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SIX SPECTRA AND TWO DIMENSIONS OF AN ABELIAN CATEGORY.

Alexander L. Rosenberg

INTRODUCTION.

The maIn (probably, th.e only) disadvantage of the introduced in [R3] spect­

rum (as weIl as its special case - the left spectrum of a ring [RI], [R2]) is

that the spectrum of the quotient category at an open set might be Iarger than

that open set.

The principal character of this work is the flat specrrum of an abelian ca­

tegory which is the minimal, in a certain sense, extension of the spectrum en­

joying the "right properties 11 with respect to localizations and restrictions.

The proof of these properties .and the generalization onto the flat spectrum the

most important constructions and facts known for the spectrum, is one of the

mmn objects of this paper. ~

Another purpose here is to understand how the spectral theory presented in

[R3] is related to some of the earlier attempts to create noncommutative local

algebra and algebraic geometry.

Recall the major approaches to noncommutative spectral theory developed be­

tween late fifties and early eighties:

(i) The injective speerrum of an abelian category formed by the isomorphy

classes of indecomposable injective objects [Gab].

(U) The Goldman's spectrum of a ring which consists of prime torsion theo­

fIes [G], [Goi I], [GoI2].

(iii) The spectrum of a fIng understood as the set of prime ideals of this

ring with Zariski topology. Affine schemes (structure sheaves) can be defined

for left noetherian rings and for PI-rings tüV].

(iv) The Cohn's affine scheme of a general ring [Cl.

Thanks to the flat spectrum, we are able to get a new insight at the first

three of the listed above spectral theories.

In more detail, the contents looks as follows.

In Section 0, we remind, for readers' convenience, some basic facts on the

introduced in [R3] spectrum of an abelian category.

In Section I, we study the campiere spectrum of an abelian category 14,

Specl\A, which is defined as the set of all thick subcategories "U" of A such
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that the quotient category AIrr" is local. The complete spectrum might be much

bigger than one needs, and we investigate it because a number of facts is natu­

rally fonnulated and proved for the complete spectrum. So that when one moves to

more important subsets of Spec"A, it remains only to make some refinements.

And this is exactly what we do.

Section 2 is concernedwith the principal character of the paper - the flat

spectrum - which is the subset of the complete spectrum formed by SeITe subcate­

gories.

In Section 3, we consider a straightfofward extension of the Goldman's spe­

ctrum [G] (which IS originally defined for categories of modules) on arbitrary

abelian categories and show ruther easily that the Goldman 's spectrurn is the set

of all "points" i of the flat spectrum such that the quotient (local) category

Nu" has simple objects.

In Sections 4, we study the relation of the flat spectrum of an abelian ca­

tegory (which IS supposed mostly to have tnJective hulls) with certain type of

injective objects. This relation leads to a better understanding of the structu­

re of local Grothendieck categories.

Section 5 deals with the approach to the spectral theory of abelian catego­

rIes through Injective objects. We introduce the injective spectrum of an abeli­

an category (which contains, usually properly l the set of equivalence classes of

indecomposable InJective objects indecomposable InJective spectrum) and study

some of its basic properties. In the case of a Grothendieck category, there IS a

natural embedding of the flat spectrum into the injective spectrum.

Section 6 is concerned with Grothendieck categories for which the Gabriel­

Krull dimension is defined. In these categories, the spectrum, the flat spect­

rum, the Goldman's spectrum, and the injective spectrum coincide. As a conse­

quence, we find the relation between the Krull - Gabriel dimension and the di­

mension defined (in an obvious way) through the flat spectrum. This relation

looks pretty much the same as in the commutative case.

My special thanks to Endre Zsabo for checking proofs of main results of

this paper. I would like to thank Max-Plank-Institut für Mathematik for hospita­

lity and excellent working conditions.

2



and let N

o. PRELIMINARIES ON TUE SPECTRUM.

A detailed exposition (with proofs) of the presented In this section facts

can be found in [R5]. Here we .give a sketch of basie notions and facts of [R5]

for readers' eonvenience.

0.1. A preorder in abelian categories. Fix an abelian category il. For any two

objects, X and Y, of the category s4 we shall write X >- Y if Y is a

subquotient of a coproduct of a finite number of eopies of X, i.e. if, for

some finite k, there exists a diagram

(k)X f-- U ------7 Y,

where the left arrow is a non-zero monomorphism, and the right one IS an epimor­

phism; (k)X is a direet sum of k copies of X. One can show that

the relation >- is apreorder on ObA.

0.2. The spectrum of an abelian category. Let M be a nonzero object of the

category A. We write M ESpeeil if, for any nonzero subobject N of M, we

have: N >- M. Since M >- N, we ean say that M E SpeeA if and only if it is

equivalent with respect to the preorder >- to any of its nonzero subobjects.

Denote by SpecA the ordered set of equivalenee classes (with respect to

>- ) of elements of SpeeiJ. The set SpecA shall be called the speetrum of the

eategory iJ.

0.3. Spectrum and simple objects. Clearly every simple object of the category A

belongs to SpeeA. Moreover, we shall see in a moment that two simple objects

are equivalent if and only if they are isomorphie.

0.3.1. Proposition. Let M be a simple objeet of the category A,

be an object of iJ. Then the following conditions are equivalent:

(a) N is isomorphie to (k)M for some (finite) k;

(b) M >- N.

In partieular, if N and M are simple objeets, then N >- M if and only

if the objeets M and N are isomorphie.

0.4. The spectrum and exact localizations. Recall that a full subcategory

the category A is ealled thick if the following condition holds:

the objeet M in the exact sequence

o ------7 M'------7 M ------7 M "------7 0

3
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belongs to S if and only if M' and M" are objects of S.

It follows from the universal property of localizations that the map

Q~ KerQ

gives a bijection of the equivalence class of exact localizations of the catego­

ry iJ onto the set of thick subcategories of 01.

Here (as everywhere) KerQ is the full subcategory of iJ generated by all

objects which are annihilated by Q.

0.4.1. Proposition. Let

category il. For any

longs to Spec13.

Q: sIJ ----7 73 be an exact localization of an abelian

P ESpeeil, either Q(P) equals to zero, or Q(P) be-

For any M E ObA, consider the full subcategory <M> of

folIows: Ob<M> consists of all objects N such that the relation

not hold.

A defined as

N )- M does

0.4.2. Lemma. For any two objects, M and M', of the category A, the fol-

lowing conditions are equivalent:

(a) M )- M';

(b) <M'> ~ <M>.

Thus, the map M~ <M> identifies the ordered set of equivalence clas-

ses of objects of A (the order is induced by )-) with ({<M> I M E ObA), ::>).

For any subcategory "Ir of the category 01, let -rr- denote the full sub-

category of A generated by aB objects M such that any nonzero subquotient

of M has a nonzero subobject from -rr.

0.4.3. Lemma. For any subeategory -rr of il,

(a) the subeategory -rr- is thiek;

(h) (-rr-)- = -rr-.

Call a subcategory -rr of si1 a Serre subeategory if -rr = -rr-.

0.4.4. Proposition. /f an object

then <M> is a Serre subcategory

M of the category

of A.

belongs to Speeil,

Thus, according to Proposition 0.4.4, to any point <M> of Specs4, there
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corresponds an exact localization, Q<M>: A~ t41<M>.

0.4.5. Local abelian categories and localizations at points of the spectrum. A

nonzero object M of an abelian category sd will be called quasifinal if N >­

M for any nonzero object N of the category sIt.

In other words, a nonzero object M is quasi final if and only if

<M> = {O} = n <N>.
N E ObA-{O}

Clearly a quasifinal object of the category iJ (if any) belongs to

and every two quasifinal objects of Aare equivalent.

Speesd,

0.4.6. Definition. An abelian category

nal object. •

is called loeal if it has a quasifi-

0.4.7. Lemma. The following properties of an abelian eategory

lent:

are equiva-

(a) A is loeal and has simple objeets;

(b) any nonzero objeet 01 sd has a simple subquotient, and alt simple ob-

jeets of sd are isomorphie one to another.

0.4.8. Example. The category of left modules over a commutative ring k is 10-

eal if and only if the ring k is local. •

A he an abelian eategory. For any object M of the

<M> is a thick subeategory 0/ il, the quotient eatego-

0.4.9. Proposition. Let

eategory A sueh that

ry A/<M> is loeal.

In partieular, for any abelian eategory

the quotient eategory N<P> is loeal.

aruJ any objeet P from SpeeA,

0.4.10. Corollary. lf M is a simple object of an abelian eategory

N<M> is a loeal eategory witlz a unique up to isomorphism simple objeet.

then

The last assertion follows from the fact that if

loealization and M a simple object of the category

or Q(M) is a simple objeet.

Q: il ---7:B is an exact

:A, then either Q(M) = 0,

0.5. The topology 't and Zariski topology. The least requirement on the topology
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on SpecA is that it should be compatible with the preorder r. This means that

the closure of any point <P> E Spec.s4 should contain the set

s(<P>):= {<P'> I <P> ~ <P>}

of specializations of that point. The topology 't as the strongest among the

topologies which have this property.

Call a full subcategory ~ of the category t4 topologizing if it contains

a taken in iJ coproduct of any two of its objects and the following condition

holds:

if in the exact sequence

o ---) M'~ M~ M" --) 0

the object M belongs to 1J, then M' and M" belong to 1J.

Call a full subcategory 1J of the category iJ left closed if it is topo-

logizing, and the inclusion functor ~ -).s4 has a left adjoint functar. One

can show that the subsets

Spec1J = {<P> I P ESpeeil n Ob'B} ,

where 'B runs through the family of all left closed subcategories of A, is

the set of clased subsets of a topology which is caUed (in [R5]) the Zariski

topology and is denoted by 3t.

0.6. Supports. The support of an object M of an abelian category il is the

set, Supp(M) , of all <P> E SpecA such that M >- P.

0.6.1. Proposition. (a) For any short exact sequence

o )L )M )N )Q

SuppeM) = SuppeL) U suppeN).

(b) For any set ...... of objects such that there is a coproduct EB X,
XE'::'

U Supp(X).
XE'::'

0.6.2. Proposition. For any subset

of A generated by aU objects M

gory.

W 0/ SpecA, the full subcategory A(W)

such that Supp(M) ~ W is a Serre subeate-

0.7. The left spectrum of a ring. Let

les over an associative ring R with

IS equivalent to any of its cyclic

only the modules RJm, where m

ring R.

.s4 be the category R-mod of left modu-

unity. Since each module from Spec(R-mod)

submodules, we can take into consideration

runs over the set I f of left ideals of the
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The set of a11 left ideals p of the ring R such that Rlp belongs to

SpecR-mod is denoted by SpeclR "and is called the left spectrum of R.

0.7.1. Lemma. For any two leJt ideals m and n oJ the ring R. the relation

Rlm >- Rln is equivalent to the Jollowing condition:

(#) there exists a finite set y oJ elements oJ the ring R such that the

ideal (m:y):= {z E R I zy c m} is contained in the ideal n.

0.7.2. Corollary. A left ideal p belongs to the leJt spectrum if and only if,

Jor any x E R-p, there exists a finite subset y of R such that

((p:x):y) = (p:yx) ~ p.

0.7.3. Remark. If m IS

R/m >- Rlm' if and only if

R is commutative, then the

of prime ideals of R..

a two-sided ideal of the flng R, then, evidently,

m is conntained in m'. In particular, if the ring

left spectrurn Speel? coincides with the set SpeeR

0.8. Associated points. For any object M of an abelian category A,

Ass(M) the set of <P> E SpecA such that P is a subobject of M.

of Ass(M) are called associated to M elements of the spectrum.

Here we need only the very first simple facts about this notion:

0.8.1. Lemma. For any short exact sequence.

o ------? M'~ M~ M" ------? 0,

Ass(M') ~ Ass(M) ~ Ass(M') U Ass(M").

denote by

The points

0.8.2. Corollary. For any finite set

we have:

Ass( ~ X) =
X E Q

oJ objeets of an abelian category

U Ass(X).
XEQ

0.9. The relative spectrum. The spectrum oJ a Junetor 15 from an abelian cate-

gory 73 to an abelian category" s4 is the ordered set Spee(15) of all pairs

«M>, <P» such that there is an object M' of 'B such that <M> = <M'> and

<P> E Ass(15(M')). The order in Spee(15) is induced from Spee'B x Spees4.

Note that, given a functor 1), the description of Spee(5) is reduced to

the description, for any <P> E Spees4, of the fiber of Spee(iJ) over <P>

which is the set of a11 <M> E Spee~ such that <P> E Ass(M).
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1. THE COMPLETE SPECTRUM OF AN ABELIAN CATEGORY.

For an abelian category A, denote by Spec'\il the set of all thick subca-

tegories [p of A such that the quotient category AItP IS local. We call the

ordered set (Spee"A,~) the complete spectrum of the category sIl.

1.1. Proposition. For any thick subcategory -rr of an abelian category il, the-

re is a natural embedding

(SpecAlu",~) --4) (Spec"A.~).

A -----? AIU". Denote by SpeerA, i)

<P> runs through SpecAl1r. Since

thick subcategory for each <P> E

be the localization

Q-l<p>, where

Q-l <P> is a

Proof Let Q = Q-rr

the set of all subcategories

the functor Q is exact,

SpecNu"; and the natural functor

is an equivalence of categories. Since the category (iVrr)/<P> is local, this

shows that Spee(4 -rr) is a subset of Spec" il.

Clearly the map <P> I ) Q-l <P> is a bijection of SpeeNir onto

SpeerA. -rr). This gives the promised embedding.

Note that Q-l <P> does not depend on the choice of Q. •

One can see that

Spec"A = U Spec(A,-rr) = U Spee(A, -rr),
"U" E Thick(A) "TI" E Spec"(A)

where Thick(A) denotes the set of thick subcategories of A.

Indeed, let "IT" E Spec"A, Q a localization A --) A/lr; .and let P be a

quasi-final object in the Ioeal category AlT. Then <P> = 0; hence the pre-

image Q-I <P> coincides with the subcategory "IT".

1.2. The specializations of points and the topology 't. For every I? E Spee"A,

denote by s(1?) the set

{[p'E Spec"AI [p'~ IP}

of all specializations of the point I?

As in the case of SpecA, only topologies on Spec"A which are compatible

with the preorder ~ make sense. The compatiblity means that the closure of any
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point I? contains the set s(!p) of its specializations.

Let 't denote the strongest topology having this property. One can see

that 't has the same description as its restriction to SpecA: the c10sure of

any set W ~ Spec"'A lS U s(lP).
!p E W

This description irnplies immediately that the unIon of any family of closed

in t sets is a c10sed set.

1.3. Uniform subcategories and Gabriel multiplication. We call a subcategory }Z

of an abelian category A unifonn if it contains all subquotients of any of its

objects.

1.3.1. Example. Any subcategory }Z of s4 having the property

M E Ob'#. and M >- L => L E Ob'lt.

is, obviously, uniform. In particular, the subcategory

ry object M of the category A.•

<M> is uniform for eve-

1.3.2. Note. Let F: A -------7 73 be an exact functor. Then the prelmage, F-
1
(}Z),

of any uniform subcategory }Z of 73 is a uniform subcategory of dJ. •

1.3.3. The Gabriel multiplication. Recall that the product of two

~ and ~, of a category il, is the full subcategory Äel7 of A

all objects M in A such that there exists an exact sequence

o -------7 M' _u_-4) M _0--4) M/I --~) 0

subcategories,

generated by

01 an abelian category A

such that M' E Ob}Z and M" E Ob~.

form (topologizing) subcategories, then

category.

Note that Cl unifonn subcategory

and only if ~ = '#.e~.

One can check that if

Äel7 is uniform

Ä and

(resp.

't7 are unl­

topologizing)

is thick if

1.3.4. The smallest thick subcategory containing a given uniform subcategory.

Let !p be a uniform subcategory of A. Then the smallest thick subcategory !p'

of A containing the subcategory !P can be described as folIows.

Set IP0 = !P;

if the ordinal ß equals to a +

if ß is a limit ordinal, then set
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Then the union of all subcategories [Pa coincides with [P'.

In fact, it follows from (i) that all the subcategories [PCl

zing. It rematns to check that [P' is closed under extensions;

exact sequence

are topologi­

i.e. if in the

O~M'
u )M \) ) MI! ) 0

M' and M" are in [P' then so 1S M. But M' M" are In [P' iff they be-, ,

long to !Pa for some a' in that· case ME ObrpCl+1",

1.4. The complete spectrum of a topologizing category. It is shown in [R3] (Lem-

ma 5.3.1) that, SpecA n Pr) = SpecA for any topologizing subcategory of an

abelian category A. Here, we shall prove an analog of this statement for the

complete spectrum.

First we need the following Lemma.

1.4.1. Lemma. Let i be a topologizing subcategory; and let S be a thick sub­

category of an abelian category il. Then inS is a thick subcategory of the

category i; and. given localizations

Q: A ----7).s4Is and Q': i -~) i/(i n s).

there is unique functor J: i/(i n s) ) Als such that the diagram

inS ) i
Q'

) i/(i n S)

J' 1 J
i 1 ! J

i
s ) A Q ) tAls

is commutative. The functor J is an embedding which establishes an equivalence

between i/(i n s) and a topologizing subcategory of the category iVs.

Proo! Clearly inS IS a thick subcategory of the category i. Since

QoJi is an exaet functor which annihilates inS, by the universal property

of (exact) localizations, there is unique funetor J such that 10 Q' = QoJr
And Ker(J) = 0; i.e. the funetor J is faithful.

It remains to show that the full subcategory i' of Als generated by all

objects M whieh are isomorphie to some objeet from the image of J IS topolo-

gizing.
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Assurne for convenience thaf the quotient categories Als

and localizations Q and Q' are chosen canonically; i.e.

Obi/trr n S) = Obi, and the functors Q, Q' map objects identically.

Let

and ll/(lr n S),

ObAis = ObA,

o ------7 M' _u_-4) M _'0_-4) M" ---4) 0

be an exact sequence In Als such that M = Q(M) E OblJ. There is a commutative

diagram

o ------7 M'

1
o ------; QL '

u )M '0 ) M" ) 0

1 1
Qu"

QL Qu" QL" ) 0) )

where all the vertical arrows are isomorphisms, and the diagram

" "0------7 L' ,u ) LU) L" --) 0 (I)

belongs to

has this pro-

belongs to "lr.

i. This proves

]t is clear that

In (1)LIS exact ([Gab], Corollary 111.1.1). Moreover, the object

the subcategory lf.

In fact, the morphism U IS the image of an u' E A(K',M/K), where K'

IS a subobject of M', and the objects M'/K' and K belong to S. Since

Qu' IS a monoarrow, Ker(u') E Obs. Now we take L' = Coim(u'), L = M/K, u"

= the induced by u arrow, L" = Coker(u") , u" = the canonical epimorphism.

The formulas for the vertical isomorphisms are left to the reader.

Note that L = MIK, being a quotient of an object from lf,

This, in turn, implies that both L' and L" are objects of

that the objects M' and M" belong to the subcategory lJ'.

i' contains with every pair of objects their product (since

perty).•

For a topologizing subcategory "TI" of an abelian category A,

U"(i) the set {s E Spec"iJ I '1r ~ S} and by V"(i) its complement:

V"(lJ):= Spec"A - U"(lr).

denote by

1.4.2. Proposition. For any topologizing subcategory

A, the map ,..: S I ) S n lJ is a bijection of the set

'1r of an abelian category

V"(lJ) onto SpeC"lr.

Proof a) Pick an arbitrary S E V"(i). According to Lemma 1.4.1, the quo-
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tient category "O'/(i n s) is equivalent to a non-zero topologizing subcategory

lf' of the local category dlIs. Being topologizing implies that if ]"' con-

tains an object M, then it contains also all objects X such that M >- X. In

particular, all quasi-final objects of the category il belong to lf' which Im-

plies that lf' itself is a local category. Therefore lf/(lf n 5) is local.

b) lnjectivity of Llf' Let s, s' be elements of V"(tr) such that "'D" n S

= lf n S'. Replaeing il by AI(S n S') and lf by lI/(lf n S n s'), we shall

assume that S n S' = 0 and (thanks to a)) ]" is a loeal (topologizing) subca-

tegory of il such that lf n S = 0 = "Ir n 5'. If S - 5' is nonempty, then the

image, S ", of S under the localization s4 ~ Als' is a thick nonzero

subcategory in Ais'. In particular, it has nonzero intersection with the image

of V In .i1f5'. But, this implies that "'D" n S i; 0 which contradicts to the

initial hypothesis.

Thus, S ~ s', and by symmetry, S' ~ s.

c) It remains to show that the map t r · V"("'D")~ Spec"'i IS surjective.

(i) Let [P be any thick sl;Ibeategory of lf; and let [p' denote the smal-

lest thick subcategory of iJ containing IP. Then IP' n "'D" = [P.

Indeed, thanks to 1.3.4, it suffices to show that IPa n lf = IP for every

ordinal a (see 1.3.4 for the definition of IPa)'

I) It is so by definition if a = 0: IP0 = IP.

ß} Suppose that LPa n i = LP for all a < ß·
If ß = a + 1 for some a, then IPß = IP -IP (cf. 1.3.3). Take any M. a fJ..

from Ob(IPß n lf}. By definition, there is an exact sequence

o~ M' _u_~) M _u_~) M" --~) 0 (1)

is topologizing and M E Obi,

and MI! belong to IPa n lf

[p. Thus, the exact sequence

M", belong to IP which is a

where M', M" ure objects of IPfJ..' Since lf

both M' and M" are objeets of T; l.e. M'

which, by the induction hypothesis, coincides with

(1) lies entirely in lf and its ends, M' and

thick subcategory in lf. Hence M belongs to IP.

If ß is a limit ordinal, then IPß:= U IPa~ hence
a<ß

"Ir n IPß = U (lf n [pa) =
a<ß

U IP = IP
a<ß

by the induction hypothesis.

(U) We are ready to finish the proof; Le. to show that, for any lP from

12



SpeC"lf, there lS an S E Spec"A such that [p = lf n S.

Let [p' be the smallest thick subcategory of the category A containing

lP. Replacing A by the quotient category AIiP' and lf by iAP (and uSlng

the equality lP = i n [p" c.f. (i)), we assume that lf is a local topologi-,

zing subcategory of sIl.

Consider the family n of all unifonn subcategories of .il (cf. 1.3) which

have trivial intersection with 1r. One can see that Q IS closed under the Ga-

briel multiplication (cf. 1.3.3); l.e. for any patr of categories Ä, YI from

n, their product, 'tl..-'rJ, belongs to n. Since ~ ~ 'P,-'U d 'rJ, this implies that

n is directed with respect to the inclusion. Therefore, the union, .0" of all,

categories from n IS the largest topologizing subcategory of A having zero

intersection wirh ]". Since n"-n" is in .0, and 11" ~ .0"-.0", we have: .Q" =

that the thick subcategory n" coincides with <P>

= sI1I<P> is a local category (cf. [R3], Note 2.6.3).

.0" k <P>, also holds.

M 10 Q" such that M >- P, then, since

P E Obn" which contradicts to the equality

n"_n"; i.e. the subcategory n" is thick.

We claim that n" E Spec".4; i. e. M1"

Let P be a quasi-final object of the

object of A. Clearly <P> n ]" = 0; l.e.

<P> ~ n".
Note that the inverse inclusion,

Indeed, if there is an object

the category n" is topologizing,

.0" n 'D" = O.

Thus we have proved

which implies that iJIQ"

This finishes the proof. •

is a local category.

local subcategory i regarded as an

<P> E .0 which implies the inclusion

1.4.3. Lemma. Let 'D" be a topologizing subcategory of an abelian category

and let ]"' be the smallest thick subcategory of iJ conta in ing i.

V"('D") = V"(lf'), and the map

lPl ) i n lP

is a bijection of Spec]" onto Speci.

Then

Proof Clearly V"(i) c V"(]"').

On the other hand, if lP is a subcategory from Spec" iJ such that

then i' ~ lP (since lP is thick) which proves the Inverse inclusion,

V"(i).

The second assertion follows now from Proposition 1.4.2.•
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1.4.4. Decompositions of the complete spectrum. Let "Ir be a thick subcategory

of an abelian category A. One of the advantages of the complete spectrurn is

the following decomposition fonnula:

Spec" il Q: Spec""[" U Spec"A/lr.

The decornposition (1) comes (rom the decomposition

SpecAA = V"("[") U V"("[") ,

the bijection

V"(lr) --....,) Spec" lr, lP 1-1-~) lP n "Ir,

of Proposition 1.4.2, and the map

0' = cr"lr : V"ti) --....,) SpecAAIir

(1)

which asslgns to a 'point' lP of U"("[") the subcategory lPlir of the quotient

category iLIrr.

Since, for any lP'E SpecA./'D", the canonical functor

is an equivalence of categories, ~he map !p' 1 ) cr-1 (lP')

set V'YlI) and is, evidently, inverse to the map cr = cr"lr'

takes values In the

Note that the corresponding decomposition for

course, we have a part of it: the bijection of

Specil fails in general. Of

V(lr):= V"(lr) n SpecA = {<P> ESpeeil I P E Oblr}

onto Speci, and the injection of

U(lr):= U"(lr) n SpecA = {<P> E SpecA I lr ~ <p>}

into SpecsrV'U". However the laUer map is usually not surjective.

1.5. Topologies. The defined in 1.2 topology 't

subset V ~ Spec" il IS open with respect to 't

same topologizing category lr. Besides, we have:

14

can be obtained as follows: a

iff U = V"(lr) ~ Spec"i for



for any pair s,]" of topologizing categories, and

(1)

U"( n ]"') = U
]"'E!1 ]"'E

U"(]"')
n

(2)

for any family n of topologizing subcategories.

Note that, for any thick subcategory "D" of the category 01, the maps

Spec"Nu" --~) U"(Tf) and V"(i) --~) Spec"]"

(c.f. 1.4.4) are homeomorphisms with respect to the topology 't.

Since any other compatible with specializations topology on Spec"A IS

weaker than 't, its open sets are of the form U"(lJ), where "D" runs through

some set of topologizing subcategories. So, a way to obtain a topology on

Spec"A is to choose a set, say ...., of topologizing subcategories and declare

the set {U"(s) I s E 'S} a base of open sets of the topology in question.

1.6. Complete supports. Define rhe complere support of an object M of an abe­

lian category s4 as the set Supp"(M) of all points [p of Spec"A such that

M e [P. Clearly, SupP"(M) is closed in the topology 't for any object M.

1.6.1. Lemma. For any exacr shorr sequence

o -------7 M' -------7 M -------7 M" -------7 0,

SupP"(M) = SupP"(M') U SupP"(M").

Proof The argument goes along the same lines as that of the first asserti­

on of Proposition 5.2.2 in [R3]:

If M E Obfp, then both M' and M" belong [p which is equivalent to the

inclusion SupP"(M') U SupP"(M") ~ SupP"(M).

Note that [p E Supp"(M) iff Q[p(M) if:. O. Since the sequence

is exact, Q[p(M) if:. 0 implies that Q[p(M') EB Q[p(M") if:. O. •

For any subset W of Spec"A, denote by A"(W) the full subcategory of

A generated by all objects M of A such that Supp"(M) c W.

15



1.6.2. Proposition. (a) For any W c Spec"A, we have:

A"(W) = n !P,
I? E Wi

where Wi = Spec"A - W.

In particular, the subcategory A"(W) is thick.

(h) V"(A(W)) = W if and only if the set W is closed in the topology 't.

Proof (a) The inclusion M E n I? means exactly that
I? E WJ.

SupP"(M) s: Spec"A - Wi = W.

(h) The set VA(A(W)) consists of all lP E SpecAA such that t4(W) is not

a subcategory of lP; i.e. there is an object M In il such that SuppA(M) c W

and M e OblP. The latter means that lP E SupP"(M). Hence V"(A(W)) c W.

Suppose now that W is closed in the topology 't. Then we claim the In-

verse inclusion: W ~ V"(A(W). This inclusion means that, for every lP E W,

there is an object M such that

SupP"(M) ~ Wand LP E SupP"(M).

Take an object M such that QfP(M) is a quasi-final object of the (Iocal)

category M. Note now that

Supp"(M) = s([P):= {P'E Spec"AI p' ~ p}

subset of

is the closure

IS a

Supp"(M)l.e.!p',is the set of specializations of the point

of fP in the topology 't.

In fact, it is clear that lP E SupP"(M); therefore s(p)

Supp"(M) (since the latter set is closed in 't).

Let !p' be an arbitrary point of Supp"(M). Since M does not belong to

lP/, its localization at lP does not belong to the subcategory [p'/(lP n lP' ) of

M. But, since Q[p(M) is a quasi-final object of ilItP and the subcategory

lP' /(1? n !p') is thick, this means that [P'/(f n lp') = 0; i.e. lP' k lp. •

1.7. Associated points. For any object M of an abelian category A,

Ass"(M) the set of lP E SpecA A for which there exists a subobject

such that its localization, Q[p(X), is a quasi-final object of M.

Clearly Ass"(M) ~ SupP"(M).

denote by

X of M

16



X": = XIX' is a subobject of M" and the 10-

X ~ XII to an isomorphism. In particu-

M. therefore [p E Ass"(M'I). •

1.7.1. Lemma. Let IP E SpecAA; and let M be alP-torsion free object of the

category si! such that QIP(M) is quasi-final.

Then Ass"(M) = {IP}.

Proof As it was shown in the argument proving Proposition 1.6.2, Supp'"(M)

= s(p). Thus, we have: IP E Ass"(M) c s(IP).

Suppose that IP' E Ass"'(M) (hence IP' ~ IP); and let X be a subobject of

M such that QIP'(X) is a quasi-final object of ilAP'. If IP' ~ IP, then

O'!P', being a nonzero thick subcategory of the local category A/tP', contains

QIP'(X). This means that X belongs to 0'. But, this contradicts to the fact

that X is a nonzero subobject of a O'-torsion free" objecL Therefore IP = IP'.•

1.7.2. Proposition. For any short exact sequence

o --4 M' --4 M --4 M II
~ 0,

Ass"'(M') k Ass"(M) k Ass"'(M') U Ass"(M").

Proof Clearly Ass"(M') k Ass"(M).

Let IP E Ass"(M); and let X be a subobject of M such that Q[p(X) IS a

quasi-final object in A/tP. There are only two alternatives: either X n M' e
OblP, or X n M' E OblP.

If X':= X n M' e Obfp, then Q[p(X') is a nonzero subobject of Q[p(X);

hence QIP(X') is also a quasi-final object in At1P which means that [p be-

longs to Ass"(M').

If X'= X n M' E Obfp, then

calization QIP sends the projecti.on

lar, QIP(X") is a quasi-final object of

1.7.3. Corollary. For any finite family n of objects of A,

Ass"( EB M) = U Assf
\(M).

MEn MEn

Proof It suffices to check the equality for a set consisting of two ob­

jects: n = {M, L}. According to Proposition 1.7.2, we have:

Ass"(M) U ASSA(L) ~ Ass"(M EB L) s; Ass"(M) U Ass"(L). •

17



1.7.4. Corollary. Let =. be a finite family of subobjects of an object M such

that n X = O. Then Ass"(M) ~ U Ass"(MIX).
Xe=. XE=.

Proof The assertion is a consequence of Corollary 1.7.3 and of the mono-

morphness of the canonical arrow M~ EI;) MIX. •
XE:::

1.7.5. Associate points and exact localizations. It IS shown in [R3], Section

8.5.4, that any exact localization Q induces an injection of the set

«P> e Ass(M) I KerQ ~ <P>} into Ass(Q(M)).

The set Ass"(M) has a better property:

1.7.5.1. Proposition. Let Q: A ~ AIrr" be a localization at a thick subca-

tegory ]". For any object M of A, the localization Q induces a bijection

01 Ass"(M) n DA(]") onto Ass"(Q(M)).

Proof. a) It is shown in 1.4.4 that the localization Q = Q]" induces a bi-

jection of the open (in the topology 't) set UA(]") onto SpecAAIi.

Let IP E Ass"(M) n UA(lr); and let X be a subobject of M such that

QIP(X) is a quasi-final object of AAP. Then Q]"(X) is a subobject of Q]"(M),

and QIPIir( QlI'(X)) c.: QIP(X) (we identify the quotient category (Nu)I(IPIir) with

dlIlP) is a quasi-final objecL This shows that the canonical bijection

induces an injection Ass"(M) n U"(ll') ) Ass"(Q]"(M)).

b) Conversely, let 1P' be an arbitrary point of Ass"(Q(M)); and let

f' X'~ Q(M)

be a monomorphism such that QIP'(X') IS

is the image of an element f' e s4(Y,MIL) ,

Denote by X" the pullback of the "arrows

a quasi-final objecL The morphism

where X'/Y and L belong to

f
1l'.

Y~MILf--M.

Let X denote the image of the projection X"~ M; and let

18



y:X~M

be the canonical monoarrow. One can see that the subobject

Qy : Q(X) -~) Q(M)

IS isomorphic to f' X' ~ Q(M). Therefore the object QIF/X), where lP E

VAtrr) is the preimage of lP' in A, is quasi-final. This shows that the map

UA(]'") n Ass"-(M) -~) Ass"(Q(M))

is surjeetive. _

1.8. Fields of fractions. With a loeal eategory 73, we associate the eategory

1«73) - "the residue category of :EU which is by definition (given in [R3],

5.4) the full subcategory of the category 'B generated by all those objects of

B which are supremums of the family of their quasi-final subobjects.

Recall that if the category :B has simple objects, then the residue cate-

gory of 73 is equivalent to the category K(73)- Vec of vector spaces over the

skew field K('B) of endomorphisms of a simple object of the category 73 (cf.

Lemma 5.4.1 In [R3]). Since the category 73 is local, this simple object IS

unique up to isomorphism; hence the skew field K('B) is defined uniquely up to

isomorphism.

Thus, given a general abelian category i1-, we can assIgn to each point lP

of SpecAA the residue category 1{lP: = 1« AAP) of the point lP. And if the ca-

tegory ilI1P has simple objects, then the category J<lP:= J« AIt?) IS equivalent

to the category of vector spaces over the residue skew field K
lP
:= K(sdIfp) of

the point lP.

1.9. Complete spectrum and the center. Consider the center ~(i1-):= End(ldsd) of

an abelian category 14. Any localization Q of the category i1- maps the cen-

ter of A to the center of the quotient category. In particular, the localiza­

tion at any point lP E SpecAA provides a ring homomorphism

According to Proposition 2.5.1 in [R3], ~(AIt?) IS a local ring. Denote by

(lP) the preimage, AlP-1 (m
lP

), of the (unique) maximal ideal mlP of the ring

.,(i1I1P). Thus, we have a map

<pA = <pA iJ: Spec A A --~) Spec.,(A), lP 1-1---.07) (lP).
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There is the following analogue of Lemma 7.1.1 in [R3]:

1.9.1. Lemma. Suppose that lP E Spec" il has the property: there is a rP-torsion

free object X such that QlP(X) is a quasi-final object in AI1P (which is the

case if lP E Specil, or if the subcategory lP IS coreflective, i.e. the inclu-

sion functor lP ~ A has a right adjoint). Then

(a) For any ~ E ,(il), either ~(X) is a monomorphism, or ~(X) lS zero.

(b) The ideal (rP) consists of all ~ E ~(sd) for which ~(X) = O.

Proo! (a) Suppose that Ker~(X) *" O.

lP-torsion free, such is its subobject Ke~(X).

of the localization Q = QlP' the canonical arrow

Then, since the object

Thanks to the (left)

X is

exactness

means that Q~ belangs

(cf. the argument of Pro-

Q(Ker~(X)) --7 KerQ~(Q(X))

is an isomorphism. Since

Q~(KerQ~(Q(X))) = 0 and KerQ~(Q(X)) r Q(X),

we have: Q~(Q(X)) = 0 (cf. the proof of Lemma 7.1.1 in [R3]). Finally, since

X is IP-torsion free, the equality Q~(Q(X)) = 0 is equivalent to the equality

~(X) = O.

(h) On the other hand, the equality Q~(Q(X)) = 0

to the unique maximal ideal af the local ring ~(A/tD)

position 2.5.1 in [R3]).•

Lemma 1.9.1 shows that the map

is a natural extension of the defined in [R3], Section 7.1 map

Cf>A: SpecA -~) Spec~(A), <p> 1-1-~) {~ E ~(A) I ~(P) = O}

(cf. [R3], Cörollary 7.1.2).

We define the central topology 't~ on Spec"A exactly like we have defi-

ned the central topology on Specil in [R3], Section 7.1.

Namely, 't~ is the weakest topology for which the map <p" si1 is continuous.
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2. TUE FLAT SPECTRUM.

Spec-A of the corn-

I? of A such that

the flat spectrum of the

Now we shall take a step back, and consider the subset

plete spectrum SpecAA formed by a11 Serre subcategories

d1ItP IS a local category. We call the subset Spec-A
\,

category A.

Recall that a subcategory lr of A IS coreflective if the inclusion func-

tor lr ------7 s4 has a right adjoint. In other words, if every object M of A

has a subobject maximal among all the subobjects of M which belong to 'lr.

2.1. Lemma. Let lr be a coreflective thick subcategory 0/ an abelian category

111; and let Q be a localization s4 ) M.

For any Serre subcategory Ä of il/rr, its preimage Q-I(Ä) is a Serre

subcategory of the category il.

l.e. any nonzero sub-

Q-l(~). We claim that

Proof Let M be an arbitrary object of Q-l00-;

quotient of M has a nonzero subobject which belongs to

Q(M) belongs to it

Indeed, for any nonzero epimorphism f' Q(M) ~ L,

tive diagram

there IS a commuta-

Q(M) __e_4 L

1 1
Q(M') Qe' ) Q(L' )

in which M' is a subobject of M' the both vertical,
I M'------7 L' is an epimorphism, and the object L'e:

last property IS available thanks to the coreflectiveness of

ject M' being a subobject of M, belongs to Q-I OO-,,

arrows are invertible,

is "TI"-torsion free (the

11"). Since the ob-

there is a nonzero

monoarrow

i : K~ L'

such that K E ObQ-'(i1.); or equivalently, Q(K) E M.

because K is nonzero and i-torsion free. And, since Qi

Note that, Q(K):;; 0,

is a monoarrow, Q(K)

is a subobject of L.

This shows that Q(M) E Ob'#.- = Ob'#. (since, by hypothesis,

subcategory; i.e. 't1.- = 't1.). Or, equivalently M is an object of

ce M had been chosen arbitrarily, we have proved that Q-IOO = Q-'OO-.

't1. is a Serre

Q-' ('t1.). Sin-

•
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2.2. Proposition. For any coreflective thick subcategory

gory 4 the canonical embedding

SpecAlrr ----i) SpeeA .i1.

0/ Proposition 1.1 induces an embedding

0/ an abelian cate-

Proo! By Proposition 3.3 in [R3], <P> IS a Serre subcategory of A/JJ

for any P E SpecAlrr. 'Aecording to Lemma 2.1, Q-l«P» is a SeITe subcategory

of the category sd. But, Q-I (<P» is the image of <P> under the embedding

SpeeAlir ----i) Spee '" sd. •

Although Proposition 2.2 looks somewhat restrictive, we

Spee-91 as the union of the images of the SpecAlrr, where

set Serre(sd) of Serre subcategories of the category A:

2.3. Proposition. For any abelian category 91,

still can represent

lr runs through the

Spec-91 = U SpeerA, lr) = U SpeerA, lr),
lr E Serre(sd) lr E Spee-(91)

where Speeril, lr) is the image 0/ SpecAlrr In Spee"'sd (cf 1.1).

Proof Reeall that SpeersIl, lr) eonsists of all subcategories

re <P> runs through SpecAlrr.

Let lr E Spec-sd, Q a localization sd -------7 AIir; and let

final object in the loeal category AlT. Then, since <P> = 0,

Q-I <P> coineides with the Serre subcategory lr. •

P be a qUasl-

the subeategory

For a topologizing subcategory lr of an abelian eategory A,

[J(lr) the set {rp E Spec-AI lr ~ rp} and by \T(lr) its complement:

V-(i):= Spec-sd - [J(lr).

denote by

2.4. Proposition. I) For any topologizing subcategory i

14, the map rp t---------7 lP n i defines a bijection, -ti'

Spec-i.
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2) If i is a coreflective thick subcategory, then the map

SpecAlir ) Spec-A

of Proposition 2.2 unduces a bijection of SpecA/1r onto [I(i).

Proof I) (i) The intersection of any Serre subcategory S of the category

A with i is a Serre subcategory of "IT". In particular, IP n i is a Serre

subcategory of "TI" for every point IP of Spec-dl. Therefore, by Proposition

1.4.2, the subcategory IP n i belongs to Spec-i.

The injectivity of tlf: ~(i) ~ SpeC-i follows from the injectivity

of ,.: VI\(i)~ SpeCl\lf (cf. Proposition 1.4.2).

(ii) It remains to prove the surjectivity of -ti'

Let ~ E Spec-i. By Proposition 1.4.2, there exists a unique subcategory

!P' from Spec ..... A such that i n !P' = lP.

a) Note that 1I n IP'- = IP.

In fact, since the subcategory i is topologizing and IP is a Serre sub-

category in T, Le. IP- n i = IP, we have:

b) The equality i n lPl- = !P means that the intersection of the subcatego-

ries !P'-1tP' and iltP of the local category iJItp' is trivial. Since iltP

contains the quasi-final object of A/lP', this implies that lP'-1tP' = O· Le.,

/P'- = lP'.

2) The second assertion follows from Proposition 2.2.•

2.5. Remarks about coretlective thick subcategories. The following Proposition

is relevant to Lemma 2.1.

2.5.1. Proposition. Let Sand i be thick subcategories in A. If the subca-

tegory i is coreflective, then the canonical functor

1': i/Ci n S) ) Als

has a right adjoint functor,' i. e.

Als.

i/Ci n S) is a coreflective subcategory of

Proof Denote for convenience S n lf by it

Consider the commutative diagram
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inverts all morphisms whieh are inverted

J'
1I"/Ä ----.07) Als

Q=Ql{ r rQS=Q'
J

11" --------4) A

(i) Note that the funetor

by the loealization Qs'
In fact, take an arrow s such that Q'S lS an isomorphism. This means

that the objeets X and Y in the exaet sequenee

i S eo ------7 X = Ker(s)~ M~ L~ Y = Cok(s) ------7 0

belong to S.

Sinee the funetor

exaet, the sequenee

JA - the right adjoint to J: 'U' ~ sIl - is left

lS exacL Sinee the cokemel of JAS (= Im(JAe)) lS a subobject of the objeet

JAY of 11" n S = Ob'lt., it is also an object of Ä; as weIl as the kernel of

JAS (which lS isomorphie to JAX). Therefore the funetor Q = Q inverts the
~

arrow JAS.

(ii) It follows from (i) that, due to the universal property of the locali­

zation Q = Qs' there exists unique funetor

\fl : Als ) 1I"h

such that QoJA = \fl 0 Q'. We have:

QE ) Q (1)

Here E and y are the adjunction arrows

Id1l" ) JAoJ and J oJA ) IdA

respeetively.

Thanks to the universality of Q and Q', there is unique isomorphism

and a unique funetor morphism

24
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y: l' 0 \fJ -----+) IdAls

such that Q€ = (5'Q and Q'y = YQ'.

We have:

(iJ' oJ'(5')Q = i }'QoJ'(5'Q = y'Q'JoJ'Q€ = Q'yJoQ'JE = Q'(yJoJ€) =

and
(\fJy o(5"P)Q' = \fJiQ' o(5'q1Q' = \fJQ'yo(5'QJA = QJ"yoQ€lA = Q(J"yo€lA) =

. QidJA = id'f'Q'.

Thanks to the universality of Q and Q', the equalities

imply the equlities

which mean exactly that (5' and i are adjunction morphisms.•

Recall that if the category sß has the property (sup) (cf. 0.4.3.2), then

every Serre subcategory of A is coreflective (Lemma 2.4.4 in [R3]).

And if A has injective huUs, then every coreflective thick subcategory

is localizing (cf. [Gab], CoroUary m.3.3).

In particular, if an abelian. category s4 has both the property (sup) and

injective huUs (e.g. sß is a Grothendieck category), then every Serre subcate­

gory of A IS localizing. Note that, in this case, the name flat spectrum be­

comes meaningful:

for any IP E Spec- sß the localization at IP is flar.

2.6. Flat supports. Define the flat support of an object M of an abelian cate-

gory A as the set Supp- (M) of a11 points lP of Spec- sß such that M ~ lP.

In other words, Supp-(M) = SupP"(M) n Spec-sß.

2.6.1. Lemma. (a) For any exacr short sequence

o~ M' -------7 M -------7 M" -------7 0,
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(b) Suppose that A has the property

which is a supremum of an ascending family

equality:

(sup). Then, for any object M

.=. of its subobjects, we have the

Proof (a) is a corollary of Lemma 1.5.1.

(b) The inclusion U Supp-(X) ~ Supp-(M) follows from (a). So, we need
XE=:

to show that the inverse inclusion holds; Le. if a point 1P of Spec-A does

not belong to X ~ =:Supp-(X) , then it does not belong to Supp-(M).

The relation I? ~ U Supp-(X) means exactly that the set .=. is contai-
XE ....

ned in ObI? But then, due to the property (sup), M = sup(S) E OblP; l.e. lP

does not belong to Supp-(M). •

For any subset W of Spec-A, set

words, A-(W) is the full subcategory of A

such that Supp-(M) ~ W.

il-(W):= A"(W) n Spec-A. In other

generated by all objects M of A

2.6.2. Proposition. (a) For any W ~ Spec-A, we have:

A-(W) = n LP,
I? E WJ.

where WJ. = Spec-dl - W.

In particular, Ä(W) is a Serre subcategory.

(b) "(i1(W)) = W iff the subset W is closed in the topology t.

Proof The assertion follows from Proposition 1.6.2.•

2.7. Associated points. For any object M of an abelian

Ass-(M) the set of LP E Spec-A for which there exists

such that the localization, QlP(X), of X at I?

AI1P. In other words,

category dl, denote by

a subobject X of M

is a quasi-final object of

2.7.1. Lemma. Let LP E Spec-14; emd let M be a rp-torsion free abject of the

category d1 such that QLP(M) is quasi-final.

Then Ass-(M) = {rp}.
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Proof According to Lemma 1.7.1 that Ass''''{M) = (pi. Since P E Spec-A,

the set Ass"(M) coincides with Ass-(M). •

2.7.2. Proposition. (a) For any short exact sequence

o ----7 M' ----7 M ----7 M" ----7 0,

(b) Suppose that sd has the property (sup). And let an object M 0/ d1

is a supremum of an ascending family E of its subobjects. Then

U Ass-(X) = Ass-(M).
X E E

Proof (a) The assertion (a) follows from Proposition 1.7.2.

(b) The inclusion U Ass-(X) k Ass-(M) follows from (a).
X E E

Let now lP E Ass-(M); and let L be a subobject of M such that Qrp(L)

is a quasi-final object in M.

Thanks to the property (sup), there is an subobject X E S such that L'

= L n X does not belong to rp (since otherwise the object sup{L n XI X E S) ~

L would belong to p). Then L' is a subobject of X such that Qp(L') is a

quasi-final object in AItP; i.e. P E Ass-(M). •

2.7.3. Corollary. Suppose that A has fhe property (sup).

ly n 0/ objects 0/ sd such thaf fhe direct sum 0/ Q exists,

Ass-( E9 M) = U Ass-(M).
MEQ ME11

Then, for any fami-

Proof The truth of the assertion for a finite family 11 1S a consequence

of Proposition 1.7.2 (without any restnctlons on the category A). Since the

object E9 M is the supremum of coproducts of finite subfamilies of 11, the
. M E 11

fact follows from the assertion (b) of Proposition 2.7.2.•

2.7.4. Corollary. Let ~ be a finite /amily of subobjects of an object M such

that n X = O. Then Ass-(M) ~ U Ass-(MIX).
XE.:. XE':'

Proo! This follows from Corollary 1.7.3.•

2.7.5. Associate points and exact localizations. The following assertion is a
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consequence of Proposition 1.7.5.1 and the second assertion of Proposition 2.4.

2.7.5.1. Proposition. Let Q: A ---7 Nu" be a localization at Cl coreflective

thick subcategory lr. For any ob}ect M of il, the localization Q induces a

bijection of the set Ass-(M) n U-(lr) onto Ass-(Q(M)).

3. TUE GOLDMAN'S SPECTRUM.

Fix an abelian category A.

3.1. Lemma. For any object

x(M), among Serre subcategories

M of A. there exists the biggest subcategory,

i such that the object M is lJ-torsion free.

gory

ject

Proof Consider the set 3(M) of all truck subcategories lJ of the cate-

A such that M is lf-torsion free.

(a) The set 3(M) is directed with respect to the inclusion.

(i) Take any two subcategories, lf and S, from SeM). Note that the ob-

M is ,es-torsion free.

isM

i.e.

n, of all

Since the 10-

S(M) is directed with, respect to ~, the union,

subcategories from S(M) is also a thick subcategory from . S(M).

clusion n E S(M) impl ies that n- also belongs to S(M), n =

is a Serre subcategory of the category iJ. •

In fact, suppose that X IS a subobject of M which belongs to lfeS. The

latter means that X has a subobject, Y, from lf such that XIY E Obs. Sin-

ce Y is a subobject of M and M IS i-torsion free, Y = O. But, then X ~

XIY E Obs. Hence X = O.

(ii) Now note that if ~ is a topologizing subcategory such that

lt-torsion free, then M is ~--torsion free.

Suppose that g: L ---7 M is a nonzero monoarrow such that L E Ob'ß..-.

But then L should contain a nonzero subobject from ~ which contradicts to

the hypothesis that M is t{-torsion free.

(iU) It follows from (i) and (ii) that, for any S, lf fram 3(M), the

subcategory (lfeS)- belongs to S(M). But, since 'U'eS is topologizing, its

'closure', (lfeS)- IS a Serre subcategory of A which contains both lJ and s

(one can see that (lJes)- is the smallest among Serre subcategories containing

11' and S).

(b) Since

3.2. Example. Let M E Specs4., Then X/M) = <M>.
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In fact, if ~ lS a topologizing subcategory of sIl which does not contain

M, then 2'{ k <M>. Because, if V e <M> for some V E OblA, l.e. V}- M. then

M E lA. •

An object M of the category

nonzero monoarrow L -----4 M belongs

The Goldman 's spectrum, Sj>egsll,

re subcategories X(M) , where M

jects of sIl.

A IS called critical if the cokernel of any

to X(M).

of the category A is the set of a11 Ser-

runs through the class of all critical ob-

3.3. Proposition. Cl) The Goldman Js spectrum

is contained in Spec-A.

b) If the category A has the property

aU [P E Spec-A such that the quotient category

SpegA 0/ any abelian category A

(sup), then SpegA consists of

Alt? has simple objects.

In AIt? Clearly "[" is a thick

(simple) object M' is "["-torsion

i.e. there is a nonzero object X

M E "["). In other words, IP co-

Proof a) Let M be a critical object in sIl. Clearly being critical imp-

lies that the localization M' of M at X(M) is a simple object of the quo-

tient category AIx(M). In particular, M' belongs to Specd1!X(M); hence

<M'> is a Serre subcategory of - tAIx(M). Let IP be the preimage of <M'> In

sIl.

Clearly IP is a thick subcategory which contains X(M).

Note that M lS IP-torsiön free. Since, if it is not, there lS a nonzero

subobject L -----4 M such that L E ObrP. Since M is critical, M/L E Obx(M)

~ Obfp. This implies that M E rP which contradicts to the fact that the locali-

zation of M' at <M'> IS nonzero.

Thus, rP = X(M) , and AItP is a local category with a simple object.- In

particular, [P is a Serre subcategory.

b) Suppose now that the category A has the property (sup). And let IP be

a Serre subcategory of A such that Alt? lS a local category with a simple ob-

ject, say M'. Let M'=:/. QIP(M) for an object M of sIl. Thanks to the property

(sup), any Serre subcategory of .i1 is coreflective. Replacing M by MIrPM,

where rPM IS alP-torsion of M. we assume that M is rP-torsion free. In par­

ticular, IP ~ "IjM).

We claim that rP = X(M).

In fact, let "[" be the image of X(M)

subcategory in AItP such that the quasi-final

free. But this implies that "[" == 0 (if not,

in "[", then the relation X}- M implies that
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incides with x(M). •

3.4. Corollary. For any abelian category 01, the intersection SpegA n SpecA

consists 0/ all <P> E SpecA such that the local category o1I<P> has simple

objects.

For any topologizing subeategory i of A, set

and

Vg(i):= \T(i) n Spegil = II? ESpegA! I? n i -:I; i}

Ug(i):= SpegA n lr(i) = II? E SpegAI i ~ I?}.

3.5. Proposition. For any coreflective thiek subcategory

gory s4, the map

of an abelian cate-

of Proposition 2.4 induces a bijection v (i) onto Spegi.g

Proo! It is clear (from the argument of Propositions 2.4 and 1.4.2) that

the subcategory i/(I? n i) of the loeal category o1I1P contains quasi-final ob-

jects of M. Sinee i/(I? n "D') is thick, these quasi-final objects are semi-

simple in "D'/(I? n "D') iff they are semisimple in M.

The assertion follows now from Proposition 3.3.•

3.6. Residue skew fields at points of SpegA. By Proposition 3.3, the category

.41P is Iocal and has simple objects for all points I? of SpegA. Therefore,

for every point I? ESpegA, the residue category XI?: = X(AItP) IS equivalent to

the category K(rP)- Vec of veetor spaces over the residue skew field of [p (cf.

1.8).
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4. THE FLAT SPECTRUM AND INJECTIVE OBJECTS.

In what folIows, A is an abelian category.

4.0. Preliminaries: the correspondence between Serre subcategories and classes

of injective objects. For any object M of A, denote by SeM) the fuH sub·

category of A formed by a11 the objects X such that sd(X,M) = O.

4.0.1. Lemma. 1) For any M E OhA, the category SeM) has the lollowing pro-

perties:

then itsS(M),

is a Serre subcategory ofseM)thenis injective,M

(a) // D: V ~ A is a (small) diagram with values in

colimit (if any) also belongs to A.

(h) /1 the objects Y anti Y in the exact sequence

O~Y~X~Y~O

X is also /rom SeM).

then Y E . Obs(M).

belong to s(M), then

1I X E Obs(M),

2) If the ohject

the category s4.

Proof 1) The a~sertion 1) fo11ows from the corresponding properties of the

functor A( ,M).

2) Let now M be an InJective objecl. Then any object X of seM) con-

tains a11 its subobjects. Because, the injectivity of M means exactly, that

the map

Trus, together with the as-

from L

which be­

which is

/
1
M

---?) X.: YIS InJective for any monomorphism

sertion 1), proves the thickness of seM).

Let L E Obs(M)-. And suppose that there is a nonzero arrow

to M. By condition, there is a nonzero subobject of the image of

longs to SeM). But, this nonzero subobject is also a subobject of

a contradiction. Thus. L is an object of SeM). •

4.0.2. Apreorder among injective objects. Define a relation

of a category sd as folIows:

among objects

M -1> L if A(M,L) is integral;

i.e. for any two distinct arrows I, g: X ~ M there exists an arrow <p

from M to L such that q>0/"* q>og.
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Clearly the relation -1> is transitive. We are interested in the restricti-

on of the preorder ~ to the fuH subcategory :>njA of A generated by injec-

tive objects.

4.0.2.1. Lemma. Suppose that M' lS an injective object of an abelian category

A, and M an arbitrary object of A. Then

M ~ M' if and only if s(M') C SeM).

Proof Clearly seM') ~ SeM) if and only if, for any nonzero subobject Y

of M, there exists a nonzero arrow f from Y to M'. Since M' is injec-

tive, the morphism f= foj for a morphism f' M ---) M'. This implies that

the set of all arrows from M to M' is integral.

Conversely, if A(M,M' ) is integral, then, without even any requirements

on M', we have the inclusion seM') ~ SeM). •

4.0.2.2. Corollary. Suppose that A is a categoJ}' with (small) products. And

let M, M' be injective objects. Then seM') is a subeategory of SeM) if and

only if M is a retract of the product of a set of the eopies of M'.

Let ::= denate the induced by 7> equivalence relation.

4.0.2.3. Corollary. (a) The map M~ SeM) induees an ln]ection of the orde­

red set (Ob:>njA/=,-i» of equivalence elasses of injective objeets into the orde­

red set (SerreA,::l) of Serre subcategories of the eategory 14

(b) lf A is a Grothendieek eategory (or, more generally, A is a catego-

ry with injeetive hulls and the property (sup); cf. 0.4.3.2), then the map

(Ob3njA/=,-») --~) (SerreA,~), MI--I---,) SeM),

is bijective.

Proof (a) follows straightforwardly fram Lemma 4.0.2.1.

(b) The assertion (b) foHows from the weIl known fact that, under the can­

ditions of (b),

any Serre subcategory of A is of the fonn seM) for some injeetive ob-

jeet M.

For the reader' s convenience, we sketch the proof.

Let E be an arbitrary Serre subcategory of the category. 14, and
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Fix an injective cogenerator, M', m the category AlE.

is exact, the object M = 0"(M'), where Q/\ is a right

injective (cf. 6.3 and 6.4 in [BOl). The claim is that E

E.a localization at

Since the functor Q

adjoint to Q, IS

coincides with s(M).

Clearly, ~ is contained in SeM). To prove the inverse inclusion, we

should show that Q(V) = 0 for a11 V E ObS(M).

Suppose that V E: ObE; I.e. Q(V) *" 0; or, equivalently, Q"Q(V)"* O.

Since M' is a cogenerator of AlE, the set of all arrows from Q(V) to M'

is integral. The functor Q", being a right adjoint functor, respects integral

families. In particular the family A(Q/\Q(V),M) is integral. This implies the

composition of the adjunction affOW V -------7 Q"Q(V) with some arrow g from

Q"Q(V) to M is nonzero; l.e. V does not belong to s(M). •

4.1. Injective, objects of a local category. Suppose now that the category A is

local; and let V be a quasi-final object in A.

4.1.1. Lemma. The injeetive hull h(V) 01 the quasifinal objeet

nerator of the loeal eategory iL

V IS a eoge-

Proof We ought to show that, for any nonzero object X of the category

A, there exists a nonzero morphism X -------7 h(V).

In fact, there is a diagram

(l)X l-(-- K __e -----4) V -~--7 Ir(V),

where and 0 are monoarrows and e is an epimorphism. Since the object

h(V) is injective, there is an arrow

g: (I)X -~) h(V)

such that goi = 00 e. Therefore, Slnce 00 e IS nonzero, g IS nonzero which

implies that the composition of g with one of the canonical embeddings

X ) (l)X

is nonzero.•

4.1.2. Corollary. Let A be a eategory with simple objects and with injective

hulls of simple objeets. Then the category A is IDeal if and only if it has an
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indecomposable injective cogenerator.

Proo! Only if. Let the eategory iJ be loeal, and let M be a simple ob-

ject of A. Sinee M is a quasi-final object of A, it follows from Lemma

4.1.1 that the InJective huH, h(M), of the object M is a eogenerator. Since

M is simple, the object h(M) is indecomposable.

I! Let M be a simple objeet of the category A; und let E be the in-

decomposable injective cogenerator. Since E is a cogenerator, there exists a

nonzero arrow from M to E which is a monomorphism thanks to the simplieity

of M. Therefore E is the injective huH of M.

By assumption, for any nonzero objeet X of the eategory sIJ, there exists

a nonzero arrow g: X~ E. Sinee the objeet E is indeeomposable and M

is simple, the interseetion of M with Im(g) is isomorphie to M. Thus, we

have the diagram

where the monoarrow 1 is the preimage of M ~ E and € is the natural

epimorphism.•

4.2. A characterization of local Grothendieck categories. Let V be an objeet

of an abelian eategory A. Denote by AV the ring A(V, V) and by 6 V the

funetor from the dual to A eategory AOP to the eategory mod-AV of the

right Ay-modules whieh assigns to every objeet X the Ay-module 6V '=

(A(X, V),c), where the right aetion c of the fing A
V

is the eomposition;

6yiJJ = A(j,idV) for any morprusm f

4.2.1. Lemma. The abject V is a cogenerator if and only if the functor 6V IS

fa ithful.

Proof is an easy exereise.•

4.2.2. Lemma. Suppose that the object V of the abelian category A is such

that there exists a product, [JJV, of any ("mall) family J of copies of V.

Then the functor 6 V has a left adjoint

IV'. mod-tiJV ) AOP.

Proof 1) The first step is to define the functor

gory Free.Av formed by free modules. Sinee
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mod-AvfAVGyX) 0: A(X, V)

for every object X of the category A, there is an isomorphism

which depends functorially on X. This implies that any morphism

u: (nAy ) (nAy

induces a functor morphism

u': A(-,[/jY) -~) A(-,IJjV).

By the Ioneda's lemma, u' = i1(-,!u) for a uniquely defined arrow

!u: l/jV -~) IJjY.

2) Now we define the functor IV' ,s40p ) mod-Ay as the left derived of

the functor !. This means, that, for every right AVmodule M, we choose an

exact sequence
1) U

(J)t4 y -~) (niJy -~) M -~) 0

and set IvfM):= Ker!1). It follows from the commutative diagram

mod-A0 M , 6 y (X)) >------+ mod-Avf ( I )Ay ' 6vfX)) ---7 mod-Ay ( (I )AV' GvfX))

1 A(X, ker!u) 1 A(X,!u) 1

(1)

A(X, !yM) )>-----~)t4 (X, 11 jY) ----~)A(X,lJjy)

where the upper row is induced by the exact sequence Cl), that the functor I y
is left adjoint to the functor Gy".

4.2.3. Lemma. In the notations oi Lemma 4.2.2, the adjunction morphism

cp(P): P ) GVo:rvrP)

is an isomorphism Jor each projective right AVmodule P.

Proo! It follows from the construction of the functor I y that cp(P) is

an isomorphism for every free module P. Since projective modules are retracts

of free modules, this implies the statement. •

4.2.4. Proposition. Let A be an abelian category with simple objects, injecti-

ve hulls oJ simple objects, and products.

Then the Jollowing conditions are equivalent:
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Hence .i1(X, V) = 0 if

6, 6(X) = 0 if and

(a) The category iJ is Ioeal.

(h) There is a loeal ring Rand an exaet jaithjul junctor

6: AOP ) mod-R

sueh that

(i) 6 has a left adjoint functor, !: mod-R -_~) AOP,'

(ii) The ad}unction morphism q>(P): P GoI(P) lS an isomorphism for

every projeetive module P.

Proof (a) Let the category dl be local, and let V be an indecomposable

injective cogenerator in .i1. Set R = A(V, V), 6 = G
V

and I = IV (in the no­

tations of Lemma 4.2.2). By Lemma 4.2.3, the adjunction arrow P ~ 6oI(P)

is invertible for every projective R-module P. Since V is a cogenerator, the

functor I IS faithful; the injectivity of V means that I is exact. Final-

ly, since V is an indecomposable injective object, the ring R is local.

(h) Let the conditions (h) hold. Set V:= I(R). Note that

1) The objeet V is a eogenerator in A; i.e. iJ(X. V} = 0 if and only if
X = o.

In fact, iJ(X, V):= A(X,r,(V)) ct mod-R(R,6(X)) ~ 6(X).

and only if 6(X) = O. But, thanks to the faithfulness of

only if X = O.

2) The object V is injeetive.

It follows from the dual version of Proposition 4.1.1 that, since the func-

tor 6 is exact, the functor I send.s projective objeets of the category mod-

R into projective objects of the category .i1°P. But projective objects of AOP

are injective objects of A.

3) The object V is indecomposable.

(i) Note that, being local the ring R does not contain nontrivial idempo-

tents.

In fact, if e IS an idempotent, then either e = I, or e is not inver-

tible. In the last case, since the ring R is local, the idempotent element

- e is invertible; hence e = O.

(ii) The absence of nontrivial idempotents means that the projective right

module R is indeeomposable.

Sinee the adjunction morphism P ~ Go!(P} is an isomorphism for every

projective module P (Lemma 4.2.3), and the funetor 6 is faithful, the inde-

composability of the right module R implies that of the object V.

4) By Lemma 4.1.2, the category il is loeal. •
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In eonclusion of this seetion,

understanding

tegory.

of the structure

we shall make one more step to the better

of injeetive objeets of a loeal Grothendieck ca-

4.2.5. Lemma. Let V be an objeet oJ the abelian category si1 whieh satisfies

the eonditions of Lemma 4.2.2; and let IV be the Jull subeategory of the eate­

gory A generated by the objeets whieh are isomorphie to the objeets I0P),

where P runs through the elass of projeetive right tAVmodules.

I) The functors 6 V IV induee duality between the eategory Proj-si1v of

fhe projeetive right AVmodules C!nd the eategory IV (i.e. an equivalenee of

the cafegories Proj-Av and rV>P).

2) /f the objeet V is injective, then all objects of fhe subcategory IV

are injeetive objects 0/ the category sil.

Proof J) The first statement follows from Lemma 4.2.2.

2) The injeetivity of the object V means that the functor

Therefore, by Proposition 4.1.1, the functor IV a"slgns to

AVmodules injective objects of the category sil._

6V IS exaet.

projective right

InJective objects E of the

15 an integral set of arrows)

And let ISpecA be the set

4.2.6. Proposition. Let sil be a loeal Grothendieck category wifh simple ob­

jects; and let V be an indeeomposable injeetive object in A. Then every ob­

jeet of the subcategory IV (cf Lemma 4.2.5) is isomorphie to fhe produet

[J]V 0/ a lamily J 01 copies 01 fhe injeetive objeet V.

Proo! This statement is thc: corollary of Theorem 4.2.4 and the Kaplanski's

theorem:

every projeetive module over a loeal ring is free. _

5. INJECTIVE SPECTRA.

5.1. Definitions. Fix an abelian category si1.

Define ISpeesi1 as the class of all nonzero

category A such that E 7) E' (Le. sil(E,E')

for any nonzero InJective subobject E' of E.

(srE) lEE ISpecA} of Serre subcategories of 91.

We call the ordered set (ISpec~~) the injective spectrum of A.

One can see that any nonzero injective subobject of an object E from

ISpecsil belongs to ISpeeA and its Image In ISpecsil IS the same as the Image
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of E, i.e. s(E).

of all indecomposable injective objects ofI"Specsl1Clearly the dass

is contained in ISpecsl1.

We denote the image of

composable injective spectrum of

I"SpecA

sIl.

in ISpecsl1 by I"'SpecA

A

and call it inde-

5.2. Lemma. Let IP E Spec-A be such that the localization Q = QIP at IP is

flat (i.e. has a right adjoint fun ctor. Q"), and the quotient category M

has injective hulls (which is the case if A has injective hulls).

Let M' be an injective hull of a quasi-final object X of the category

M. Then M:= Q"(M') E ISpeciJ..

Proof Let i E ~ M be a nonzero injective subobject of M. Since

E is injective, there is a morphism e M~ E such that eoi = id
E

which

impl ies that Qe 0 Qi = idQ(Mr Hence the 0 bject Q(E), being a retract of an

injective object Q(M) = QQ"(M') ~ M' IS injective as weIl. Since E IS

IP-torsion free. Q(E) -:1= O. Therefore the intersection Y:= X n Q(E) IS nonzero

(we are using the fact that M' is an injective hull of X). Being a nonzero

subobject of a quasi-final object, Y is also quasi-final. This implies that

s(Q"Q(E)) = seM).

Note now that the adjunction arrow 11: E -------7 Q"Q(E) is an isomorphism.

This is a corollary of Proposition III.3.6 in [Gab]. ActualIy, one can see tbis

fact immediately taking into consideration that E is a direct summand of M =

Q"(M'). •

5.3. Proposition. Let sI1 be a category with InJective hulls and witk property

(sup). Then the flat spectrum Spec- sI1 is a subset 01 the injective spectrum.

And the Goldman 's spectrum of s4 is a subset 0/ I"Specs4. So that we have the

diagram 01 inclusions:

Spec-A -------.,) ISpecA

r r
SpegA -------.,) 11\Spec sI1

Proof Under the

Spec-il IS flat, and

assumptions, the localization at every point IP of

AItP is a category with injective hulls. So. the indusion
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Spec-A c ISpecA follows from Lemma 5.2.

Suppose now that lP ESpegA. By Proposition 3.2, this means that the local

category AAP has simple objects. Let M' be an injective hull of a simple ob-

ject of M. Then Q"(M') (where Q" is a right adjoint to a localization

Q: A -------7 ilItP) is an indecomposable injective object of A, and IP =

s(QA(M')). •

5.4. Lemma. Let A be an abelian category with injective hulls. Let i be a

topologizing subcategory 01 A and J the inclusion functor lr ~ A. The

map which assigns to an object X 01 lr the injective hull, hJ(X), 01 its

image in A induces morphisms olordered sets

ISpecT -------7) ISpecA and I"Speclr --,) IJ\SpecA.

Proo! Suppose that X E ISpeclr; and let E be a nonzero injective subob-

ject of hJ(X). Then E n X is a nonzero object in i.

(a) We claim that E n X is an injective object in "U".

Indeed, any diagram E n X~ M~ M', where 1 IS a monoarrow, can

be included into a commutalive diagram

(1)

E -----+) hJ(X)

;"" M' /

t l~A
/ep . ~,

E n X __1t__~) X

1t

with arrows 'Y and A due to the injeclivity of the object X In lr and E

In A. Since the outer square of the diagram (1) is cartesian, there is unique

morphism t'; M~ E n X such that 'Y = 1tot' and A = 1t'01'. The equali­

lies

1to(t' ot) = )'ot = 1to<p, 1t' ort' ot) = A.ot = 1t' o<p

imply, thanks to the universal property of a cartesian square, the required equ­

ality t' ot = <po

(b) Since X E ISpeci and E n X IS a nonzero injeclive On i) subob-

ject of X, we have X 7> E n X; Le. A(X,E n X) is an integral famHy of ar-
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rows which implies, of course, that A(X,E) IS an integral family of arrows.

But, the integrality of A(X,E) implies that of A(hJ(X),E).

Indeed, if Y is a nonzero subobject of hJ(X), then, since hJ(X) is

just the injective huH of X In A, the intersection X n Y IS nonzero.

Thanks to the integrality of sf1(X,E), there is an aITOW s: X -----7 E such

that the composition of sand the monoarrow X n Y~ X is nonzero. Since
iE is injective, there exists a morphism Y ) E such that the diagram

Y ----7) E

I IS
lXn Y ---7)X

is commutative. Clearly is nonzero. This finishes the proof. •

5.5. Lemma. Let Q be a localization 0/ an abelian category sI1

category 'U'; and let E be a "TI'"-torsion free injective abject in

object Q(E) is injective.

Proof Let we have a diagram

Q(M)~ Q(X)~ Q(E)

at a thick sub-

sI1. Then the

(1)

in AlU" such that is a monoarrow. The arrows f

elements f' E iJ(X',EIV) and
.,

E sf1(X",MIM")some 1

and X" are subobjects of X such that XIX' and

weIl as MIM" and EIV.

and are the images of

respectively, where X'

XIX" belong to 'U', as

This means that the diagram (1) is represented by the diagram

M X E

u~ u/ u~ ~, (2).,
f'M' 1 X" X' )V(

In which a11 diagonal arrows are send to invertible ones by Q.

The diagram (2) can be included into the diagram

40



........
""~

~'

f I

--~) V

1t' ;(
M ~----- Y x

u~ ':">". u/ u~
M' ~(__l__ X" X'

y I -------7 E

~'

(3)

where Y = M x X", Y = X'x E, and all diagonal dat arrows are inverted by the
M' V

localization Q. This shows that the diagram (I) can be included inta a cammu-

tative diagram of the form

. Q(X) f

Q(M}:/ \l) T "\. Q( E)

Qt'" I / Q<jl
Q(W)

where U) is an isomorphism.

Since Ker(t) E ObT and the abject E IS T-torsion free, 4> annihilates

Ker(t). So, we can assurne that t IS a monomorphism which implies, thanks to

the injectivity of E the existence of a morphism er: M~ E such that 4> =

aol. Clearly Qer is what we are looking for. Because we have:

Qcr 0 i 0 U) = Qcr 0 Qt = Q$ = f 0 U);

and the equality Qer o i ou) = f ou) implies that Qer o i = f. •

For any topologizing subcategory T of the category sd, set

V1(T):= (SeE) lEE ISpecil and E is not T-torsion free} ,

VIA(T):= VI(T) n IASpecA.

and let

UI(l):= ISpecA - VI(U), VIA(lr):= VI(T) n IASpecA.

5.6. Proposition. Let s4 be an abelian category with injective hulls. Then. for

every coreflective thick subcategory "U" 01 A,

(i) the map which assigns to any object 01 T its injective hull in A

induces bijections

ISpecT --~) VI(T) and IASpeclf ----t) VIA(lf).
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(il) The localization Q = Qlr induces hijections

VI(lr) -~) ISpeci1lIr anti VIJ\(lr) -~) I"'SpecAlIr.

Proo! (i) Since the subcategory lr is thick, the inclusion functor

J: ll" ------7 A

is exact which implies that its right adjoint, JA, sends injective objects of

A into injective objects of lr (c.f. [BD], Proposition VI.6.3).

(a) First note that, for any injective· object X of lr, the canonical

morphism 0' = O'(X): X ------? JJ\h](X) is an isomorphism.

Clearly 0' is a monomorphism. Since X IS injective, this implies that

f"'h}(X) c.: X E9 Y for some subobject Y. Since every nonzero subobject of hJ(X)

should have a nonzero intersection with X, the direct summand Y is zero.

(h) We claim that f"'(E) E ISpeclr for every E E VI(lr).

Let Y be a subobject of J"'(E) which is annihilated by all morphisms

from f"'(E) to X. Since the object X is injective, the induced by the mono-

arrow Y -------7 f"'(E) map

lr(JJ\(E),X) ------+) ll"(Y,X)

is surjective. This means that lr(Y,X) = O.

Now, we have the following commutative diagram

o = lr ( Y. X) t-(-- lr(Y. f /\hJ(X) )

1 1
A(J(Y),J(X)) (- A(J(Y),hJ(X))

(1)

In which both vertical arrows are (canonical) bijections, and the upper horizon-

tal arrow is bijective too, as we have showed in (a). Hence a11 arrows In the

diagram (1) are bijective which implies that A(J(Y),hJ(X)) = O. But,

A(J(Y),E) is nonzero, Since J(Y) is a subobject of E' and A(E,hJ(X)) IS,

an integral family of arrows. So, if Y :;t 0, then there is an arrow,

g: E ------7 hJ(X),

such that the composition of g with the embedding J( Y)
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This proves that Y is zero. Hence J/\(E) EISpeelI.

(e) Combining (a) and (b), we see that the map

Er ) J/\(E) from V/(lI):= (E E /SpeeAI J/\(E) ;t Oj to ISpeelI

is left inverse to the map

X I ) hJ(X) from /Speei to v/(rr).

In particular, the induced by J/\ map

V1(r)~ ISpec"Ir

is left inverse to the induced by hJ map ISpeclI --------) VI(rr) of Lemma 5.4.

Note that hJJ"(E) IS a nonzero injective subobject of E which means

(since E E /SpeeA) that hJJ"(E) is equivalent to E; i.e. S(E) =

s(hJJ/\(E)). This shows that the induced by hJ map ISpeci --------) VI("Ir) is

left inverse to the map induced by the functor J/\. Therefore these two maps

are mutually Inverse.

(d) The bijectivity of I/\Speci ) VI/\(i) follows from the bijectivi-

ty of ISpeclI ) VI(lI). The details are left to the reader.

(ii) Let now E be an o~ject of ISpecA/rr. Then 0"(E) is a 1I-torsion

free injective object of sil. We claim that the object Q"(E) belongs to

/Specsil.

In fact, let' X be a nonzero injective subobject of 0"(E). Since the ob-

ject X is lI-torsion free, "TI' ~ SeX). This shows that s(Q"(E)) = SeX) if and

only if S(QO"(E)) = s(Q(X)).

Since the object X is a retract of 0"(E), its image, Q(X), IS a ret-

ract of QO"(E) CI: E. Therefore Q(X) is a nonzero injective subobject of E

which implies (since E E ISpeci1lTJ) that s(Q(X)) = s(E).

Conversely, let E' be a "Ir-torsion free object from ISpecA. According to

Lemma 5.5, Q(E') is an injective object in M. Let 1: X ) Q(E') be a

nonzero injective subobjecL Consider the diagram

Q"t ) Q"Q(E) (,,(E' ) E', (2)

where " denotes the adjunction arrow. Since E' 18 lI-torsion free, the arrow

1l(E') is a monomorphism. Therefore

Q:'Q(E') CI: E' EB Y
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for some lr-torsion free object Y. Since the functor morphism Qr1
morphism, it follows from (3) that Q(Y) = O. Therefore Y = O·,

lently, TI(K) 1S an isomorphism. Thus, (r(X) IS an injective

E. Since FE ISpecA, Q"(X) is equivalent to E' l.e.,

s(Q"(X)) = s(E).

Since lr C s(E'), the equality (4) is equivalent to the equality

SeX) = s(QQ"(X)) = seE).

Here we use the (adjunction) isomorphism QQ"(X) ~ x. •

6. THE GABRIEL-KRULL DIMENSION.

is an iso-

or, equ1va­

subobject of

(4)

6.0. Preliminaries. We fix an abelian category satisfying the property (sup)

(cf. 0.4.3.2).

The Gabriel filtration of A assigns to every ordinal a a Serre subcate-

gory Au of A which is constructed as folows:

Set sIlO := O.

If u is not a limit ordinal , then Au IS the smallest Serre subcategory

of A containing all objects M such that the localization Qu_/M) of M at

AU_I has a finite length.

If ß is a limit ordinal, then Aß IS the smallest Serre subcategory con-

taining a11 subcategories Aa for a < ß.
Let Aro denote the smallest Serre subcategory contatn1ng all the subcate-

gories Au' Clearly the quotient category AlAU) has no simple objects.

An object M is said to have the Gabriel dimension. ß,

Gdim(M) = ß,

if ß is the smallest ordinal such that M belongs to Aß'
The following assertion follows from the definitions:

6.0.1. Lemma. Let
O~M'~M~M"~O

be a short exact sequence in AU). Then

sup(Gdim(M'),Gdim(M")) S; Gdim(M) :5 Gdim(M') + Gdim(M").
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If A = Am' then the smallest ordinal a such that A = Au IS called the

Gabriel dimension of the category A Gdim(A) = Cf..

Given a Serre subcategory S of A, the Gabriel filtration {Aa } induces

the filtration (ArI(Aa n s)} of the category AIS in which some of the conse-

cutive subcategories may coincide. It is clear that ArI(Aa n S) ~ (AtS)a for

any ordinal a. This shows that if A = Am' then S = SO) and (..vs) = (AIS)0)'

Thus, we have the following Proposition (lV.l.i in [Gab]):

6.0.2. Proposition. Let S be a Serre subcategory of sIJ. Then

A = Am if and only if SO) = Sand (..vs)m = Als.

In this case,

sup(Gdim(S),Gdim(AIs)) :5 Gdim(A) ~ Gdim(s) + Gdim(tIJIs).

Proof (a) The assertion (a) is already proved.

(b) Denote by Sa the prelmage of the subcategory (iJIs)a In A. We

claim that if S = Sm' then Sa = (Sa)m for any a.

It is true, of course, for a = O.

Suppose it is true for all a < ß.
(i) If ß is a limit ordinal, then Sß =( U Sa)-; and since So: k Am for

a<ß

ordinal

any

such

arly

u < ß, the same holds for Sß'
(ii) Suppose now that ß is not a limit ordinal.

By the induction hypothesis, Sß-l ~ Aor Therefore there is an

that Sß-I ~ Ar but Sß-l is not contained in Au for any Cf. < y.

Sß ~ Ay+!' •

y

Cle-

6.0.3. Corollary. Let A be an abelian category which has Gabriel dimension;

i.e. A =AO). Then, for any proper Serre subcategory "TI" of si1, the quotient

category AIlr has simple objects.

6.0.4. Corollary. If i1 = Am' then any Serre subcategory lr of the category

s4 coincides with the intersection of all lP E Spegil containing lr.

Proof Let S denote the intersection of all cr> E SpegA which contain lr.

If S '* lr, then sIir is a nonzero Serre subcategory of the category iVIr.

Therefore the sucategory sIu" has Gabriel dimension (cf. Proposition 6.0.2). By

Corollary 6.0.3, s!lr has simple objects. Let M denote one of them; and let
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SpecAlir. Since M IS simple, its image in sI1/<M>

SpegAlir which implies that IP E SpegA. Now no-

lP, since the object M (of sIU") does not

we have ron into a contradiction which shows that

lP be the preimage of <M> E

IS a simple object; Le. <M> E

te that S IS not contained In

belong to lPlD" = <M>. Thus,

S should coincide with lr. •

6.0.5. Locally noetherian categories. An object M of an abelian category A

is called noetherian if any increasing sequence of subobjects of M stabilizes.

An object M of A is caIled locally noetherian if M is the supremum of

a family of its noetherian subobjects~

An abelian category s4 is caIled noetherian if aIl objects of A are noe-

therian.

An abelian category A

(sup) and every object of A

objects.

is called locally noetherian if it has the property

is the supremum of a family of its noetherian sub-

6.0.5.1. Remarks. (a) Clearly, any noetherian category has the property (sup).

In particular, any noetherian category is locally noetherian.

(h) The given above definition of a locaIly noetherian category is not an

exact copy of the conventional one (cf. [Gab] or [BD]). In [Gab], A is requi­

red to be a Grothendieck category. Thus, a nonzero noetherian category cannot be

locally noetherian in the conventional sense.

(c) Noetherian objects of any abelian categoy 1J generate a thick subcate-

gory, 1123, of ~. In other words, the coproduct of any two noetherian objects

is a noetherian object, as weIl. as any subquotient of a noetherian objecL This

implies, In particular, that every object of a locally noetherian category IS

the supremum of an increasing family of its noetherian subobjects.

Clearly 311J is the biggest thick noetherian subcategory of 1J.

(d) Suppose that 1J is an abelian category with the property (sup). Then

the smallest Serre subcategory (9'1:B)- containing 3123 coincides with the full

subcategory of 23 generated by all locally noetherian objects of 'B. •

6.0.5.2. Lemma. Let s be a thick subcategory 01 an abelian category s4, and

Q a localization A~ Als. Then, Jor any noetherian abject M oJ A, the

abject Q(M) is noetherian.

Proof a) First note that

objects which belong to S.

M has a maximal subobject, sM, among the sub­

So that the object MIsM is S-torsion free. Repla-
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clng M by MIsM, we assume that M is S-torsion free.

b) Let f' Q(X) -) Q(M) be a monoarrow. By the definition of a quotient

category, the arrow j is the image of an arrow

f: X' ---?) MIM',

where X' IS a subobject of X such that XIX' E Obs and M' is a subobject

of M which belangs to S. But, M is assumed to be S-torsion free; hence M'

= O. Replacing X' by its image In M, we see that the subobject f is iso­

morphic to the subobject Qf' for some monoarrow f': X" -) M.

c) To prove that the object Q(M) is noetherian, one need to show that,

for any family 11 of subobjects of Q(M), there is a finite subset .::. of 11

such that, for any bigger finite subset, S', of 11, the canonical arrow

sup(S) --~) sup(S')

is an isomorphism which implies that sup(S) = supen)).

Let 0. be any family of subobjects of the object Q(M). And let 0.' be

the corresponding family of subobjects of M (cf. the part b) of the argument).

Since M is a noetherian object, there is a finite subset '::' of .0' such

that sup(S') = sup(n').

Since the localization Q: A -) iJi5 is an exact functor, this implies

that sup(Q('::')) = supen). •

6.0.5.3. Corollary. Let

Serre subcategory S

nano

oj

be a (locally) noetherian

s4, the quotient category,

category. Then, jor any

.4Is, IS ( locally) noethe-

6.0.5.4. Corollary. Every locally noetherian category has Gabriel dimension.

Proof According to Corollary 6.0.5.3, the category .iJlAco is locally noe-

therian. So, if A -::F Aco' l.e. .AlAco -::F 0, then there are nonzero noetherian ob­

jects in the category AlAco' Since any nonzero naetherian object has a maximal

proper subobject, iJ/Aco has simple objects which cannot happen.•

6.1. The spectra of a category which has Gabriel dimension. Fix an abelian cate­

gory A with the property (sup).
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6.1.1. Proposition. I/ A = Aü)' then Spec-A = SpegA.

Proof The assertion (a) is a straightforward consequence of Corollary

6.0.3 and Proposition 3.3.•

6.1.2. Proposition. Let A be an abelian category with injective hulls and the

property (sup). Suppose that .i1 = AüJ' Then

(a) the embedding Spegil ) IJ\SpecA is a bijection;

(b) IJ\SpecA = ISpecA.

Proof (a) Let E E IASpecA. Since A = A
üJ

, there exists an ordinal a.

such that E has a nonzero subobject from .ila +
l
, but is Aa.-torsion free. Cle-

arly E contains a subobject M such that the localization Qa(M) of M at

Aa. is a simple object of the category sAlAa: In particular, the preimage of

<Qa(M» in s4 belongs to SpegA.

On the other hand, this preimage coincides with s(E). This follows from

the fact that E is the injective hull of M.

Indeed, if iJ(X,E) = 0, then Qa(X) E <QafM».
Since E is an Aa.-torsion free injective object, the functor Qa. maps

A(X,E) bijectively onto NAa(Qa(X),Qa(E)) for any X. In particular, Qa(E)

is an injective object in NAa ,

An easy way to see this, is to use the adjunction isomorphism

and the isomorphness of adjunction arrow E ------4 QaAQa.(E))

argument of Lemma 5.2). Now we have, for any object X of

implications:

and

(cf. the end of the

04, the following

(1)

(2)

To prove (2), note that if Qa(X) >- Qa(M), then, due to the injectivity of

QafE) and the existence of a (mono)morphism from Qa (M) to Qa(E), there is a

nonzero arrow from QafX) to Qa(E) (cf. the proof of Lemma 4.1.1).

Conversely, if g: Qa(X) ) Qa.(E) is a nonzero morphism, then im(g)

has a nonzero interseetion with Qa(M) (since Qa(E) is the injective hull of

Qa(M). Since Qa(M) IS simple, im(g) contains Qa(M). This implies that
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Take an ordinal a such that E

M from Aa +l · This implies

IS a simple object of the catego-

h(M), of the object M IS an

E E ISpecA, seE) = s(h(M));

as the object h(M) of P"SpecA.

Qa(X) >- Qa(M).

(h) Let now E be an object of ISpeciJ.

is Aa -torsjon free, and has a nonzero subobject

that E has a subobject M stich that Qa(M)

ry Alsdu' One can see that the injective hull,

indecomposable injective subobject of E. Since

Le. E defines the same element of ISpecsd

This means that ISpecsd = I"Specsd. •

6.2. Spec and Spec-. In general, Specs4 is a pretty meagre proper subset of

Spec-A. But, if A has the Gabriel-Krull dimension, then SpecA IS ample, as

the following lemma shows.

6.2.1. Lemma. Suppose that A = A
OJ

Then Supp(M) -:;:. 0 for any nonzero object

M of A.

Proof In fact, the full subcategory. of A generated by all objects

for which Supp(M) = 0 coincides with SA = n <P>; in particular,
<P> E SpeciJ

M

Ssd

Then the following conditions are

is a Serre subcategory.

According to Proposition 6.0.2, the equality sI1 = Am implies that SsI1 =

(SA)m' Therefore either SA has simple objects, or it is a zero subcategory.

Since SA cannot have simple objects, it equals to zero.•

6.2.2. Corollary. Suppose that A = Am' Then. for any Serre subcategory S 0/
A, Supp(M) -:;:. 0 for any nonzero object of S or Als.

Proof The fact follows from Lemma 6.2.1 and Proposition 6.0.2 (= Proposi­

tion IV.l.I in [Gab]).•

6.2.3. Proposition. Suppose that

equivalent:

(a) SpecA = Spec-04;

(b) for any non-limit ordinal a,

Aa = A(Specsl1u); i.e. Obsl1a = (M E OhAI Supp(M) c SpecAal

In other words. any object M such that

M >- P. P ESpecA, => P E OhACl

belongs to Aa:
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Proof (h) ~ (a). We begin with the following observation:

0) Let lP E Spec-A anti lP does not contain Aa for some ordinal a.

Then lP E SpecA if and only if lP n A(J.. E SpecAa·

This fo11ows from Lemma 5.3.1 in [R3] and Proposition 2.4.

(ii) Thanks to (i), it suffices to show that, for any ordinal (J..,

Spec-An = SpecAa · (1)

Clearly the statement is true for a = 0:

Spec-AO = SimpleA = SpeCAO' and AO = A(SimpleA).

Suppose that the equalities (1) holds for all a < ß.
1) If ß is a limit ordinal, then we have:

and

Here we identify Spec-An (and SpecAa) with the set of a11 l? E Spec-A

(resp. lP E SpecA
a

) which do not contain An (cf. 0) and Proposition 2.4).

2) Suppose now that ß is not a limit ordinal. Let lP be an arbitrary

element of Spec-Aß' If Aß.1
is not contained in lP, then

and Spec-Aß-! 1S equal to SpeCAß.1
by induction hypothesis. So, we shall as-

sume that Aß k lP.
-I

Let M be an object of sil such that its localization Qß-/M) is a simp-

le object of AJlAß.1
• lP/Aß_

1
• By induction hypothesis,

Supp(M) is not contained in SpeCAß .
-I

So. there exists an element

e ObAß . This means that.)

<P> E SuppeM) . SpeCAß_
1
; l.e. M >- P and P

(3)

\

"

Since Qß./M) is a simple object, the relation (3) implies that Qß-/P)
is equivalent (in the sense of the relation >-) to Qß./M) (according to Pro-

position 1.3.1 in [R3J, the object Qß-JP) IS the direct sum of a finite num-

ber of copies of Qß-JM).
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Thus, lP n Aß is the preimage of the subcategory <Qß- / P)> under the co-

restriction of Qß-I to Ar/Aß-I' This implies that lP n Aß = <P> nAß' The-

refore, according to Proposition 2.4, 0:> coincides with <P>.

(a) =:) (b). Let now that SpecA = Spec-A. And suppose there exists an ob-

ject M of i1 such that Supp(M) s SpecAA for some non-limit ordinal ß,..,-1
but M ~ ObAß_I' Since the image, M', of M in the quotient category AlAß_

1

is a nonzero object, and the category AlAß has Gabriel-Krull dimension, the
-1

support of M' IS nonempty. In other words, there exists lP E SpecA such that

M e OblP, and Aß-! ~ lP.

By assumption, lP = <P> for some P ESpecA. And (I) means exactly that

<P> E Supp(M), but <P> e SpeCAß_
t

which contradicts to the initial assumption.•

(1)

6.2.4. Corollary.

Serre subcategory

S ~ <P>.

Under the equivalent conditions of Proposition 6.1.4, any

S of s4 is the intersection of all <P> E SpecA such that

Proo! Every Serre subcategory S of A IS the intersection of a11 lP E

SpegA such that S C lP (cf. Corollary 6.0.4). But

SpegA = Spee-A = Spec.4

according to Propositions 6.1.2 and 6.1.4.•

The following, very basic, example shows that one should not restriet one­

self to the categories satisfying the conditions of Proposition 6.2.3.

6.2.5. Example: Proj. Fix a z+-graded ring R = EB R. And consider the category
n~o n

.4:= gr~-mod of z-graded R-modules. Let i denote the full subcategory of A

generated by all graded R-modules M such that Ann(M) contains the two-sided

ideal R +:= E9 Rn'
n~!

Note that SpecA = SpeCi ~ U SpeeR -mod.
. 0z coptes

In fact, for any

is a submodule in

graded R-module M = E9 M. and any n E 7l, the surn
iE Z I

Mln}:= EB M .
.> II_n

M. Clearly Mln} is equivalent to M (with resp. to >-) iff
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M. = 0 for a11 i < n. Therefore, if P ESpecA, then there exists m such
I

that Pn = 0 if n 'i= m, and the R -module P belangs to SpecRo-mod.o m

m, the subquoti-

M{m+l}/M{m} is

=M.m

Note that SpecA is ample; i.e. if Supp(M) = 0, then M = O.

This follows from the observation that, for any integer

ent M{m+1}/M{m} belongs to the subcategory "0". Clearly

isomorphic to a module V such that V = 0 if n 'i= m, and Vn m

Define Proj(R) as the quotient category A!D"-.

It is not difficult to show that "0"- = r;j-, where r;j is a thick subcatego-

ry of A generated by all R-modules M such that the set {n I Mn 'i= O} is fi-

nite. If the ring R is commutative, then, by a Serre's theorem, the category

Proj(R) is equivalent to the category of quasi-coherent sheaves on the projec­

tive spectrum, Proj(R), of the ring R.

Thus, Spec(Proj(R» has nothing to do with SpecA. At the same time, if

the ring R is noetherian, then Proj(R) is a noetherian category. In particu-

lar, it has Gabriel-Krull dimension (cf. Corollary 6.0.5.4); hence, the spectrum

of Proj(R) is ample by Lemma 6.2.1.

Note that Spec":""(Proj(R» is an open subset (with respect to the topology

1) of Spec-A = SpegA.

among the

the UnIon of all subsets (!u' Since the union of any

subsets is closed, Specro- A is a closed subset of the

Clearly <!a ~ <!ß
the topology 't.

Denote by Spec
ro

- A

family of closed in 't

topological space (Spec-A, 1).

For any tp E Specro- 61, there is the biggest ordinal, ht-(tp),

ordinals 0. such that I? e (! . We call the ordinal ht-(I?) the height of tp.
0. .

Thus, (!o. is the set (tp E Spec-A I ht-(I?) :5 u}.

We define the flat dimension of A (or f-dimension) as the supremum of a11

6.3. Dimensions. Fix an abelian category A. To every ordinal a, we assign a

subset <!a of Spec-A defined as folIows.

<!O = 0;
if 0. IS not a limit ordinal, ~a consists of a11 elements [p E Spec-A

such that any tp' E Spec-A for which tp' c tp, but tp is distinct of [p', be-

longs to <!0.-1 ;

if ~ is a limit ordinal, then (!a:= U <!ß'
ß<u

if a:$; ~ which implies that the set ~a is closed In
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ht-(O') , where lP runs through Specm- A.

The notation: fbimA.

For any ordinal u, set A
u
-:= A(!u); l.e. A(t!u) IS the full subcatego-

ry of the category A generated by all objects M such that Supp-(M) ~ liu ·
Set Am-:= A(Specm-91).

According to Proposition 2.6.2, Au and A
m

- are Serre subcategories of

A, and

In particular.

6.3.1. Remark. Note that Specm- A = 0 if and only if Spec-A has no closed (in

the topology 1) points.

Clearly Spec-(i1IA
m

-) has no closed points. _

6.3.2. Proposition. The following conditions on an element lP

equivalent:

(a) nt-(lP) is a finite numher.

(h) There is (he maximal integer, n, among Ilonnegative integers m such

that there exists a chain

lP :::> lP :::> lP :::>
I 2

of distinct elements of Spec-A.

The number n in (h) is equal to nt-(lP).

Proof Clearly, if there exists achain

:::>lPm

:::>lPn
(1)

of distinct elements of Spec-A, then bt-(lP);;:: n.

Therefore the assertion shall be proved if we show that, for any lP E

Spec-A such that bt-(lP) = n. there exists a chain (1) of distinct elements of

Spec-il. But, the latter statement follows almost immediately from the definiti­

on of the height.

In fact, since ht-(lP) = n, there exists an element lP In Spec-A of the
1

height n - 1 and such that lP C IP (otherwise the height of lP would be less
1

than n). So, we can use the (finite) inductioß. -
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Proposition 6.3.2 shows that our definition of the height and dimension are

generalizations of the conventional ones.

by any other of

of height and di-

One can repeat all this constructions replacing Spec-A-

the considered here spectra. Thus we obtain different notions

menSlon:

- iht, ibim (corresponding to ISpecA);

- iAht, iAbim (corresponding to IASpecA);

- ght, gbim (corresponding to SpegA);

- and, finally, we shall write simply ht and bim for the height and di-

mension corresponding to SpecA.

which has Gabriel dimension. Fix an abelian category

denote by h(lP) the biggest ordinal a such that l?

6.4.1. Proposition. Let s4 = Am', Then, for any lP E Spec-il, the height of lP

coincides with h(lP): ht-(lP) = h(lP).

1
1

\
r

6.4. The case of a category

A. For any lP E Spec-Am'

contains the subcategory Aa.
On the other hand, h(lP) = Gdim(M), where M is an object of

that the localization of M at lP is a quasi-final object of M.

such

Proof Denote temporarily the set (lP E Spec-AI h(l?) < a} by Da'

ly Ua = 0; hence Uo = (tO'

Assurne that Ua = I!a for all a < ß for some ordinal ß·
(a) If ß is a limit ordinal, then 0ß = U 0 which implies that

a<ß a

Clear-

is

is a speciali-and

Since

equal to ~ß'

(h) Consider now the case when ß is not a limit ordinal.

For any SeITe subcategory Sand any ordinal a, denote by s(a) the in-

tersection S n A-a'
(i) Let lP E Spec-pt be such that h(lP) = ß. And let lP' be a specializa-

tion of iP; i.e. lP' c lP. Clearly h(lP')::; h(lP). We claim that h(lP') = h(lP)

if and only if lP' = lP.

In fact, if h(lP') = h(lP), then

zation of [P(ß+ 1)/Aß E Spec-(Aß+/Aß)·
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this implies that

(1)

According to Proposition 2.4, the equality (1) is equivalent to the equali­

ty IP/Aß = 1P'/Aß which, in turn, means that lp' = IP.

(ii) Thus, if !p'C lp and [p * [p', then h(lP' ) < h(lP); l.e. lp' E D
ß

.
-I

And 0ß_I = ~ß-l by induction hypothesis. This shows that Dß k ~ß'

(iii) Conversely, let lp E Cfß' and let h(lP) = y. We claim that y::;; ß.
Suppose that, on the contrary, ß < y. By Proposition 6.1.3, Spec-A =

SpecA. In particular, lp = <P> for some object P from SpecA. Since lP

does not contain Ay+ I ' there exists a simple object M in the category

Ay+/Ay which does not belong to the subcategory rp/Ay Since lp = <P>, the

subcategory lP/Ay equals to <QIP». SO, the relation M e OblP/Ay means that

M >- QfP); i.e. QfP) is the direct sum of a finite number of copies of M.

Replacing P by an appropriate subquotient of P, we assurne that QIP) is a

simple objecL

(i) There exists a subobject M' of P such that

M' with properties (1), then Qß(P) is

ObAß+
1
~ ObAy which contradicts to the

In fact, if there is no subobject

a simple objecL In particular, P E

choice of P.

(ii) Let M' be a subobject satisfying (2). Clearly

(2)

ß S 0';= Gdim(PIM') + I < y.

The object PIM' has a subquotient L of dimension 0' such that QO'(L)

is a simple object of sI1/AO'.

The preimage lp' of <Q(J(L)> In A IS a point of Spec-A such that

h(lP' ) ~ ß and !p' is properly contained in lp.

The latter follows from the relation Q(J(P) >- Q(J(L) (w~ich is a conse-

quence of the relation P >- Land the exactness of the functor Q(j) which is

equivalent to the inclusion

<Q(J(L» k <Q(J(P»,

But, by the assumption, every element P' E Spec-A such that P' is a

proper specialization of [p, belongs to Cfa for certain a < ß, and, by the

induction hypothesis, ~a = Da if a < ß. Thus, we have ron into a contradic-
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tion.•

6.4.2. Corollary. Suppose that A has Gabriel dimension. Then

bim- A is finite if and only if Gdim(il) is finite.

and in this case bim-A = Gdim(A); and bim-A coincides with the maximal

length 0/ the chains

IP:::::>IP :::::> .•. :::::>IP
1 n

0/ distinct elements 0/ Spec-sd.

Proo! The assertion is a consequence of Propositions 6.4.1 and 6.3.2.•

an experimental fact (cf. [R4] - [R6]). But, the

that I would like to commit myself futher by gi-

satisfying the property (sup) a quasi-scheme

the support Supp(M) of M is nonempty.

experiments were so convincing

ving the following definition:

Call an abelian category

if, for any nonzero object M of A,

7. Quasi-schemes. Having six spectra might create a confusion. So, probably, so­

me of readers are interested to know how the author places them. I would like to

begin with a 'poIiticaIly correct' statement: all these spectra are natural and,

therefore, each of them should be useful for something.

However, I give a preference to Spec considering the other spectra (in

particular, Spec- and Speg) .as a background one should keep in mind and be

ready to use.

The priority of Spec is due to the foIIowing reasons:

a) Spec is the smallest among six, if the category has Gabriel-KruII di-

mension (and most of categories of interest do have Gabriel-Krull dimension).

b) It is, usuaIly, much easier to describe the Spec of concrete categori-

es than their other spectra.

Of course, the lutter 1S

reaso-

Specil; and let M be a nonzero object

<'U>:= n <P>. Let M' be apreimage
<P>EU

of M in A. Clearly M' >- P for some <P> E 1.1; hence Q<1l>P E Supp(M).

This argument shows also that closed points of N<1l> are images of points

Clearly any topologizing subcategory of a quasi-scheme is a quasi-scheme.

Note also that quasi-schemes stand localizations at open sets of any

nable topology, to begin with topology 't.

In fact, let 11 be any subset of

of the quotient category N<'U>. Here

of U.
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