# SIMPLICIAL DETERMINANT MAP AND THE SECOND TERM OF WEIGHT FILTRATION 

by<br>A. Nenashev

Steklov Institute of Mathematics
Fontanka 27
St. Petersburg 191011

Russia

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

$$
\dot{\leftarrow}
$$

## Introduction

The notion of determinant occurs twice in the algebraic $K$-theory of a scheme $X$ : firstly, we have the map det : $K_{0} X \rightarrow \operatorname{Pic} X$ which takes a vector bundle on $X$ to its highest exterior power (we assume $X$ is irreducible); secondly, we have the map det: $K_{1} X \rightarrow \Gamma\left(X, O_{X}^{*}\right)$ which is induced by the usual determinant map $G L(R) \rightarrow R^{*}$ in the affine case $X=\operatorname{Spec} R$.
Let $W^{1}$ be the union of components of rank zero in the $G$-construction of Gillet and Grayson [GG] associated with the category $\mathcal{P}_{X}$ of vector bundles on $X$. We can regard $W^{1}$ as the first term of the weight filtration, since

$$
\pi_{0} W^{1} \cong F_{\gamma}^{1} K_{0} X=\operatorname{ker}\left(\text { rank }: K_{0} X \rightarrow \mathbf{Z}\right)
$$

and

$$
\pi_{m} W^{\mathbf{1}} \cong F_{\gamma}^{1} K_{m} X \cong K_{m} X \text { for } m \geq 1
$$

In the present paper we define a simplicial set $T$ such that

$$
\pi_{0} T \cong \operatorname{Pic} X, \pi_{1} T \cong \Gamma\left(X, O_{X}^{*}\right), \text { and } \pi_{m} T=0 \text { for } m \geq 2
$$

and a simplicial map

$$
\operatorname{det}: W^{1} \rightarrow T
$$

which yields the above two determinant maps on the homotopy groups:

$$
F_{\gamma}^{1} K_{0} X=\operatorname{ker}\left(\operatorname{rank}: K_{0} X \rightarrow \mathbf{Z}\right) \cong \pi_{0} W^{1} \xrightarrow{\text { det }} \pi_{0} T \cong \operatorname{Pic} X
$$

and

$$
K_{1} X \cong \pi_{1} W^{1} \xrightarrow{\text { det }} \pi_{1} T \cong \Gamma\left(X, O_{X}^{*}\right) .
$$

We also describe the homotopy fiber of the map det : $W^{1} \rightarrow T$ as a simplicial set $W^{2}$. A vertex in $W^{2}$ is a triple $\left(P, P^{\prime} ; \psi\right)$, where $P$ and $P^{\prime}$ are vector bundles on $X$ such that rank $P=\operatorname{rank} P^{\prime}$ and $\psi: \operatorname{det} P \leadsto \operatorname{det} P^{\prime}$ is an isomorphism. An edge in $W^{2}$ connecting $\left(P_{0}, P_{0}^{\prime} ; \psi_{0}\right)$ to $\left(P_{1}, P_{1}^{\prime} ; \psi_{1}\right)$ is a pair of short exact sequences $\left(P_{0} \rightarrow P_{1} \rightarrow P_{1 / 0} ; P_{0}^{\prime} \rightarrow P_{1}^{\prime} \rightarrow P_{1 / 0}\right)$ such that the diagram

$$
\begin{array}{rlccc}
\operatorname{det} P_{1} & \simeq & \operatorname{det} P_{0} & \otimes & \operatorname{det} P_{1 / 0} \\
\psi_{1} \backslash \downarrow & & & I \downarrow & \psi_{0} \otimes 1 \\
\operatorname{det} P_{1}^{\prime} & \rightrightarrows & \operatorname{det} P_{0}^{\prime} & \otimes & \operatorname{det} P_{1 / 0}
\end{array}
$$

commutes, where the horizontal isomorphisms are naturally induced by these short exact sequences. Higher dimensional simplices in $W^{2}$ are defined in a similar way.
The long exact sequence associated with $W^{2} \rightarrow W^{1} \rightarrow T$ yields

$$
\begin{gathered}
\pi_{0} W^{2} \cong \operatorname{ker}\left((\text { rank }, \operatorname{det}): K_{0} X \rightarrow \mathbf{Z} \oplus \operatorname{Pic} X\right) \\
\pi_{1} W^{2} \cong \operatorname{ker}\left(\operatorname{det}: K_{1} X \rightarrow \Gamma\left(X, O_{X}^{*}\right)\right) \\
\pi_{m} W^{2} \cong K_{m} X \text { for } m \geq 2
\end{gathered}
$$

Thus $W^{2}$ provides the groups $S K_{m} X$ as homotopy groups for all $m \geq 0$. The $S K$ groups can be defined for $m \geq 1$ as the homotopy groups of $B S L^{+}(R)$ in the affine case
$X=\operatorname{Spec} R$ and by means of the generalized cohomology of the sheafification of $B S L^{+}$ in the general case (cf. [Sou] p.524).
In a future paper we hope to define $\lambda$-and $\gamma$ - operations on $W^{2}$ as simplicial maps and prove on the simplicial level that the map $\gamma^{1}+\gamma^{2}+\cdots$ is contractible. This would imply directly that $F_{\gamma}^{2} K_{m} X=S K_{m} X$ for each $m \geq 0$.

## 1. Definitions

Let $X$ be an irreducible scheme.
We denote by. $\mathcal{P}=\mathcal{P}_{X}$ the category of vector bundles on $X$. Suppose we are given a choice of the tensor product $P_{1} \otimes \cdots \otimes P_{k}$ for each collection of objects $\left(P_{1}, \ldots, P_{k}\right)$ in $\mathcal{P}$ and a choice of the exterior product $P_{1} \wedge \ldots \wedge P_{k}$ for each admissible filtration $P_{1} \mapsto \cdots \mapsto P_{k}$ (by definition, the latter is isomorphic to the image of $P_{1} \otimes P_{2} \otimes \cdots \otimes P_{k}$ in $\wedge^{K} P_{k}$ ). These operations satisfy the usual functoriality and compatibility conditions (cf. [Gr, sect 7]).
Let $\mathcal{L}=\mathcal{L}_{X}$ be the category of linear bundles on $X$ and their isomorphisms. We set $\operatorname{det} P=\bigwedge^{\text {rank } P_{P}}$ for every $P$ in $\mathcal{P}$, where $\Lambda^{k} P$ now stands precisely for the exterior product $P_{\wedge \ldots \wedge} P$ associated with $P \stackrel{1}{\mapsto} \cdots \stackrel{1}{\mapsto} P(k$ copies $)$. Thus we obtain the map

$$
\text { det }: O b \mathcal{P} \rightarrow O b \mathcal{L} .
$$

Let $I=O_{X}$ be the identity linear bundle. We assume that $\operatorname{det} O=I$ for any zero object $O$ in $\mathcal{P}$. We also assume that an object $L^{-1} \cong \operatorname{Hom}(L, I)$ is chosen for each $L$ in $\mathcal{L}$.

## Proposition 1.1. (i) Any exact sequence

$$
\begin{equation*}
0 \rightarrow P_{0} \rightarrow P_{1} \rightarrow P_{1 / 0} \rightarrow O \tag{1.1}
\end{equation*}
$$

in $\mathcal{P}$ gives rise to an isomorphism

$$
\delta=\delta_{0,1}: \operatorname{det} P_{1} \widetilde{\rightarrow} \operatorname{det} P_{0} \otimes \operatorname{det} P_{1 / 0}
$$

in a natural way;
(ii) Given a commutative diagram of the form
such that the sequences $0 \rightarrow P_{i} \rightarrow P_{j} \rightarrow P_{j / i} \rightarrow 0$, with $0 \leq i<j \leq 2$, and $0 \rightarrow P_{1 / 0} \rightarrow P_{2 / 0} \rightarrow P_{2 / 1} \rightarrow 0$ are exact, the diagram

$$
\begin{array}{ccc}
\operatorname{det} P_{2} & \xrightarrow{\delta_{0,2}} & \operatorname{det} P_{0} \otimes \operatorname{det} P_{2 / 0} \\
\delta_{1,2} \downarrow & \downarrow 1 \otimes \delta_{1 / 0,2 / 0}  \tag{1.3}\\
\operatorname{det} P_{1} \otimes \operatorname{det} P_{2 / 1} & \xrightarrow{\delta_{0,1} \otimes 1} & \operatorname{det} P_{0} \otimes P_{1 / 0} \otimes \operatorname{det} P_{2 / 1}
\end{array}
$$

commutes.

Proof: for any $m>0$, we have the Grothendieck filtration

$$
P_{0} \wedge \cdots \wedge P_{0} \mapsto P_{0} \wedge \ldots \wedge P_{0} \wedge P_{1} \mapsto \cdots \mapsto P_{0} \wedge P_{1} \wedge \cdots \wedge P_{1} \mapsto P_{1} \wedge \cdots \wedge P_{1}
$$

associated with the left arrow in (1.1) in which all products contain $m$ factors. The successive quotients are the products

$$
\underbrace{P_{0} \Lambda \cdots \wedge P_{0}}_{r} \otimes \underbrace{P_{1 / 0} \wedge \cdots \wedge P_{1 / 0}}_{s}
$$

with $r+s=m$, the quotient maps being induced by the right arrow in (1.1). In particular, if $m=$ rank $P_{1}$, the only nonvanishing quotient corresponds to the pair $r=\operatorname{rank} P_{0}, s=$ rank $P_{1 / 0}$, and we obtain the isomorphisms


The desired isomorphism $\delta_{0,1}: \operatorname{det} P_{1} \widetilde{\rightarrow} \operatorname{det} P_{0} \otimes \operatorname{det} P_{1 / 0}$ now can be defined from the above diagram.
Let rank $P_{i}=r_{i}$ and rank $P_{j / i}=r_{j / i}$ in (1.2). We have the natural commutative diagrams $\operatorname{det} P_{2}=\underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \wedge \underbrace{P_{2} \wedge \cdots \wedge P_{2}}_{r_{2 / 1}} \approx \underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \wedge \underbrace{P_{r_{2}}}_{\substack{r_{1} / 0 \\ P_{1} \wedge \cdots \wedge P_{1}}} \underbrace{P_{2}}_{r_{2} \wedge \cdots \wedge P_{2}}$ $\delta_{0,2}$

$$
\underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \otimes \underbrace{P_{2 / 0} \wedge \cdots \wedge P_{2 / 0}}_{r_{2 / 0}} \approx \underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{11}} \otimes \underbrace{P_{1 / 0} \wedge \cdots \wedge P_{1 / 0}}_{\substack{r_{2 / 0} \\ 1}} \wedge \underbrace{P_{2 / 0} \wedge \cdots \wedge P_{2 / 0}}_{r_{2 / 2}}
$$

$1 \otimes \delta_{1 / 0,2 / 0}$

$$
\underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \otimes \underbrace{P_{1 / 0} \wedge \cdots \wedge P_{1 / 0}}_{r_{1 / n}} \otimes \underbrace{P_{2 / 1} \wedge \cdots \wedge P_{2 / 1}}_{r_{2 / 2}}
$$

and

$$
\begin{aligned}
& \text { det } P_{2} \approx \underbrace{P_{1} \wedge \cdots \wedge P_{1}}_{r_{1}} \wedge \underbrace{P_{2} \wedge \cdots \wedge P_{2}}_{r_{2 / 1}} \approx \\
& \downarrow \underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \wedge \underbrace{P_{1} \wedge \cdots \wedge P_{1}}_{r_{1 / 0}} \wedge \underbrace{P_{2} \wedge \cdots \wedge P_{2}}_{r_{2 / 1}} \\
& \delta_{1,2} \underbrace{P_{1} \wedge \cdots \wedge P_{1}}_{r_{1}} \otimes \underbrace{P_{2 / 1} \wedge \cdots \wedge P_{2 / 1}}_{r_{2 / 1}} \approx \\
& \delta_{0,1} \otimes 1 \underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{0}} \wedge \underbrace{P_{1} \wedge \cdots \wedge P_{1}}_{r_{1 / 0}} \otimes \underbrace{P_{2 / 1} \wedge \cdots \wedge P_{2 / 1}}_{r_{0}} \\
& \underbrace{P_{0} \wedge \cdots \wedge P_{0}}_{r_{2 / 1}} \otimes \underbrace{P_{1 / 0} \wedge \cdots \wedge P_{1 / 0}}_{r_{1 / 0}} \otimes \underbrace{P_{2 / 1} \wedge \cdots \wedge P_{2 / 1}}_{r_{2 / 1}}
\end{aligned}
$$

in which all the arrows are obviously isomorphisms. The desired commutativity in (1.3) is now equivalent to the commutativity of the diagram

$$
\begin{array}{cc}
P_{0} \wedge \cdots \wedge P_{0} \wedge P_{1} \wedge \cdots \wedge P_{1} \wedge P_{2} \wedge \cdots \wedge P_{2} & \rightarrow \Gamma_{0} \wedge \cdots \wedge P_{0} \otimes P_{1 / 0} \wedge \cdots \wedge P_{1 / 0} \wedge P_{2 / 0} \wedge \cdots \wedge P_{2 / 0} \\
\downarrow & \downarrow \\
P_{0} \wedge \cdots \wedge P_{0} \wedge P_{1} \wedge \cdots \wedge P_{1} \otimes P_{2 / 1} \wedge \cdots \wedge P_{2 / 1} & \rightarrow P_{0} \wedge \cdots \wedge P_{0} \otimes P_{1 / 0} \wedge \cdots \wedge P_{1 / 0} \otimes P_{2 / 1} \wedge \cdots \wedge P_{2 / 1}
\end{array}
$$

The latter is evident (cf. (E2) in [Gr, sect 7])

Definition Let $A$ be a partially ordered set. We let $\operatorname{Ar} A$ denote the set $\{j / i \mid i, j \in A, i \leq j\}$. By multiplicative map on $\operatorname{Ar} A$ with values in $\mathcal{L}$ we mean a map $D: \operatorname{ArA} \rightarrow \mathcal{L}$ endowed with a collection of isomorphisms

$$
\delta_{i, j, k}: D(k / i) \widetilde{\rightarrow} D(j / i) \otimes D(k / j) \text { for every } i \leq j \leq k \text { in } A
$$

such that

$$
\begin{equation*}
\text { (i) } D(i, i)=I \text { for every } i \in A \text {; } \tag{1.4}
\end{equation*}
$$

(ii) for every $i \leq j$ in $A, \delta_{i, i, j}$ and $\delta_{i, j, j}$
are the natural isomorphisms $D(j / i) \widetilde{\rightarrow} I \otimes D(j / i)$ and $D(j / i) \widetilde{\rightarrow} D(j / i) \otimes I$, respectively;
(iiii) for every $i \leq j \leq l$ in $A$, the diagram

$$
\begin{array}{ccc}
D(\ell / i) & \xrightarrow{\delta_{i, j, \ell}} & D(j / i) \otimes D(l / j) \\
\delta_{i, k, \ell} \downarrow & & \downarrow 1 \otimes \delta_{j, k, \ell} \\
D(k / i) \otimes D(\ell / k) & \xrightarrow{\delta_{i, j, k} \otimes 1} & D(j / i) \otimes D(k / j) \otimes D(\ell / k)
\end{array}
$$

commutes. We let $\operatorname{Mult}(\operatorname{Ar} A, L)=\left\{\left(D ; \delta_{i, j, k}\right)\right\}$ denote the set of all $\mathcal{L}$-valued multiplicative maps on $\operatorname{ArA}$.
Definition. We define the simplical set $Z=Z . \mathcal{L}$ by

$$
Z(A)=\operatorname{Mult}(A r, A, \mathcal{L}), A \in \Delta
$$

where $\Delta$ denotes as usually the category of finite nenempty totally ordered'sets and nondecreasing maps.
By definition, there is a unique $O$-simplex * in $Z . A 1$-simplex in $Z$ is an object $L=D(1 / 2)$ of $L$. A 2-simplex in $Z$ is a tuple $\left(L_{1}, L_{2}, L_{2 / 1} ; \delta\right)$, where int the above notation $L_{1}=D(1 / 0), L_{2}=D(2 / 0)$, and $L_{2 / 1}=D(2 / 1)$ are objects of $\mathcal{L}$ and $\delta=\delta_{0,1,2}$ : $L_{2} \widetilde{\sim} L_{1} \otimes L_{2 / 1}$ is an isomorphism. Thus, $Z$ looks in a sense like the classifying space of the Picard group, and it is easy to see that $\pi_{1} Z \cong \operatorname{Pic} X$. However, $Z$ is not homotopy equivalent to $B$ Pic $X$. In fact, we have $\pi_{2} Z \cong$ Aut $I \cong \Gamma\left(X, O_{X}^{*}\right)$ and $\pi_{m} Z \cong 0$ for $m \geq 3$ (cf. Proprosition 2.1 and Theorem 3.1).
Given a partially ordered set $A$, we regard the set $\operatorname{ArA}$ as a category in which Mor $\left(j / i, j^{\prime} / i^{\prime}\right)$ consists of a unique mormpism if $i \leq i^{\prime}$ and $j \leq j^{\prime}$, otherwise it is empty. Say that a functor $F: \operatorname{Ar} A \rightarrow \mathcal{P}$ is exact if
(i) $F(i / i)=O$ for every $i \in A$, where $O$ denotes a distinguished zero object in $\mathcal{P}$;
(ii) the sequence $O \rightarrow F(j / i) \rightarrow F(k / i) \rightarrow O$ is exact for every $i \leq j \leq k$ in $A$.

Recall that the $S$-construction of Waldhausen associated with the category $\mathcal{P}$ is the simplicial set $S=S \mathcal{P}$ given by

$$
S(A)=\operatorname{Exact}(A r A, \mathcal{P}), A \in \Delta
$$

where Exact refers the set of exact functors.
Proposition 1.1 obviously implies the following

Proposition 1.2. Let $A$ be a partially ordered set and $F: A r A \rightarrow \mathcal{P}$ be an exact functor. Consider the map $D=\operatorname{det} \cdot F: \operatorname{Ar} A \rightarrow \mathcal{L}$.
(i) For every $i \leq j \leq k$ in $A$, the exact sequence $0 \rightarrow F(j / i) \rightarrow F(k / i) \rightarrow F(k / j) \rightarrow$ 0 gives rise to an isomorphism $\delta_{i, j, k}: D(k / i) \leadsto D(j / i) \otimes D(k / j)$ in a natural way;
(ii) For every $i \leq k \leq k \leq \ell$ in $A$, the diagram (l.4) (iii) commutes, i.e., $\left(D ; \delta_{i, j, k}\right)$ is a multiplicative map ((1.4) (i) and (ii) obviously hold);
(iii) This gives rise to a simplicial map

$$
\begin{equation*}
\operatorname{det}: S . \mathcal{P} \rightarrow Z . \mathcal{L} \tag{1.5}
\end{equation*}
$$

## 2. Applying the loop space functor

Let $F: X \rightarrow Y$ be a mimplicial map, $A \in \Delta$, and $y_{0} \in Y(A)$. Following [GG, sect. 1], we define the right fiber over $y_{0}$ to be the simplicial set $y_{0} \mid F$ given by

$$
\left(y_{0} \mid F\right)(B)=\lim _{\leftarrow}\left(\begin{array}{ccc} 
& & X(B) \\
& & \downarrow \\
\downarrow Y(A B) & \rightarrow & Y(B) \\
\left\{y_{0}\right\} \hookrightarrow Y(A) & &
\end{array}\right), B \in \Delta
$$

where $A B$ denotes the concatenation of $A$ and $B$, i.e., the disjoint union $A \amalg B$ ordered so $A<B$. By definition, a $B$-simplex in $y_{0} \mid F$ is a pair ( $y, x$ ), where $y$ is an $A B$-simplex in $Y$ and $x$ is a $B$-simplex in $X$ such that the $A$-face of $y$ is equal to $y_{0}$ and the $B$-face of $y$ is equal to $F(x)$.
If $F=1: Y \rightarrow Y$, we write $y \mid F$. Ir is easy to see that $y \mid Y$ is contractible for any $Y$ and $y \in Y(A)$ (cf. [GG, Lemma 1.4]). A $B$-simplex in $y \mid Y$ is an $A B$-simplex in $Y$ whose $A$-face coincides with $y$.
Suppose $Y$ has a distinguished vertex ${ }^{*}$, i.e., $* \in Y(\{b\})$, where $\{b\} \in \Delta$ is a one-element set. Let $\operatorname{Pr}: * \mid Y \rightarrow Y$ denote the natural projection. We define the (simplicial) loop space of $Y$ at $*$ to be the simplicial set

$$
\Omega Y=* \mid \operatorname{Pr}
$$

or, equivalently, $\Omega Y$ can be defined from the cartesian square $\left.\begin{array}{cccc}\Omega Y & \rightarrow & * \mid Y \\ & & \downarrow \mid Y & \rightarrow\end{array}\right) \quad \begin{aligned} & \text { (cf. [GG, }\end{aligned}$ sect. 2]). By definition, a $B$-simplex in $\Omega Y$ is a pair of $\{b\} B$-simplices in $Y$ whose $B$-faces coincide and whose $\{b\}$-vertices are equal to $*$.
Recall that the $G$-construction of Gillet and Grayson associated with $\mathcal{P}$ is the simplicial set $G=G . \mathcal{P}=\Omega S . \mathcal{P}$. By [GG, Theorem 3.1]; there is a homotopy equivalence $|G| \dddot{\rightarrow} \Omega|S|$. It follows that $\pi_{m} G \cong K_{m} X$ for $m \geq 0$.
For $A \in \Delta$, let $\gamma(A)$ denote the disjoint union $\{L, R\} \amalg A$ ordered so that the symbols $L$ and $R$ are comparable, $L<a$ and $R<a$ for any $a \in A$, and $A$ is an ordered subset in $\gamma(A)$. Let $\Gamma(A)=\operatorname{Ar} \gamma(A)$. It is easy to see that the $G$-constructions can be described as follows:

$$
\begin{equation*}
G(A) \text { Exact }(\Gamma(A), \mathcal{P}), A \in \Delta \tag{2.1}
\end{equation*}
$$

Definition. We define the simolicial set $T=T \cdot \mathcal{L}$ by $T \cdot \mathcal{L}=\Omega Z . \mathcal{L}$. Similarly to (2.1), we can write

$$
\begin{equation*}
T(A) \operatorname{Mult}(\Gamma(A), \mathcal{L}), A \in \Delta \tag{2.2}
\end{equation*}
$$

Thus, a $p$-simplex in $T$ is a collection of objects

$$
\left[\begin{array}{cccc} 
& & & L_{p / p-1} \\
& & \cdots & \\
& L_{1 / 0} & \cdots & L_{p / 0} \\
L_{0} & L_{1} & \cdots & L_{p} \\
L_{0}^{\prime} & L_{1}^{\prime} & \cdots & L_{p}^{\prime}
\end{array}\right]
$$

in $\mathcal{L}$ endowed with isomorphisms

$$
\delta_{L, i, j}: L_{j} \widetilde{\rightarrow} L_{i} \otimes L_{j / i} \text { and } \delta_{R, i, j} L_{j}^{\prime} \widetilde{\rightarrow} L_{i}^{\prime} \otimes L_{j / i}
$$

for every $0 \leq i \leq j \leq p$ and

$$
\delta_{i, j, k}: L_{k / i} \widetilde{\rightarrow} L_{j / i} \otimes L_{k / j}
$$

for every $0 \leq i \leq j \leq k \leq p$ satisfying (1.4) (iii) (here we write for short $L_{i}, L_{i}^{\prime}$, and $L_{j / i}$ for $D(i / L), D(i / R)$, and $D(j / i)$, respectively). In particular, a vertix in $T$ is a pair of objects $\left[\begin{array}{c}L \\ L^{\prime}\end{array}\right]$ in $\mathcal{L}$. And edge connecting $\left[\begin{array}{c}L_{1} \\ L_{1}^{\prime}\end{array}\right]$ to $\left[\begin{array}{c}L \\ L^{\prime}\end{array}\right]$ is a triple $\left(L_{1 / 0} ; \delta, \delta^{\prime}\right)$, where $L_{1 / 0}$ is an object of $\mathcal{L}$ and $\delta: L_{1} \widetilde{\rightrightarrows} L_{0} \otimes L_{1 / 0}, \delta^{\prime}: L_{1}^{\prime} \leadsto L_{0}^{\prime} \otimes L_{1 / 0}$ are isomorphisms.
Proposition 2.1. $|T| \sim \Omega|Z|$.
Proof: By [GG, Lemma 2.1], it suffices to show that the map $* \mid Z \rightarrow Z$ is fibred (see sect. 4 for the definition of a fibred map). In fact, any simplicial map $X \rightarrow Z$ is fibred, since $Z$ satisfies the condition (4.1) of Proposition 4.2. The verification of (4.1) for $Z$ is similar to the proof of Proposition 4.3 and we omit it , because we will not use the homotopy equivalence $|T| \sim \Omega|Z|$ in the sequel. qed
Applying the loop space functor to the map (1.5), we obtain a simplicial map G.P $\rightarrow$ T. $\mathcal{L}$ which we will also denote by det. We set $W^{0}=G$, and let $W^{1}$ be the union of components in $G$ of rank zero, i.e., the components whose vertices $\left[\begin{array}{l}P \\ Q\end{array}\right]$ satisfy rank $P=$ rank $Q$. The restriction of the above map to $W^{1}$ yielsd the simplical map

$$
\operatorname{det}: W^{1} \rightarrow T
$$

which plays the central role in the paper. By definition, this map takes a simplex $F \in$ $W^{1}(A) \subset \operatorname{Exact}(\Gamma(A), \mathcal{P})$ to mulitplicative map $D=\operatorname{det} . F: \Gamma(A) \rightarrow \mathcal{L}$ (cf. (2.2)) such that for every $i \leq j \leq k$ in $\gamma(A)$ the structural isomorphism $\delta_{i, j, k}: D(k / i) \widetilde{\rightrightarrows} D(j / i) \otimes$ $D(k / j)$ is the isomorphism associated with the exact sequence $0 \rightarrow F(j / i) \rightarrow F(k / i) \rightarrow$ $F(k / j) \rightarrow 0$ as in Proposition 1.2.

## 3. The homotopy groups of the simplicial set $T$

We make $T$ into a $H$-space using tensor products in $\mathcal{L}$; i.e., for $D, D^{\prime} \in T(A)$, we define $D \otimes D^{\prime} \in T(A)$ by

$$
\left(D \otimes D^{\prime}\right)(j / i)=D(j / i) \otimes D^{\prime}(j / i) \text { for } i \leq j \text { in } \gamma(\mathrm{A})
$$

and let the isomorphism

$$
\delta_{i, j, k}:\left(D \otimes D^{\prime}\right)(k / i) \widetilde{\rightarrow}\left(D \otimes D^{\prime}\right)(j / i) \otimes\left(D \otimes D^{\prime}\right)(k / j)
$$

be the product map

$$
\begin{aligned}
& D(k / i) \otimes D^{\prime}(k / i) \widetilde{\rightrightarrows}(D(j / i) \otimes D(k / j)) \otimes\left(D^{\prime}(j / i) \otimes D^{\prime}(k / j)\right) \widetilde{\rightrightarrows} \\
& \widetilde{\rightrightarrows}\left(D(j / i) \otimes D^{\prime}(j / i)\right) \otimes\left(D(k / j) \otimes D^{\prime}(k / j)\right)
\end{aligned}
$$

where the second arrow denotes the natural permutation map. The verification of (1.4) is trivial (we assume strictly $I \otimes I=I$ ). This $H$-space structure on $T$ makes $\pi_{0} T$ into a monoid. The vertex $\left[\begin{array}{l}I \\ I\end{array}\right]$ is strict identity in $T$, and therefore its component is the identity element of $\pi_{0} T$

## Theorem 3.1.

(i)

$$
\pi_{0} T \cong{ }_{\mathrm{pix}} X
$$

$$
\begin{equation*}
\pi_{1} T \cong \Gamma\left(X, O_{X}^{*}\right) \text { and } \pi_{m} T \cong 0 \text { for } m \geq 2 \tag{ii}
\end{equation*}
$$

Proof: (i) For any two vertices $\left[\begin{array}{c}L \\ L^{\prime}\end{array}\right]$ and $\left[\begin{array}{c}M \\ M^{\prime}\end{array}\right]$ in $T$, there exists an edge connecting these vertices if and only if $L \otimes\left(L^{\prime}\right)^{-1} \cong M \otimes\left(M^{\prime}\right)^{-1}$. Thus the assignment $\left[\begin{array}{l}L \\ L^{\prime}\end{array}\right] \mapsto\left\{L \otimes\left(L^{\prime}\right)^{-1}\right\}$ gives rise to a bijective map $\pi_{0} T \rightarrow \operatorname{Pic} X$, and the operation on Pic $X$ obviously agrees with the operation on $\pi_{0} T$ induced by the $H$-space structure.
(ii) It follows from (i) that all the components of $T$ are homotopy equivalent. Nevertheless, we will construct a universal covering for an arbitrary component of $T$, which will enable us to compute its homotopy groups.
For $\{L\} \in \operatorname{Pic} X$, let $T_{L}$ denote the component of the vertex $\left[\begin{array}{c}L \\ I\end{array}\right]$ in $T$. We define the simplicial set $\widetilde{T}_{L}$ as follows. An $A$-simplex $x$ in $\widetilde{T}_{L}$ is a tuple $x=\left(D ; E_{i}, i \in A\right)$, where $D \in T_{L}(A) \subset$ Mult $(\Gamma(A), \mathcal{L})$ and $\mathcal{E}_{i} D(i / L) \widetilde{\rightarrow} L \otimes D(i / R), i \in A$, are isomorphisms such that the diagram

$$
\begin{array}{ccc}
D(j / L) & \xrightarrow{\delta_{L, i, j}} & D(i / L) \otimes D(j / i)  \tag{3.1}\\
\mathcal{E}_{j} \downarrow & & \downarrow \mathcal{E}_{i} \otimes 1 \\
L \otimes D(j / R) & \stackrel{1 \otimes \delta_{R, i, j}}{\rightarrow} & L \otimes D(i / R) \otimes D(j / i)
\end{array}
$$

commutes for every $i<j$ and $A$. Thus, a vertex in $\widetilde{T}_{L}$ is a pair of objects $\left[\begin{array}{l}L_{0} \\ L_{0}^{\prime}\end{array}\right]$ in $\mathcal{L}$ endowed with an isomorphism $\mathcal{E}_{o}: L_{0} \widetilde{\leftrightarrows} L \otimes L_{0}^{\prime}$. We have an obvious simplicial map $\widetilde{T}_{L} \rightarrow T_{L}$ which forgets the choice of $\mathcal{E}_{i}$.

Lemma 3.2. Let $D \in T_{L}(A)$ and $k \in A$. Then for any isomorphism $\mathcal{E}_{k}: D(k / L) \widetilde{\rightarrow} L \otimes$ $D(k / R)$, there exist uniquely determined lsomorphisms $\mathcal{E}_{i}: D(i / L) \underset{\rightarrow}{\leftrightarrows} \otimes D(i / R)$, with $i \in A, i \neq k$, such that $x=\left(D ; \mathcal{E}_{i}, i \in A\right) \in \widetilde{T}_{L}(A)$.
Proof: The uniqueness of $\mathcal{E}_{j}$ for $j>k$ follows directly from diagram (3.1). For $i<k$ it follows from (3.1) that the isomorphism $\mathcal{E}_{i} \otimes 1: D(i / L) \otimes D(k / i) \widetilde{\rightarrow} L \otimes D(i / R) \otimes D(k / i)$ is uniquely determined. But for any linear bundles $L, L^{\prime}$, and $L^{\prime \prime}$, with $\left\{L^{\prime}\right\}=\left\{L^{\prime \prime}\right\}$ in Pic $X$, the map $I s o\left(L^{\prime} / L^{\prime \prime}\right) \rightarrow I s o\left(L^{\prime} \otimes L, L^{\prime \prime} \otimes L\right)$ given by $\mathcal{E} \mapsto \mathcal{E} \otimes 1$ is a bijection, since $\mathcal{E}$ can be restored from the diagram

in which the vertical arrows are induced by the natural map $L \otimes L^{-1} \rightarrow I$ (in particular, Aut $L$ is naturally isomorphic to $\operatorname{Aut} I \cong \Gamma\left(X, O_{X}^{*}\right)$ for any $\left.L \in \mathcal{L}\right)$. Hence the isomorphisms $\mathcal{E}_{i}$, with $i<k$, are also uniquely determined. The commutativity of (3.1) for an arbitrary pair $i<j$ can be deduced from the commutativity for ( $i, k$ ) and for $j, k$ and the properties (1.4) of the isomorphisms $\delta$.
Given a simplex $x=\left(D ; \mathcal{E}_{i}\right) \in \widetilde{T}_{L}(A)$ and an element $\mathcal{E} \in$ Aut $L$, we define $\mathcal{E}(x)$ to be the simplex

$$
\mathcal{E}(x)=\left(D ; \mathcal{E} \otimes 1_{D(i / R)}\right) \cdot \mathcal{E}_{i}, i \in A \in \widetilde{T}_{L}(A)
$$

This is really a simplex in $\widetilde{T}_{L}$, because the diagram

$$
\begin{array}{ccccc}
D(j / L) & \xrightarrow{\delta_{L, i, j}} & D(i / L) \otimes D(j / i) & \xrightarrow{\mathcal{E}_{i} \otimes 1} & L \otimes D(i / R) \otimes D(j / i) \\
\mathcal{E}_{j} \downarrow & & & & \\
L \otimes D(\mathcal{E} \otimes 1 \otimes 1
\end{array}
$$

obviously commutes for every $i<j$ in $A$. Thus we obtain a free left action of the group Aut $L$ on the simplicial set $\tilde{T}_{L}$, and it follows from Lemma 3.2 that the forgetful map $\widetilde{T}_{L} \rightarrow T_{L}$ is the quotient map associated with this action. Hence $\left|\widetilde{T}_{L}\right| \rightarrow\left|T_{L}\right|$ is a covering, and to complete the proof of theorem 3.1, it now remains to show the following
Proposition 3.3. $\widetilde{T}_{L}$ is contractible.
Proof: We will define simplicial maps $f: * \mid Z \rightarrow \widetilde{T}_{L}$ and $g: \widetilde{T}_{L} \rightarrow * \mid Z$ such that $g \cdot f=1$, and $f \cdot g$ admits a simplicial homotopy to the identity map of $\widetilde{T}_{L}$. This will be enough, since $* \mid Z$ is contractible (cf. [GG, Lemma 1.4]).
We can describe the simplicial set $* \mid Z$ as follows. For $A \in \Delta$, let $\sigma(A)$ denote the concatenation $\{b\} A$, where $b$ is a symnol ("base element"), and let $\sum(A)=\operatorname{Ar} \sigma(A)$. Then we can identify $(* \mid Z)(A)$ with the set $\operatorname{Mult}\left(\sum(A), \mathcal{L}\right)$. Given $D \in \operatorname{Mult}\left(\sum(A), \mathcal{L}\right)$, we define $f(D): \Gamma(A) \rightarrow \mathcal{L}$ by

$$
\begin{array}{lll}
f(D)(j / i)=D(j / i) & \text { for } & i<j \quad \text { in } A ; \\
f(D)(j / L)=L \otimes D(j / b) & \text { for } & j \in A ; \\
f(D)(j / R)=D(j / b) & \text { for } \quad j \in A .
\end{array}
$$

The isomorphisms $\delta$ for $f(D)$ are naturally induced by those for $D$, and we also define the map $\mathcal{E}_{i}: f(D)(i / L) \widetilde{\rightarrow} L \otimes f(D)(i / R)$ to be the identity map for every $i \in A$. This makes
$f(D)$ an $A$-simplex in $\widetilde{T}_{L}$. The definition obviously agrees with the face and degeneracy maps, and we obtain the simplicial map $f: * \mid Z \rightarrow \widetilde{T}_{L}$.
Given a simplex of $\widetilde{T}_{L}(A)$, i.e., a multiplicative map $D: \Gamma(A) \rightarrow \mathcal{L}$ endowed with isomorphisms $\mathcal{E}_{i}$ satisfying (3.1), we let $g(D)$ be the composite map $\sum(A) \hookrightarrow \Gamma(A) \xrightarrow{D} \mathcal{L}$, where the inclusion $\sum(A) \hookrightarrow \Gamma(A)$ is the identity on $\operatorname{Ar} A$ and sends $b$ to $R$. Then $g: \widetilde{T}_{L} \rightarrow * \mid Z$ is a simplicial map, and obviously we have $g \cdot f=1_{* \mid Z}$.
We now proceed to show that there is a simplicial homotopy connecting $f \cdot g$ and ${ }_{\widetilde{T}_{L}}$. A $p$-simplex $x$ in $\widetilde{T}_{L}$ is a collection of objects in $\mathcal{L}$ of the form

$$
x=\left[\begin{array}{cccc} 
& & & L_{p / p-1} \\
& & \cdots & \\
& L_{1 / 0} & \cdots & L_{p / 0} \\
L_{0} & L_{1} & \cdots & L_{p} \\
L_{0}^{\prime} & L_{1}^{\prime} & \cdots & L_{p}^{\prime}
\end{array}\right]
$$

endowed with isomorphisms $\delta$ (cf.(2.3)) and isomorphisms $\mathcal{E}_{i}: L_{i} \rightarrow L \otimes L_{i}^{\prime}$ for $0 \leq i \leq p$. By definition,

$$
(f \cdot g)(x)=\left[\begin{array}{cccc} 
& & & L_{p / p-1} \\
& & \cdots & \\
& L_{1 / 0} & \cdots & L_{p / 0} \\
L \otimes L_{0}^{\prime} & L \otimes L_{1}^{\prime} & \cdots & L \otimes L_{p}^{\prime} \\
L_{0}^{\prime} & L_{1}^{\prime} & \cdots & L_{p}^{\prime}
\end{array}\right]
$$

where the isomorphisms $\mathcal{E}_{i}: L \otimes L_{i}^{\prime} \breve{\rightarrow} L \otimes L_{i}^{\prime}$ are the identity maps.
A $p$-simplex in $\Delta[1]$ can be thought of as a representation of the set $[p]=\{0,1, \ldots, p\}$ in the form of a concatenation $[p]=\{0, \ldots, n\}\{n+1, \ldots, p\}$, where $n \in\{-1,0, \ldots, p\}$. For short, we will denote this simplex by $n$. We define homotopy $H: \widetilde{T}_{L} \times \Delta[1] \rightarrow \widetilde{T}_{L}$ by

$$
H(x ; n)=\left[\begin{array}{cccc} 
& & & L_{p / p-1} \\
& & \cdots & \\
\cdots L_{n / 0} & L_{n+1 / 0} & \cdots & L_{p / 0} \\
L_{0} \cdots L_{n} & L \otimes L_{n+1}^{\prime} & \cdots & L \otimes L_{p}^{\prime} \\
L_{0}^{\prime} \cdots L_{n}^{\prime} & L_{n+1}^{\prime} & \cdots & L_{p}^{\prime}
\end{array}\right]
$$

where $\mathcal{E}_{i}$ is as in $x$ for $0 \leq i \leq n$ and $\mathcal{E}_{i}=1_{L \otimes L_{i}^{\prime}}$ for $n+1 \leq i \leq p$.
To make $H(x ; n)$ into a simplex of $\widetilde{T}_{L}$ it remains to define the isomorphisms $\delta$. They will be the same as in $x$ except the case $\delta_{L, i, j}: L \otimes L_{j}^{\prime} \widetilde{\rightrightarrows} L_{i} \otimes L_{j / i}$, where $i \leq n$, and $j \geq n+1$. In this case we define $\delta$ to be the composite isomorphism in any of the two possible ways in the diagram

$$
\begin{array}{ccc}
L \otimes L_{j}^{\prime} & \xrightarrow{1 \otimes \delta_{R, i, j}} & L \otimes L_{i}^{\prime} \otimes L_{j / i} \\
\mathcal{E}_{j} \uparrow & \xrightarrow{\searrow} & \uparrow \mathcal{E}_{i} \otimes 1 \\
L_{j} & \delta_{L, i, j} \text { of } x & L_{i} \otimes L_{j / i}
\end{array}
$$

which is commutative by virtue of (3.1). One checks directly the required compatibility conditions (1.4) (iii) and (3.1) for $H(x ; n)$, whence $H$ is the desired simplicial homotopy. This completes the proof of Proposition 3.3 and Theorem 3.1.

## 4. The map det : $W^{1} \rightarrow T$ is fibred

Let $F: X \rightarrow Y$ be a map of simplicial sets, $A \in \Delta$, and $y_{0} \in Y(A)$. Any map $f: A^{\prime} \rightarrow A$ in $\Delta$ gives rise to the base change map $y_{0}\left|F \rightarrow\left(f^{*} y_{0}\right)\right| F$ which takes a $B$-simplex $(y, x)$ to ( $f^{*} y, x$ ) where we write simply $f^{*} y$ to denote the inverse image of $y$ under the map $A^{\prime} B \xrightarrow{f}{ }^{-1} A B$ (cf. sect. 2). We say that $F$ is fibred if $y\left|F \rightarrow\left(f^{*} y\right)\right| F$ is a homotopy equivalence for any $f: A^{\prime} \rightarrow A$ in $\Delta$ and any $y \in Y(A)$.
Theorem B'[GG, p. 580]. If $F: X \rightarrow Y$ is a fibred simplicial map, then for any $A \in \Delta$ and $y \in Y(A)$ the square

$$
\begin{array}{ccc}
y \mid F & \rightarrow X \\
\downarrow & & \downarrow \\
y \mid Y & \rightarrow Y
\end{array}
$$

is homotopy cartesian, and therefore $|y| F \mid$ can be regarded as homotopy fiber of the map $|F|:|X| \rightarrow|Y|$.
Theorem 4.1. The map det : $W^{1} \rightarrow T$ defined in sect. 2 is fibred.
We claim that in fact any simplicial map $X \rightarrow T$ is fibred. The latter follows from Propositions 4.2 and 4.3 below.

Proposition 4.2. Suppose that $Y$ is a simplicial set such that
(4.1) for any map $f:\{a\} \rightarrow A$ in $\Delta$ and any simplex $y \in Y(A)$ there exists a simplicial map $\varphi:\left(f^{*} y\right)|Y \rightarrow y| Y$ such that the diagram

$$
\begin{array}{ccc}
\left(f^{*} y\right) \mid Y & \xrightarrow{\varphi} & y \mid Y \\
\downarrow & & \downarrow \\
Y & \xrightarrow{1} & Y
\end{array}
$$

commutes, where the vertical arrows take $\{a\} B$ (resp. $A B$ ) simplices to their $B$-faces, and (4.1) (i) $\quad\left(f^{*} y\right)|Y \xrightarrow{\varphi} y| Y \xrightarrow{f^{*}}\left(f^{*} y\right) \mid Y$ is the identity map;
(4.1) (ii) there exists a simplicial homotopy $h:(y \mid Y) \times \Delta[1] \rightarrow y \mid Y$ which connects the map $y\left|Y \xrightarrow{f^{*}}\left(f^{*} y\right)\right| Y \xrightarrow{\varphi} y \mid Y$ with the identity map and which is constant on the B-part (see the definition of $y \mid Y$ in sect. 2), i.e., the diagram

$$
\begin{array}{ccc}
(y \mid Y) \times \Delta[1] & \xrightarrow{h} & y \mid Y \\
\downarrow & & \downarrow \\
Y & \xrightarrow{\rightarrow} & Y
\end{array}
$$

commutes.
Then any simplicial map $F: X \rightarrow Y$ is fibred.
Proof: It suffices to prove that for any map $f:\{a\} \rightarrow A$ in $\Delta$ and any $y_{0} \in Y(A)$, the map $y_{0}\left|F \rightarrow\left(f^{*} y_{0}\right)\right| F$ is a homotopy equivalence, for given a map $g: A^{\prime} \rightarrow A$, we see that the base change maps $y_{0}\left|F \rightarrow\left(g_{1}^{*} g^{*} y_{0}\right)\right| F$ and $\left(g^{*} y_{0}\right)\left|F \rightarrow\left(g_{1}^{*} g^{*} y_{0}\right)\right| F$ are homotopy equivalences for any map $g_{1}:\{a\} \rightarrow A^{\prime}$, the assertion for $y_{0}\left|F \rightarrow\left(g^{*} y_{0}\right)\right| F$ follows.
Let $\varphi:\left(f^{*} y_{0}\right)\left|Y \rightarrow y_{0}\right| Y$ be the map of (4.1). We define a map $\Phi:\left(f^{*} y_{0}\right)\left|F \rightarrow y_{0}\right| F$ by $(y, x) \longmapsto(\varphi(y), x)$. Then, by virtue of (4.1) (i), the composite map $\left(f^{*} y_{0}\right) \mid F \xrightarrow{\Phi}$
$y_{0}\left|F \xrightarrow{f^{*}}\left(f^{*} y_{0}\right)\right| F$ is the identity map. We define a homotopy $H:\left(y_{0} \mid F\right) \times \Delta[1] \rightarrow y_{0} \mid F$ which connects the map $y_{0}\left|F \xrightarrow{f^{*}}\left(f^{*} y_{0}\right)\right| F \xrightarrow{\Phi} y_{0} \mid F$ with the identity map, by letting $H(y, x ; n)=(h(y ; n), x)$ for $(y, x) \in\left(y_{0} \mid F\right)(B)$ and $n \in \Delta[1](B)$
Proposition 4.3. $T$ satisfies (4.I).
Proof: Let $f:\{a\} \rightarrow A$ be the inclusion $\{t\} \hookrightarrow[p]=\{0,1, \ldots, p\}$. We assume $y_{0}$ is a $p$-simplex in $T$ given by (2.3). Then $f^{*} y_{0}$ is the vertex $\left[\begin{array}{l}L_{t} \\ L_{t}^{\prime}\end{array}\right]$. A $q$-simplex $x$ in $\left(f^{*} y_{0}\right) \mid T$ is a collection of objects of $\mathcal{L}$ of the form

$$
\left[\begin{array}{cccc} 
& & & M_{q / q-1} \\
& & \ldots & \\
& M_{1 / 0} & \ldots & M_{q / 0} \\
& M_{0, t} & \ldots & M_{q, t} \\
L_{t} & M_{0} & \ldots & M_{q} \\
L_{t}^{\prime} & M_{0}^{\prime} & \ldots & M_{q}^{\prime}
\end{array}\right]
$$

together with isomorphisms $\delta$ satisfying (1.4). We set
(recall that an inverse object $L^{-1}$ is chosen for every $L$ in $\mathcal{L}$ ). To make $\varphi(x)$ a $q$-simplex in $y_{0} \mid T$, we have to define the isomorphisms $\delta$ and verify (1.4). This amounts to the study of various locations of three (resp. six) objects in the above picture. In each case $\delta$ is naturally induced by the corresponding isomorphisms for $x$ and $y_{0}$, and (1.4) for $\varphi(x)$ follows easily from the same properties of $x$ and $y_{0}$.
Thus we obtain a simplicial map $\varphi:\left(f^{*} y_{0}\right)\left|T \rightarrow y_{0}\right| T$, and obviously $f^{*} \cdot \varphi$ is the identity map of $\left(f^{*} y_{0}\right) \backslash T$. It remains to define a homotopy $h:\left(y_{0} \mid T\right) \times \Delta[1] \rightarrow y_{0} \mid T$ satisfying (4.1) (ii) which connects the map $\varphi \cdot f^{*}$ with $1_{y 0 \mid T}$.

A $q$-simplex $y$ in $y_{0} \mid T$ is a collection of objects of $\mathcal{L}$

$$
y=\left[\begin{array}{ccccccc} 
& & & & & & M_{q / q-1} \\
& & & & & \ldots & \\
& & & & M_{1 / 0} & \ldots & M_{q / 0} \\
& & & L_{p / p-1} & M_{o, p} & \ldots & M_{q, p} \\
& & & & & \ldots & M_{q, p-1} \\
& L_{1 / 0} & \ldots & L_{p / 0} & M_{0,0} & \ldots & M_{q, 0} \\
L_{0} & L_{1} & \ldots & L_{p} & M_{0} & \ldots & M_{q} \\
L_{0}^{\prime} & L_{1}^{\prime} & \ldots & L_{p}^{\prime} & M_{0}^{\prime} & \ldots & M_{q}^{\prime}
\end{array}\right]
$$

together with isomorphisms $\delta$ satisfying (1.4). Let $n \in\{-1,0, \ldots, q\}$ denote a $q$-simplex in $\Delta[1]$. We set

$$
h(y ; n)=\left[\begin{array}{cccccccc} 
& & & & & & & \\
& & & & & M_{1 / 0} & \ldots & \\
& & & & & & \ldots & \\
& & & M_{0, j} & \ldots & M_{n, j} & L_{j / t}^{-1} \otimes M_{n+1, t} & \ldots \\
\\
& \ldots & L_{p / t} & M_{0, t} & \ldots & M_{n, t} & M_{j / t}^{-1} \otimes M_{q+1, t} & \ldots \\
M_{q, t} \\
& \ldots & L_{p / i} & M_{0, i} & \ldots & M_{n, i} & L_{t / i} \otimes M_{n+1, t} & \ldots \\
L_{q, i} \\
L_{0} & \ldots & L_{p} & M_{0} & \ldots & M_{n} & M_{n+1} & \ldots \\
L_{0}^{\prime} & \ldots & L_{p}^{\prime} & M_{0}^{\prime} & \ldots & M_{n}^{\prime} & M_{n+1}^{\prime} & \ldots \\
M_{q} & M_{q}
\end{array}\right]
$$

Again we have to consider various locations of objects in order to define the isomorphisms $\delta$ for $h(y ; n)$ and check (1.4). We omit this trivial verification. This completes the proof of Proposition 4.3 and Theorem 4.1.

## 5. The second term of the weight filtration

We define the simplicial set $W^{2}$ as follows. For $A \in \Delta$, an $A$-simplex in $W^{2}$ is a tuple $\left(F ; \psi_{i}, i \in A\right)$, where $F: \Gamma(A) \rightarrow \mathcal{P}$ is an exact functor such that rank $F(i / L)=$ rank $F(i / R)$ for every $i \in A$ (i.e., $F \in W^{1}(A)$; cf. sect. 2) and $\psi_{i}: \operatorname{det} F(i / L) \widetilde{\rightrightarrows} \operatorname{det} F(i / R)$ are isomorphisms compatible with the isomorphisms $\delta$ in $\operatorname{det} \cdot F$ (cf. Proposition 1.2), i.e., for every $i<j$ in $A$ the diagram

$$
\begin{array}{ccc}
\operatorname{det} F(j / L) & \xrightarrow{\delta} & \operatorname{det} F(i / L) \otimes \operatorname{det} F(j / i) \\
\psi_{j} \downarrow & & \downarrow \psi_{i} \otimes 1  \tag{5.1}\\
\operatorname{det} F(j / R) & \xrightarrow{\sim} & \operatorname{det} F(i / R) \otimes \operatorname{det} F(j / i)
\end{array}
$$

commutes.
For short, let $P_{i}=F(i / L), P_{i}^{\prime}=F(i / R)$, and $P_{j / i}=F(j / i)$. We see, in particular, that a vertex in $W^{2}$ is a triple $\left(P, P^{\prime} ; \psi\right)$ where $P$
and $P^{\prime}$ are objects of $\mathcal{P}$ such that $\operatorname{rank} P=\operatorname{rank} P^{\prime}$ and $\psi: \operatorname{det} P \rightrightarrows \operatorname{det} P^{\prime}$ is an isomorphism. An edge in $W^{2}$ connecting ( $P_{0}, P_{0}^{\prime} ; \psi_{0}$ ) to ( $P_{1}, P_{1}^{\prime} ; \psi_{1}$ ) is a pair of short exact sequences $\left(0 \rightarrow P_{0} \rightarrow P_{1} \rightarrow P_{1 / 0} \rightarrow 0,0 \rightarrow P_{0}^{\prime} \rightarrow P_{1}^{\prime} \rightarrow P_{1 / 0} \rightarrow 0\right)$ such that the diagram

$$
\begin{array}{ccc}
\operatorname{det} P_{1} & \stackrel{\delta}{\rightarrow} & \operatorname{det} P_{0} \otimes \operatorname{det} P_{1 / 0} \\
\psi_{1} \downarrow & & \downarrow \psi_{0} \otimes 1 \\
\operatorname{det} P_{1}^{\prime} & \stackrel{\delta}{\rightarrow} & \operatorname{det} P_{0}^{\prime} \otimes \operatorname{det} P_{1 / 0}
\end{array}
$$

commutes.
There is an obvious simplicial map $W^{2} \rightarrow W^{1}$ which forgets the choice of the isomorphisms $\psi_{i}$.
Theorem 5.1. $W^{2} \rightarrow W^{1} \xrightarrow{\text { det }} T$ is a homotopy fibration sequence.
This assertion together with Theorem 3.1 yield a long exact sequence

$$
\begin{aligned}
\cdots \rightarrow 0 & \rightarrow \pi_{2} W^{2} \widetilde{\rightarrow} \pi_{2} W^{1} \rightarrow 0 \rightarrow \pi_{1} W^{2} \rightarrow K_{1} X \xrightarrow{\text { eri }} \Gamma\left(X, O_{X}^{*}\right) \xrightarrow{0} \\
& \rightarrow \pi_{0} W^{2} \rightarrow \operatorname{ker}\left(\mathrm{mnk}: K_{0} X \rightarrow \mathbf{Z}\right) \rightarrow \operatorname{Pic} X \rightarrow 0
\end{aligned}
$$

## Corollary 5.2.

$$
\begin{equation*}
\pi_{0} W^{2} \cong \operatorname{ker}\left((\text { nnk }, \operatorname{det}): K_{0} X \rightarrow \mathbf{Z} \oplus P i c X\right) \tag{i}
\end{equation*}
$$

(ii)

$$
\pi_{1} W^{2} \cong \operatorname{ker}\left(\operatorname{det}: K_{1} X \rightarrow \Gamma\left(X, O_{X}^{*}\right)\right)
$$

(iii)

$$
\pi_{m} W^{2} \cong K_{m} X \text { for } m \geq 2
$$

Proof of the theorem. Let * denote the vertex $\left[\begin{array}{l}I \\ I\end{array}\right]$ of $T$ regarded as a $\{b\}$-simplex. By Theorem $B^{\prime}$ and Theorem 4.1, it suffices to construct homotopy inverse maps $f: * \mid$ det $\rightarrow$ $W^{2}$ and $g: W^{2} \rightarrow * \mid \operatorname{det}$.

A $p$-simplex in $* \mid$ det is a pair $(x, F)$, where

$$
x=\left[\begin{array}{ccccc} 
& & & & L_{p / p-1}  \tag{5.2}\\
& & & \cdots & \\
& L_{1 / 0} & \cdots & L_{p / 0} \\
& L_{0 / b} & L_{1 / b} & \cdots & L_{p / b} \\
L_{b}=I & L_{0} & L_{1} & \cdots & L_{p} \\
L_{b}^{\prime}=I & L_{0}^{\prime} & L_{1}^{\prime} & \cdots & L_{p}^{\prime}
\end{array}\right]
$$

is a collection of objects of $\mathcal{L}$ endowed with isomorphisms $\delta$ (i.e., $x$ is a $\{b\}[p]$-simplex in $T$ whose $\{b\}$-vertex is $*$ ) and $F$ is a $p$-simplex in $W^{1}$ such that $\operatorname{det} F$ is equal to the $p$-face of $x$.

We set

$$
\psi_{i}=\delta_{\vec{R}, b, i}^{-1} \cdot \delta_{L, b, i}: L_{i} \widetilde{\rightrightarrows} L_{i}^{\prime}
$$

where $\delta_{L, b, i}: L_{i} \widetilde{\rightarrow} I \otimes L_{i / b}$ and $\delta_{R, b, i}: L_{i}^{\prime} \widetilde{\rightrightarrows} I \otimes L_{i / b}$, and claim that $\left(F ; \psi_{i}, 0 \leq i \leq p\right)$ is a $p$-simplex in $W^{2}$. For it suffices to verify (5.1) for every $i<j$ in $[p]$. This follows from the diagram

in which both parts are commutative by virtue of (1.4) (iii) for $x$.
Thus we obtain a simplicial map $f: * \mid$ det $\rightarrow W^{2}$. We define a homotopy inverse map $g: W^{2} \rightarrow * \mid$ det as follows. Given a $p$-simplex $\left(F ; \psi_{i}, 0 \leq i \leq p\right)$ in $W^{2}$, we set $L_{i}=\operatorname{det} F(i / L), L_{i}^{\prime}=L_{i / b}=\operatorname{det} F(i / R)$, and $L_{j / i}=\operatorname{det} F(j / i)$ for $0 \leq i<j \leq p$.

We define a $\{b\}[p]$-simplex $x$ by (5.2), where the isomorphisms $\delta$ in the $p$-face are the same as in $\operatorname{det} F$ (cf. Proposition 1.2). Further, we set

$$
\begin{aligned}
& \delta_{L, b, i}: L_{i}=\operatorname{det} F(i / L) \xrightarrow{\psi_{i}} \operatorname{det} F(i / R)=L_{i / b} \rightarrow I \otimes L_{i / b} ; \\
& \delta_{R, b, i}: L_{i}^{\prime}=\operatorname{det} F(i / R) \xrightarrow{1} \operatorname{det} F(i / R)=L_{i / b} \rightarrow I \otimes L_{i / b},
\end{aligned}
$$

where $L_{i / b} \rightarrow I \otimes L_{i / b}$ is the natural map (recall that $I=O_{X}$ ), and

$$
\delta_{b, i, j}: L_{j / b}=\operatorname{det} F(j / R) \xrightarrow{\delta_{R, i, j} \text { of } \operatorname{det} F} \operatorname{det} F(i / R) \otimes \operatorname{det} F(j / i)=L_{i / b} \otimes L_{j / i} ;
$$

the compatibility condition follows trivially. Thus $(x, F)$ is a $p$-simplex in $* \mid$ det, which gives rise to a simplicial map $g$. Clearly, $f . g=1_{W^{2}}$, and it is easy to define a simplicial homotopy which connects $g \cdot f$ with $1_{* \mid \text { det }}$. Theorem 5.1 is proved.
[GG] H. Gillet and D. Grayson, The loop space of the $Q$-construction Illinois J. Math. 31 (1987), no. 4, 574-597
[Gr] D. Grayson, Exterior power operations on higher $K$-theory, $K$-Theory 3 (1989), no. 3, 247-260
[Sou] C. Soulé, Opérations en $K$-théorie algébrique, Canadian J. Math., 37 (1985), no. $3,488-550$

