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SIX SPECTRA AND TWO DIMENSIONS OF AN ABELIAN CATEGORY.

Alexander L. Rosenberg

INTRODUCTION.

The main (probably, the only) disadvantage of the introduced in [R3] spect-
rum {(as well as its special case - the left spectrum of a ring [RI1], [R2]) is
that the spectrum of the quotient category at an open set might be larger than
that open set. .

The principal character of this work is the flar spectrum of an abelian ca-
tegory which is the minimal, in a certain sense, extension of the spectrum en-
joying the ‘'right properties” with respect to localizations and restrictions.
The proof of these properties "and the generalization onto the flat spectrum the
most important constructions and facts known for the spectrum, is one of the
main objects of this paper. .

Another purpose here is to understand how the spectral theory presented in
[R3] is related to some of the earlier attempts to create noncommutative local
algebra and algebraic geometry. '

Recall the major approaches to noncommutative spectral theory developed be-
tween late fifties and early eighties: i

(i) The injective spectrum of an abelian category formed by the isomorphy
classes of indecomposable injective objects [Gab].

(ii) The Goldman’s spectrum of a ring which consists of prime torsion theo-
ries [G], [Goll], [Gol2].

(iii) The spectrum of a ring understood as the set of prime ideals of this
ring with Zariski topology. Affine schemes (structure sheaves) can be defined
for left noetherian rings and for Pl-rings [OV].

(iv) The Cohn’s affine scheme of a general ring [C].

Thanks to the flat spectrum, we are able to get a new insight at the first
three of the listed above spectral theories.

In more detail, the contents looks as follows.

In Section 0, we remind, for readers’ convenience, some basic facts on the
introduced in [R3] spectrum of an abelian category.

In Section 1, we study the complete spectrum of an abelian category d,
Spec”d, which is defined as the set of all thick subcategories T of & such



that the quotient category T is local. The complete spectrum might be much
bigger than one needs, and we investigate it because a number of facts is natu-
rally formulated and proved for the complete spectrum. So that when one moves to
more important subsets of  Spec”#, it remains only to make some refinements.
And this is exactly what we do.

Section 2 is concerned with the principal character of the paper - the flat
spectrum - which is the sub'set‘ of the complete spectrum formed by Serre subcate-
gories.

In Section 3, we consider a stfaightforward extension of the Goldman’s spe-
ctrum [G] (which is originally defined for categories of modules) on arbitrary
abelian categories and show ruther easily that the Goldman’s spectrum is the set
of all "points” T of the flat spectrum such that the quotient (local) category
/T has simple objects.

In Sections 4, we study the relation of the flat spectrum of an abelian ca-
tegory (which is supposed mostly to have injective hulls) with certain type of
injective  objects. This relation leads to a better understanding of the structu-
re of local Grothendieck categories.

Section 5 deals with the approach to the spectral theory of abelian catego-
ries through injective objects. We introduce the injective spectrum of an abeli-
an category (which contains, usually properly, the set of equivalence classes of
indecomposable injective objects - indecomposable injective spectrum) and study
some of its basic properties. In the case of a Grothendieck category, there is a
natural embedding of the flat spectrum into the injective spectrum.

Section 6 is concerned with Grothendieck categories for which the Gabriel-
Krull dimension is defined. In these categories, the spectrum, the flat spect-
rum, the Goldman’s spectrum, and the injective spectrum coincide. As a conse-
quence, we find the relation between the Krull - Gabriel dimension and the di-
mension defined (in an obvious way) through the flat spectrum. This relation

looks pretty much the same as in the commutative case.

My special thanks to Endre Zsabo for checking proofs of main results of
this paper. I would like to thank Max-Plank-Institut fiir Mathematik for hospita-
lity and excellent working conditions.



0. PRELIMINARIES ON THE SPECTRUM.

A detailed exposition (with proofs) of the presented in this section facts
can be found in [RS5]. Here we ‘give a sketch of basic notions and facts of [R5]
for readers’ convenience.

0.1. A preorder in abelian categories. Fix an abelian category &  For any two
objects, X and Y, of the category 4 we shall write X > Y if Y s a
subquotient of a coproduct of a finite number of copies of X, ie. if, for
some finite k, there exists a diagram ’

(k)X «— U — ¥,
where the left arrow is a non-zero monomorphism, and the right one is an epimor-
phism; (k)X is a direct sum of k& copies of X. One can show that

the relation > is a preorder on Obd.

0.2. The spectrum of an abelian category. Let M be a nonzero object of the
category . We write M € Specd if, for any nonzero subobject N of M, we
have: N > M. Since M > N, we can say that M € Specd if and only if it is
equivalent with respect to the preorder > to any of its nonzero subobjects.

Denote by  Speed  the ordered set of equivalence classes (with respect to
» ) of elements of Specd. The set Specd shall be called the spectrum of the
category 4.

0.3. Spectrum and simple objects. Clearly every simple object of the category «
belongs to  Specd. Moreover, we shall see in a moment that two simple objects

are equivalent if and only if they are isomorphic.

0.3.1. Proposition. Letr M  be a simple object of the category 4, and let N
be an object of 4. Then the following conditions are equivalent:

(a) N is isomorphic to (k)M for some (finite) k;

(b) M >~ N.

In particular, if N and M are simple objects, then N > M if and only
if the objects M and N are isomorphic.

0.4. The spectrum and exact localizations. Recall that a full subcategory s  of
the category « is called thick if the following condition holds:
the object M in the exact sequence
0 > M’ — M sy M"— 0




belongs to S if and only if M and M" are objects of s,
It follows from the universal property of localizations that the map
Q+— KerQ
gives a bijection of the equivalence class of exact localizations of the catego-
ry # onto the set of thick subcategories of .
Here (as everywhere) KerQ is the full subcategory of 4  generated by all
objects which are annihilated by Q.

0.4.1. Proposition. Let Q: 4 —— B be an exact localization of an abelian
category 4. For any P € Specd, either Q(P) equals to zero, or Q(P) be-
longs to SpecB.

For any M € Obd, consider the full subcategory <M> of 4 defined as
follows: Ob<M> consists of all objects N such that the relation N > M  does
not hold.

0.4.2. Lemma. For any two objectss, M and M, of the category 4, the fol-
lowing conditions are equivalent:

(a) M > M’;

(b) <M’'> c <M>,

Thus, the map Mr—— <M> identifies the ordered set of equivalence clas-
ses of objects of « (the order is induced by ») with ({<M>| M € Ob4], ;).

For any subcategory T of the category «, let T  denote the full sub-
category of 4  generated by al objects M  such that any nonzero subquotient

of M has a nonzero subobject from T.

0.4.3. Lemma. For any subcategory T of 4,
(a) the subcategory T  is thick;
(b) (V)] =T.

Call a subcategory T of « a Serre subcategory if T = T .

0.4.4. Proposition. If an object M  of the category 4  belongs to  Specd,
then <M> is a Serre subcategory of 4.

Thus, according to Proposition 0.4.4, to any point <M> of Specd, there



corresponds an exact localization, Q< M 4 — A/<M>.

0.4.5. Local abelian categories and localizations at points of the spectrum. A
nonzero object M  of an abelian category & will be called guasifinal if N >
M for any nonzero object N of the category 4.

In other words, a nonzero object M is quasifinal if and only if

<M> = {0} = <N>.
N € Obu4-{0)

Clearly a quasifinal object of the category 4  (if any) belongs to  Specd,
and every two quasifinal objects of & are equivalent.

0.4.6. Definition. An abelian category o is called local if it has a quasifi-
nal object. m

0.4.7. Lemma. The following properties of an abelian category 4  are equiva-
lent:

(a) 4 is local and has simple objects;

(b) any nonzero object of 4  has a simple subquotient, and all simple ob-

jects of 4 are isomorphic one to another.

0.4.8. Example. The category of left modules over a commutative ring k is lo-
cal if and only if the ring & 1is local. =

0.4.9. Proposition. Let &  bhe an abelian category. For any object M  of the
category 4  such that <M> is a thick subcategory of 4, the quotient catego-
ry &/<M> is local.

In particular, for any abelian category 4 and any object P  from  Specd,
the quotient category /<P> is local.

0.4.10. Corollary. If M is a simple object of an abelian category 4  then

A/<M> is a local category with a unique up to isomorphism simple object.
The last assertion follows from the fact that if @Q: 4 —— B is an exact
localization and M a simple object of the category «, then either Q(M) = 0,

or (Q(M) is a simple object.

0.5. The topology T and Zariski topology. The least requirement on the topology



on Specd is that it should be compatible with the preorder ». This means that
the closure of any point <P> € Specd should contain the set
s(<P>):= {<P'>| <P'> ¢ <P>)
of specializations of that point. The topology T as the strongest among the
topologies which have this property.
Call a full subcategory B of the category «  topologizing if it contains
a taken in 4  coproduct of any two of its objects and the following condition
holds:
if in the exact sequence
0 > M— M > M" 0
the object M belongs to B, then M and M" belong to 8.

Call a full subcategory B  of the category & left closed if it is topo-
logizing, and the inclusion functor B8 —— 4 has a left adjoint functor. One
can show that the subsets

SpecB = [<P>| P € Specd n ObB/,
where 8  runs through the family of all left closed subcategories of &, is
the set of closed subsets of a topology which is called (in [RS]) the Zariski
topology and is denoted by 3f.

0.6. Supports. The support of an object M of an abelian category & is the
set, Supp(M), of all <P> € Specd such that M » P.

0.6.1. Proposition. (a) For any short exact sequence
0 y L > M > N > 0,
Supp(M) = Supp(L) U Supp(N).

(b) For any set Z of objects such that there is a coproduct & X,
X e =2

Supp( & X) = U Supp(X).
Xe E XeE

0.6.2. Proposition. For any subset W  of Specd, the full subcategory  A4(W)
of 4 generated by all objects M such that Supp(M) ¢ W is a Serre subcate-

gory.

0.7. The left spectrum of a ring. Let « be the category R-mod of left modu-
les over an associative ring R  with unity. Since each module from  Spec(R-mod)
is equivalent to any of its cyclic submodules, we can take into consideration
only the modules R/m, where m runs over the set [ [R of left ideals of the

ring R.



The set of all left ideals p of the ring R such that R/jp  belongs to
SpecR-mod is denoted by SpeclR -and is called the left spectrum of R.

0.7.1. Lemma. For any two left ideals m and n of the ring R, the relation
R/m > R/n is equivalent to the following condition:

(#) there exists a finite set 'y of elements of the ring R  such that the
ideal (m:y):= (z € R| zy € m} is contained in the ideal n.

0.7.2. Corollary. A left ideal p belongs to the left spectrum if and only if,
for any x € R-p, there exists a finite subset y of R such that

((p:x):y) = (pryx) C p.

0.7.3. Remark, If m is a two-sided ideal of the ring R, then, evidently,
R/m > R/ if and only if m is conntained in m'. In particular, if the ring
R is commutative, then the left spectrum SpecR  coincides with the set  SpecR
of prime ideals of R. m

0.8. Associated points. For any object M of an abelian category &, denote by
Ass(M) the set of <P> € Specd such that P is a subobject of M. The points
of Ass(M) are called associated to M elements of the spectrum.

Here we need only the very first simple facts about this notion:

0.8.1. Lemma. For any short exact sequence,
0 > M’ > M > M" > 0,
Ass(M’) < Ass(M) < Ass(M’) U Ass(M").

0.8.2. Corollary. For any finite set Q  of objects of an abelian category 4,

we have:

Ass{ & X) = U  Ass(X)
Xe Q X e Q

0.9. The relative spectrum. The spectrum of a functor 3 from an abelian cate-
gory B to an abelian category 4 is the ordered set Spec(y) of all pairs
(<M>,<P>) such that there is an object M’ of B such that <M> = <M’> and
<P> e Ass(%(M’)). The order in Spec(¥) is induced from SpecB X Specd.

Note that, given a functor 3§, the description of  Spec(3y) is reduced to
the description, for any <P> € Specd, of the fiber of Speec(y) over <P>
which is the set of all <M> € SpecB such that <P> e Ass(M).



1. THE COMPLETE SPECTRUM OF AN ABELIAN CATEGORY.

For an abelian category 4, denote by Spec”d the set of all thick subca-
tegories P of 4 such that the quotient category «## is local. We call the
ordered set (Spec”d,D) the complete spectrum of the category A.

1.1. Proposition. For any thick subcategory T of an abelian category 4,  the-

re is a natural embedding

(SpecM,;) — 5 (Spec™d,D).

Proof. Let Q = Q1I be the localization 4 —— T. Denote by Spec(4T)
the set of all subcategories Q'<P>, where <P> runs through Spec#/T. Since
the functor @ is exact, @ '<P> is a thick subcategory for each <P> €
Spec/T; and the natural functor

HQ '<P> — 5 (/T)/<P>

is an equivalence of categories. Since the category (/T)/<P> is local, this
shows that Spec(#4T) is a subset of Spec”d.

Clearly the map <P>r— Q'<P> is a bijection of  Spec/T onto
Spec(4,T). This gives the promised embedding.

Note that Q"<P> does not depend on the choice of (. =

One can see that

Spec”s = U | Spec(4,T) = U Spec(4,T),
T € Thick(«4) T € Spec’(4)
where Thick(4) denotes the set of thick subcategories of 4.
Indeed, let T € Spec”d4, @ a localization &4 —— T, .and let P be a
quasi-final object in the local category 7. Then <P> = 0, hence the pre-
image Q'<P> coincides with the subcategory T.

1.2. The specializations of points and the topology 7t. For every P € Spectd,
denote by s(P) the set
{P’e Spechd| P'g PJ

of all specializations of the point P.
As in the case of Specd, only topologies on Specd which are compatible
with the preorder 2 make sense. The compatiblity means that the closure of any



point P contains the set s(P) of its specializations,
Let T denote the strongcst topology having this property. One can see

that Tt has the same description as its restriction to  Specd : the closure of
any set W c Spectd is U s(P).
Pe W

This description implies immediately that the union of any family of closed
in T sets 1s a closed set.

1.3. Uniform subcategories and Gabriel multiplication. We call a subcategory X
of an abelian category &  wuniform if it contains all subquotients of any of its
objects.

1.3.1. Example. Any subcategory X of « having the property

Me Oby and M >~ L = L e Obx
is, obviously, uniform. In particular, the subcategory <M> is uniform for eve-
ry object M of the category «. =

1.3.2. Note. Let F: 4 —— B be an exact functor. Then the preimage, F'I(K),
of any uniform subcategory %X of B 1is a uniform subcategory of 4. =

1.3.3. The Gabriel multiplication. Recall that the product of two subcategories,
% and ¥, of a category 4, is the full subcategory xeY of 4 generated by

all objects M in s« such that there exists an exact sequence

0 — s M 2 M2 s M — 4,0

such that M € Obx and M" € ObY. One can check that if X and Y are uni-
form (topologizing) subcategories, then Rey is uniform (resp. topologizing)
category.

Note that a wuniform subcategory X of an abelian category 4  is thick if
and only if % = XeX

1.3.4. The smallest thick subcategory containing a given uniform subcategory.

4

Let P be a uniform subcategory of .  Then the smallest thick subcategory P
of 4 containing the subcategory P can be described as follows.
Set fPO = P
if the ordinal B equals to o + 1, then set P__ = P oP;
if B is a limit ordinal, then set Pgp:= U P_.
B a<p ¢



Then the union of all subcategories P o Ccoincides with P

In fact, it follows from (i) that all the subcategories Py are topologi-
zing. It remains to check that P’ is closed under extensions; i.e. if in the
exact sequence

0 s M % M2 M 50

M and M" are in P, then so is M. But M, M" are in P iff they be-
long to IPa for some o; in that case M € 0bPa+|°

1.4. The complete spectrum of a topologizing category. It is shown in [R3] (Lem-
ma 5.3.1) that, Specd  |T|] = Specd for any topologizing subcategory of an
abelian category 4.  Here, we shall prove an analog of this statement for the
complete spectrum.

First we need the following Lemma.

1.4.1. Lemma. Let T be a topologizing subcategory; and let S be a thick sub-
category of an abelian category 4. Then T (S is a thick subcategory of the
category T, and, given localizations

Q:d—— 45 and QT —— TAT n 3),

there is unique functor J: TAT 8) ———— 4/S such that the diagram

Tns > T 0 > /(T 0 S)
Jl Jvl W
NE
Y > o 0 > /5

is commutative. The functor J is an embedding which establishes an equivalence

between TAT  S) and a topologizing subcategory of the category A/S.

Proof. Clearly T  $ is a thick subcategory of the category 7.  Since
QeJy is an exact functor which annihilates T S, by the universal property
of (exact) localizations, there is unique functor J such that J.Q' = QoJT

And Ker(J) = 0; i.e. the functor J is faithful.

It remains to show that the full subcategory T of /8 generated by all
objects M  which are isomorphic to some object from the image of J is topolo-
gizing.

10



Assume for convenience that the quotient categories &5 and TAT  $),

and localizations Q and Q are chosen canonically; i.e. Oobd/s = Obd,
ObTAT n $) = ObT, and the functors Q, Q" map objects identically.
Let

0 — s M 2 M s M — 590

be an exact sequence in /5 such that M = Q(M) € ObT. There is a commutative

diagram

0 M " .M bt s M" > 0
0 , oL'—2%, o1 2%, or~ s 0

where all the vertical arrows are isomorphisms, and the diagram

NN L N AN SN ()

is exact ([Gab], Corollary IIL.1.1). Moreover, the object L in (1) belongs to
the subcategory T.

In fact, the morphism u is the image of an " € 4K M/K), where K
is a subobject of M’, and the objects M/K" and K  belong to 3.  Since
Ow’ is a monoarrow, Ker{u’) € ObS. Now we take L' = Coim(v’), L = M/K, u"
= the induced by u arrow, L" = Coker{u®), " = the canonical epimorphism.
The formulas for the vertical isomorphisms are left to the reader.

Note that L = M/K, being a quotient of an object from T, belongs to T.
This, in turn, implies that both L° and L" are objects of T. This proves

4

that the objects M and M" belong to the subcategory T'. It is clear that
T"  contains with every pair of objects their product (since T has this pro-

perty). m
For a topologizing subcategory T  of an abelian category 4, denote by
UNT) the set (S € Spec™d| T ¢ S} and by VAT) its complement:

VA(T):= Spec™st - UNT).

1.4.2. Proposition. For any topologizing subcategory T of an abelian category
4, the map L S—— ST is a bijection of the set VNT) onto Spec’T.

Proof. a) Pick an arbitrary $ € VAT). According to Lemma 1.4.1, the quo-

11



tient category /T n S) is equivalent to a non-zero topologizing subcategory
T° of the local category A/S. Being topologizing implies that if T con-
tains an object M, then it contains also all objects X such that M > X. In
particular, all quasi-final objects of the category £ belong to T  which im-
plies that T° itself is a local category. Therefore TAT nS) is local.

b) Injectivity of o Let s, $ be elements of VAT) such that T s
=TS Replacing &4 by #M5s) and T by TAT S S) we shall
assume that s 0§ = 0 and ‘(thanks to a)) T is a local (topologizing) subca-
tegory of 4 such that TS =0=7TQns. If s -3 is nonempty, then the
image, S", of S under the localization & —— &5 is a thick nonzero
subcategory in A5 In particular, it has nonzero intersection with the image
of T in 4/  But, this implies that T n s # 0 which contradicts to the
initial hypothesis.

Thus, $ ¢ &, and by symmetry, § < S.

¢} It remains to show that the map L VAT) ——— Spec”T is surjective.

(i) Let P be any thick subcategory of T, and let P denote the smal-
lest thick subcategory of «& containing P. Then P' O T = P.

Indeed, thanks to 1.3.4, it suffices to show that 'Por, n T =P for every
ordinal o (see 1.3.4 for the definition of Pa).

1) It is so by definition if o = 0 : EPO = P.

B) Suppose that Py NT =P foral o< B.

If B=oa+ 1 for some o, then [PB = PP, (cf. 1.3.3). Take any M
from Ob([PB n T). By definition, there is an exact sequence

0 s M 2 M2 M y 0 (1)

where M’, M" are objects of P, Since T s topologizing and M e OBT,
both M* and M" are objects of ¥, ie. M and M" belong to P N T
which, by the induction hypothesis, coincides with P.  Thus, the exact sequence
(1) lies entirely in T and its ends, M and M", ©belong to P which is a
thick subcategory in T. Hence M belongs to P.

If B is a limit ordinal, then [PB:= UB[P
o<

: ce
o hen

= = P =P
T c:LEB(1T n Pa) agﬂ

by the induction hypothesis.
(ii) We are ready to finish the proof; ie. to show that, for any P?  from

12



Spec”T, there is an S € Spec’d such that P =T S.

Let P be the smallest thick subcategory of the category 4  containing
P. Replacing & by the quotient category 4% and T by T (and using
the equality P = T P’ c.f. (i), we assume that T is a local topologi-
zing subcategory of 4.

Consider the family Q of all uniform subcategories of 4 (cf. 1.3) which
have trivial intersection with T. One can see that € is closed under the Ga-
briel multiplication (cf. 1.3.3); ie. for any pair of categories %Y from
), their product, Xey, belongs to €. Since X < Xey D Y, this implies that
Q is directed with respect to the inclusion. Therefore, the union, QN of all
categories from  Q  is the largest topologizing subcategory of &£  having zero
intersection with T. Since Q"Q* is in £, and Q" < QeQ* we have: Q* =
QreQ)r e, the subcategory Q7 is thick.

We claim that Q7" € Spec”d; ie & is a local category.

Let P be a quasi-final object of the local subcategory T regarded as an
object of & Clearly <P> T = 0; ie. <P> € Q which implies the inclusion
<P> ¢ Q"

Note that the inverse inclusion, £* < <P>, also holds.

Indeed, if there is an object M in Q" such that M » P, then, since
the category Q" is topologizing, P € ObQ* which contradicts to the equality
Q"n T =0

Thus we have proved that the thick subcategory £* coincides with  <P>
which implies that 4K = L/<P> is a local category (cf. [R3], Note 2.6.3).
This finishes the proof. m

1.43. Lemma. Let T be a topologizing subcategory of an abelian category  ;
and let T be the smallest thick subcategory of 4  containing  T. Then
VNT) = VNT'), and the map

P—— T NP
is a bijection of Specl’ onto SpecT.

Proof. Clearly VAT) < VAT).

On the other hand, if ® is a subcategory from Spec?d such that T < P,
then T < P (since P is thick) which proves the inverse inclusion, VAT) <
VA(T).

The second assertion follows now from Proposition [.4.2. m

13



1.44. Decompositions of the complete spectrum. Let T be a thick subcategory

of an abelian category 4. One of the advantages of the complete spectrum is
the following decomposition formula:

Spec”s « Spec”"T U Spect4/T. @)

The decomposition (1) comes from the decomposition

Spec”d = VAT) U UNT),
the bijection

VAT) —— Spec?T, P— P n T,

of Proposition 1.4.2, and the map

G =0 UNT) ——— Spec”d/T

which assigns to a ’point” P of UNT) the subcategory ®/T of the quotient
category «/T.

Since, for any P’e Spec«/T, the canonical functor

Ao (F) ——— (/T

is an equivalence of categories, the map P+ o (P’) takes values in the
set UNT) and is, evidently, inverse to the map o = Or

Note that the corresponding decomposition for  Specd  fails in general. Of
course, we have a part of it: the bijection of

V(T):= VNT) n Specd

(<P> € Specd | P € ObT/

onto SpecT, and the injection of

U(T):= UMT) n Specd = [<P> € Specd | T ¢ <P>)
into Specs/T. However the latter map is usually not surjective.
1.5. Topologies. The defined in 1.2 topology Tt <can be obtained as follows: a

subset U < Spec”s# is open with respect to 1t iff U = UMT) =~ Spec’T for
some topologizing category T. Besides, we have:

14



UNseT) = UNS) n UNT) (1)

for any pair S, T of topologizing categories, and

uN'n T)= U UNT) (2)
T'e Q Te Q
for any family Q of topologizing subcategories.
Note that, for any thick subcategory T of the category «, the maps

Specr /T —— UANT) and VAT) ——— Spec’T

(c.f. 1.4.4) are homeomorphisms with respect to the topology T.

Since any other compatible with specializations topology on Spec”d is
weaker than 1, its open sets are of the form UANT), where T runs through
some set of topologizing subcategories. So, a way to obtain a topology on
Spec*¢ is to choose a set, say E, of topologizing subcategories and declare
the set (UNS) | $ € £/ a base of open sets of the topology in question.

1.6. Complete supports. Define the complete support of an object M  of an abe-
lian category « as the set Supp™M) of all points P of Spec”# such that
M ¢ p. Clearly, Supp™(M} is closed in the topology T for any object M.

1.6.1. Lemma. For any exact short sequence
0 > M’ > M > M" > 0,
Supp(M) = Supp(M’) U Supp(M").

Proof. The argument goes along the same lines as that of the first asserti-
on of Proposition 5.2.2 in [R3]:
If M e Obp, then both M and M" belong P which is equivalent to the

inclusion  SuppNM’) U SuppM") < SuppM).
Note that P € Supp™NM) iff Q[P(M) # 0. Since the sequence

0 —— Q[P(M') — Q[P(M) — Q[P(M") — 0
is exact, Q[P(M) # 0 implies that Q[P(M') @ QIP(M") 20 w

For any subset W of Spec”d, denote by «*W) the full subcategory of
4 generated by all objects M of « such that Supp’(M) c W.
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1.6.2. Proposition. (a) For any W < Spec™d, we have:

W)= P
Pe WL
where WL = Spec’d - W.

In particular, the subcategory AMNW) s thick.
(b) VANA(W)) = W if and only if the set W is closed in the topology 1.

Proof. (a) The inclusion M € N P means exactly that
Pe WL

SuppMM) < Spectd - WL = W,

(b) The set VA(«4(W)) consists of all P e Spec”sd such that W) is not
a subcategory of P; i.e. there is an object M in 4 such that SuppNM) c W
and M ¢ ObP. The latter means that P € Supp(M). Hence VAA(W)) c W.

Suppose now that W is closed in the topology 1T. Then we claim the in-
verse inclusion: W < VA4W)). This inclusion means that, for every P e W,
there is an object M such that

SuppMM) c W and P € Supp(M).

Take an object M  such that QP(M) is a quasi-final object of the (local)
category /. Note now that

SuppNM) = s(P):= {P'e Spec’d| P' < P}

is the set of specializations of the point P; i.e. SuppNM) is the closure
of P in the topology ~.

In fact, it is clear that P € Supp™M), therefore s(P) is a subset of
SuppN(M) (since the latter set is closed in 7).

Let P° be an arbitrary point of SuppNM). Since M does not belong to
P, its localization at P does not belong to the subcategory FAP n P) of
4.  But, since Q[P(M) is a quasi-final object of 4  and the subcategory

P/AP y ') is thick, this means that P/AP [ P) = 0; ie. PP C P =

1.7. Associated points. For any object M of an abelian category 4, denote by
Assh(M) the set of P € Spec’s# for which there exists a subobject X of M
such that its localization, Q[P(X)’ is a quasi-final object of «fP.

Clearly AssMM) < Supp™(M).
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1.7.1. Lemma. Let P € Spec’d; and lett M be a P-torsion free object of the
category 4 such that QP(M) is quasi-final.
Then AssN(M) = [P].

Proof. As it was shown in the argument proving Proposition 1.6.2, Supp(M)
= s(P). Thus, we have: P € AssMM) c s(P).

Suppose that P € AssM) <(hence P ¢ P); and let X be a subobject of
M such that Q[P’(X) is a quasi-final object of  Af" If P % P, then
®/A’,  being a nonzero thick subcategory of the local category 4,  contains
QP’(X)' This means that X  belongs to P. But, this contradicts to the fact

’

that X is a nonzero subobject of a P-torsion free object. Therefore P = P’. =

1.7.2. Proposition. For any short exact sequence

0 >y M’ > M > M" y 0,

AssNM') € AssN\(M) < Ass\(M') U Ass\M").

Proof. Clearly AssNM’) < AssN(M).

Let P € Ass™M), and let X be a subobject of M such that Q[P(X) is a
quasi-final object in AP There are only two alternatives: either X [ M ¢
ObP, or X M e Obp.

If X:= X n M ¢ Obp, then Q[P(X’) is a nonzero subobject of Q[P(X);
hence Q[P(X’) is also a quasi-final object in AP which means that P  be-
longs to Ass\M').

If X=Xpn M € ObP, then X":= X/X is a subobject of M" and the lo-
calization Q[P sends the projection X ——— X" to an isomorphism. In particu-
lar, Q[P(X") is a quasi-final object of «A. therefore P € AssMM"). =

1.7.3. Corollary. For any finite family € of objects of 4,
Ass( ® M) = U  Ass\M).
Me Q Me Q

Proof. 1t suffices to check the equality for a set consisting of two ob-
jects: Q = (M, L}. According to Proposition 1.7.2, we have:

AssNM) U AssML) < Ass"NM & L) ¢ AssMM) U AssM(L). =
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1.74. Corollary. Let Z be a finite family of subobjects of an object M  such

that n X =0 Then Ass"(M) g U AssNM/X).
Xe = X e &

Proof. The assertion is a consequence of Corollary 1.7.3 and of the mono-

morphness of the canonical arrow M —— & M/X. =
X e =

1.7.5. Associate points and exact localizations. It is shown in [R3], Section

8.5.4, that any exact localization @ induces an injection of the set
{<P> € Ass(M)| KerQ < <P>}) into Ass(Q(M)).
The set AssA(M) has a better property:

1.7.5.1. Proposition. Let Q: 4 —— T be a localization at a thick subca-
tegory T. For any object M of 4, the localization @ induces a bijection
of AssMM) n UNT) onto Ass™(Q(M)).

Proof. a) It is shown in 1.4.4 that the localization @ = Q1T induces a bi-
jection of the open (in the topology 7T) set UA(T) onto Spec”d/5.

Let P € Ass"(M) n UMT);, and let X be a subobject of M such that
QlP(X) is a quasi-final object of fP. Then Q.[r(X) is a subobject of QF(M)'
and QIF /F( Q]I(X)) x Q[P(X) (we identify the quotient category  (L/TM/P/T) with
4/P) is a quasi-final object. This shows that the canonical bijection

UMNT) —— Spec /T

induces an injection AssMM) n UMT) —— Ass"(QF(M)).
b) Conversely, let P be an arbitrary point of Ass*(Q(M)); and let

fr X'—— OM)

be a monomorphism such that Q[P,(X') is a quasi-final object. The morphism f
is the image of an element f' € «Y,M/L), where X/Y and L belong to T.
Denote by X" the pullback of the arrows

Y M/L < M.

Let X denote the image of the projection X"—— M; and let
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v X — M
be the canonical monoarrow. One can see that the subobject

Qv : QX) —— QM)

is isomorphic to fr X’ — Q(M). Therefore the object Q[P(X}, where P €
UA(T) is the preimage of P in 4, is quasi-final. This shows that the map

UMT) n Assh(M) ——— AssNQ(M))
is surjective. m

1.8. Fields of fractions. With a local category B, we associate the category
K(B) - "the residue category of B"  which is by definition (given in [R3],
5.4) the full subcategory of the category B  generated by all those objects of
B which are supremums of the family of their quasi-final subobjects.

Recall that if the category B  has simple objects, then the residue cate-
gory of B is equivalent to the category K{(B)-Vec  of vector spaces over the
skew field K(B) of endomorphisms of a simple object of the category B  (cf.
Lemma 5.4.1 in [R3]). Since the -category B is local, this simple object is
unique up to isomorphism; hence the skew field K(B) is defined uniquely up to
isomorphism.

Thus, given a general abelian category «, we can assign to each point P
of Spec”s the residue category Kp'= K(4f) of the point P. And if the ca-
tegory 4/  has simple objects, then the category K = XK(4/) is equivalent

P

to the category of vector spaces over the residue skew field K[P:= K(/P) of

the point P.

1.9. Complete spectrum and the center. Consider the center 3(d);= End(ld aa) of
an abelian category 4. Any localization @ of the category # maps the cen-
ter of d to the center of the quotient category. In particular, the localiza-

tion at any point P € Spec”d provides a ring homomorphism

Ap: ) —— o dfP).

According to Proposition 2.5.1 in [R3], 3(AfP) is a local ring. Denote by

(p) the preimage, lu:_l(m[P), of the (unique) maximal ideal Mo of the ring

3(d/P). Thus, we have a map

oN = (p"xd: Specrd — Speci(4), Pr———— (P).
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There is the following analogue of Lemma 7.1.1 in [R3]):

1.9.1. Lemma. Suppose that P € Spec*d has the property: there is a P-torsion
free object X  such that Q[P(X) is a quasi-final object in  A4fr  (which is the

case if P € Specd, or if the subcategory P s coreflective, i.e. the inclu-
sion functor P —— 4 has a right adjoint). Then

(a) For any & € s(4), either &(X) is a monomorphism, or §(X) is zero.
(b) The ideal (P) consists of all & € 3(4) for which &(X) = 0.

Proof. (a) Suppose that KerE(X) = 0. Then, since the object X is
P-torsion free, such is its subobject KerE(X). Thanks to the (left) exactness
of the localization Q = Q[P’ the canonical arrow

Q(Ker§(X)) —— KerQE(Q(X))

is an isomorphism. Since

QE(KerQE(Q(X))) = 0 and  KerQE(Q(X)) > Q(X),

we have: Q&(Q(X)) = 0 (cf. the proof of Lemma 7.1.1 in [R3]). Finally, since
X is P-torsion free, the equality QE(Q(X)) = 0 is equivalent to the equality
&X) = 0. .

(b) On the other hand, the equality Q&(Q(X)) = 0 means that QF belongs
to the unique maximal ideal of the local ring (/) (cf. the argument of Pro-
position 2.5.1 in [R3]). =

Lemma 1.9.1 shows that the map
q)"A: Spectrst ———— Specs(d), Pr—— (P)
is a natural extension of the defined in [R3], Section 7.1 map

Q4 Specd ——— Specy(4), <P>+—— (€ € 3(d4)| &E(P) = 0}

(cf. [R3], Corollary 7.1.2).

We define the central topology 13 on Spec™d exactly like we have defi-
ned the central topology on Specd in [R3], Section 7.1.

Namely, 713 is the weakest topology for which the map ¢* 4 is continuous.
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2. THE FLAT SPECTRUM.

Now we shall take a step back, and consider the subset Spec 4 of the com-
plete spectrum  Spec*d  formed by all Serre subcategories P of 4  such that
4 is a local category. We call the subset Spec 4 the flat spectrum of the
category 4.

Recall that a subcategory T of 4 is coreflective if the inclusion func-
tor ' T —» & has a right adjoint. In other words, if every object M of A
has a subobject maximal among all the subobjects of M which belong to 'T.

2.1. Lemma. Let T be a coreflective thick subcategory of an abelian category
4, and let Q be a localization &4 ——— A/T.

For any Serre subcategory % of /T, its preimage Q"(X) is a Serre
subcategory of the category «.

Proof. Let M  be an arbitrary object of Q"(x)‘; i.e. any nonzero sub-
quotient of M has a nonzero subobject which belongs to Q-l(x). We claim that
O(M} belongs to X.

Indeed, for any nonzero epimorphism f- Q(M) —— L, there is a commuta-
tive diagram

oM —2% 1

| |

oy —£¢, o)

in which M’ is a subobject of M; the both vertical arrows are invertible,

’

e€: M—— L is an epimorphism, and the object L is T-torsion free (the

last property is available thanks to the coreflectiveness of  T). Since the ob-
ject M’, being a subobject of M, belongs to Q7'(x)~, there is a nonzero
monoarrow

i K — L’

such that K € ObQ"(x); or equivalently, Q(K) € x. Note that, Q(K) # 0,
because K is nonzero and T-torsion free. And, since Qi is a monoarrow, Q(K)
is a subobject of L.

This shows that Q(M) € Obx~ = Obx (since, by hypothesis, %X is a Serre
subcategory; ie. X = X%). Or, equivalently M is an object of Q'l(x). Sin-
ce M had been chosen arbitrarily, we have proved that Q-l( X = Q"(x)‘. .
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2.2. Proposition. For any coreflective thick subcategory T  of an abelian cate-
gory 4, the canonical embedding

Specd/T ——— Spec™d.
of Proposition 1.1 induces an embedding

Spec#/T ——— Spec 4.

Proof. By Proposition 3.3 in [R3], <P> is a Serre subcategory of /T
for any P € Specd/T. According to Lemma 2.1, O '(<P>) is a Serre subcategory
of the category «. But, Q'(<P>) is the image of <P> under the embedding

Spec/T ——— Spec*d. =

Although Proposition 2.2 looks somewhat restrictive, we still can represent
Spec”# as the union of the images of the Specs/T, where T runs through the
set Serre(s4) of Serre subcategories of the category «:

2.3. Proposition. For any abelian category 4,

Spec’¢ = U Spec(4T) = U Spec(4,T),
T € Serre(d4) T € Spec («4)

where Spec(4,T) is the image of Spec/T in Spec™d (cf 1.1)

Proof. Recall that  Spec(#4T) consists of all subcategories Q'1<P>, whe-
re <P> runs through Spec/T.

Let T € Spec d, Q a localization &4 —— &T; and let P be a quasi-
final object in the local category /7. Then, since <P> = 0, the subcategory
Q'I<P> coincides with the Serre subcategory T. w

For a topologizing subcategory T  of an abelian category 4,  denote by
U(T1) the set (P € Spec 4| T < P} and by V(T) its complement:
V(7).= Spec 4 - U (T).

2.4. Proposition. 1) For any topologizing subcategory T  of an abelian category

4, the map P—— P 0 T defines a bijection, —lv, of the set V (T) onto
Spec T. :
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2) If T is a coreflective thick subcategory, then the map
Spec/T ——— Spec «
of Proposition 2.2 unduces a bijection of Specd/T onto U (T).

Proof. 1) (i) The intersection of any Serre subcategory &  of the category
4 with 7 is a Serre subcategory of T. In particular, P n T is a Serre
subcategory of T  for every point P of Spec .  Therefore, by Proposition
1.4.2, the subcategory P 4 T belongs to Spec™T.

The injectivity of -LF: VI(T) —— Spec’T  follows from the injectivity
of 1 VAT) —— Spec"T (cf. Proposition 1.4.2).

(ii) It remains to prove the surjectivity of "l..ﬂ..

et P € SpecT. By Proposition 1.4.2, there exists a unique subcategory
P’ from Spec”d4 such that T P = P.

a) Note that T P~ = P.

In fact, since the subcategory T is topologizing and P is a Serre sub-

category in ¥, ie. P T =P, we have:
TP =(TAP) AT =P nT ="~
b) The equality T n PT = P means that the intersection of the subcatego-
riess P/ and T  of the local category 4" is  trivial. Since  TA
contains the quasi-final object of — 4, this implies that PR = 0 ie.

P =P
2) The second assertion follows from Proposition 2.2. =

2.5. Remarks about coreflective thick subcategories. The following Proposition

is relevant to Lemma 2.1.

2.5.1. Proposition. Let S and T be thick subcategories in 4  If the subca-

tegory T is coreflective, then the canonical functor

JS: T nS) —— 45

has a right adjoint functor; i.e. AT n S) is a coreflective subcategory of
A/s.

Proof. Denote for convenience S T by X%

Consider the commutative diagram
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JI

T/% ————— 4/S

0=0, T T 0,=0'
J

T———— 4

(i) Note that the functor onJ"‘ inverts all morphisms which are inverted
by the localization Qg
In fact, take an arrow s such that Qs is an isomorphism. This means

that the objects X and Y in the exact sequence

0 — > X =Ker(s) —— M —5 5L %Y= Cok(s) —s 0

belong to S.
Since the functor J* - the right adjoint to J: T —s 4 - is left
exact, the sequence

J

At M Jhs Jhe

0 —— J*X JAL Y
is exact. Since the cokernel of JAs (= Im(J*e)) is a subobject of the object
JAYY of T n s = Obx, it is also an object of %, as well as the kernel of
JAs  (which is isomorphic to J*X). Therefore the functor @ = Q)x inverts the
arrow Jhs,

(ii) Tt follows from (i) that, due to the universal property of the locali-
zation = QS, there exists unique functor

Y. s —— T/

such that QoJ* = WoQ'. We have:

(Wel)oQ = Yool = Qosted —2E, 0 M
(Fo¥)eQ = JoQoh = Qodost LT )

Here €& and 7y are the adjunction arrows
| ldy —— JeJ and  JoN —— Id
respectively.
Thanks to the universality of @ and (', there is unique isomorphism

o' l’dTmz — s YoJ
and a unique functor morphism
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Y: oV —— Id s
such that Qe = 6’Q and Q% = Y0
We have:

(YT TN = YIQIEQ = YQTT Qe = QYeQTe = Q(yoJe) =

Q'id ;= id J,Q
and

(PY-5'P)Q = WY Q5YQ = ¥OY-FQIN = QIMeQelr = Q(IMeeh) =
' Qid s = idgQ.

Thanks to the universality of @ and (', the equalities

(YJ o J¥)Q = idJ,Q and  (WY.0V)Q' = id\},Q’
imply the equlities

YJoJ¥ =id, and PYIY = idy

which mean exactly that & and ¥ are adjunction morphisms.

Recall that if the category A has the property (sup) (cf. 0.4.3.2), then
every Serre subcategory of « is coreflective (Lemma 2.4.4 in [R3]).

And if o has injective hulls, then every coreflective thick subcategory
is localizing (cf. [Gab], Corollary III.3.3).

In particular, if an abelian category o has both the property (sup) and
injective hulls (e.g. o is a Grothendieck category), then every Serre subcate-
gory of 4 is localizing. Note that, in this case, the name flat spectrum be-
comes meaningful:

for any P € Spec’d the localization at P is flat.

2.6. Flat supports. Define the flat support of an object M of an abelian cate-
gory 4 as the set Supp (M) of all points P of Spec’# such that M ¢ P.
In other words, Supp (M) = Supp™(M) n Spec 4.

2.6.1. Lemma. (a) For any exact short sequence

0 s M’ s M , M" » 0,

Supp™(M) = Supp™(M’) U Supp (M").
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(b) Suppose that 4  has the property  (sup). Then, for any object M
which is a supremum of an ascending family Z  of its subobjects, we have the
equality:

U  Supp™(X) = Supp™(M).
Xe E

Proof. (a) is a corollary of Lemma 1.5.1.

(b) The inclusion U  Supp (X} < Supp (M) follows from (a). So, we need
X e E
to show that the inverse inclusion holds; i.e. if a point P of Spec o does

not belong to U  Supp(X), then it does not belong to Supp™(M).
Xe k=
The relation P ¢ U  Supp™(X) means exactly that the set = is contai-

X e =
ned in ObP. But then, due to the property (sup), M = sup(Z) € ObP, ie. P

does not belong to Supp™(M). =

For any subset W of Specd, set (W)= 4°W) n Spec’d. In other
words, « (W) is the full subcategory of « generated by all objects M of A
such that Supp (M) c W.

2.6.2. Proposition. (a) For any W < Spec 4, we have:

4(W) = n P,
Pe WL
where WLl = Spec 4 - W.

In particular, & (W) is a Serre subcategory.
(b) V(W) = W ff the subset W is closed in the topology T.

Proof. The assertion follows from Proposition 1.6.2. n

2.7. Associated points. For any object M of an abelian category 4, denote by
Ass (M) the set of P € Spec”# for which there exists a subobject X of M
such that the localization, QP(X), of X at P is a quasi-final object of
&P. In other words, '

Ass (M) = AssNM)  Spec 4.

Clearly Ass (M) < Supp (M).
27.1. Lemma. Let P € Spec d; and let M be a P-torsion free object of the

category 4 such that Q[P(M) is quasi-final.
Then Ass (M) = [P].
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Proof. According to Lemma 1.7.1 that Ass™M) = (P}. Since P € Spec 4,
the set AssMM) coincides with Ass (M), =

2.7.2. Proposition. (a} For any short exact sequence

0 > M’ > M > M" > 0,

AssT(M’) < Ass™ (M) < Ass (M’) U Ass (M").

(b) Suppose that & has the property (sup). And let an object M of 4
is a supremum of an ascending family Z of its subobjects. Then

U Ass (X) = Ass (M)
Xe =

Proof. (a) The assertion (a) follows from Proposition 1.7.2.

(b) The inclusion U _Ass'(X) c Ass (M) follows from (a).

Let now P € Asii(il)r and let L be a subobject of M such that Q[P(L)
is a quasi-final object in /.

Thanks to the property (sup), there is an subobject X € Z such that L’
= L n X does not belong to P (since otherwisc the object sup/L n X| X € E} =
L would belong to P). Then L’ is a subobject of X such that QIP(L’) is a

quasi-final object in 4f; ie. P € Ass (M). =

2.7.3. Corollary. Suppose that 4 has the property (sup). Then, for any fami-
ly S of objects of 4 such that the direct sum of Q exists,

Ass( & M) = U Ass (M)
Me Q Me Q

Proof. The truth of the assertion for a finite family Q is a consequence

of Proposition 1.7.2 (without any restrictions on the category ). Since the
object @ M is the supremum of coproducts of finite subfamilies of €, the
- M e Q

fact follows from the assertion (b) of Proposition 2.7.2. =

2.74. Corollary. Let Z be a finite family of subobjects of an object M  such
that N X =0 Then Ass (M) c U Ass (M/X).
Xe = X e =

Proof. This follows from Corollary 1.7.3. =

2.7.5. Associate points and exact localizations. The following assertion is a
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consequence of Proposition 1.7.5.1 and the second assertion of Proposition 2.4.

2.7.5.1. Proposition. Let Q: 4 —— LT be a localization at a coreflective
thick subcategory T. For any object M of o  the localization Q induces a
bijection of the set Ass (M) 0 U(T) onto Ass (Q(M))

3. THE GOLDMAN’S SPECTRUM.

Fix an abelian category 4.

3.1. Lemma. For any object M of 4  there exists the biggest subcategory,
x(M), among Serre subcategories T such that the object M is T-torsion free.

Proof. Consider the set =(M) of all thick subcategories T of the cate-
gory £ such that M is T-torsion free.

(a) The set Z(M) is directed with respect to the inclusion.

(i) Take any two subcategories, T and S, from E(M). Note that the ob-
ject M is Tes-torsion free.

In fact, suppose that X is a subobject of M  which belongs to TeS. The
latter means that X has a subobject, Y, from T such that X/Y € ObS. Sin-
ce Y is a subobject of M and M is T-torsion free, Y = 0. But, then X =
X/Y € Obs. Hence X = 0.

(ii) Now note that if % is a topologizing subcategory such that M is
#-torsion free, then M is X -torsion free.

Suppose that g L —— M is a nonzero monoarrow such that L € Obx .
But then L  should contain a nonzero subobject from X  which contradicts to
the hypothesis that M is X-torsion free.

(iii) It follows from (i) and (ii) that, for any s, T from =(M), the
subcategory  (TeS)”  belongs to  E=(M). But, since TeS is topologizing, its
‘closure’, (TeS)” is a Serre subcategory of 4 which contains both T and S
(one can see that (Tes)” is the smallest among Serre subcategories containing
T and $).

(b) Since Z(M) is directed with respect to g, the union, £, of all
subcategories from E(M) is also a thick subcategory from - Z(M).  Since the in-
clusion € e Z(M) implies that Q also belongs to Z(M), Q = Q7; ie Q
is a Serre subcategory of the category 4. =

3.2. Example. Let M € Specd. Then (M) = <M>.
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In fact, if X% is a topologizing subcategory of & which does not contain
M, then X € <M>. Because, if V ¢ <M> for some V e Obx, ie. V » M, then
Me X =

An object M  of the category & is called critical if the cokernel of any
nonzero monoarrow L —— M belongs to x(M).

The Goldman's spectrum, Spegd, of the category 4 is the set of all Ser-
re subcategories  x(M), where M  runs through the class of all critical ob-
jects of 4.

3.3. Proposition. a) The Goldman’s spectrum  Spegd of any abelian category A
is contained in Spec 4.

b) If the category 4  has the property (sup), then  Spegd  consists of
all P € Specd such that the quotient category P has simple objects.

Proof. a) Lett. M  be a critical object in &  Clearly being critical imp-
lies that the localization M’ of M at x(M) is a simple object of the quo-
tient category AM(M). In particular, M belongs to Specsd/iy(M); hence
<M’> is a Serre subcategory of «A(M). Let P be the preimage of <M’> in
.

Clearly P is a thick subcategory which contains x(M).

Note that M is P-torsion free. Since, if it is not, there is a nonzero
subobject L —— M such that L € ObP. Since M is critical, M/L € Oby(M)
< ObpP. This implies that M € P  which contradicts to the fact that the locali-
zation of M’ at <M’> is nonzero.

Thus, P = x(M), and 4 is a local category with a simple object- In
particular, P is a Serre subcategory.

b) Suppose now that the category & has the property (sup). And let P be
a Serre subcategory of &4 such that 4 is a local category with a simple ob-
ject, say M. Let M~ Qp(M) for an object M of 4  Thanks to the property
(sup), any Serre subcategory of & is coreflective. Replacing M by MAPM,
where PM is a P-torsion of M, we assume that M is P-torsion free. In par-
ticular, P < x(M).

We claim that P = x(M).

In fact, let T be the image of (M) in . Clearly T is a thick
subcategory in 4  such that the quasi-final (simple) object M’  is T-torsion
free. But this implies that T = 0 (Gf not, i.e. there 1s a nonzero object X
in T, then the relation X > M implies that M € T). In other words, P co-
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incides with x(M). =

3.4. Corollary. For any abelian category 4, the intersection Spegd [ Specd
consists of all <P> & Specd such that the local category A/<P>  has simple

objects.

For any topologizing subcategory T of 4, set

Vg(v):= V(T) n Spegd = [P € Spegd| PN T = T/

and »
Ug(v):: Spegd n U(T) = [P € Spegd| T < P/.

3.5. Proposition. For any coreflective thick subcategory T  of an abelian cate-
gory 4, the map
Vi(T) —— Spec’ T, P—— P]T

of Proposition 2.4 induces a bijection Vg(v) onto SpegT.

Proof. It is clear (from the argument of Propositions 2.4 and 1.4.2) that
the subcategory TAP n T) of the local category 4  contains quasi-final ob-
jects of 4. Since TAP  T) is thick, these quasi-final objects are semi-
simple in TAP y T) iff they are semisimple in /.

The assertion follows now from Proposition 3.3.

3.6. Residue skew fields at points of Spegsd.' By Proposition 3.3, the category
Aaff  is local and has simple objects for all points P of Spegd.  Therefore,
for every point P € Spegd, the residue category K= K(4f) is equivalent to
the category K(P)-Vec of vector spaces over the residue skew field of P  (cf.

1.8).
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4. THE FLAT SPECTRUM AND INJECTIVE OBJECTS.

In what follows, # is an abelian category.

4.0. Preliminaries: the correspondence between Serre subcategories and classes
of injective objects. For any object M of 4, denote by S(M) the full sub-
category of 4 formed by all the objects X such that «4(X.M) = 0.

4.0.1. Lemma. ) For any M € Obd, the category S(M) has the following pro-
perties:

(a) If D: D —— & is a (small) diagram with values in $(M), then its
colimit (if any) also belongs to 4.

(b) If the objects Y and Y in the exact sequence

0 > Y > X > Y > 0

belong to S(M), then X s also from S(M).

If X e Obs(M), then Y € -Obs(M).

2) If the object M is injective, then S(M) is a Serre subcategory of
the category 4.

Proof. 1) The assertion ) follows from the corresponding properties of the
functor A M).

2) Let now M Dbe an injective object. Then any object X of S(M) con-
tains all its subobjects. Because, the injectivity of M means exactly, that
the map

diidy,): MXM) —— MY, M)

is injective for any monomorphism i : Y ——— X. This, together with the as-
sertion [/}, proves the thickness of S(M).

Let L e Obs(M)". And suppose that there is a nonzero arrow f from L
to M. By condition, there is a nonzero subobject of the image of f which be-
longs to $(M). But, this nonzero subobject is also a subobject of M  which is
a contradiction. Thus, L is an object of S(M). =

4.0.2. A preorder among injective objects. Define a relation »  among objects
of a category 4 as follows:

M >» L if 4(ML) is integral;
i.e. for any two distinct arrows f, g¢ X —— M  there exists an arrow @
from M to L such that @of # @eg.
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Clearly the relation » is transitive. We are interested in the restricti-
on of the preorder » to the full subcategory 3njd of & generated by injec-
tive objects.

4.0.2.1. Lemma. Suppose that M’ is an injective object of an abelian category
4, and M an arbitrary object of 4. Then
M M if and only if S(M') < S(M).

Proof. Clearly S(M’) ¢ s(M) if and only if, for any nonzero subobject Y
of M, there exists a nonzero arrow f from Y to M. Since M is injec-
tive, the morphism f= foj for a morphism f: M —— M’ This implies that
the set of all arrows from M to M’ is integral

Conversely, if AMM') is integral, then, without even any requirements
on M’, we have the inclusion S(M’) ¢ S(M). =

4.0.2.2. Corollary. Suppose that A is a category with (small) products. And
let M, M be injective objects. Then S(M’) is a subcategory of S(M) if and
only if M s a retract of the product of a set of the copies of M.

Let = denote the induced by » equivalence relation.

4.0.2.3. Corollary. (a) The map Mw+——— S(M) induces an injection of the orde-
red set (Ob3njd/=») of equivalence classes of injective objects into the orde-
red set (Serred,2) of Serre subcategories of the category o

(b) If 4 is a Grothendieck category (or, more generally, 4 is a catego-
ry with injective hulls and the property (sup); cf. 0.4.3.2), then the map

(Ob3njsd/=,») —— > (Serred,n), M+—— S(M),

is bijective.

Proof. (a) follows straightforwardly from Lemma 4.0.2.1.

(b) The assertion (b) follows from the well known fact that, under the con-
ditions of (b),

any Serre subcategory of 4 is of the form S(M) for some injective ob-
ject M.

For the reader’s convenience, we sketch the proof.

Let £ be an arbitrary Serre subcategory of the category 4, and
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Q: d —— AR
a localization at &2  Fix an injective cogenerator, M’, in the category &R
Since the functor @ is exact, the object M = QNM’), where Q s a right
adjoint to Q, is injective (cf. 63 and 64 in [BD]). The claim is that g
coincides with S(M).

Clearly, £ is contained in  S(M). To prove the inverse inclusion, we
should show that Q(V) = 0 for all V € Obs(M).

Suppose that V ¢ Ob%; ie. (V) # 0, or, equivalently, Q"Q(V) = 0.
Since M’ is a cogenerator of /&, the set of all arrows from Q(V) to M
is integral. The functor oA, being a right adjoint functor, respects integral
families. In particular the family A0 (V) M) is integral. This implies the
composition of the adjunction arrow V —— Q*Q(V) with some arrow g from
OQr"Q(V) to M is nonzero; i.e. V does not belong to S(M). =

4.1. Injective. objects of a local category. Suppose now that the category o is
local; and let V be a quasi-final object in 4.

4.1.1. Lemma. The injective hull h(V} of the quasifinal object V is a coge-
nerator of the local category d.

Proof. We ought to show that, for any nonzero object X  of the category
4, there exists a nonzero morphism X —— A(V).

In fact, there is a diagram

(DX e—b K — % v 2, v,

where i and v arc monoarrows and e is an epimorphism. Since the object
h(V) is injective, there is an arrow

g: (DX —— h(V)

such that goi = wvoe. Therefore, since wvee is nonzero, g is nonzero which

implies that the composition of g with one of the canonical embeddings

X —— (D)X

is nonzero. w

4.1.2. Corollary. Ler & be a category with simple objects and with injective
hulls of simple objects. Then the category 4 is local if and only if it has an
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indecomposable injective cogenerator.

Proof. Only if. Let the category & be local, and let M be a simple ob-
ject of &4  Since M is a quasi-final object of &, it follows from Lemma
4.1.1 that the injective hull, h(M), of the object M is a cogenerator. Since
M is simple, the object h(M) is {ndecomposablc.

If. Let M be a simple object of the category «& and let E be the in-
decomposable injective cogenerator. Since E is a cogenerator, there exists a
nonzero arrow from M to E  which is a monomorphism thanks to the simplicity
of M. Therefore E is the injective hull of M.

By assumption, for any nonzero object X of the category &, there exists
a nonzero arrow g X —— E. Since the object E is indecomposable and M
is simple, the intersection of M  with Im(g} is isomorphic to M. Thus, we

have the diagram

XNt M
where the monoarrow 1 is the preimage of M —— E and € is the natural
epimorphism. =

4.2. A characterization of local Grothendieck categories. Let V  be an object
of an abelian category &« Denote by Ay the ring «#(V,V) and by &, the
functor from the dual to 4  category 4P 1o the category mod-ﬂv of the
right adv-modules which assigns to every object X the ﬂv-module 6=
(4(X,V),c), where the right action ¢  of the ring 4y is the composition;

Gv(f) = ad(f,ia.’v) for any morphism f.

4.2.1. Lemma. The object V is a cogenerator if and only if the functor 6V is
faithful.

Proof is an easy exercisc. m
4.2.2. Lemma. Suppose that the object 'V  of the abelian category 4 is such
that there exists a product, [J]V, of any (small) family J of copies of V.
Then the functor 6y has a left adjoint
p

] 0
IV‘. mod-sdv — 5 4F,

Proof. 1) The first step is to define the functor ¥  on the full subcate-
gory Free-adv formed by free modules. Since
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mod-adV(st.GVX) = (X, V)

for every object X of the category 4, there is an isomorphism
J(X): mod-adV((J):aVGVX) = A(X,[J]V)

which depends functorially on X. This implies that any morphism
u: (J)aav —_— (I)Av
induces a functor morphism
u's (- [1]V) ——— «4(-,[J]V).
By the Ioneda’s lemma, u’ = «(-,3u)} for a uniquely defined arrow
T [I]V — [J]V.
2) Now we define the functor X, 4P

"
the functor X  This means, that, for every right strnodule M, we choose an

e mod-adv as the left derived of

exact sequence
(J)dy, LN (D4, " M s 0 (1)

and set EV(M):= KerXo. It follows from the commutative diagram

mod-adV(M, GV(X)) —> mod-AV(( I)sdv, GV(X)) — mod-adv((l)adv, GV(X))

l A(X, kerXo ) l A(X,In) J
AX, TyM) > >d (X, [1]V) A(X,[J]V)
where the upper row is induced by the exact sequence (1), that the functor Ty
is left adjoint to the functor 6y =
4.2.3. Lemma. In the notations of Lemma 4.2.2, the adjunction morphism
O(P): P ——— 60X ((P)

is an isomorphism for each projective right AV-module P.

Proof. Tt follows from the construction of the functor % that @(P) is

14
an isomorphism for every free module P.  Since projective modules are retracts

of free modules, this implies the statement. m
4.2.4. Proposition. Let 4  be an abelian category with simple objects, injecti-

ve hulls of simple objects, and products.

Then the following conditions are equivalent:
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(a) The category 4 is local.
(b) There is a local ring R and an exact faithful functor
6: 4P — 5 mod-R
such that '
(i) & has a left adjoint functor, ¥: mod-R —— 4°P;
(ii) The adjunction morphism  @®(P): P ——— 6GeX(P) is an isomorphism for
every projective module P. ‘

Proof. (a) Let the category & be local, and let V be an indecomposable
injective cogenerator in 4. Set R = 4V)V), € = GV and % = EV (in the no-
tations of Lemma 4.2.2). By Lemma 4.2.3, the adjunction arrow P ——5 GeX(P)
is invertible for every projective R-module P. Since V is a cogenerator, the
functor ¥ is faithful; the injectivity of V  means that I is exact. Final-
ly, since V is an indecomposable injective object, the ring R is local.

(b) Let the conditions (b) hold. Set V:= Y(R). Note that

1) The object V is a cogenerator in & ie HXV) = 0 if and only if
X = 0. )

In fact, (X, V)= MXYV)) ~ mod-R(RE&(X)) ~ 6X). Hence «X,V) = 0 if
and only if 6(X) = 0. But, thanks to the faithfulness of 6, 6(X) = 0 if and
only if X = 0.

2) The object V is injective.

It follows from the dual version of Proposition 4.1.1 that, since the func-
tor 6 is exact, the functor Y sends projective objects of the category mod-
R into projective objects of the category 4P, But projective objects of 4°P
are injective objects of .

3) The object V is indecomposable.

(i) Note that, being local the ring R  does not contain nontrivial idempo-
tents.

In fact, if e is an idempotent, then either e¢ = 1, or e 1is not inver-
tible. In the last case, since the ring R is local, the idempotent element 1
- e is invertible; hence e = 0.

(ii} The absence of nontrivial idempotents means that the projective right
module R is indecomposable.

Since the adjunction morphism P ——— Go¥(P) is an isomorphism for every
projective module P  (Lemma 4.2.3), and the functor & is faithful, the inde-
composability of the right module R implies that of the object V.

4) By Lemma 4.1.2, the category # is local. m
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In conclusion of this section, we shall make one more step to the better
understanding of the structure of injective objects of a local Grothendieck ca-
tegory.

4.2.5. Lemma. Let V  be an object of the abelian category 4  which satisfies
the conditions of Lemma 4.2.2; and let YV  be the full subcategory of the cate-
gory 4  generated by the objects which are isomorphic to the objects LAP),
where P runs through the class of projective right sdv-modules.

1) The functors 6, Ty induce duality between the category Proj-adv of
the projective right sdv-modules and the category % (i.e. an equivalence of
the categories Proj-dy, and 3V°P).

2) If the object 'V is injective, then all objects of the subcategory XV
are injective objects of the category 4.

Proof. 1) The first statement follows from Lemma 4.2.2.

2) The injectivity of the object V  means that the functor 6y, is exact.
Therefore, by Proposition 4.1.1, the functor IV assigns to projective right
Av-modu]es injective objects of the category 4. m

4.2.6. Proposition. Let A be a local Grothendieck category with simple ob-
jJects; and let 'V be an indecomposable injective object in 4.  Then every ob-
ject of the subcategory v (cf. Lemma 4.2.5) is isomorphic to the product
[JIV of a family J of copies of the injective object V.

Proof. This statement is the corollary of Theorem 4.2.4 and the Kaplanski’s
theorem:

every projective module over a local ring is free. m
5. INJECTIVE SPECTRA.

5.1. Definitions. Fix an abelian category 4.

Define  ISpecd  as the class of all nonzero injective objects E  of the
category 4 such that FE » E° (ie. AEE’) is an integral set of arrows)
for any nonzero injective subobject E° of E. And let ISpecd be the set
{S(E)| E € ISpecst] of Serre subcategories of .

We call the ordered set (ISpecd,2) the injective spectrum of .

One can see that any nonzero injective subobject of an object E from
ISpecd  belongs to ISpecd and its image in ISpecd is the same as the image
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of E, ie. S(E).

Clearly the class  /"Specd  of all indecomposable injective objects of A
is contained in ISpecd.

We denote the image of [“Specs4 in ISpecd by I~Specd and call it inde-
composable injective spectrum of 4.

5.2. Lemma. Let P € Spec 4 be such that the localization Q = Q[P at P is
flat (ie. has a right adjoint functor, on), and the quotient category AP
has injective hulls (which is the case if 4 has injective hulls).

Let M be an injective hull of a quasi-final object X  of the category
Af. Then M:= QNM’') € ISpecd.

Proof. Let i+ : E —— M be a nonzero injective subobject of M. Since
E is injective, there is a morphism e : M —— E such that eoi = idE which
implies that QeoQi = idQ(M)‘ 'Hence the object Q(E), being a retract of an
injective object QM) = QONM') = M is injective as well. Since E is
P-torsion free, Q(E) # 0. Therefore the intersection Y:.= X  Q(E) is nonzero
(we are using the fact that M’ is an injective hull of X). Being a nonzero
subobject of a quasi-final object, Y is also quasi-final. This implies that

S(Q"Q(E)) = s(M).

Note now that the adjunction arrow n : E —— Q*Q(E) is an isomorphism.
This is a corollary of Proposition II1.3.6 in [Gab]. Actually, one can see this
fact immediately taking into consideration that E is a direct summand of M =

QNM). m

5.3. Proposition. Let 4  be a category with injective hulls and with property .
(sup). Then the flat spectrum Spec « is a subset of the injective spectrum.
And the Goldman’s spectrum of 4 is a subset of 1"Specd. So that we have the
diagram of inclusions:

Spec 8 ——— ISpecd

I T

Spegd ———— I"Specd

Proof. Under the assumptions, the localization at every point P of
Spec 4 is flat, and & is a category with injective hulls. So, the inclusion
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Spec 4 < ISpecd follows from Lemma 5.2.

Suppose now that P € Spegd. By Proposition 3.2, this means that the local
category P has simple objects. Let M be an injective hull of a simple ob-
ject of 4. Then QNM’) (where Q" is a right adjoint to a localization
Q: 4 —— 4P is an indecomposable injective object of d, and P =

S(QNM')). =

54. Lemma. Let 4 be an abelian category with injective hulls. Let T be a
topologizing subcategory of 4 and J  the inclusion functor T ——— A The
map which assigns to an object X of T  the injective hull,  hJ(X), of its

image in & induces morphisms of ordered sets

ISpect ——— ISpecd and 1"SpecT —— I”Spec4.

Proof. Suppose that X e ISpecT; and let E be a nonzero injective subob-
ject of AJ(X). Then E n X is a nonzero object in T.
(a) We claim that E n X is an injective object in T.

Indeed, any diagram E X ¢ LA VA M’, where U is a monoarrow, can

be included into a commutative diagram

E hJ(X)
'Y\ M’ /
nloou TN (1)
M
Joo
EpnX U X

with arrows 7y and A due to the injectivity of the object X in T and E
in 4  Since the outer square of the diagram (1) is cartesian, there is unique
morphism U: M —— E n X such that v = met” and A = w'e’. The equali-
ties

To(Uel) = Yol = Mo@®, Wo(l'ot) = Aol = We@

imply, thanks to the universal property of a cartesian square, the required equ-
ality Vel = 0.

(b) Since X € ISpect and E X is a nonzero injective (in T) subob-
ject of X, we have X » E n X; ie AXE n X) is an integral family of ar-
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rows which implies, of course, that AXE) is an integral family of arrows.
But, the integrality of &(X,E) implies that of «(hJ(X)E).

Indeed, if Y is a nonzero subobject of  hJ(X), then, since AJ(X) s
jJust the injective hull of X in &,  the intersection X n Y is nonzero.
Thanks to the integrality of  A(X,E), there is an arrow s: X —— E  such
that the composition of s and the monoarrow X ) ¥ ~Y 5 X is nonzero. Since

E is injective, there exists a morphism Y —' 5 E such that the diagram

y — 1 L E

Lk

XQY;)X

is commutative. Clearly t is nonzero. This finishes the proof. m

5.5. Lemma. Let Q be a localization of an abelian category 4 at a thick sub-
category T, and let E be a T-torsion free injective object in 4. Then the
object Q(E) is injective.

Proof. Let we have a diagram
o) —— orx) —1 o(E) (1)

in &7 such that i is a monoarrow. The arrows f and i are the images of
some elements ' € AX,E/V) and ' € 4X"M/M") respectively, where X’
and X" are subobjects of X such that X/X° and X/X"  belong to T, as
well as M/M" and E/V.

This means that the diagram (1) is represented by the diagram

X E
u\ _ " v / u ;\ ) A’ (2)
Me—2>" X" X'— Ly

M

in which all diagonal arrows are send to invertible ones by Q.

The diagram (2) can be included into the diagram
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X
M Dy X Y s E
ll\ . U/ u;\ z ﬂf
Ml t Xn XI f V

(3)

where Y = M x X", Y = X'x E, and all diagonal dot arrows are inverted by the

M 4

localization Q. This shows that the diagram (1) can be inciuded into a commu-

tative diagram of the form

i/ Q(X) N f
oM)  w Q(E)

o™\ /00
(W)

where w is an isomorphism.

Since Ker{ty) € ObT and the object E is T-torsion free, ¢  annihilates

Ker(l). So, we can assume that 1 is a monomorphism which implies, thanks to

the injectivity of FE the existence of a morphism o©: M —— E such that
ool. Clearly Qo is what we are looking for. Because we have:

OCGoiow = QCoh = Q¢ = fow;

and the equality QCeiow = fow implies that QCei = f. =

For any topologizing subcategory T of the category 4, set
VI(T):= (S(E)| E € ISpec# and E is not T-torsion free},

VIAT):= VI(T) n I"Specd«.
and let
UI(1):= ISpeca - VI(T1), UI*T).= UI(T) N I"Specd.

5.6. Proposition. Let 4  be an abelian category with injective hulls. Then,

every coreflective thick subcategory T of 4,
(i) the map which assigns to any object of T its injective hull in

induces bijections

ISpecT ——— VI(T) and I"SpecT ——— VIA(T).
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(ii) The localization Q = Qv induces bijections

UI(T) —— ISpecd/T and UI*T) ——— I Spec/T.

Proof. (i) Since the subcategory T is thick, the inclusion functor

JoT—— 4

is exact which implies that its right adjoint, JA, sends injective objects of
4 1into injective objects of T (c.f. [BD], Proposition V1.6.3).

(a) First note that, for any injective: object X of T, the canonical
morphism o = o(X): X —— JMJ(X) is an isomorphism.

Clearly o© is a monomofphism. Since X  is injective, this implies that
JMJ(X) « X @ Y for some subobject Y. Since every nonzero subobject of  hJ(X)
should have a nonzero intersection with X, the direct summand Y is zero.

(b) We claim that JME) € ISpect for every E € VI(T).

Let Y be a subobject of JAE)  which is annihilated by all morphisms
from JNE) to X. Since the object X is injective, the induced by the mono-
arrow Y —— JME) map

T(JINE)LX) —— T(V,X)

is surjective. This means that T(Y,X} = 0.

Now, we have the following commutative diagram

0 =7(Y,X) e—— T(Y,J'WJ(X))

"

A(J(Y), J(X)) e—— 4(J(Y), hJ(X))

in which both vertical arrows are (canonical) bijections, and the wupper horizon-
tal arrow is bijective too, as we have showed in (a). Hence all arrows in the
diagram (1) are bijective which implies that A(J(Y)LhJ(X)) = 0. But,
A(HY)E) is nonzero, since J(Y) is a subobject of E; and SEhJ(X)) is
an integral family of arrows. So, if Y # 0, then there is an arrow,

¢ E —— hi(X),

such that the composition of g with the embedding J(Y) —— E is nonzero.
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This proves that Y is zero. Hence JNE) € ISpecT.
(¢} Combining (a) and (b), we see that the map

E—— JNE) from VIT):= (E € ISpecd| JNE) # 0) to ISpecT

is left inverse to the map

X+— hJ(X) from ISpect¥ to VI(T).

In particular, the induced by J*» map
VI{T} —— ISpecT
is left inverse to the induced by hJ map ISpecT —— VI(T) of Lemma 5.4.

Note that hJINE) is a nonzero injective subobject of E which means
(since E € ISpecd) that hJINE) is equivalent to E; i.e. S(E) =
S(hJJME)). This shows that the induced by A/ map ISpecT —— VIT) is
left inverse to the map induced by the functor  JA Therefore these two maps
are mutually inverse.

(d) The bijectivity of I*"SpecT —— VINT) follows from the bijectivi-
ty of ISpecT ——— VI(T). The details are left to the reader.

(ii) Let now E be an object of [ISpecd/T. Then QNE) is a T-torsion
free injective object of . We claim that the object QNE) belongs to
ISpecd.

In fact, let' X be a nonzero injective subobject of QAE).  Since the ob-
ject X is T-torsion free, T < S$(X). This shows that S(QNE)) = §(X) if and
only if S(QONE)) = $(Q(X)).

Since the object X is a retract of QANE), its image, Q(X), is a ret-
ract of QONE) « E. Therefore  Q(X) is a nonzero injective subobject of FE
which implies (since E € ISpec/T) that S(Q(X)) = S(E).

Conversely, let E° be a T-torsion free object from  [Specd.  According to
Lemma 5.5, Q(E’) is an injective object in #T. Let v X —— Q(E’) be a
nonzero injective subobject. Consider the diagram

orx) — 2%, ongey ED g @

where 1 denotes the adjunction arrow. Since E° is T-torsion free, the arrow

TWE’) is a monomorphism. Therefore

QMUE) « E @Y (3)
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for some T-torsion free object Y.  Since the functor morphism @n is an iso-
morphism, it follows from (3) that Q(Y) = 0. Therefore Y = 0; or, equiva-
lently, nE’) is an isomorphism. Thus, OMX) is an injective subobject of
E'. Since E € ISpec#, QANX) is equivalent to E’; i.e.

S(QNX)) = s(E). (4)
Since T < S(E’), the equality (4) is equivalent to the equality
$(X) = S(QQNX)) = S(E').
Here we use the (adjunction) isomorphism QQONX) =~ X. =

6. THE GABRIEL-KRULL DIMENSION.

6.0. Preliminaries. We fix an abelian category &  satisfying the property (sup)
(cf. 0.4.3.2).

The Gabriel filtration of &  assigns to every ordinal o a Serre subcate-
gory 4, of #£ which is constructed as folows:

Set dy = 0.

If o is not a limit ordinal, then 4o is the smallest Serre subcategory
of 4 containing all objects M such that the localization Q(],-I(M) of M at
oA has a finite length.

o1

If P is a limit ordinal, then AB is the smallest Serre subcategory con-
taining all subcategories 4. for o < B.

Let 4 denote the smallest Serre subcategory containing all the subcate-

o

gories Ao Clearly the quotient category sd/sdm has no simple objects.

An object M is said to have the Gabriel dimension B,

Gdim(M) = B,

if [ is the smallest ordinal such that M belongs to AB.

The following assertion follows from the definitions:

6.0.1. Lemma. Let

0 y M’ > M > M” > 0
be a short exact sequence in 4y Then
sup(Gdim(M’),Gdim(M")) < Gdim(M) £ Gdim(M’) + Gdim(M").



If 4= 4y then the smallest ordinal o such that « = 4y is called the
Gabriel dimension of the category 4 : Gdim(d4) = o

Given a Serre subcategory S of &, the Gabriel filtration {da} induces
the filtration [aao/(da n s)} of the category 4/ in which some of the conse-
cutive subcategories may coincide. It is clear that a‘la/(aﬂa nes ¢ (A/S)a for
any ordinal o. This shows that if 4 = 34(0, then s = Sm and (4/5) = (A/S)m.

Thus, we have the following Proposition (IV.l.l in [Gab]):

6.0.2. Proposition. Let S be a Serre subcategory of 4 Then
4 =4 if and only if Sy = S and (A/S)m = 4/s.
In this case,
sup(Gdim(s),Gdim(4/8)) < Gdim(4) < Gdim(S) + Gdim(4/5).

Proof. (a) The assertion (a) is already proved.

(b) Denote by Sq, the preimage of the subcategory (»st./S)Ot in &4  We
claim that if $ = S then Sy = (sa)(o for any .

It is true, of course, for o = 0.

Suppose it is true for all o < f.

(i) If B is a limit ordinal, then S =(agﬁsa)-; and since s, C 4, for
any o < P, the same holds for Sg.

(i) Suppose now that B is not a limit ordinal.

By the induction hypothesis, SB" c ad(o. Therefore there is an ordinal 7y
such that SB_I c 417, but SB" is not contained in 4, for any o <y Cle-
arly SB c ’4'y+1' L]

6.0.3. Corollary. Let &  be an abelian category which has Gabriel dimension;
ie. o =d Then, for any proper Serre subcategory T of 4,  the quotient
category /T has simple objects.

6.0.4. Corollary. If «4 = 4oy then any Serre subcategory T  of the category
4 coincides with the intersection of all P € Spegd containing T.

Proof. Let $ denote the intersection of all P € Spegd which contain T.
If s # T, then T is a nonzero Serre subcategory of the category — /T.
Therefore the sucategory ST has Gabriel dimension (cf. Proposition 6.0.2). By
Corollary 6.0.3, &/T has simple objects. Let M  denote one of them; and let
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P be the preimage of <M> € Spec/T. Since M is simple, its image in A/<M>
is a simple object; i.e. <M> e Spegd/T which implies that P € Spegd. Now no-
te that S is not contained in P, since the object M (of $/T) does not
belong to PA = <M>. Thus, we have run into a contradiction which shows that
S should coincide with T. =

6.0.5. Locally noetherian categories. An object M  of an abelian category o
is called noetherian if any increasing sequence of subobjects of M stabilizes.

An object M of 4 is called locally noetherian if M is the supremum of
a family of its noetherian subobjects.

An abelian category 4 is called noetherian if all objects of 4  are noe-
therian.

An abelian category & is called locally noetherian if it has the property
(sup) and every object of £ is the supremum of a family of its noetherian sub-
objects.

6.0.5.1. Remarks. (a) Clearly, any noetherian category has the property (sup).
In particular, any noetherian category is locally noetherian.

(b) The given above definition of a locally noetherian category ts not an
exact copy of the conventional one (cf. [Gab] or [BD]). In [Gab], «£ is requi-
red to be a Grothendieck category. Thus, a nonzero noetherian category cannot be
locally noetherian in the conventional sense.

(c) Noetherian objects of any abelian categoy B  generate a thick subcate-
gory, M8, of 3B. In other words, the coproduct of any two noetherian objects
is a noetherian object, as well .as any subquotient of a noetherian object. This
implies, in particular, that every object of a locally noetherian category is
the supremum of an increasing family of its noetherian subobjects.

Clearly T® is the biggest thick noetherian subcategory of 3.

(d) Suppose that B is an abelian category with the property (sup). Then
the smallest Serre subcategory (NB)~  containing N8B  coincides with the full
subcategory of B generated by all locally noetherian objects of B. =

6.0.5.2. Lemma. Ler S be a thick subcategory of an abelian category 4,  and
Q a localization 4 —— &/5. Then, for any noetherian object M of 4, the

object Q(M) is noetherian.

Proof. a) First note that M has a maximal subobject, SM, among the sub-
objects which belong to S. So that the object M/SM is S-torsion free. Repla-
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cing M by M/AM, we assume that M is S-torsion free.

b) Let f QX)) —— Q(M) be a monoarrow. By the definition of a quotient
category, the arrow f is the image of an arrow

f: X —— MM,

where X' is a subobject of X such that X/X’ € ObS and M’ is a subobject
of M which belongs to S. But, M is assumed to be S-torsion free; hence M’
= 0. Replacing X’ by its image in M, we see that the subobject f is iso-
morphic to the subobject Qf' for some monoarrow f*: X" ——5 M.

c¢) To prove that the object QM) is noetherian, one need to show that,
for any family € of subobjects of Q(M), there is a finite subset = of Q
such that, for any bigger finite subset, =’, of €, the canonical arrow

sup(Z) ———— sup(Z’)

is an isomorphism which implies that sup(Z) = sup(2)).

Let Q be any family of subobjects of the object Q(M). And let Q' be
the corresponding family of subobjects of M  (cf. the part b) of the argument).
Since M is a noetherian object, there is a finite subset Z° of Q° such
that sup(Z’) = sup(Y').

Since the localization Q: 4 —— A5 is an exact functor, this implies

that sup(Q(Z’)) = sup(Q). =

6.0.5.3. Corollary. Let A be a (locally) noetherian category. Then, for any
Serre subcategory S of 4,  the quotient category, /S, s (locally) noethe-

rian.
6.0.5.4. Corollary. Every locally noetherian category has Gabriel dimension.

Proof. According to Corollary 6.0.5.3, the category sd/sﬂm is locally noe-
therian. So, if 4 # .ndm, ie. _aﬂ/aam # 0, then there are nonzero noetherian ob-
jects in the category :ﬂ/adm. Since any nonzero noetherian object has a maximal

proper subobject, aa/am has simple objects which cannot happen. =

6.1. The spectra of a category which has Gabriel dimension. Fix an abelian cate-
gory « with the property (sup).
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6.1.1. Proposition. If 4 = 4 then Spec 4 = Spegd.

o

Proof. The assertion (a) is a straightforward consequence of Corollary
6.0.3 and Proposition 3.3. =

6.1.2. Proposition. Ler 4  be an abelian category with injective hulls and the
property (sup). Suppose that o = 4. Then
(a) the embedding Spegd ——— 1*Specd is a bijection;

(b) 1"Specst = ISpecd.

Proof. (a) Let E € I“Specd. Since 4 = « there exists an ordinal «

(l))
such that E  has a nonzero subobject from Adla b but 1is Aa-torsion free. Cle-
arly E contains a subobject M  such that the localization Qa(M) of M at
Ao, is a simple object of the category xl/;da. In particular, the preimage of

<Qa(M)> in 4 belongs to Spegd.

On the other hand, this preimage coincides with  S(E). This follows from
the fact that E is the injective hull of M.

Indeed, if X,E) = 0, then Qa(X) € <Qa(M)>.

Since E is an Aa-torsion free injective object, the functor Qa maps
4(X,E)  bijectively onto d/aa(Qa(X),Qa(E)) for any X. In particular, Qa(E)
is an injective object in ad/ada.

An easy way to see this, is to use the adjunction isomorphism
Wi (O (X)Q(E)) = 4,(X.0,"C(E))

and the isomorphness of adjunction arrow E —— Qa"Qa(E)) (cf. the end of the
argument of Lemma 5.2). Now we have, for any object X of 4, the following
implications:
UXE) = 0 o 4 (Q(X).0(E) = 0 ()
and
Wi (QyX)QLE) = 0 & Q(X) e <Q,M)> 2

To prove (2), note that if Qa(X) > Qa(M)’ then, due to the injectivity of
Qa(E) and the existence of a (mono)morphism from Qa(M) to Qa(E), there is a
nonzero arrow from Qa(X) to Qa(E) (cf. the proof of Lemma 4.1.1).

Conversely, if g Qa(X) - Qa(E) is a nonzero morphism, then  im(g)
has a nonzero intersection with Qa(M) (since Qa(E) is the injective hull of
Qa(M)’ Since Qa(M) is simple, im(g) contains Qa(M). This implies that
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Qo (X) > Qo (M).

(b) Let now E be an object of [Specd. Take an ordinal o such that E
is Aa-torsjon free, and has a nonzero subobject M  from Do This implies
that E has a subobject M such that Qa(M) is a simple object of the catego-
ry sd/,da. One can see that the injective hull, A(M), of the object M is an
indecomposable injective subobject of E. Since E e ISpecd, S(E) = S(h(M));
ie. E defines the same element of ISpecs# as the object A(M) of [“Specd.

This means that ISpecd = I"Specd. w

6.2. Spec and Spec™. In general, Spec# is a pretty meagre proper subset of
Spec «¢. But, if 4 has the Gabriel-Krull dimension, then Spec# is ample, as
the following lemma shows.

6.2.1. Lemma, Suppose that A = Aoy Then Supp(M) # & for any nonzero object
M of 4

Proof. In fact, the full subcategory of 4  generated by all objects M

for which Supp(M) = & coincides with Sd4 = N <P>; in particular, S«
<P> € Specd
is a Serre subcategory.

According to Proposition 6.0.2, the equality o = 4 implies that S4 =
(S4) o Therefore either  S#4  has simple objects, or it is a zero subcategory.
Since S4 cannot have simple objects, it equals to zero. m

6.2.2. Corollary. Suppose that 4 = 4y Then, for any Serre subcategory S of

4, Supp(M) # & for any nonzero object of S or /5.

Proof. The fact follows from Lemma 6.2.1 and Proposition 6.0.2 (= Proposi-
tion IV.1.1 in {Gab]). =

6.2.3. Proposition. Suppose that 4 = 4. Then the following conditions are

equivalent:
(a) Specd = Spec «;
(b) for any non-limit ordinal o0,
d, = A(Specsda); ie. Obaaa = (M e Obd| Supp(M) Specsaa].
In other words, any object M such that
M > P, Pe Specd, = P e Obada
belongs to A
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Proof. (b) = (a). We begin with the following observation:
(i) Let P € Spec 4 and P does not contain Aa for some ordinal q.
Then P € Specd if and only if P 4y € Specada.
This follows from Lemma 5.3.1 in [R3] and Proposition 2.4.
(ii) Thanks to (i), it suffices to show that, for any ordinal «,
Spec—ﬂa = Specﬁa. (D
Clearly the statement is true for o = 0:

Spec'sao = Simple«d = Specdo. and dy = A(Simpled).
Suppose that the equalities (1) holds for all o < .
1) If B is a limit ordinal, then we have:
Spec_:aB = U Spec_.da = U Specsaa = SpecsaB.

o<f o<

and
AB =(Spec AB) = A(SpecsaB).

Here we identify Spec"Aa (and Specsda) with the set of all P € Spec 4
(resp. P € Spec;da) which do not contain saa (cf. (i) and Proposition 2.4),
2) Suppose now that [ is not a limit ordinal. Let P  be an arbitrary

element of Spec_AB. If sdB is not contained in P, then

-1

P n JB'I € Spec_dB ,

and Spec'atIB is equal to SpeCsﬂﬁ_l by induction hypothesis. So, we shall as-

-1
sume that AB_I c P

Let M be an object of « such that its localization QB-I(M) is a simp-
le Object Of adB/AB_I - [P/AB .

, By induction hypothesis,

Supp(M) is not contained in Spec.saB_l.

So, there exists an element <P> € Supp(M) - SpecsdB ; le. M > P and P

-1
& Obﬂﬁ_l. This means that

Qp.(M) > O (P) # 0. 3)

Since QB-I(M) is a simple object, the relation (3) implies that QB-I(P)

is equivalent (in the sense of the relation ») to Qn (M) (according to Pro-

B-1
position 1.3.1 in [R3], the object QB-l(P) is the direct sum of a finite num-

ber of copies of QB-I(M))'
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Thus, P n AB is the preimage of the subcategory <QB-1(P)> under the co-
restriction of QB'I to ABMB_I. This implies that P AB = <P> AB. The-
refore, according to Proposition 2.4, P coincides with <P>,

(a) = (b). Let now that Specd = Spec 4. And suppose there exists an ob-
ject M of & such that Supp(M) ¢ Spech_l for some non-limit ordinal f,
but M e ObadB_l.

Since the image, M, of M in the quotient category WAB_]
is a nonzero object, and the -category AMB has Gabriel-Krull dimension, the

-1
support of M’ is nonempty. In other words, there exists P € Specd such that

M ¢ ObP, and sdB_l c P. (D

By assumption, P = <P> for some P € Specd. And (1) means exactly that
<P> € Supp(M), but <P> ¢ SpecAB
which contradicts to the initial assumption. =

-1

6.2.4. Corollary. Under the equivalent conditions of Proposition 6.14, any
Serre subcategory S of A is the intersection of all <P> € Specd such that
S C <P>.

Proof. Every Serre subcategory S of 4 is the intersection of all P €
Speg# such that $ < P (cf. Corollary 6.0.4). But

Speg«4 = Spec™ 4 = Specd

according to Propositions 6.1.2 and 6.1.4. =

The following, very basic, example shows that one should not restrict one-
self to the categories satisfying the conditions of Proposition 6.2.3.

6.2.5. Example: Proj. Fix a z +-graded ring R = GBRn. And consider the category
n2o
d:= ,grzR-mod of Z-graded R-modules. Let ¥ denote the full subcategory of «

generated by all graded R-modules M such that Ann(M)} contains the two-sided
ideal R, '= @R .
+ n
n2i

Note that Specd = SpecT = U SpecRO-mod.
Z copies

In fact, for any graded R-module M =& Mi and any n € z, the sum
i€
Mnj:= @ M,
i2n
is a submodule in M. Clearly M{n] is equivalent to M (with resp. to ») iff
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Mi = 0 for all i < n. Therefore, if P € Specd, then there exists m such

that Pn =0 if n#m and the Ro-module Pm belongs to SpecRo-mod.

Note that Specd is ample; ie. if Supp(M) = &, then M = 0.

This follows from the observation that, for any integer m, the subquoti-
ent M{m+1)/M{m} belongs to the subcategory T. Clearly M{m+i}/M{m] s
isomorphic to a module V such that Vn =0 if n#m and Vm = Mm.

Define Proj(R) as the quotient category /T .

It is not difficult to show that T = 7, where J is a thick subcatego-
ry of 4 generated by all R-modules M such that the set {n| Mn = 0} is fi-
nite. If the ring R is commutative, then, by a Serre’s theorem, the category
Proj(R) is equivalent to the category of quasi-coherent sheaves on the projec-
tive spectrum, Proj(R), of the ring R.

Thus, Spec(Proj(R)) has nothing to do with Specd. At the same time, if
the ring R is noetherian, then  Proj(R) is a noetherian category. In particu-
lar, it has Gabriel-Krull dimension (cf. Corollary 6.0.5.4); hence, the spectrum
of Proj(R) is ample by Lemma 6.2.1.

Note that  Spec”(Proj(R)) is an open subset (with respect to the topology
T) of Spec & = Speg«.

6.3. Dimensions. Fix an abelian category «. To every ordinal «, we assign a
subset € of Spec £ defined as follows.

o
(50 =
if o s not a limit ordinal, €, consists of all elements P e Spec’ A
such that any P € Specd for which ® < P, but P is distinct of P, be-
longs to Ea_l;
if B is a limit ordinal, then (Ea:= Bgaeﬂl
Clearly €, S (EB if o < B which implies that the set €y is closed in

the topology T.

Denote by Specm_sd the union of all subsets €,. Since the union of any
family of closed in T  subsets is closed, Specm_aa is a closed subset of the
topological space (Spec 4,1).

For any P € Specw_ﬂ, there is the biggest ordinal, bt (P), among the
ordinals o such that P ¢ @a' We call the ordinal Wt (P) the height of P.

Thus, €_ s the set (P € Spec & | bt (P) < 0.

o
We define the flat dimension of 4 (or f-dimension) as the supremum of ail
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ht™(P), where P runs through Specm_ad.
The notation: fdimd.

For any ordinal «, set ada_:z ad((Ea); i.e. aﬂ(@a) is the full subcatego-
ry of the category « generated by all objects M such that Supp™ (M) < L

Set Am_:= A(Specm_.d).

According to Proposition 2.6.2, sda_ and aam_ are Serre subcategories of
4, and

Spec_sa(Ga) =€

o and Spec_(adm_) = Specm'A.

In particular,
bim 4 = bim (adm ).

6.3.1. Remark. Note that Specm_ud = & if and only if Spec”# has no closed (in
the topology T) points.
Clearly Spec—(.d/sdm') has no closed points. m

6.3.2. Proposition. The following conditions on an element P of Spec 4 are
equivalent:
(a) bt (P) is a finite number.
(b) There is the maximal integer, n, among nonnegative integers m  such
that there exists a chain
PDODP DP DOD..DP
1 2 m
of distinct elements of Spec 4.

The number n in (b) is equal to bt (P).
Proof. Clearly, if there exists a chain

P>P DP D.. 2P, (D)
of distinct elements of Spec™«, then ht (P) 2 n.

Therefore the assertion shall be proved if we show that, for any P €
Spec 4 such that Bt (P) = n, there exists a chain (1) of distinct elements of
Spec 4. But, the latter statement follows almost immediately from the definiti-
on of the height.

In fact, since ht™(P) = n, there exists an element P, in Spec« of the
height n - 1 and such that P CP (otherwise the height of P would be less

than n). So, we can use the (finite) induction. m
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n -

Proposition 6.3.2 shows that our definition of the height and dimension are
generalizations of the conventional ones.

One can repeat all this constructions replacing Spec & by any other of
the considered here spectra. Thus we obtain different notions of height and di-

mension:

iht, idim (corresponding to ISpecd);

i*ht, i*bim (corresponding to I*Spec«);

abt, gbdim (corresponding to Spegd),

and, finally, we shall write simply ht and &im for the height and di-
mension corresponding to Specd.

6.4. The case of a category which has Gabriel dimension. Fix an abelian category
4. For any P € Spec‘;ﬂm, denote by HP) the biggest ordinal o such that P
contains the subcategory Ao

On the other hand, KP) = Gdim(M), where M is an object of & such
that the localization of M at P is a quasi-final object of AfP.

6.4.1. Proposition. Letr
coincides with bB(P): ht (P)

Ay Then, for any P € Spec &  the height of P

h(P).

Proof. Denote temporarily the set (P € Spec’d | hP) < of by Qa. Clear-

ly 9, = J; hence 9, = €,

Assume that 2, = €, for all o < B for some ordinal P.
(a) If P is a limit ordinal, then Qp = U 2 which implies that Q is
B o<p o p
equal to (F.B.

(b) Consider now the case when § is not a limit ordinal.

For any Serre subcategory S and any ordinal o, denote by Sfa) the in-
tersection S o

(i) Let P € Spec 4 be such that KP) = B. And let P be a specializa-
tion of P; ie. P < P. Clearly KP) £ bP) We claim that /P’) = bP)
if and only if P = P.

In fact, if KP) = bP), then P D> AB, and [P’(ﬁ-}‘l)/adﬁ is a speciali-
zation of [P(B+I)/AB € Spec_(adﬁ _H/AB). Since

Spec_(saB_'_l/adB) = Spec(dB+l/AB) = Simple(dB+1/sdB),

54



this implies that
P(B+1 )/saB = P(B+1 )/xaB. (1)

According to Proposition 2.4, the equality (1) is equivalent to the equali-
ty rPMB = [P'/:dB which, in turn, means that P = P.

(ii) Thus, if Pc P and ® # P, then KP) < KP); ie P € QB
And QB_I = (EB_I by induction hypothesis. This shows that QB c GB.

-1

(iii) Conversely, let P € (EB, and let KP) = y. We claim that y < B.

Suppose that, on the contrary, [ < 7y. By Proposition 6.1.3, Spec d =
Specd. In particular, P = <P> for some object P from Specd. Since P
does not contain ad,Y Y there exists a simple object M in the category
ﬂy +1/A‘Y which does not belong to the subcategory P/A_{ Since P = <P>, the
subcategory n%ay equals to <Q_Y(P)>. So, the relation M ¢ ObP/4, means that
M > Q,Y{P); ie. Q,Y(P) is the direct sum of a finite number of copies of M.
Replacing P by an appropriate subquotient of P, we assume that Q%P) is a
simple object.

(i) There exists a subobject M’ of P such that

Q,Y(P/M') = 0 and QB(P/M') # 0. (2)

In fact, if there is no subobject M’  with properties (1), then QB(P) is
a simple object. In particular, P € ObAB 4 S Obsay which contradicts to the

choice of P.
(ii) Let M’ be a subobject satisfying (2). Clearly

B £ o= Gdim(P/M') + 1 < v.

The object P/M’ has a subquotient L of dimension ¢ such that Q 5L
is a simple object of A/ .

The preimage P of <@ o/L)> in 4 is a point of Spec’d such that
KP) 2 B and P is properly contained in P.

The latter follows from the relation QG(P) > Q c,(L) (which is a conse-
quence of the relation P > L and the exactness of the functor Q) 0_) which 1s

equivalent to the inclusion
<Q4(L)> © <Q(P)>.

But, by the assumption, every element P’ € Spec™s# such that P is a
proper specialization of P, belongs to €, for certain o < B, and, by the

induction hypothesis, € 2 if o < B. Thus, we have run into a contradic-

a o
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tion. w

6.4.2. Corollary. Suppose that 4 has Gabriel dimension. Then
bim 4 is finite if and only if Gdim(4) is finite,
and in this case oim 4 = Gdim(d); and bim o coincides with the maximal
length of the chains
P> IPI o..DOP

n
of distinct elements of Spec o

Proof. The assertion is a consequence of Propositions 6.4.1 and 6.3.2. u

7. Quasi-schemes. Having six spectra might create a confusion. So, probably, so-
me of readers are interested to know how the author places them. I would like to
begin with a ’politically correct’ statement: all these spectra are natural and,
therefore, each of them should be useful for something.

However, I give a preference to Spec considering the other spectra (in
particular, Spec” and Speg) -as a background one should keep in mind and be
ready to use.

The priority of Spec is due to the following reasons:

a) Spec is the smallest among six, if the category has Gabriel-Krull di-
mension (and most of categories of interest do have Gabriel-Krull dimension).

b) It is, usually, much easier to describe the Spec  of concrete categori-
es than their other spectra.

Of course, the latter is an experimental fact (cf. [R4] — [R6]). But, the
experiments were so convincing that I would like to commit myself futher by gi-
ving the following definition:

Call an abelian category P satisfying the vproperty (sup) a quasi-scheme
if, for any nonzero object M of 4, the support Supp(M) of M is nonempty.

Clearly any topologizing subcategory of a quasi-scheme is a quasi-scheme.

Note also that quasi-schemes stand localizations at open sets of any reaso-
nable topology, to begin with topology 7.

In fact, let U be any subset of Spec#; and let M be a nonzero object

of the quotient category «/<U>. Here <U>:= n <P>. Let M be a preimage
<P>eU
of M in 4 Clearly M » P for some <P> € U; hence Q<‘U>P € Supp(M).

This argument shows also that closed points of «/<U> are images of points
of U
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