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§ 0 . Introduction

Throughout this paper, we fix an arbitrary n-dimensional

compact complex manifold X with positive first Chern class

c1(x)1t> 0. We then put

K := set of all Kdhler forms on X representing 2“01(X)Rf
K := {w€ K| w has positive definite Ricci tensorl,
E:= {w€K|w is Einstein},

c (x)IR i = spéce of real valued C functions on X,

Aut(X) := group of holomorphic automorphisms .of X,

G := Auto(x) = identity component of Aut(X).

Furthermore, Aut(X) is always assumed to act from the right

on K by (w,g) € K x Aut (X) — g*w € K,

The main purpose of this paper is to prove the uniqueness
of Einstein K&hler metrics, if any, on X up to G-action.
Such uniqueness was known only for i) Kihler C-spaces (cf.
Matsushima [12]) and ii) some non-homogeneous Einstein mani-
folds fecently discovered by Sakane [13]. Now, the correct
statement we obtained has the following stronger form as

announced earlier in [9]:

Theorem A, Fix an element w, of K. Let u+:K+L—> R be

1
the restriction to K* of the K-energy map w€ K +—> M(m1,w)€Il

of the K#hler manifold (X,m1) (see § 1, also [9]). Assume

that E # ¢. Then



(i) p+ is bounded from below and takes its absolute

minimum exactly on E .

(ii) E consists of a single G-orbit.

We now suppose that E # ¢, and let K be a maximal
compact subgroup of G. By the well-known theorem of
Matsushima [11], there exists an element 6 of E such
that the isotropy subgroup of G at 6 coincides with K.
Hence E 1is G-equivariantly diffeomorphic to G/K. Note
that G/K has a structure of a Riemannian symmetric space,
though the choice of its metric is not unique (even up to
constant multiple) if the symmetric space G/K is reducible.
We now endow E with the natural Riemannian metric defined
in [10] (see also § 9 of the present paper). Then Theorem A
allows us to sharpen a result in [(10] and one can determine

the structure of E as follows:

Theorem B. f €+ ¢ , then E 1is G-equivariantly isometric

to the Riemannian symmetric space G/K endowed with a suitable

metric, and furthermore , Aut (X) acts isometrically on E.

As a straightforward consequence of Theorem B, we obtain

Theorem C. Let H be an arbitrary (possibly non-connected)

compact subgroup of Aut(X) . If in addition E #%# ¢, then

there always exists an H-invariant Einstein Kihler metric on X.




We now briefly explain how the proof of Theorem A

is carried out. Let be an arbitrary element of K

“o
and R(wo) be the corresponding Ricci form (cf. § 1).
(Later in this introduction, we set wy = R(w) for

some element & of K' and vary w, together with w )

Since R(wo) is cohomologous to wg s there uniquely exists

a function f Ecm(x)m such that

Rlwg) = wy + /=1 33f and IX exp (f) m0n= Sx wun.

We then consider the following 1-parameter families of

equations:

0.1 log ((wy+ /=T 3% )%/ w )= -ty + £, 0sts1,

T a®eo YR/ By = o - :
(0.2) 1log ((w0+/‘T 30, ) /wy) = ~te, - L(O,0) + £, 0stEST,

(see § 1 for the definition of L), where in both cases,

solutions wt and ¢, are required  to belong to
H := {g€ Cm(X)EQI wy *+ V-1 33¢ is positive definite on

Note that (0.1) above is introduced by Aubin [2] in his study
of Einstein Kdhler metrics on compact Kdhler manifolds with

c, >0. One can easily pass from the solutions of one of (0.1)
and (0.2) to those of the other because for each t, the
difference between Wt and ¢ is just a constant (which
may depend on ¢) on X. Now a crucial step of the proof of

Theorem A 1is to show the following fact:

X}.



(0.3) Given an orbit O in E , we can connect O

with every sufficiently general point w of Kt by a

smooth 1-parameter family of solutions ¥, |0 sts1}

(resp. {o  |0sts1}) of (0.1) (resp. (0.2)) such

that

{wo +/=71 3§w1 wg +/=1 35@1 € 0, and

Wy *+/=T 33¥, = wy +/=T 93¢y = & , (i.e., R(®) = wj).

Once one shows (0.3), the proof of Theorem A proceeds as

follows:

(1) Consider the K-energy map p:K — R of the Ké&hler
manifold (X,wo). Recall that u takes a constant value

C on O (cf. [9]). Since plw, *+ =1 aﬁmt) is a monotone
decreasing function of t (cf. (5.1)), the fact (0.3) above
implies p 2C on a dense subset of K+. By the continuity

of p , we obtain p2C on K¥  (cf.(8.1)).

(ii) Note that (0.2) has a unique solution woe H at

t =0 (cf. (4.3.2)). Hence one can easily show that, over
{0sts1} , only one smooth family of solutions of (0.2) is
possible (cf. (5.3), (5.4)). We now fix arbitrary G-orbits
01,02 in E. In view of (0.3); a sufficiently general

w € K+ can be connected with both O
i]]

and 0, by smooth

1

families {wé 0sts1} (i = 1,2) of solutions of

(0.2) such that

woi-/:Taﬁwgi]e(h_, (1 = 1,2), where R(w) = wy



Since these two families must coincide, we have ¢£1) (2]

and therefore 01 = 02 .
We now give an outline of the proof of (0.3). It
roughly consists of the following three steps. (For technical

reasons, the actual proof is not divided into such steps.)

Step 1: Given a point 6 € O , we can always find a solution
¥y, of (0.1) at t =1 such that 6=uwy+ /=T 93y, . This
y; does not necessarily extend to a smooth family

{wtl 1 - € sSts1} of solutions of (0.1). Because if such

a family exists, differentiating (0.1) by t at t=1,

we have (u6-+1)(¢tit=1) =-y,. Hence ¥, must satisfy

(0.4) - jwawenzo for all ¢€Hy ,

where He denotes Ker (n8 + 1) in Cm(x\ . We therefore

R
seek 8=w, + /373§¢1€E O which satisfies (0.4), and a

method to find such a 8 will be given in § 6. However, the
condition (0.4) is not enough (cf. (7.2),(7.3)) and a detailed
analysis of (0.1) wusing a bifurcation technique will be
effectively employed (cf. § 7). Finally, since the point

® € K+ is sufficiently general, a suitable chosen 4

(resp. @,) continues to a smooth family {y, | 1-ests1}

(resp. {o 1 -€sts1}) of solutions of (0.1) (resp.

e |
(0.2)).

Step 2: By the monotonicity of plwg + /:Tafwt) (where we



always consider such wt's as depend smoothly on t),

one has
(0.5) plwg + /-‘-'Ta‘a'«pt) 2 plug + /l‘TaScp,) = p(8)

along the solutions of (0.2), and the family

{wt | 1 - ests1} in Step 1 uniquely extends to a

smooth family {@_ | 0 < ts1 of solutions of (0.2),
because for each 0<ts 1, the existence of the lower bound

of p(mo-f/-18§wt) gives us a rough appriori estimate of

Step 3: Now, another difficulty comes up at t = 0, since the
straightforward appriori bound of uwtlco obtained from
(0.5) tends to infinity as t+0. In § 3, we derive a general
lower bound of the Green's function of the Laplacian from the
isoperimetric inequality of Gallot [6]. This bound allows us
to overcome the difficulty and thus we complete the whole

extension to {wt losts1}.

In conclusion, we wish to thank Professors S. Kobayashi
and H. Ozeki and Doctors I. Enoki and R. Kobayshi for

their valueable suggestions and constant encouragements.



§ 1. Notation, convention and preliminaries

(1.1) Throughout this paper (with the only exception of
§ 8) we fix, once for all, an element w, of K. In addition

to the notation defined in Introduction, we put

Cm(x)m := gpace of complex valued c® functions on X,

c := gspace of real d-closed (1,1)-forms on X in
v := set of all volume forms on X,

where on X, everywhere positive real 2n-form is called a

volume form. We write an arbitrary element w of K as

w= /:T. ) ga@ az% a dzg

1 2 n
12 e ees2 )

in terms of holomorphic local coordinates z = (z
on X. The corresponding Ricci tensor is denoted by
ZR(w)aﬁdzaodz“g and we put R(w) := /=1} R(w) 7 az® A azP.
Then R(w) = ¥=133 log det (g,g) € C. We furthermore denote
by o(w) (resp. uw) the corresponding scalar curvature

(resp. Laplacian on functions):

) gbe

ol{w) :=

R(w)ag '

$gP%22/3z %9z B

i}

o :

Ba

where (g~ ) 1is the inverse matrix of (gag). For cach

WE C‘m(x)Iil , we put



(1.1.1) wg (@) = wy + /<1339 ,
(1.1.2) Qy(0) =  exp(-p) W" ,

where w is the unique element of K, such that- R(w) = Wg -
Recall that the following is a straightforward consequence of

Yau's affirmative answer [14] to Calabi's conjecture:

(1.1.3) . The mapping w€ K }—» R(w) € C defines a homeomorphism

R: (K,| | k+2,a) = (C, !ch}c,u) for each (k,a) €EZxR with
C

k20 and O0<a<1.
Now, {(1.1.1) and (1.1.2) above defines the mappings
" o - . ©
wyg * P EC (X)I{ [ wo(w) € C and QO : 9 €C (X)R > Qolw)EV.
Let H := {¢ € Cm(X)lzlwo(w)GK } as in § 0. Then the natural map

H —->» K

® > wo(w)

is surjective. To each wo(w)e K, the corresponding n

wgy (@) 7
o(mo(w)), R(wo(w)) will be denoted respectively by O o (@),
R(¢) for simplicity. Finally, we define the mappings
viK —> U and Ric:V —> C by

v (w) = ol (w € K)
Ric(R) := /=193 log v Qev ,
where we write Q = v(z) n (v—1 dzafudza) in terms of

a=1
z

1 z2 Zn

holomorphic local coordinates = (z ,27,...,27) on X.

Then the following diagram commutes:



Q
® 0
C (X)m — v
mo ic I vV
C -——jn‘—*? K

(1.2) Let I be a (not necessarily open or closed) inter-
val in R , and S be either I or a product IxIXx .. x I
of I. A family {ms | s€s} of functions in c“(x;lz is

said to be smooth if the mapping

SxX —> R

(s,x) b— ms(x)

is C”. Any 1-parameter family {cpsls €I} of fuctions in
c“(X)m is called a path, and for every smooth path

{‘Ptlt €I}, the function Bwt/ate c”(X)]R is denoted by o,.

(1.3) Let S be a non-empty set. Then a mapping H:Sx S — R

is said to satisfy the 1-cocycle condition if

(ii) H(01.02) + H(02,03) + H(03,o1) = 0

for all 040, ,036. S.

(1.4) (cf. [9]). Let Vo be the volume [x wé’/n! of the
Kdhler manifold (X,wo). We put V := nlv,. To each pair

(@',0")€ Cm(x)JR x C %(X) r (resp. (@',9") € Hx H), we associate
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a real number L(¢',9") (resp. M(¢',0")) by
b y n
(1.4.1) Lo’ ,0") = [ fq @y wgloy) /V) at,
(1.4.2) (resp. M(9',0") =2 { [, o (0lo,) - n) wyle)/v} at),

where {wtla,st sb} is an arbitrary piecewise smooth path

. oo = ' = "

in C (X)Il (resp. H) such that U 0] and @y o".

Then L(p',¢") (resp. M{p',9")) is independent of the choice of
the path {wt la sts b} and therefore well-defined. Recall

that L (resp. M) satisfies the 1-cocycle condition. Further-

more,
(1.4.3) L{gg,0y + C) = Lo, = C,0,) = Liwg,0,) + C,
(1.4.4) (resp. M($1 + Curop * CZ) = M(w1,w2)) ’

for all ©q 19, € C (X) r (resp. ©, 19, €H) and all CeR
(resp. C1,C2€ZR). In view of (1.4.4) above, M:Hx H — R
factors through K x K. Hence we can define the mapping

M:Kx K —> R (denoted by the same M) by
Mw',0") = M(o',@") (w!',w"€K),

where ¢',9p" are elements of H such that wo(w') = w' and

n

wy (@") = w". Then the mapping

p:Kk — R

w > plw) := M(wo,w)

is called the K-energy map of the Kihler manifold '(X,wol.
We now put HO := {p€H | L(0,9) = 0} . The mapping



-11-

0EH, > wg(w)E K enables us to identify H, with

K , and we have the following commutative diagram:

o0
C (X)R ——— v

U S lRlc
0

H C
U U
H0 —_— K .

(1.5) We regard L as a function on VxV wvia the identifi-
cation QO:CW(X)IQE V. Let N:KxK -—> R Dbe the pullback
-v*L of ~-L by v:K - V. Then this N 1is characterized by

the following commutative diagram:

KxK ———> R

| v T-L

~ o« [ <]
UxV X (X px €7(X) g

Since L satisfies the 1-cocycle condition, so does N.
A straighforward computation shows that, for each pair

(w',w") € KxK , the number N(w',w") 1is given by
(1.5.1)" N(w',0") = /2 {f (o &) Rie )P/v} at
T ! a XTe, Tt t *

where {wt]a.St.skn} is an arbitrary piecewise smooth path

in H such that wo(ma) = w' and wo(wb) = " .

Remark (1.5.2). Several generalizations of L,M,N (which

is announced to appear in this paper, cf. [8],[9]) will be
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given separately in [3] as a self-contained article.

(1.6) (cf. Aubin [2]). For each pair (¢',9¢") € Hx H , we put

(1.6.1) I(p',@") := fx(w“ - @') (wo(w')n - moﬂw")n)/v '
(1.6.2) J(o',0") := ~L(o',0") + [y (0" = @ Vuyle)"/v.
Then both I:HxH — R and J:HxH — IR factors through

KxK , i.e., I and J are regarded as functions on KxK

by

I(w',w") = I(p',0") and JT(w',w") := J(@',0")

for all w',w" € K , where ¢',p" € H are such that wo(w') =W
and wo(w“) = w" . We later need the following properties of I

and J:

(1.6.3) J(e',9") 20 and the equality holds if and only if

@' =" + constant.

(1.6.4) 0=I(p',0") S (n+ 1) (I(e',0") - J(o',0")) sn I(e',0")

for all o',p".

These follow from Aubin's result [2; p. 146] and the identity
J(e',0") + J(e",0') = I(e',0") = I(p",p'). We now take an
arbitrary smooth path {wtla,St.sb } in H . Then a simple

calculation shows that

d | - p n
{(1.7) Throughout this paper, we always denote by £ the

function in Cm(x)m defined by
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(1.7.1) Rlwg) = wy + /=T0Ff and [, exp(fluy =V (cf. § 0).

To each ¢E€ Ho , we can similarly associate a function

gpe Cm()‘():R with the following properties (cf. [9]):

(1.7.2) R(0) = wylo) + /—‘-Ta‘ﬁfm '

- n
(1.7.3) plugle)) = IX fw wo (@) 7°/V
3 .
(1.7.4) 3 fwt = -(Dwt+ 1) @, for every smooth path

{o, |lastsbl in Hy .
(1.8) We shall now show that

(1.8.1) N(w',0") - Mw',0") = J{(w",R{(v")) - J{w',R{w')) for all

w',w" € K.

Proof: Choose ¢',p" € Ho so that mo(m') = @' and wo(w") = ",

Let O, i o'+ t(e"-') + C, € H 0sts1, and we denote each

t 0’

. t
wo(wt),fwt,owt respectively by w( ), ft,ut. Then by (1.7.2) ~

(1.7.4) and (1.5.1),

d

(t), . @ (t), _ & _ (t)yn
3t M(wo,w ) = It plw ) = 3t ( IX ft(w } /)
S Nwye™) = [ (8.6, R0)/V
_ . . n _ d
==fylop + £ ugle, + £.)7/V = - zx L(O,0 + £,).

Since L(O,wt) = 0 for all t, we have

(t))

£ Wwgo™) - mwg,e®y = FLf 0y -

d

- Llog,o, + £} = & 3

/R(©)) -

Integrating this over the interval [0,1], we obtain (1.8.1).
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§ 2. Matsushima's theorem and some identities

on Einstein K#hler manifolds.

Throughout this section, we assume E # ¢ , and then
fix an arbitrary element 0 =/-1 ) eag dsz\dz-é of E .
By quoting the well-known theorem of Matsushima [11], we
shall introduce several notations on Einstein K&hler mani-
folds. Some technical identities on such manifolds will

also be proven for later purposes.

(2.1) Let 8 be the space HO(X,O(T(X))) of all holomorphic

vector fields on X. For each Y€ g, let Ym denote the
real vector field Y + ¥ and we set g, :° {YIJ Y€ gl.
Then Y > YI{ defines the isomorphism of the complex Lie

algebras (g,/-1) = (8,.,,7+J) s where J is the complex structure
of X. We now consider the G-orbit O through 6 in E .

This is written as
0 = G/Ke

in terms of the isotropy subgroup K, of G at ©O . Let

¢l
ke be the set of all Killing vector fields on X with respect

to the Kdhler metric ©0 , where each Killing vector field is

regarded as an element of 3§ via the identification g = 8 cal”

Then ke is the Lie subalgebra of g corresponding to Ke in
LY

G. For each wEZCw(X)E ;, we define the vector field Y6 on

X Dby

(2.1.1) v = 11 %/t
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where ¢*= ) eE“ aE ' (ega) being the inverse matrix of
(60&-3-) . Take the 1-parameter group ygt :=  expl(t an ), teR,

on X generated by Y?I&' We now have the following theorem

of Matsushima [11]:

Theorem (2.2). Let Hy := {wiicm(x)nzl (Bg + o =0 } and
= . m .= «©
we set ¥, := V-1 ke and Hy HB oI{Ec:C (X)E . Then

. - — - q) .
(2.2.1) R, ={y, lo€ V=T Hgl and ¥y {vg IwéiHe} ;

C

(2.2.2) wEIHe > Ygfig defines an isomorphism Hg = g and

hence B=ke+;te and kenpez{o}.

This theorem in particular implies the following identification:

(2.2.3) Te(0)= Te(G/Ke) = Fe = He

LY

g €& €.

3 (v®

sE (o) *0) (g = ¥
We put Y := Yg for brevity. Then by the next computation, the
left-hand side of (2.2.3) is shown to have a very nice

description:

(2.2.3) = Lyf = (d o iy + iy ° d)8

5t (o) *®) lpog = Iy ¥ *ig
- 2T 4(- 20+ To) = /7T05
= 5 - 9 2} = V-133¢p .

We shall now prove the following technical Lemma:

Lemma (2.3). Let <,>;: {p-forms on X} x {p-forms on X}-- C”(X)m,

p=1,2,..., be the natural hermitian pairings induced from the
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Kahler metric 6. Then for all w,¢'€He and all
aec°"(X)R ,

(2. 3.1) De<aCla(p>e = <a.§Cla.§Qp>e + <3(06C) :3(D>9 I and

in particular (og + 1)<3V,3¢>, = <3d¥,3%¢> = (o

e e + 1)<a(~pI‘BW>e;

8

(2.3.2)  =fy 0<d3C, 30>, 87 = [, (0¥ - <dp, 30> ) {(mg + 1)z }e" .

Proof: Fix an arbitrary point x of X, and we choose a

holomorphic local coordinates (z1,zz,...,zn) centered at x
&) = — =

such that aB(X) 6&8 and (deaB)(x) 0 for all a and

B . Note that ma, 0=1,2,...,n are all holomorphic

(cf. (2.1.1),(2.2.2)). Therefore, at the point x,
_ o, _ a a
Ue<ac,3w>e-ue(25aw ) = Ea,BCaﬁw B y‘th.BC;an'Bq)
= <3-§C,3_3—‘D>8 + <B(DGC) la(p>e ’

which proves (2.3.1). For (2.3.2), let & := (og+1)g .

Then

n
Jglov - <30au>) £ 6

H

-/=1 fx(w85¢+~aw:\§w)€ A ne? ! (because V= -néP)

~/7T [, £3(@T WA ne™  =/TTf, 03E A Tuand' T = [ o<aE, 3 u> 0"

= o n
= fxw{m9<8c,a¢>e~<aac,ayb>e}en+ [y@<dz, 3 >,8" (c£.(2.3.1))

H

‘IX$<3§C,35¢>99n (because ¢ = new).
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§ 3 Lower bounds of Green functions of Laplacians.

In this section, using  the isoperimetric inequality of
Gallot [6], we shall corstruct some lower bound of the Green's
function of the Laplacian on a compact Riemannian manifold.
This bound applies to our compact K#hler situation and allows
us to obtain an interesting inequality which becomes crucial

in out later investigation.

(3.1) Let (M,g) be an m-dimensional compact Riemannian
manifold. The corresponding Ricci tensor, volume, volume form
and diameter are denoted respectively by rg,v ,AM and D _.

g g g
We then set

ag i D‘gzlnf (r lr,m) /(=1 ; lxlg = 1},
where the infinum is taken over all unit tangent vectors in
T(M). Let Aq be the Laplacian of (M,qg) (we choose Ag o)
that it always has nonpositive eigen values), and

GgGECm(M><M - (diagonal)) be the corresponding Green function
(with the well-known prescribed singularity along the diagonal)

characterized by the following properties:
. = u— 1 -
(1) elx) = v, Jiim(y)dmg(y) + &Gg(x,y) (-a0) (y)am_(y) ,

(i1)  fy Gg(x,y) aM_(y) =0 ,

for all xeM and ¢E€ CQ‘:(X)‘.R .
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Theorem (3.2). Let (m,a) €Zx R be an arbitrary pair

satisfying m22 and «20. Then there exists a positive

constant y=vy{m,a) depending only on m and o such

that, for every m-dimensional compact connected Riemannian

manifold (M,g) with agZ —az,

2
G 2 - DV
g(x,y) Y (m,a) g/ g
for all x,y€M with =x#y.

Remark (3.3). If a=0, the number vy(m,a) is easily

computed. For instance, vY(2,0) = 24.

(3.4) Proof of (3.2): Let wo
2

f in L7(X) which satisfy IM fdMg = 0. Then a combination

be the space of the functions

of Theorems of Gallot [6;(1,3),(2,7)] shows that, there exists

a positive constant «(m,0a) depending only on m and a such

that, for every f¢€ wO, the number C := ¥{(m,a) Vg1/mD;1

satisfies

(3.4.1) de“Lz(x'g) 2 C |th2m/(m-2)(x’g) (if m23);

(3.4.2) |af| 2 c v /4 g (if m =2)
e 12 (x,9) = % Vg L4(X,9) .

Let H(x,y,t) be the heat kernel of (M,g) , and we set

-1
Ho(x,y,t) := Hi{x,y,t) - Vg .

The proof is now divided into two cases:

(Case 1) m 23. A result of Cheng and Li [5;(2.9)] says that

(3.4.1) implies
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0 <Hy(x,x,t) s 42t c*/m™™/2

where (x,t) €EMx R with +>0. Hence for all x and vy,

/2 ~-m/2

[Hy (x,y,8) | S Hy(x,x,t)] Hy (y,y,£) /2 5 4(2e¢? /m)

1

Together with Hy(x,y,t) 2 ~V; , we obtain

1

= (® (T y- (™ 2 ~m/2
Gg(x,y) = fo Hy (x,y,t)dt 2 fo vg dt IT4(2tC /m) dt

4/m

for each 1 > 0. If we set T := 2 nln(m,a)—zDgz/Z, the

right-hand side of this inequality is written as —Y(m,a)Déévg
for some constant y(m,a) depending only on m and o, as required.

(Case 2)*)m = 2. For each (x,t) €EMx R , we put

Mx,t := {x}xMx{t}, which is a submanifold (=M) of MxMx R.
For ~ C” functions ®(x,y,t) defined on an open subset of
MxMx R, we denote by dy : o(x,y,t) > dyw(x,y,t)

the d-operator coming only from the second factor. Then the

same argument as in Cheng and Li [5;(2,7)] together with

(3.4.2) yields

(3.4.3) (aHo/at)(x,x,t)

]

2
- layH, (x,y,t/2) || T2
Ay H, L2(M, .,y o)

A

2 -1/2
-C™ Vv
g

2
”H (x,y,t/?_)ﬂ 4 .
0 L (Mx,t/z,g)

for each (x,t) €EMx R with > 0. On the other hand,in view

of

. -1 -
JMlno(x,y,ngMg(y) s fm (H(x,y,t) +vg )dMg(y) 2

¥) Gg (=G ) is written in terms of the Green's function

Gng MxM,g’M which provides us with a very simple proof of
?

this case by reduction to m = 4. However, the estimate thus
obtained is not so sharp (for instance, Y(2,0) would exceed 24).
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and the H&lder inequality

g Gy e 127201 5 I 1y oyae/2) 473

xlt/zlg X,t/Z,g

> fM|HO(x,y,t/2)l2 dMg(y) (= Ho(x,x,t)),

2 3/2
12,

we obtain ||H0(x,y,t/2)
L™ (M

2 Ho(x,x,t) /2 .

x,t/Z,g)

This combinded with (3.4.3) shows that

1/2 /2

(3H,/3t) (x,X,t) < -(C%/2) vy Ho(x,x,t)3 )

Then the same argument as in Cheng and Li [5;(2.9)] again

applies. Thus,

2 —
Hy (x,%,t) s (tc?/4) 2vg.

Finally, similar to Case 1 above, it follows that

oo T o1 (P e a2y at
Gy (x.y) f7 Bylx,y,t)dt 2 Jo Vg at - _(tc?/4) A

0

-2

v

2 2
-8/C% = -8 2, D~/v
/ K{2,a) g/ g

by setting T = 4Vg/C2 .

(3.5) We now return to our original compact K&hler situation.
In terms of the notation in (3.2) above, let B8(n) := y(2n,0),
which is a constant depending on n alone. Furthermore, for
each € H, let A“p (resp. Ag) denote the real Laplacian
20@ (resp. 2D“0) of the compact K&hler manifold (X,wo(w))

(resp. (X,wy)), and G, (resp. Gy) be its corresponding
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Green's function as is defined in (3.1). We denote by —Kw

(resp. —KO) the infimum of Gm (resp. G;) on XxX - (diagonal).

Finally, for each t€&€ R, we put

H(E) = {oeH | R(®) - tuy(¢) is positive semi-definitel} .

Theorem (3.2) now has the following important implication.

Proposition (3.6). Let t>0 be arbitrary. Then for every
(t)

, its oscillation Oscy := Max ¢ - Min ¢ satisfies
' X X

Q€ H

1

Osc ¢ 5I{(0,9) + 2n (KOV0 + (n- 1)B(n)ﬂ2t’ )

Proof: We observe, by virtue of the identity wo(w)=mo+/~135¢,

that the following inequalities hold:
-Aow £ 2n and —Amw 2 -2n .

Hence we have

ox) = Vg' [y eugint + [ (G (x,y) + Ky) (-A,0) (y)uliy) /n
< VE1 Jq wuf/ny + 2nK, Vv,
and
o(x) = V' frouy (@) %/n1+ [y (G (x,¥) + K (-4,Qy)ugy (@)™ () /nt
A f¢u (@)"/nt - 2nK V
o “x%% ©’0"
Therefore

-1 n n
Osc o $V, fx“’““‘o = wg (@) ") /nt + 2n (KyVy + K V)

= I(0,p) + 2n(k0V0 + vao) (cf. (1.6.1)).
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Let D, be the diameter of (X,wo(w)). Since R(w)Z'two(w),

1/2

Meyer's theorem asserts that Dw S 1((n=-1)/t) .. We now

conclude from Theorem (3.2) that

KV 1

2 2, -
oVo s B{n)Dw s{n-1) B(n)n°t
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§ 4. Generalized Aubin's equations.

In a recent paper [2], Aubin introduced a very
interesting 1-parameter family of non-linear equations
to apply the continuity method to showing the existence
of Einstein Kihler metrics on some compact Kihler mani-
folds with <, >0. In this section, we shall consider a
slightly modified family of equations so that it fits our

purpose. Elementary properties of such a family will also

be given.
(4.1) We define the mapping A:H —» Cm(x)R by
A(@) := log (wy(®)"/u™) (0 € H) ,

and then consider the following 1-parameter families of

equations:

(4.1.1) A(wt) -twt - L(O,wt) + f; 0sts,

(4.1.2)  Aly,) = -ty + £ ; 0sts1,

where solutions L and Wt are both required to belong to

H. We call the former the family of generalized Aubin's

equations of the Kihler manifold (X,wo), while the latter is

the original family introduced by Aubin.

Remark (4.1.3). At each point t of (0,1] (resp. [0,1]),

we put
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1

s 0 R A t—1L(0,wt) (resp. j"(wt) 1= Y- (b4 1) L(O,wt))

for every ®, {(resp. wt) satisfying (4.1.1) (resp. (4.1.2)).
Then by substituting 3j'(e¢.) (resp. j"(wt)) for wt(resp.wt),
one can easily see that j'(mt) (resp. j"(wt)) satisfies
(4.1.2) (resp. (4.1.1)). Furthermore, 3j' o j" = id and

"

3" o j' = id. Hence in finding solutions for t# 0, there is

no difference between (4.1.1) and (4.1.2).

(4.2) Choose an arbitrary t€ [0,1]. Let ©, (resp. wt) be
(t)

a solution of (4.1.1) (resp. (4.1.2)), and we set w 1= wo(wt)
(resp. w(t) 1= wo(wt)). Then w(t) satisfies
(4.2.1) R®) = (1 - 1) w, + o™,

(cf. Aubin [2; p. 149]), and in particular @, (resp. wt)
belongs to H‘t) {cf. (3.5)). On the other hand, one can
easily pass from the solutions of (4.2.1) to those of (4.1.1),

though we don't get into details.

(4.3) We shall next study the solutions of (4.1.1) and (4.1.2)

i

at t 0. Recall the following affirmative answer to Calabi's

conjecture:

Theorem (4.3.1) (Yau [14]). If t = 0, then (4.1.2) has a

solution which is unique up to an additive constant.

This in particular implies

Corollary (4.3.2). For t = 0, the equation (4.1.1) has a

unigue solution 9y - Moreover, L(O,mo) = 0 and R(wo(wo))==wo-
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Proof: The existence of a solution is straightforward from
(4.1.3) and (4.3.1). For uniqueness, let 9, be a solution

of (4.1.1) at t = 0. Then
feug = fy exp(Alog)) wg’= exp (-L(0,00)) [y exp(f)ug

. n _ n ; =
Since IX exp (f) wy = g(wo (cf. (1.7.1)), we obtain L(0,9,) =0.
Therefore, @, is a solution of (4.1.2) at t = 0. The

required uniqueness now follows from a combination of Theorem

(4.3.1) and L(O,wo) = 0, R(mo(wo)) = g is an immediate
consequence of (1.7.1) and A(wo) = f.
Remark (4.3.3). Suppose that {wt‘o Sttt (1> 0) is a

smooth 1-parameter family of solutions of (4.1.1}). Bv (4.3.2)
above, L(O,wo) = 0, and hence by setting

e 1= 3'00) = @ + tT'L(0,0,) (cf. (4.1.3)), we see that

{ut | 0st s 1} forms a smooth family of solutions of (4.1.2).

(For similar arguments, see Aubin [2; p. 149].)

(4.4) Let HE'©

k,a

{where 2:k€ZX and O0<a<1) be the set

of all ¢we€C
k,a

(X)H{ with positive definite wo(w). Note

k,a

that H is an open subset of C (X) We now conclude

R
this § 4 by showing the following local extension property of

solutions of (4.1.1) for 0<t< 1.

Proposition (4.4.1) (cf. Aubin [2]). Let 2:k€Z and fix

o€ R with O0O<a<1. Let 0s5 1< 1. Suppose moreover that

(4.1.1) has a solution ¢  at t = 1. Then for some €>0,

@, uniquely extends to a smooth 1-parameter family
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{wtl t€[0,1) N [t-¢,1+¢€l}

of solutions of (4.1.1) in H , and furthermore, if
k,

(o,t) € H'®x[0,1) satisfies the conditions

Hw-—wTH ck,a S €, lt-1|] s € and A(p) = -to - L(0,p) + £,

then ¢ coincides with mt

k,a Ck—z,a(

Proof: Consider the mapping T:H x R —> X)

defined by

T(o,t) := A9) +to + L(0,9) - £, (0,t) € ' xR .

k,a k"z,(!.

Then its Frechet derivative Dwr : C (X) > C (X)

(at (o,t)) with respect to the first factor is given by

DGl (¥) = (3, + )V + [y yu, (@ "/v v e ¢ %(x).

Note that, by the well-known regularity theorem, we have

k,a

weH for every (o,t)eH xR , whenever T(y,t) = 0.

Since F(wT,T) = 0 , an application of the implicit function
theorem now reduces the proof to showing that Dmf is
invertible at (mr,r). The following cases are possible.

{Case 1} 1=0. Then DT

© I(WO:D) is the mapping

k,o k-2,a

v ECTTX g > oggv + ey le,)/VEC (X)

IR ’

which is invertible.

(Case 2) T # 0. Since R(wr) - rwo(wT} is positive definite
(cf. (4.2)), a theorem ofldchnerpwicz{?] asserts that 1 is

less than the first (positive) eigen value of ~cw . Hence
T
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D@F!(wT’T) is invertible.

Remark (4.4.2). Proposition (4.4.1) is valid even if
©, and (4.1.1) are replaced respectively by wt and
(4.1.2). This is the original local extension theorem

proved by Aubin [2].
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§ 5. The K-energy map along the solutions of

generalized Aubin's equations

Recall that (4.1.1) has a unique solution ®g
at t = 0 (see (4.3.2)). By using an explicit description
(cf. (5.1)) of the K-energy map pu along the solutions of
(4.1.1), we shall show that any 9. satisfying (4.1.1) at
t = 1 (T+1) uniguely extends to a smooth 1-parameter family
{mt[ 0stst}l of solutions of (4.1.1). Note that this fact
in particular shows that (4.1.1) admits at most one solution
at t =71 for 0 s 1T <1 (cf. (5.3)). The same technique
enables us to show that if p is bounded from below, then
@ uniquely extends to a smooth 1-parameter family

{thO St<1} of solutions of (4.1.1) (cf. (5.7)).

Theorem (5.1). Let {wt |astsb} be an arbitrary smooth

1-parameter family of solutions of (4.1.1) in H . For

brevity, we put

(t)

w i = wo(mt) ' It .= I(wo,w(t))

(= 1(0,0.)),

3. += Ty, (=30,0)).

Then on [a,bl],

. (t)
dplw ") ol (1.4 —a@E (I

3t - Jt) s 0.

t

(t)

Proof: By Rlw.) = (1 - t)o, + tuw = wo(mt) -/=T (1—t)a§mt

(cft. (4.2.1)), we have c(wt) =n - (1-to. v, . Hence,
wt t
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d (t), _ 4 = y n
ac Pl ) = g M0,0) = [, (1-t) “’t‘”wt‘”t’ wo (0 )7 /V
- —— b -—.-.-—d -
= -(1-t) 3¢ (I.- J) (cf. (1.6.5)).

On the other hand, differentiating (4.1.1) by t, we obtain

-

uwtwt + t Wt @ ¥ Ct = 0

for some constant CtE R on X, Combining this with (1.6.5)},

we now see that
L (1 -3 = f (o, ¢ +td)(m_ & )u,(@)"/V20
dt t t X wt t t wt t"70 't '

where the last inequality is a straightforward consequence of

(first eigen value of ~B ) > t.
t

(5.2) (i) Fix o0€R with 0 < a < 1. Let P, be a
solution of (4.1.1) at t = 1 (where 71#0,1). A smooth

family o o <ts T} (resp. '{wtl T S$t< o}) of

e |
solutions of (4.1.1) is said to be maximal if for any

sequence tjE (0,71 (resp. [1,0)) (3 = 1,2,...) with

lim tj = ¢, the corresponding sequence {wtj} in # does

not converge to any point of HZ,a in Cz'a norm.

(ii) Suppose E * ¢. Then to each ©6€E , we can uniquely

assocliate a function Ae € H such that e==w0(ke) and that

Ae satisfies (4.1.2) at t =1, i.e., A(Xe) = =X, + f.

8
An element 8 of E 1is said to be minimally Einstein on

the Kidhler manifold (X,wO) if for some ¢ > 0, there

exists a smooth family {y, [1-¢ st s1) of solutions of



-30-

(4.1.2) such that W1 =Ae.

Theorem (5.3). Let 0 < t < 1. Then any solution ¢, of

(4.1.1) at t = 1 uniquely extends to a smooth family

{wt |0 sts 1} of solutions of (4.1.1). In particular (4.1.1)

admits at most one solution in H at t = 7.

Corollary (5.4). (i) There exists at most one 6€ E which

is minimally Einstein on the Kihler manifold (X,wo).

(ii) Suppose that 6€ E is minimally Einstein on the Kihler

manifold (X,wo). Then M(G,wo(wo)) 2 0.

(5.5) Proof of (5.3): The required uniqueness is immediate
from (4.4.1), once the existence of an extension is proven.

We therefore assume, for contradiction, that any such extension
is impossible. Then by (4.4.1), we have a maximal smooth

family {¢. | o <ts 1} of solutions of (4.1.1) for some

0 £ 0 € R. In this proof, we always denote by t€ R an
arbitrary number satisfying o <ts< 1, and by a "constant" a
positive real number which doesn't depend on either t or

x € X. The proof is now divided into two steps.

Step 1: By (1.6.4) and Theorem (5.1),

(5.5.1) 0SI, 5 (n+1) (It-—: S (I - ).

¢!

We put F_:=-to, - L(0,0.) + fec‘”(X)m. Then by (4.1.1),

t:

Sx wgR= Jx exp(hlo))o M= [y exp(F )wgm.
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Applying the mean value theorem, we have Ft(xt) =0

for some xtE X. Therefore for every x¢€X,

IFt(x)l = {Ft(x) - Folx)| = i—t(mt(x) = o () + £(x) - £(x,) |
St (0Osc @) + 2] f\lco

S tI, + 2n (EKGVy + (n- 1B 1%) + 2[[£(lo0 (cf. (3.6),(4.2)).

Hence by {(5.5.1), there exists a constant K1 such that

(5.5.2) HFtH c0 sKi.

Since A(@t) = Ft , a result of Yau [14](see also Bourguignon

et al. [4; VII]) now asserts that

(5.5.3) Osc @, S K,
for some constant K2 . Put @0, T @ - wt(xt)EiC (X)]R . In
view of

0 = Ft(xt) = - (1+~t)mt(xt) - L(O,wt) + f(xt) (cf.(1.4.3)),

we oObtain

(5.5.4) o (x| s |L0,3.)] + [ifll co -

Since ]hptilco $ K, , it follows that

(5.5.5) 1L(0,B )| = [f3 Uy Beug(s8,)"/V)ds|
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Hence by (5.5.3) and (5.5.4),

(5.5.6) o I o0 s Ky

for some constant K3. Since L(O,wt) = wt(xt) + L(O:wt):
a combination of (5.5.5) and (5.5.6) now provides us with

a constant K4 such that

(5.5.7) Il -L(o,0,) + £|| 35K,.
Step 2: Recall that A(wt) + twt = —L(O,wt) + £. By (5.5.6)

and (5.5.7), we have constants KS'KG’K7 such that

Hmtu c2:a' s Ko for all a' with a <a' <1,

K w. $ wO(wt) SK.w

60 70

We now choose an arbitrary decreasing sequence tj € (o,11,
3 =1,2,... such that 1lim tj = ¢g. Then by Ascoli theorem,
there exists a convergent subsequence of {wtj} in c2r© ’
which leads to a contradiction to the maximality of

{wtl o<ts T }.

(5.6) Proof of (5.4): Let ©6 € E be minimally Einstein on

the Kdhler manifold (x,mo). Then in view of Remark (4.1.3),

there exists a smooth family {wt]1 - £ 3ts1} of
solutions of (4.1.1) such that 8==w0(w1). By (5.3)

above, {wti1~s St<1} uniquely extends to the smooth

(cf. Aubin [1;p.p. 151-154].
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1-parameter family {wtl 0st<1} of solutions of (4.1.1).
Then (i) immediately follows from

. . k
@, = lim @ in C° (X k20

and (ii) from M(e,mo(wo)) = u(wo(mo)) - u(wo(w1)) 20
(cf. (5.1)).

The following theorem, which we don't need later, is
of some interest from the viewpoint of understanding the K-energy

map u. We therefore give it together with a proof.

Theorem (5.7). Let S := {wy(9)| @ € H satisfies A(p) = -to

-L{0,p) + £ for some t€ [0,1)}. Suppose that pu is bounded

from below on S . Then @ uniquely extends to a smooth

1-parameter family {¢, |0 st<1} of solutions of (4.1.1).

Proof: We assume, for contradiction, that there exists a maximal
smooth family {wtlo st < o} of solutions of (4.1.1) for some

0 < 1. Let XK€ IR be the infimum of p on S. Then whenever
0stc< c? w(t) := wo(wt) belongs to § and in particular

o )

o ) 2 K. For each such t, we infer from Theorem (5.71) that

(s)
_ - (t =1 dplw )
It Jt IO 1-s ds

ds + (IO - J.)

0

(s)
t -1 du (w
s I0 1-0 ds

) as + (I, = 3 5-1-{-3 (kg (@) = K) +(I=30)
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where we used the notation in (5.1). Thus It-Jt {0s t <o)

is bounded from above. The rest of the proof is quite similar

to (5.5).
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§ 6. Lemmas for choosing a good gauge.

(6.1) Throughout this section, we use the same notation

as in § 2, and fix an arbitrary G-orbit O in E , assuming
E+# ¢ . To each 6 € O , we can uniquely associate a
function Ae € H such that 6= wo(xe) and that A(Ae) =
=-dg *+ £ (cf. (ii) of (5.2)). Then 6 (I—> Xe defines a
bijection between O and O := {xele € 0O}. We endow O with

2,0 norm of H .

“the topology naturally induced from the C
This defines a topoiogy on O , in terms of which, the G-action
on O 1is clearly continuous.'Hence our topology on O
coincides with the natural topology of the homogeneous space
G/Ke via the identification O = G/K8 (cf. (2.1)). Recall
that for each wEEHe , we have the corresponding 1-parameter
group ygt = exp (thIQ , t€ R. For simplicity, we put

8(t) := (ygt)*e and A(t) := Then by (2.2.4) and

= Aot
wy(A(t)) = 6(t), we have A(0) = ¢ + C for some CE€R. On
the other hand, differentiating the identity A(A(t)) = -A(t)+f
by t at t = 0, we obtain ne(i(O)) = - i(O). Hence

fg A0)6™ = 0 = [, @™ and this implies A(0) = ¢ . Thus
we established the following identification (cf. (2.2.3)):

6.1.1 = . N
( ) T, (0) T4 (0) H

8 6

i(O) = @ <> 8(0) = /"TaTp < ¢ .

The purpose of this section is to prove the following lemmas:



-36=

Lemma (6.2). The C function 1 defined by

1:0 —» R

8 > 1(8) := I(wo,e) - J(wo,B) {20)

is a proper map. In particular its minimum is always attained

at some point of the orbit O.

Lemma (6.3). Let 6 € 0. Then the following are equivalent.

(i) 86 1is a critical point of 1 ;
- n _ .
(ii) jx Ag98" = 0 for all ©EH, ;

(iii) 6 is expressible as wo(w) for some function

Ye H such that IX eyo” = 0 for all WEHy .

Lemma (6.4). Let 6€0 be a critical point of 1 . Then

the Hessian (Hess 1)e of 1 at the point 6 is given by

(Hess 1) 4(@',0") = Ix(14-%uele)w'w"6n/v

for all Q' ,0" € H6 (= TG(O)).

(6.5) Proof of (6.2): By the well-known regularity theorem
applied to the equation A(y' = -V + f , the proof is reduced *)

to showing

{6.5.1) given a real number r 20, one can always find

positive numbers Kr,Ké,K;€2R such that

}lwt{cg,a $ K. and Klwg S wy(y) S Kiwg

hold simultaneously for all y € O satisfying lte(wO(W))t s r.

*) This reduction is easily obtained from the following standard
fact: O is a connected component of E (see Calabi's article
"Extremal K#¥hler matrics II";in "Differential Geometry and Complex
Analysis" dedicated to H.E. Rauch, Springer-vVerlag, 1985).
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Fix an.arbitrary element ¥ of O as in (6.5.1). Then
by (1.6.4), I(0¥) s (n+1)r. In view of (4.2), we have

v € #H''  ana hence by (3.6),

(6.5.2) Osc¥ S K, where K := (n+1)r + 2n(X + (n—1)6(n)ﬁ2).

)
On the other hand, from A(Y) = -y + £ , we obtain

waa1= ‘(X exp(A(\P))won F fx exp(-y + f)won.

Therefore by the mean value theorem, there exists a point

x€ X such that ¢ (x) = f£(x). Together with (6.5.2), we have
1Vl gos X + 1€l 5o -

Then applying standard arquments (cf. Aubin [1;pp. 151 - 154]),

we obtain Kr:K;,K; as required in (6.5.1).

(6.6) Proof of (6.3): (ii) and (iii) are clearly equivalent.
To see the equivalence of (i) and (ii), we fix an arbitrary
YE He('é'l‘e (0)) with its corresponding 1-parameter families
{6(t) €0 | te R} and {A(t)€O|te R} as in (6.1). Then

in view of (1.6.5),

4 _a -
FE VO g = g (TOA0) = TOMEN) g

]

-jxxeae(x(O))e“/v = -Jxxe(aew)en/v (cf. (6.1.1))

n
J'x Ag@b /v (because @€ Hy).

The required equivalence is now straightforward.

(6.7) Proof of (6.4): Let (Al ti(s,t) € [-e,e]l x [~e,el}(e>0)



-38-

be a smooth family of functions in O satisfying the

following conditions:

(i) A = X

0,0 6

. P o
(11 352s,¢) | (s,e)=(0,0) = © '

3

(iii) (at s,t)l(Spt)=(0,0) = ‘9".

We shall denote uks,t (resp. mo(AS't)) by LI (resp. es,t)

for brevity.Differentiating the identitiy AQA ) + A, - £ =0
r

by t, we obtain

J =
(6.7.1) Ds t‘at 3, t) + ( ,t) = 0.

Further differentiation by s vyields

2
-, D -
—<88( s ny aa(ﬁgxs,t)> s,t T (us, 1)(858t s, g) =0y
where we denote <> (cf. (2.3)) simply by ARG
' s,t !
Evaluating this at (s,t) = (0,0), we obtain
) = Aent A n
(ne I dsot As,t)l(O,O) <990 3¢ >9'

Together with (2.3.1), it then follows that

2

__9_______ n 4 ¥
(6.7.2)  (553% Ag,¢)|(0,0) = ¥9'/30">g= <3di30'>g

{modulo Hg).

We can now finish the proof by the following computation:
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a2

] n =
(HeSS 1)6“9 lw ) as""at'

(I(O'AS ) - J(Of;\

't s,t))’(0,0)

«

o 0
3§{ggks,tns,t(3f

#

n

3 9 n
351 g(xs’t(gg Ag ¢) (8g ¢) /V}I(O.O) (cf. (6.7.1))

2
To" 9 " ' n
Jx {o'e" + Ao (5s3E s, t) | (0,0) T Fe®" (Fg0')IET/V

i

L]

]

f4 {oto" + 2'1(<Bm',8w">6+ <39",30'> ) Ag - Aew'w“}an/v

(cf. (6.7.2))

i

fglore" + 271 ((age)e" + (50" 0" + <39’ ,30">, + <3e" ,30'> Mo }6"/v

i

113 1 " 1 1] n
fx{w'¢ + Ekeﬂe(w'w ) Yot v = fx“*'i”e*e)m e"e/v.
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§ 7. Unfolding the singularity at t = 1

by a bifurcation technique.

We again assume that E # ¢ and fix an arbitrary
G-orbit O in E . Using the same notation as in § 6,

we fix a critical point 6 of the mapping 1:0 — R
(cf. (6.2)). The purpose of this section is to find out
a good sufficient condition for 6 to be minimally
Einstein (cf. (ii) of (5.2)). Fixing o € R with

0 < a <1, we set

ok = b ec | fyewe® = 0 for all © € Hyl,

k=0,1,2,... .

Recall that, corresponding to 6, we have the function

Ag € H with the following properties (cf. (6.1) ,(6.3)):

(i) 6=(u0(Ae) ,

(ii) A(ke) = *Xe + f,
L

(iii) Ae € He,k .

Let k22 , and we now consider the mapping

k,a

e:R x C A (X) g —> cK2ra(x)

B r
(t,u) > ${t,u) := A{u) + tu - £ .

Note that, by the well-known regularity theorem, any v € Hk'“
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(cf£. (4.4)) satisfying @&(t,v) = 0 for some t is

automatically in H. Let P:CO'O‘(}()]1 (s H, ® Ht 0) — H

0 0, 6
be the natural projection to the first factor. For each
u€ Ck'a(x)R , We write
(7.1.1) U=Ae+w+w,

1
8,k °

i

with ¢ := P(u-Ae)EHe and V:= (1 - P) (u—Ae)EH

Now the equation

(7.1.2) ¢(t,u) =0

is written in the form

Pd>(t,Aa +@+ Y) =0 and Y(t,o,y) = 0 ,
1 4 . .
where Y:R X He X He,k — He,k-z is the mapping defined
by
L
Yit,®,¥) := (1—P)¢(t,ke +@+ V) ((t,0,¥) € RxHx He'k).

Ther. ¥(1,0,0) = 0 and the Frechet derivative D, VY of
v 1(1,0,0)

y with respect to V¥ at (t,e,¥) = (1,0,0) is
VEHY . > (DY) W') = (o, + 1)y €nt
8,k %) (1,0,0) 8 8,k-2 '

which is invertible. Therefore the implicit function theorem

enables us to obtain a smooth mapping (t,9) € U > wt,mEHé k
14

of a small neighbourhood U of (1,0) in IRx He to the

Banach space I-I’L such that

6,k
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13 =
\]) u)1'0 0 ’

(ii) ilwt'wﬂ ck,a $68 on U for some & >0 , and

(iii) ¥(t,e,¥) = 0 (where ‘“P“Ck,a s 8) 1is, as an

k,a

equation in ¥ € C (X) , uniquely solvable in the

R
form ¢ = wt,w on U.
Differentiating the identity W(t,w,wt,w) =0 at (t,9) = (1,0),
we obtain

a -
. 1 - s
(7.1.4) (wa,t,¢)|(1,0) (o") 0 for all ©'€Hy ,

L . .
where (wat,w)i(1,0)'ﬂe —> He,k denotes the Frechet derivative
of wt © with respect to ¢ at the point (t,9) = (1,0). Then
the equation (7.1.2), on a small neighbourhood of ks , reduces
to
(7.1.5) @0(t,q>) =0 (with u = Ay + @+ \Pt'w),
where we put ¢ _ (t,9) := PO(t, A +@+ ¥ ) for (t,p)€U.

0 ) t,0
Recall that &(1,u) = 0 for all u€0O . Hence ¢0 = 0 on

{t = 1} and therefore the mapping
(t,0) € Ul{es1} > ¢, (t,0) := ¢,(t,@)/(t-1) € Hy

naturally extends to a smooth map: U — He (denoted by the
same ¢1) of finite dimensional sets. In view of (7.1.3), we

obtain

¢1(1,0) = (3¢0/3t)(1,0) = 0.
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Furthermore we shall later show that the Frechet derivative

Dw¢1[(1'0)=ﬁe —~> HB of ¢1 With respect to ¢ at

(t,¢) = (1,0) 4is written in the following form:
Lemma (7.2). For all P',e" € He (where 6 is a critical

point of v ),

' " = 1 1 anil

= vo(Hess 1)e(w',w").

Suppose now that (Hess 1)8 : He x H6 —»> R 1s a nondegenerate

bilinear form. Then by this lemma, is invertible,

Po®1101,0)
and the implicit function theorem shows that the equation

¢, (t,0) = 0 in ¢ is uniquely solvable in a neighbourhood
of (1,0) to produce a smooth curve {@(t)| 1-¢e sts1} (g >0)

in H such that (i) ¢(1) = 0 and (ii) @1(t,w(t)} =0

e
(1 - ¢ £t 1). Therefore, in . view of (7.1.5), we have
= - <
Q(t'AB + @(t) + wt,w(t)) 0 (1 € Ssts 1), and hence
.o — <
{Wt : Ae + @(t) + wt,w(t)" e $ts1} forms a smooth

1-parameter family of solutions of (4.1.2) in H with
% =Xy s, i.e., 6 is minimally Einstein on the Kihler

manifold (X,w (cf. (ii) of (5.2)). Thus we obtained

o

Theorem (7.3). Every critical point 6 of 1 with non-

degenerate Hessian is minimally Einstein on the K#hler

manifold (X,wo).

We shall finally show Lemma (7.2).
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(7.4) Proof of (7.2): By (7.1.4), using the notation in

{2.3), we have
D ¢ (@') = (D > ¢ ) (')
® 1](1,0) @ 3t "o’ [(1,0)
= ! — 9

Hence, it follows that

(Dw¢1'(1’0)(w‘),w“)L2(X'e)

i

[T n oy 3 EY
Jy {o'e" -0 BTAgE Ve o i(1,0,), aaw'>9}6n/nz
fg toto"=(o'e" - <30",30'> ) Ag}6%/nt  (cf. (2.3.2),(7.1.3))

fx (07674271 (<307 ,39">g + <36" 30> ) Ag ~Ag9'0"}0"/n1

(cf. (6.7.2))

i

[ (1+30,1)0'0"8"/n  (see the end of (6.7)).

Since V = nl!V; , this completes the proof (cf. (1.4),(6.4)).

Remark (7.4.1). If 6€0 is a point where 1 attains its
minimum (cf. (6.2)), then (Hess 1)8 is positive semidefinite.
In the next section, we shallvrealize a critical point of

1 with positive definite Hessian via a small change of our

presently fixed Wy
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§ 8. Proof of Main Theorem

(8.1) Proof of (i) of Theorem A: Fix an element w of

K¥ and a G-orbit O in E arbitrarily. In this section,

we write

“

“o0
regarding wy as a function of €€ [0,1]. Hence the
‘corresponding f,wo,t,H,wO(w) and A(¢) (where @fiCm(X)n@ will be
written respectively as fe'mo-e'le'HE’wg(w) and A% ()

(see (1.7.1),(4.3.2),(6.2),(1.1),(1.1.1) and (4.1)). We first

consider the special case € = 0 and then go to the general

situation ¢ > 0.

Case 1: € = 0. Put wg := R(w). Then 10:0 —» R takes

its minimum at some point 6 of O (cf. (6.2)). Corresponding

to this 6 , there uniquely exists a function A4 , € H®  such
.0 0 - . s

that 6—»w0(A9;0) and that A (Ae;o) = AB;O + fo (cf. (ii)

of (5.2)). Recall that Hg is Ker (mg+ 1) in c”(X) - Then

by (6.3) 7

w) n —
(b.1.1)‘ f Ag; 0@ & =0 for all ¢ €Hy ,

X

and the bilinear form (Hess 1 tH, xH, — R 1is positive

ole Mg Hy
semidefinite.

Case 2: €>0. In this case, we set wg = (1 - s)wg +eb = wg(eke;o)-

Again by (ii) of (5.2), one obtains a function A, € HE



-46-

uniquely determined by the identities 8 = mglke,e) and
€ =8 =

A (Ae g = B e ¥ f€ . Then in view of (Ae 0 ]

= wc(ke;E +£Ae;0), we have

(8.1.2) Xe;e = {1 - S)AG;O + Ce for some CsE.E{.

Hence gzke_ewen = fx(1 - €)Ag. 0o"= 0 if © € Hy (see

(8.1.1)). Therefore by (6.3), 6 is a critical point of

18:0 —> R . Moreover for all 0 # ¢ € He ’

L oA )mzen/v (cf. (6.4))

(Hess 1 o (9, 9) = f (1+5 6;

(1= ey (e gaeh0 . 010%6"/v + ef o%0™/v  (c£.(8.1.2))

(1 - e)(Hess 1), (0,0) + eh(mzen/v >0.

Theorem (7.3) now shows that 6 is minimally Einstein on the

Kihler manifold (x,wg) . In particular, by (ii) of (5.4),

€
(8.1.3) M(G,wo(wo;e))z 0.
By (4.3.2), R(wE(e )) = ws We also have R(w) = wo
Toesh 0'70;:¢ 0" 0 -
Note that wg — mg in CO,a (as € + 0). Then by (1.1.3),

wg(wo‘e) —~ W in Cz’a. Let € + 0 in (8.1.3). By the

continuity of M, we have

M(6,2) 20, i.e., up (o) spt@.

Recall that p° is a constant function on O (cf. [9]).

Since both © € K' and the G-orbit O in £ are arbitrary,
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it now follows that u* : K —> TR takes its absolute
minimum C on & . Note that E is the set of all

critical points of ' (cf. {9]). Hence

{we k¥ | u+(w) =C}= E,

because, otherwise, at some point w of K+ with @ ¢ E,

the function p+ would take its critical value C in

contradiction to @ ¢ E .

(8.2) Proof of (ii) of Theorem A: Let O' and O" be

arbitrary G-orbits in E. Then from the argument of (8.1)

applied to the orbit O' , we see the following:

(8.2.1) For a suitable choice of w6 € K, the function
1':w € 0' P> ' (w) == I(wé,w) - J(wé,w)€ R has a critical

point 6' € O! with positive definite Hessian.

Recall that the function 1" : w € 0" b— 1" (w} := I(wé,w)~'J(w6,w)
€ R takes its minimum at some point 6" €0" (cf. (6.2)).
We now put mg = (1 ~ e)wé + €6", (0 s € s 1). Again by the

argument of (8.1) applied to O", we have:

(8.2.2) 6" 1is minimally Einstein on the Kdhler manifold

(X.wg) whenever 0 .< g § 1.

0' —- R Dby

We finally define \é

1@ 2= Tlwg,w) = Jlwge), (0 €0').
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Note that 1& converges to 1' , say in Cz'a , as €
tends to zero. Fix a sufficiently small € > 0. Then by
(8.2.1), the function 1é takes . its local minimum with
positive definite Hessian at some point eé of O
near 68'. In view of Theorem (7.3), one finds that 6&
is also minimally Einstein on the K#hler manifold (X,wg).
Combining this with (8.2.2), we conclude from (i) of (5.4)

that 8é= 8". Thus, O' = 0" and the proof is now complete.

Theorem A is valid even when M:Kx K - R is replaced
by N:Kx K -» R (cf. (1.5)). We conclude this section

by showing

Corollary (8.3). Under the same assumption as in Theorem A,

the mapping

v :K —3 R

w p— v+(w) i = N(w1,w)

is bounded from below and takes its absolute minimum exactly

on E.

Proof: By (1.8.1) , v+(w) = p+(w) + J{w,R(w)) - J(w1,R(w1))
for every w € K' . Since both g’ and J(w,R(w)) (w € K*)
take their minimums exactly on E (see (1.6.3) and Theorem A),

+
so does v .,
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§ 9. Proof of Theorems B and C.

(9.1) Proof of Theorem B: Recall that the natural Riemannian

metric on E is characterized in terms of lengths of smooth

paths in E as follows (cf. [10]):

For every smooth path F=={?t la stsb} in E ,

let {Yt la st sb} be the corresponding smooth path in

‘ﬁo (cf. (1.4)) uniquely determined by wo(Yt) = ?t

(t € [a,bl). Then the length L(T) of the path T in terms

of the metric of E is defined by

Ly = [P, 2 Y 0w  2ae.

In view of Theorem A, the proof is reduced to showing that

Aut (X) acts isometrically on E . Hence it suffices to show
L(g*T) = L(T) (g € Aut (X))

for every smooth path T = {?t la stsb} in E . Then even
if g ¢ Auto(x), the same proof as in [10] goes through

as follows:

Let mg be the function in H uniquely determined by
* = *
the properties g wq mo(mg) and wg + g yae H0 . We
put‘ Ny 3= wg + g*yt (astsb). Then g¥* ?t = wG(nt)

and Ny € H0 for all t. Hence

Lig*r) = [20y () 2ug () ™/ Y 2ae =12 (1, g8y ) 2 (g#7 ) P T e L)
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(9.2) Proof of Theorem C: By Theorem B, E is isometric

to the Riemannian symmetric space G/K without compact
factors. In particular, E 1is a simply connected Riemannian
manifold with nonpositive sectional curvature. Since the
compact group H acts isometrically on E , it always

has a fixed point in E.

Remark (9.3). If X admits no nonzero holomorphic vector

fields, then Theorems A and C assert the following:

Einstein K&hler metrics on X are, if any, unique

up to constant multiple. Moreover, they are invariant under

the action of Aut(X).
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