued function p € C2 (C")
satisfying dp(z) # 0 for 2 € OM.

For a point ¢ € M, we have

(vp(y)a T — y)(z,y) = 2Re (vCp(C)a z = C)(z.()a
where (; = y; + V—1Yn4j, 7 = 1,...,n, and
Op/0G
Vep(O)=1 .- |
dp/0C,

Theorem 11.1 Let F be a holomorphic mapping of M — C*, of class C'(M).
If the image of OM by the mapping ¢ — (Vep, F)¢ does not separate 0 from oo in the
complez plane, then the number of zeroes of F in M, along with their multiplicities,
is equal to x(M).



22 Section 11

Proof. It follows from the hypothesis of the theorem that I has no zeroes on
the boundary of M. Hence all zeroes of F' in M are isolated and the number of
zeroes, along with their multiplicities, is equal to

IR ey -
N _/m YL ;(—l) i 4F A L) (11.1)
(cf. Theorem 2.4 in Aizenberg and Yuzhakov [AYu]).

Since the image of M by the mapping { + (V¢p, F)¢ does not separate 0 from
oo in the complex plane and [V¢p(()] 2 ¢ > 0 for ( € M, it follows that the image

of M by the mapping
(ch, F)C
[Ven(O)I?

does not separate 0 from co in the complex plane. Consequently, there exists a path
p: [0,1) = C such that

¢ (11.2)

p(0) = 0,
limey [p(8)} = oo

and p(t) does not meet the image of M by the mapping (11.2). We can certainly
assume that p(t) # 1 for all ¢t € [0,1). Consider the mapping F; : M x [0,1] — C"
given by

~L_po+ -2 S0,

where ~
/06 )
8p/0(x
We have Fp(¢) = F(¢) and Fy(¢) = V¢p(¢). Moreover, an easy verification
shows that

6(:-13(0: (

p(i)

-1 9
(F1,Vep)e = =1 (F,Vcp)e + ol =1 1Vep(C)]

vanishes only if p(t) = %é—}& for some { € @M, which is impossible. From what
has already been proved we see that F; : OM x [0,1] — €\ {0} is a smooth
homotopy between F and V¢p.

_ As the integral on the right-hand side of (11.1) is an integer number (see, for
instance, Lemma 2.6 in [AYu]), we get

N - (n —1)! i(_l)f-l——a%i—d@cp/\dvfip[j]
YY) (2,}? /_1)n = |ch|2n

To complete the proof it remains to use the Poincare tndex together with the
observation that the differential form under integration is equal to K;(Vp) up to an
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exact form on the boundary of M. Indeed, for each C' mapping F from an open
subset of C* to C*, we have, away from F~1(0),

(n_]')1 - _ ]—li
erv iy 5

1=1

=—K1(f)+\/ffd(

dF A dF[j]

1

o2n(2n —

Z i zdf[j,nﬂ]),

where F; = f; +V=1fos;, 5 =1,...,n3
0
Obviously, if Re (V¢p, F)¢ # 0 for all ( € 8M, then the cycle {(V¢p, F)¢: ¢ €
OMY} in the complex plane does not separate 0 from oo. Hence the number of zeroes
of F'in M, along with their multiplicities, is equal to the Euler characteristic of M.
The condition “Re (V¢p, F)¢ # 0 for all ( € GM” cannot be relaxed to the
condition “(V¢p, F)¢ # 0 for each ¢ € M.”

Example 11.2 For the mapping F(z) = z* of the closed unit disc in C!, we
have

(Vep, F)e = (ﬁ(\/;@—l),(z)c

for || = 1, while F vanishes at the origin with multiplicity 2.
O

We mention a corollary of Theorem 11.1 which concerns the so-called linearly
convex domains in complex analysis (cf. [AYu, §24]).

Corollary 11.3 If there is a point 2° € M with the property that the cycle
{{Vep((),2° = ()¢ : { € OM] in the complez plane does not separate 0 from oo,
then x(M) = 1.

Proof. Apply Theorem 11.1 to F(z) = z — 2°
a
If M is a strictly pseudoconvez domain in C* with C*? boundary, then the Levi
determinant of the function p

0 B Bp
o o
bp  p 2
L(p)=—det| % 903G 800
bp & a?
n  0GO(n 77 (nd(n

31f n = 1, one must replace 5= UT’I"_—" by log | f|.
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is positive at each point ¢ € M (cf. [AYu, §8]). Then, instead of comparing F with
the complex gradient of p, we may compare it with the mapping of M — C* whose
components are complementary minors of the elements 9p/3(;, j = 1,...,2, in the
Levi determinant £ (p). In this way we obtain the following result.

Theorem 11.4 Suppose M is a strictly pseudoconver domain with twice differ-
entiable boundary in C* and F is a holomorphic mapping of M — C*, of class
C'(M). If the image of M by the mapping

0 F ... F,
B _¥p _&%_
¢ det | 3G 3dG T 86
8p _9% _8%
3 9G3Cn ' 3ndin

does not separate O from co in the complex plane, then the number of zeroes of F in
M, along with their multiplicities, is equal to x(M).

A A proof of the classical Hopf formula

Let f: M — T(M) be a vector field on a oriented compact closed manifold M of
dimension N. Suppose all critical points of f are non-degenerate.

Recall that each vector field f on M generates a flow on M, that is a family
of diffeomorphisms F,(z) of M, parametrized by t € [0,T). For a point z € M,
it is obtained by solving the system of ordinary differential equations %Ft(m) =
f(z) with the initial value Fo(z) = z. (In local coordinates near z, write f(z) =
YN, fi(z) 8/dz;, then the system becomes (F);(z) = fi(z), 7 =1,...,N.) It s
well-known from the theory of ordinary differential equations that the F,(z) exists
for each z, provided T is small enough, and depends smoothly on z varying over a
compact set (see Milnor [M, p.10] for more details).

We now invoke the general Lefschetz Fized Point Theorem for CW-complexes
(cf. Dold [D]). Namely, each smooth mapping F': M — M is known to induce a
homomorphism (“pull-back”) F* of the cohomology H'(M) of M *. Thus, for each
i =0,1,..., N, the trace tr F¥|yi(ns) is well-defined. On the other hand, if ¢ is a
closed subset of M and U a neighborhood of ¢, then F induces a smooth mapping of
the pair (F~Y(U), F"Y(U)\ F~'(¢)) — (U,U\ o) and consequently a homomorphism
of the relative cohomology

FY: H(F\U), FT(U)\ F(e) = H'(U,U \ o).

In particular, if o is invariant under F,i.e., F(o) C o, this gives rise to a homomor-
phism F* of H(U,U \ o). Then, the Lefschetz Fixed Point Theorem states that if

4Here, M need not be closed.
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the set of fixed points of F' is discrete, then

N N
2= Flign = 3 (Z:(_l)itrFﬂlH‘(U,U\p))' (A.1)

=0 p=F(p)
In case p is an interior point of M the contribution F1L(~1)'tr F¥|ysuu\p of p
reduces to the local degree of 1 — 2L at p.
We are going to apply (A.1) to the diffeomorphism F,. Granting that the set
of fixed points of F} is discrete, we obtain

N e OF,
Y (=LYt Ffligny = Y deg (1 - a—,P)

=0 p=Fi(p)

The left-hand side of this equality is independent of ¢ small enough, for ho-
motopic mappings of M — M induce the same homomorphism of the cohomology.
Therefore, letting t — 0, we deduce that

N

N
SN0t Bl = D (=1t Folmigan
=0 1=0

= x(M)

for all t € [0,T).

On the other hand, as the solution of the local Cauchy problem for ordinary
differential equations is unique, we can assert that a point p € M is a fixed point of
F, if and only if p is a critical point of f, i.e., f(p) = 0. Moreover, we claim that

OF;
deg (1 -5 ‘,p) = (=1)V deg(f,p).
T

Indeed, choose a local chart on M with center at p, then

N
=S ez +O(Jz]?),  j=1,...,N,
k=1

for z close to p. Hence it follows that
N
(F)i(e) = zj + 3 cpmt + O + |2[*),  7=1,...,N,
k=1
provided t? + |z|* < 1. Thus,

or; . OF,
deg (1 -5 ,p) = sign det (1 - 6_:5) (p)

= sign det (—cjk)
= (—1)N deg(fvp)s

as desired.

Summarizing, we obtain 3 ¢ s-10y deg(f,p) = (=1)Vx(M). We now apply this
argument again, with f replaced by —f, to obtain 3¢ 10y deg(f,p) = x(M).
These formulas are certainly equivalent for, by the Poincaré duality, the Euler char-
acteristic of an odd-dimensional manifold is equal to zero (this follows also from our
argument). The proof is complete.
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