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§ 0 . Introduction 

Throughout this paper, we fix an arbitrary n-dimensional 

compact complex manifold x with positive first Chern class 

c
1 

(X):R > o. We then put 

K := set of all Kahler forms on X representing 2nc, (X)~, 
+ K ::: {w E K I w has posi ti ve defini te Ricci tensor} I 

E ::: {w E K I w ~s Einstein}, 

CO( ) 00. • C X lR := space of real valued C funct~ons on X, 

Aut(X) := group of holomorphic automorphisms ,of 

G := AutO (X) = identity component of Aut(X). 

X, 

Furthermore, Aut(X) is always assumed to act from the right 

on K by (w,g) € K x Aut (X) ~ g*w ( K. 

The main purpose of this paper is to prove the uniqueness 

of Einstein Kahler metrics, if any, on X up to G-action. 

Such uniqueness was known only for i) Kahler ~-spaces (cf. 

Matsushima [12]) and ii) some non-homogeneous Einstein mani

folds recently discovered by Sakane [13]. NOW, the correct 

statement we obtained has the following stronger form as 

announced earlier in [9]: 

+ + Theorem A. Fix an element w1 of K. ~ J.L :K ....... :R be 

the restriction to K+ of the "-energy map wE K ~ M(W 1 ,w) ClR 

of the Kahler manifold (x,w1) (!!! § 1, also [9]). Assume 

that E * ~. ~ 
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(i) + 
~ is bounded from below and takes its absolute 

minimum exactly on E. 

(ii) E consists of a single G-orbit. 

We now suppose that E + ~, and let K be a maximal 

compact subgroup of G. By the well-known theorem of 

Matsushima [11], there exists an element e of E such 

that the isotropy subgroup of G at a coincides with K. 

Hence E is G-equivariantly diffeomorphic to G/K. Note 

that G/K has a structure of a Riemannian symmetric space, 

though the choice of its metric is not unique (even up to 

constant multiple) if the symmetric space G/K is reducible. 

We now endow E with the natural Riemannian metric defined 

in [101 (see also § 9 of the present paper). Then Theorem A 

allows us to sharpen a result in (10] and one can determine 

the structure of E as follows: 

Theorem B. If E * ~ , then E !! G-eguivariantly isometric 

to the Riemannian symmetric space G/K endowed with a suitable 

metric, and furthermore, Aut (X) acts isometrically on E. 

As a·straightforward consequence of Theorem B, we obtain 

Theorem C. Let H be an arbitrary (possibly non-connected) 

compact subgroup of Aut (X) • If in addition E + ~, then 

there always exists an H-invariant Einstein Klhler metric on X. 
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We now briefly explain how the proof of Theorem A 

is carried out. Let be an arbitrary element of K 

and R(wO) be the corresponding Ricci form (cf. § 1). 

(Later in this introduction, we set Wo := R(w) for 
II"oJ 

some element w of K+ and vary Wo together with w.) 

Since R(wO) is cohomologous to Wo ' there uniquely exists 

a function f € COO (~) :R such that 

We then consider the following 1-parameter families of 

equations: 

.( Q. , ) 

(0.2) 

(see §, for the definition of L), where in both cases, 

solutions Wt and ~t are required· to belong to 

is· positive definite on X}. 

Note that (0.1) above is introduced by Aubin [2] in his study 

of Einstein KAhler metrics on compact KAhler manifolds with 

c, >0. One can easily pass from the solutions of one of (0.1) 

and (0.2) to those of the other because for each t, the 

difference between 't and ~t is just a constant (which 

may depend on t) on X. Now a crucial step of the proof of 

Theorem A is to show the followinq fact: 
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(0.3) Given an orbit 0 in E, we can connect 0 

~ K+ with every sufficiently general point w of 

smooth ·1-parameter family of solutions {lJI t I 0 ~ t ~ 1} 

(resp. {tpt I 0 ~ t ::a ,}) of (0.1) (resp. (0.2») such 

that 

to +r-T aaW1 

lWO +1=1 aalPO = 
~ = W , 

and 

Once one shows (0.3), the proof of Theorem A proceeds as 

follows: 

(i) Consider the K-energy map ~:K ~ ~ of the Kahler 

manifold (X,WO). Recall that ~ takes a constant value 

C on 0 (cf. [9]). Since ~(wo + ,=1 aa~t) is a monotone 

decreasing function of t {cf. (5.1», the fact (0.3) above 
+ 

implies J.l. '= C on a dense subset of K. By the continuity 

of ~, we obtain J.l.'=C on K+ (ef.(8.1». 

(ii) Note that (0.2) has a unique solution tpOE H at 

t = 0 (cf. (4.3.2». Hence one can easily show that, over 

{O ~ t ~ 1} , only one" smooth family of solutions of (0.2) is 

possible (cf. (5.3), (5.4)). We now fix arbitrary G-orbits 

0,,°2 in E. In view of (0.3), a sufficiently general 
~ + 
W E K can be connected with both 0, and 02 by smooth 

families {<p[i] I 0 ~ t~ 1} (1 = 1,2) of solutions of 
t 

(0.2) such that 

1 ,2), where 
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Since these two families must coincide, we have 

and therefore 01 = 02 · 

We now give an outline of the proof of (0.3). It 

roughly consists of the following three steps. (For technical 

reasons, the actual proof is not divided into such steps.) 

Step 1: Given a pOint e € 0 , we can always find a solution 

$1 of (0.1) at t = 1 such that e = Wo + r-r a]"1/.11 • This 

$1 does not necessarily extend to a smooth family 

{lPt I 1 - e: ~ t ~ 1} of solutions of (0. 1). Because if such 

a family exists, differentiating (0.1) by t at t = 1 , 

we have (oe + 1) ($tlt=1) = -$,. Hence w, must satisfy 

(0.4) 

where • 00 
He denotes Ker (oe + 1) l.n C (Xl]R • We therefore 

seek e = Wo + r-TaatP, E 0 which satisfies (0.4), and a 

method to find such a e will be given in § 6. However, the 

condition (0.4) is not enough (cf. (7.2) ,(7.3» and a detailed 

analysis of (0.1) using a bifurcation technique will be 

effectively employed (cf. § 7). Finally, since the point 

w € K+ is sufficiently general, a suitable chosen $, 

(resp. <1',) continues to a smooth family {'4I t 1 - e: StS 1 } 

(resp. {q)t I 1 - e: :s t :s 1}) of solutions of (0.1) (resp. 

(0.2». 

Step 2: By the monotonicity of ~(wO + l=1aa~t) (where we 
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one has 

(0.5) 

<P 's t 
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as depend smoothly on t) , 

along the solutions of (0.2), and the family 

{<pt 11 - £:at:a1} 

smooth family {~t 

in Step 1 uniquely extends to a 

0< t:a1} of solutions of (0.2), 

because for each 0 < t :a 1, the existence of the lower bound 

of J.L (wO + r-Taa'Pt) gives us a rough appriori estimate of 

~ 'Ptll CO· 

Step 3: Now, another difficulty comes up at t = 0, since the 

straightforward appriori bound of ~'PtICO obtained from 

(0.5) tends to infinity as t + O. In § 3, we derive a general 

lower bound of the Green's function of the Laplacian from the 

isoperimetric inequality of Gallot [6]. This bound allows us 

to overcome the difficulty and thus we complete the whole 

extension to {~t I 0 :a t :a 1 }. 

In conclusion, we wish to thank Professors S. Kobayashi 

and H. Ozeki and Doctors I. Enoki and R. Kobayshi for 

their valueable suggestions and constant encouragements. 
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§ 1. Notation, convention and preliminaries 

(1.1) Throughout this paper (with the only exception of 

§ 8) we fix, once for all, an element of K.. In addition 

to the notation defined in Introduction, we put' 

COO(X)cr :- space of complex valued 
co 

C functions on X, 

C := space of real d-closed (1,1)-forms on X in 

2nc, (X) lR ' 

V := set of all volume forms on X, 

where on X, everywhere positive real 2n-form is called a 

volume form. We write an arbitrary element w of K. as 

in terms of holomorphic local coordinates 1 2 n z = (z , z ,...,z ) 

on X. The corresponding Ricci tensor is denoted by 

LR (w) asdza • dz8 and we put R(w) : = r-T 1. R (w) as d:::
a 

J\ dZS. 

Then R (w) = Maa log det (gaS) E c. We furthermore denote 

by a (w) (resp. c) the corresponding scalar curvature w 

(resp. Laplacian on functions) : 

t Sa o (w) := Lg R(w) a"! ' 

o. : = L9Saa2 /az Cl az S 
w 

where (gSa) is the inverse matrix of (<Jad). F'or t.!"~h 
co 

q>€ C (X):R ' we put 
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(1.1.1) wO("') := Wo + r-Taaf.&) , 

(1.1.2) °0 ("') exp (-lP) "'n := W 

where '" w is the unique element of K+ such that·· R (w) = Woe 

Recall that the following is a straightforward consequence of 

Yau's affirmative answer (14] to Calabi's conjecture: 

(1 • 1 .3) . The mapping W E K ~ R (w) E C defines a homeomorphism 

R: (K I II II k + 2 I a ) := ( c, \I II~ I cd for each (k , ex) E: x R with 
C 

k ~ 0 and O<a<1. 

Now, (1.1.1) and (1.1.2) above defines the mappings 

Wo : \p E COO (X):R ~ Wo (lP) t C and nO : <t> E COO (X) ~ 1-+ QO (lP)( V. 

Let H : = {<.p E COO (X):R I Wo (tp) € K} as in § O. Then the natural map 

is surjective. To each Wo (lP) E K, the corresponding 

O(wO(lP)), R(wO(lP)} will be denoted respectively by 

R(<.p) for simplicity. Finally, we define the mappings 

v:K ~ V and Ric~V ~ C by 

v(w) := 

Ric (n) : = r-raa log v 

where we write 

(w E K) 

(n E V) 

holomorphic local coordinates , 2 n 
Z = (Z ,z , ..• ,z ) 

Then the following diagram commutes: 

in terms of 

on x. 
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00 "0 C (X) lR 
~ 

wol 1 v 
;: 

C R ,. K 

(1 .2) Let I be a (not necessarily open or closed) inter-

val in :R I and S be either 

of I. A family {<ps I s E S} of 

said to be smooth if the mapping 

Sxx ~ :R 

(S,X) ~ <ps(x) 

ex> 
is C. Any 1-parameter family 

I or a product I x I x ••• 

functions in 
00 

C (X):R is 

{<p \s EI} of fuctions in s 
ex> 

C (X):R is called a path, and for every smooth path 

x 

ex> 
{(.f)t 1t El}, the function atPt/atEC (X)lR is denoted by <pte 

I 

( 1 • 3) Let S be a non-empty set. Then a mapping H: S x S --;a.. E

is said to satisfy the 1-cocycle condition if 

(1.4) (cf. [9]). Let Va be the volume 

K!hler manifold (X,wO). We put V:- nlVO. To each pair 

(q')' , q:>11 ) € CClC!(X) JR )( c CD(X) :R (resp. (<I> 1,<$>") € H )( H), we associate 
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a real number L (<.pI ,lP") (resp. M(<.p' ,tPIt) ) by 

(1.4.1) 

(1.4.2) 

where {tPt I a ~ t :i b } is an arbitrary piecewise smooth path 

in 
00 

C (X) It (resp. H) such that tPa = tel and <.p = q>". 
b 

Then L(lP I , tp" ) (resp. M (lP I ,tp") ) is independent of the choice of 

the path {lPt I a :i t :i b} and therefore well-defined. Recall 

that L (resp. M) satisfies the 1-cocycle condition. Further-

more, 

(1.4.3) 

(1.4.4) 

for all 
co 

<.p1 ,<.p2 e: C (X) JR (resp. and all c e: :R 

(resp. C1 ,C2 ElR). In view of (1.4.4) above, M:HxH-+R 

factors through K x K. Hence we can define the mapping 

M:KxK~:R (denoted by the same M) by 

M(w' ,w") .:= M(<.p' ,<p") (w I ,w" E K) , 

where wl,te" are elements of H such that wO(lP') = Wi and 

wO(lP") = w". Then the mapping 

J.1:K ~ lR 

w ~ ~(w) := M(wO'w) 

is called the K-energy map of the Kahler manifold (X,WO). 

We now put HO: = {tp € H I L (0 ,tp) = O} • The mapping 
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q> € flO ~ Wo (q» € K enables us to identify flO with 

K , and we have the following commutative diagram: 

co 
C (X):R 

U 

H 

u u 

K 

(1 .5) We regard L as a function on Vx V via the identifi-

cation 
00 

no:c (X):R =- V . Let N:K x K ~ :R be the pullback 

-v*L of -L by v:K ..-.,... V. Then this N is characterized by 

the following commutative diagram: 

K x K ) R 

l-L 
V x V = 

00 00 

c (X) lRx C (X) R • 

Since L satisfies the 1-cocycle condition, so does N. 

A straighforward computation shows that, for each pair 

(W',W") E K x K , the number N(w' ,w") is given by 

(1.5.1)' 

where {<.pt I a S t S b} is an arbitrary piecewise smooth path 

in and w (<.p ) = U.\" o b 

Remark (1.5.2). Several generalizations of L,M,N (which 

is announced to appear in this paper, cf. [8],[9]) will be 
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given separately in [3] as a self-contained article. 

(1 • 6 ) (cf. Aubin [2]). For each pair (c.p',f.&)") E HxH, we put 

,. 

(1.6.2) J(w' ,c.p") := -L(W' ,4)") + JX(c.p" - .-.p1)WO(<.p1 )n/v. 

Then both I: H x H ~:R and J: H x H -;,.. lR factors through 

I( x I( , i. e., I and J are regarded as functions on K)( I( 

by 

I (w I ,w n ) : = I (q> I ,q> It ) and J (w' ,w") : = J (q>' ,q:> II ) 

for all Wi ,W" E K , where c.p' ,W" E H are such that Wo (<p') =w' 

and WO(c.pIl) = wIt • We later need the following properties of I 

and J: 

(1.6.3) J(W' ,q>II) ~ 0 and the equality holds if anQ. only if 

c.p' = W" + constant. 

(1.6.4) O~I(c.p',c.p");S (n+ 1) (I(c.p',c.plt) - J{c.p'/c.p"»;Sn I(c.p',c.ptt) 

for all c.p' ,c.plt. 

These follow from Aubin 1 s result [2; p. 146] and the identity 

J(c.p' ,c.plt) + J(c.p" ,c.p') = I (4)' Ic.pU) = I (c.p" ,<.p'). We now take an 

arbi trary smooth path {q>t I a ;S t ;S b} in H. Then a simple 

calculation shows that 

( 1 .7) Throughout this paper, we always denote by f the 

function in C~(X)E defined by 
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(1.7.1) n exp(f)wo = v (cf. § 0). 

To each tp E HO ' we can similarly associate a function 
co 

ftt> E C q{):R wi th the following properties (cf. (9]): 

(1.7.4) ,..,at f = - (0 + 1) ~t for every smooth path 
a "'t 4)t 

{ tp t I a ::i t ::i b} in H 0 • 

(1 .8) We shall now show that 

(1.8.1) N(w',w") - MCw',w n
) = J(w",R(w U » - J(w',R(w'» for all 

w' ,00" E K. 

Proof: Choose <p' ,q>" E H 0 so that Col) (tp') = Wi o and W (<pIl) = W". a 
Let <Pt := 4)' + t (4)" - 4)') + C

t 
E H

O
' 0 ~ t ~ 1, Cl.nr:l we denote each 

wO(tpt),ftp ,0q> 
t t 

(t) respectively by w , ft'Ot. Then by (1.7.2) '" 

( 1 • 7 • 4 ) and (1. 5 • 1 ) , 

d (t) J' n CIt N(wO'w ) = x( ~<Pt)R(<Pt) /v 

• d =-JX(~t + ft)wO(<Pt + ft)n/V = - nt L(O,4)t + f t )· 

Since L(O,<P
t

) = 0 for all t, we have 

Integrating this over the interval [0,1], we obtain (1.8.1). 
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§ 2. Matsushima's theorem and some identities 

on Einstein Kahler manifolds. 

Throughout this section, we assume E * ~ , and then 

fix an arbitrary element e = r-T Y. e (is dz a 1\ dz 8 of E. 

By quoting the well-known theorem of Matsushima [11'], we 

shall introduce several notations on Einstein Kahler mani-

folds. Some technical identities on such manifolds will 

also be proven for later purposes. 

(2. 1 ) Let U be the space HO(X,O(T(X») of all holomorphic 

vector fields on x. For each Y E g, let Y
lR 

denote the 

real vector field Y + Y and we set Sreal := {YJR 1 Y E !1 } • 

Then Y··~ Y~ defines the isomorphism of the complex Lie 

algebras (g,H) - (g I,J), where J is the complex structure rea 

of X. We now consider the G-orbit 0 through e in E. 

This is written as 

o =:: G/K - e 

in terms of the isotropy subgroup Ke of G at 0. Let 

ke be the set of all Killing vector fields on X with respect 

to the Kahler metric e, where each Killing vector field is 

regarded as an element of g via the identification g ~ llreal

Then Re is the Lie subalgebra of g corresponding to KS in 

G. For each tp E COO (X) 0:: ' we define the vector field 

X by 

(2.1.1) 

ytt> 
e on 
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where <po. = t e "B"a as c.p , (e Sa) being the inverse matrix of 

(e as). Take the 1-parameter group y ~ t : = exp (t Y%:R ), t E Eo , 

<p on X generated by Ys]{. \"le now have the following theorem 

of Matsushima [11]: 

Theorem (2.2). Let He:= {<pC cQ)(X)lR I (oe + 1)<p = O} and 

we set II a : = r-T Ite and H~: = He ~:R et c COO (X) e: • Then 

(2.2.2) tl> E Het ~ ytl> E·g defines an isomorphism He:. 1.l and e a - 6 

hence 11 = k a + III a and It e n P e = {o}. 

This theorem in particular implies the following identification: 

(2.2.3) 

We put Y: = Y% for brevity. Then by the next co'inputa tion, the 

left-hand side of (2.2.3) is shown to have a very nice 

description: 

(2.2.3) = (d 0 i'" +i ...... 0 d)8 Y Y 

We shall now prove the following technical Lemma: 

Lemma (2.3). Let <'>e: {p-forms on X} x {p-forms on X}-~~ C~(X)~, 

P = 1,2, ••• , be the natural hermitian pairings induced from the 
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Kahler metric e. Then for all tp I 1.IJ E He and all 
(X) 

Z;; E C (X):R I 

( 2 . 3 • 1 ) 0 e < a z; , a q:> > e = < a a r; , a a q:> > e + < a (0 e z;) I a <p > e I an d 

in particular (oe + 1)<alJJ,aq:»e = <aa1f!,aa<p>e= (Oe + 1)<d(J),aVJ>e i 

(2.3.2) 

Proof: Fix an arbitrary point x of X, and we choose a 

holornorphic local coordinates (z 1 2 n centered ,z , •.• , z ) 

such that e as(x) = <5 and (de as) (X) = 0 for all a as 
S • Note that a 

q:>, a=1,2, ••• ,n are all holomorphic 

(cf. (2.1.1), (2.2.2». Therefore, at the point x, 

which proves (2.3.1). For (2.3.2) I let ~:= (oe + 1)r; • 

Then 

at 

and 

x 

(because l4J = -0 elf! ) 
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§ 3 Lower bounds of Green functions of Laplacians. 

In this section, usin~the isoperimetric inequality of 

Gallot [6], we shall con~truct some lower bound of the Green's 

function of the Laplacian on a compact Riemannian manifold. 

This bound applies to our compact K!hler situation and allows 

us to obtain an interesting inequality which becomes crucial 

in out later investigation. 

(3.1) Let (M,g) be an m-dimensional compact Riemannian 

manifold. The corresponding Ricci tensor, volume, volume form 

and diameter are denoted respectively by r ,V ,dM and D. 
9 9 9 9 

We then set 

:= D·
2

rnf {r (r,r)/(n-1) i 
9 g 

where the infinum is taken over all unit tangent vectors in 

T{M). Let Aq be the Laplacian of (M,g) (we choose ~g so 

that it always has nonpositive eiqen values), and 
00 

Gg E C (M x M - (diagonal» be the corresponding Green function 

(with the well-known prescribed singularity along the diagonal) 

characterized by the following properties: 

for all x E-. M and 



-18-

Theorem (3.2). Let (m, ().) E Z x::R be an arbitrary pair 

satisfying m ~ 2 and a. ~ O. Then there exists a positive 

constant y = y (m, a.) depending only on m and a. such 

that, for every m-dimensional compact connected Riemannian 

manifold (M,g) with a ~ 
9 

for all x,yEM with X:f:y. 

2 
-Ct I 

Remark (3. 3) • If a. = 0, the number y (ro, a) is easily 

computed. For instance, y(2,O) = 24. 

(3.4) Proof of (3.2): Let Wo be the space of the functions 

f in L~ (X) which satisfy fM fdM = o. g Then a combination 

of Theorems of Gallot [6; (1,3), (2,7)] shows that, there exists 

a positive constant K(m,a) depending only on m and a. such 

that, for every f E WO' the number C := K(m,a.) V 1/mo-1 
9 g 

satisfies' 

(3.4.1) ~dfIIL2(X/g) ~ C I f II L2m/(m-2) (X,g) (if m ~ 3) ; 

I . -1/4 
( 3 . 4 • 2 ) I d f II L2 (X, g ) ~ C V g II f II L 4 (X, 9 ) (if m = 2) • 

Let H{x,y,t) be the heat kernel of (Mig) , and we set 

-1 
HO (x,y,t) := H(x,y,t) - Vg 

The proof is now divided into two cases: 

(Case 1) m ~3. A result of Cheng and Li [5;(2.9)] says that 

(3.4.1) implies 
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o < HO (x,x,t) ~ 4 (2t C2 /m) -m/2 

where (x,t) E M x:R with t> O. Hence for all x and y, 

I I < 1 /2 1 /2 < 2 -m /2 
HO (x,y ,t) - HO (x,x,t) HO (y,y,t) - 4 (2tC /m) • 

Together with -1 
HO (x, y, t) ~ -v g , we obtain 

for each l > O. If we set 4/m -2 2/ 
l ::: 2 m K (m , a.) D 2, the g 

right-hand side of this inequality is written as -y(m,o.)Dg
2/Vg 

for some constant y(m,o.) depending only on m and a., as required. 

(Case 2)*) m ::::: 2. For each (x,t) E Mx:R , we put 

M := {x}XM x{t}, which is a submanifold (aM) of M x M x :R • x,t 

For . COOfunctions ~(x,y,t) defined on an open subset of 

M x M x :R, we denote by dy 

the d-operator coming only from the second factor. Then the 

same argument as in Cheng and Li [5;(2,7)] together with 

(3.4.2) yields 

(3.4.3) (aHO/at) (x,x,t) 2 
= - I\dyHO (x,y ,t/2) II L2 (M ) 

xit/2, 9 

for each (x,t) E M x:R with t > O. On the other hand,in view 

of 

~ (=G M) 1s written in terms of the Green's function 
Ggx9;MxM,9, which provides us with a very simple proof of 

this case by reduction to m = 4. However, the estimate thus 
obtained is not so sharp (for instance, y(2,O) would exceed 24). 
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and the Holder inequality 

III HO(x,y,t/2) 12/3 113/
2 

IIIH
O

(x,y,t/2) ,4/311 3 
L (M) L (Mx ,t/2,g) X,t/2,g 

~ J M 1 H 0 (x, y , t /2) I 2 dM 9 (Y) (= H 0 (x, x , t) ) , 

we obtain 

This combinded with (3.4.3) shows that 

2 -1/2 3/2 
(aHo/at) (x,x,t) :i - (C /2) Vg HO (x,x,t) . 

Then the same argument as in Cheng and Li [5;(2.9)] again 

applies. Thus, 

Finally, similar to Case 1 above, it follows that 

G (x,y) = fIX) HO<x,y,t)dt Z; -JOT v- 1 dt _J OO

(tC2/4)-2V dt 
gog T g 

by setting 

~ -8/C2 = -8 K(2,a)-2D~/Vg 

T = 4V /c2 
. 

9 

(3.5) We now return to our original compact Kahler situation. 

In terms of the notation in (3.2) above, let B(n) := y(2n,O), 

which is a constant depending on n alone. Furthermore, for 

each lP E H, let AlP (resp. ~o) denote the real Laplacian 

20
lP 

(resp. 2C
wO

) of the compact Kahler manifold (x,wo(~» 

(resp. (X,wO»' and G~ (resp. GO) be its corresponding 
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Green's function as is defined in (3.1). We denote by -K tp 

(resp. -Xo) the infimum of Gtp (resp. GO) on Xx X - (diagonal). 

Finally, for each tEE, we put 

N(t) := {tpEIi I R(tp) - tWa (<4» is positive semi-definite} 

Theorem (3.2) now has the following important implication. 

Proposition (3.6). ~ t> a be arbitrary. Then for every 

tpE N(t) , its oscillation Osctp:= Max tp - Min <.p satisfies 
X X 

2 -1 Ose tp :slI(O,<4» + 2n (KaVa + (n-1)B(n)n t ) 

Proof: We observe, by virtue of the identity 

that the following inequalities hold: 

and -A In > -2n 
<4)'+' .. • 

Hence we have 

and 

<.p(X) == v~1 Jxf.Pwo (tp)n/nl + Jx(G<.p(X,y) + Ktp) (-~tp)(y)wo (<4»n(y) In! 

~ v~1 Jx~wO(~)n/n! - 2nK<.pVO. 

Therefore 

Osc,+,:i v~1 Jx<C>(w~ - WO(tp)n)/nl + 2n (KOVO + K<c>VO) 

• I(O,tp) + 2n(kOVO + X<c>vO) (cf. (1.6.1». 
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Let Dtp be the diameter of (X, Wo (tp) ). Since R (tP) ~ two (q» I 

Meyer's theorem asserts that 0tp S; 1T ( (n - 1) It) 1/2. We now 

conclude from Theorem (3.2) that 

K q> V 0 ~ S (n) D~ !i (n - 1) 13 (n) 1T 
2 t -1 • 
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§ 4. Generalized Aubin's equations. 

In a recent paper [2], Aubin introduced a very 

interesting l-parameter family of non-linear equations 

to apply the continuity method to showing the existence 

of Einstein K!hler metrics on some compact K~hler mani

folds with c 1 > o. In this section, we shall consider a 

slightly modified family of equations so that it fits our 

purpose. Elementary properties of such a family will also 

be given. 

(4. 1 ) We define the mapping 
co 

A:H -+- C (X)R by 

(<t> f H) , 

and then consider the following l-parameter families of 

equations: 

(4.1.1) O~t~1, 

(4.1.2) o ~ t ~ 1, 

where solutions <Pt and ~t are both required to belong to 

H. We call the former the family of generalized Aubin's 

equations of the K~hler manifold (X,wO)' while the latter is 

the original family introduced by Aubin. 

Remark (4.1.3). At each pOint t 0 f ( 0 , 1] ( re s p • (0, 1 1 ) , 

we put 
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for every f.Pt (resp. Wt ) satisfying (4.1.1) (resp. (4.1.2». 

Then by substituting j' (f.Pt ) (resp. j"(Wt » for Wt(resp.<pt)' 

one can easily see that j' (f.Pt ) (resp. j"(~t» satisfies 

(4.1.2) (resp. (4.1.1». Furthermore, j' 0 j" = id and 

j II 0 j' = ide Hence in finding solutions for t * 0, there is 

no difference between (4.1.1) and (4.1.2). 

(4.2) Choose an arbitrary tE [0,1]. Let f.Pt (resp. ~t) be 

a solution of (4.1.1) (resp. (4.1.2», and we set w(t) := wO(f.Pt ) 

(resp. w(t) := wO(~t». Then w(t) satisfies 

(4.2.1) R (w (t» = (1 - t) Wo + tw (t) , 

(cf. Aubin [2; p. 149]), and in particular <Pt (resp. Wt ) 

belongs to H(t) (cf. (3.5». On the other hand, one can 

easily pass from the solutions of (4.2.1) to those of (4.1.1), 

though we don't get into details. 

(4.3) We'shall next study the solutions of (4.1.1) and (4.1.2) 

at t = O. Recall the following affirmative answer to Calabi's 

conjecture: 

Theorem (4.3.1) (Yau [14]). If t = 0, then (4.1.2) has a 

solution which is unique up to an additive constant. 

This in particular implies 

Corollary (4.3.2). For t = 0, the equation (4.1.1) has a 

unique solution <PO • Moreover, L (0 ,~O) = 0 and R (w O (<PO) ) = wO· 
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Proof: The existence of a solution is straightforward from 

(4.1.3) and (4.3.1). For uniqueness, let ~O be a solution 

of (4.1.1) at t = O. Then 

Since Ix exp(f)w~ = ~won (cf. (1.7.1», we obtain L(O,c.s>O) =0. 

Therefore, ~O is a solution of (4.1.2) at t = O. The 

required uniqueness now follows from a combination of Theorem 

(4.3.1) and L(O,~O) = o. R(wO(c.s>O» = Wo is an immediate 

consequence of (1.7.1) and A (c.s>0) = f. 

Remark (4.3.3). Suppose that {<.ptl 0 't·, T't (l > 0) is a 

smooth 1-parameter family of solutions of (4.1.1). By (4.3.2) 

above, L(O,l.PO) = 0, and hence by setting 

-1 
tt't : = j' (<.p t ) = lp t + t L ( 0 , c.p t ) ( c f . ( 4 . 1 . 3) ), we see t hat 

{lr t I 0 ~ t ~ T} forms a smooth family of solutions of (4. 1 .2) . 

(For similar arguments, see Aubin [2; p. 149].) 

(4.4) 

of all 

that 

Let Hk , a. (where 2:,; k E Z and 0 < a. < 1) be the set 

c.s> E ck , a (X) JR with posi ti ve def ini te Wo (c.p). Note 

k a. . k a. H' l.8 an open subset of C' (X)]R. . ~:e now conclude 

this § 4 by showing the following local extension property of 

solutions of (4. 1 .1) for 0 ~ t < 1 . 

Proposition (4.4.1) (cf. Aubin [2]). Let 2 ~ k E 7l and fix 

a. E R with 0 < Ct < 1. Let 0 ~ T < 1. Suppose mor.eover that 

(4. 1 .1) has a solution tPT at t = 1. Then for some € > 0, 

4)1 uniquely extends to a smooth 1-parameter family 
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{tpt I t e: [0, 1) n [T - e: , T + e: 1 } 

of solutions of (4.1.1) in H and furthermore, if 

(tp,t) E Hk ,ax [0,1) satisfies the conditions 

II tp - tp -r II Ck, a ~ e:, I t - Tis e: 

then tp coincides with tpt. 

and A(tp) = -ttp - L(O,~) + f, 

Proo f : 'Cons ider the mapping r : Hk , a x:R _> ck- 2 , a (X) 

defined by 

r (tp,t) := A(tp) +ttp + L(O,tp) - f, «(.f),t) E Hk,ClX:R • 

Then its Frechet derivative D<.pr : Ck,a(X) ~ Ck- 2,a (X) 

(at (<.p,t» with respec~ to the first factor is given by 

Note that, by the well-known regularity theorem, we have 

~ e: Ii for every (~ It) e: Hk , ax:R I whenever r (<.p ,t) ""= o. 

Since r(tp-r,l) = 0 , an application of the implicit function 

theorem now reduces the proof to showing that D~r is 

invertible at (<.p ,t). The following cases are possible. -r 

(Case 1) T = O. Then D~r I (~O ,0) is the mapping 

which is invertible. 

(Case 2) t * O. Since R(<.pt) - tWO(tl)T) is positive definite 

(cf. (4.2)), a theorem of Lichnerowicz (7) asserts that T is 

less than the first (positive) eigen value of -D~. Hence 
T 
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is invertible. Dq>rl (<p'l,'l) 

Remark (4.4.2). Proposition (4.4.1) is valid even if 

~t and (4.1 .1) are replaced respectively by \lJ t and 

(4.1.2). This is the original local extension theorem 

proved by Aubin [2]. 
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§ 5. The K-energy map along the solutions of 

generalized Aubin's equations 

Recall that (4.1.1) has a unique solution ~O 

at t = 0 (see (4.3.2». By using an explicit description 

(cf. (5. 1 » of the K-energy map ~L along the solutions of 

(4.1.1), we shall show that any ~1" satisfying (4.1.1) at 

t = 1" (1" * 1) uniquely extends'to a smooth 1-parameter family 

{~t los t S 1"} of solutions of (4. 1 .1). Note that this fact 

in particular shows that (4.1.1) admits at most one solution 

at t = 1" for 0 S 1" < 1 (cf. (5.3». The same technique 

enables us to show that if ~ is bounded from below, then 

~O uniquely extends to a smooth 1-parameter family 

{~tIO St<1} of solutions of (4.1.1) (cf. (5.7». 

Theorem (5. 1 ). Let {~t I a S t S b } be an arbitrary smooth 

1-parameter family of solutions of (4.1.1) in H. For 

brevity, we put 

Then on [a,b] , 

dl-1(w(t» 
dt = -

(cf. (4.2 • 1 ) ), we have a (q>t) = n - (1 - t)'lp f.Pt • Hence, 
t 
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d «t» 
dt J.1 w = 

(cf. (1.6.5») .. 

On the other hand, differentiating (4.1.1) by t, we obtain 

= 0 

for some constant Ct e::R on X. Combining this with (1.6.5), 

we now see that 

where the last inequality is a straightforward consequence of 

(first eigen value of -0 ) > t. 
<Pt 

(5.2) ( i ) Fix Cl E:m wit h 0 < Cl < 1.. Le t <P l be a 

solution of (4. 1 .1) at t = l (where l * 0,1 ) .. A smooth 

family (resp. '{tp I T ~t< a}) 
t 

of 

solutions of (4.1.1) is said to be maximal if for any 

sequence t. E (O,l] (resp. [l,O» (j = 1,2, ••• ) with 
J 

lim t. = 0, the corresponding sequence {<pt. } in H does 
J J 

not converge to any·point of H2 ,Cl in C2 ,C1 norm. 

(ii) Suppose E * $. Then to each e E E , we can uniquely 

associate a function Ae E H such that e = Wo(A e) and that 

AS satisfies (4.1.2) at t = 1 , i .. e. , A(A e) = -AS + f. 

An element e of E is said to be minimall~ Einstein on 

the Kahler manifold (X,wO) if for some £ > 0, there 

exists a smooth family {tPt I 1- £ :;i; t :;i; 1} of solutions of 
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(4.1.2) such that \Il 1 = AS. 

Theorem (5.3). Let 0 < l < 1. Then any solution of 

(4.1.1) at t = l uniquely extends to a smooth family 

{<pt 10 s t S T} of solutions of (4.1.1). In particular (4.1.1) 

admits at most one solution in H at t = T. 

Corollary (5.4). (i) There exists at most one e E E which 

is minimally Einstein on the KMhler manifold (X,wO). 

(ii) Suppose that SEE is minimally Einstein on the KMhler 

manifold (X,wO). Then 

(5.5) Proof of (5.3): The required uniqueness is immediate 

from (4.4.1), once the existence of an extension is proven. 

We therefore assume, for contradiction, that any such extension 

is impossible. Then by (4.4.1), we have a maximal smooth 

family {<pt I 0 < t S T} of solutions of (4. 1 .1) for some 

o S a E :R. In this proof, we always denote by t E:R an 

arbitrary number satisfying a < t S T , and by a "constant" a 

positive real number which doesn't depend on either t or 

x E X. The proof is now divided into two steps. 

Step 1: By (1.6.4) and Theorem (5.1), 

co 
We put Ft:=-t""t - L(O,tJ't) + fEe (X)lR. Then by (4.1.1), 
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Applying the mean value theorem, we have Ft(xt ) = 0 

for some x t E X. Therefore for every x E. X, 

~ t (Osc <Pt ) + 211 f Ilco 

2 
~ tIt + 2n (tKOVO + (n- 1)S(n)1T ) + 211 flieD (cf. (3.6), (4.2». 

Hence by (5.5.1), there exists a constant K1 such that 

Since A(<Pt ) = Ft ' a result of Yau (14](see also Bourguignon 

et ale [4 i VII]) now asserts that 

(5. 5. 3) Osc tpt !i K2 

for some constant 
t"V 

K2 . Put 4)t := 
co 

{Pt - (Pt (xt ) E C (X) JR • In 

view of 

we obtain 

(5.5.4) 
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Hence by (5.5.3) and (5.5.4), 

(5.5.6) 

for some constant K3 · Since L(O'~t) = ~t(Xt) + L(O'~t)' 

a combination of (5.5.5) and (5.5.6) now provides us with 

a constant K4 such that 

(5.5.7) 

Step 2: Recall that A(~t) + t~t = -L(O'~t) + f. By (5.5.6) 

and (5.5.7), we have constants. K
5

,K
6

,K
7 

such that 

(cf. Aubin (1;p.p. 151-154]. 

We now choose an arbitrary decreasing sequence t. E (o,L], 
) 

j = 1,2, ••• such that lim t. = o. Then by Ascoli theorem, 
J 

there exists a convergent subsequence of 

which le~ds to a contradiction to the maximality of 

(5.6) Proof of (5.4): Let 8 E E be minimally Einstein on 

the Kahler manifold (X,W
O
). Then in view of Remark (4.1.3) j 

there exists a smooth family 

solutions of (4.1.1) such that e = Wo (<1>,). By (5.3) 

above, {~t 11 - e ~ t < 1} uniquely extends to the smooth 
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l-parameter family {(4)t los t < 1} of solutions of (4. 1 .1) . 

Then (i) immediately follows from 

(k ~ 0) , 

and ( i i ) from M ( e , w 0 (<p 0 » = ~ (w 0 (<p 0» - ~ {w 0 (<p 1 » ~ 0 

(cf. (5.1». 

The following theorem, which we donrt need later, is 

of some interest from the viewpoint of understanding the K-energy 

map ~. We therefore give it together with a proof. 

Theorem (5.7). Let S := {Wo(<p) I ~ E H satisfies A(~) = -t(4) 

-L(O,~} + f for some tE [O,l)}. Suppose that ~ is bounQed 

from below on S. Then ~O uniquely extends to a smooth 

l-parameter family {~t 10 :i t < 1} of solutions of (4. 1 .1) • 

Proof: We assume, for contradiction, that there exists a maximal 

smooth family {q}t I 0 ~ t < o} of solutions of (4. 1 . 1) for some 

0 < 1 • Let K E IR 

O~t<0', w(t) := 

~(w(t» ~ K. For 

-1 
1-0 

be the infimum 

wo(<pt ) belongs 

each such t, we 

-1 
1-s 

of ~ on s. Then whenever 

to S and in particular 

infer from Theorem (5. 1 ) that 
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where we used the notation in (5.1). Thus It - J
t 

(0 ~ t <: a) 

is bounded from above. The rest of the proof is quite similar 

to (5. 5) • 
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§ 6. Lemmas for choosing a good gauge. 

(6.1) Throughout this section, we use the same notation 

as in § 2, and fix an arbitrary G-orbit 0 in E, assuming 

E * $ . To each S EO, we can uniquely associate a 

function AS E H such that e = Wo (A e ) and that A(A S) = 

= -AS + f (cf. (ii) of (5.2». Then S ~ AS defines a 

bijection between 0 and 0 := {Aala EO}. We endow 0 with 

~he topology naturally induced from the c2 ,a norm of H. 

This defines a topology on 0 , in terms of which, the G-action 

on 0 is clearly continuous. Hence our topology on 0 

coincides with the natural topology of the homogeneous space 

G/Ke via the identification 0 ~ G/KS (cf. (2.1». Recall 

that for each <P E He ' we have the corresponding 1-parameter 

group Y:t = exp (tY~JR) , t E R. For simplicity, we put 

e (t) : = (Y: t ) * a and A (t) : = A b( t) • Then by ( 2 . 2 • 4 ) and . 
w 0 ( A (t» = e (t), we have A (0) = lP + C for some C E R. On 

the other hand, differentiating the identity A(A(t) = -A(t)+f . . 
by t at t = 0, we obtain 0S(A(O» = - A(O). Hence 

Ix ~(O)Sn = 0 = Ix ~~n and this implies ~(O) = lP • Thus 

we established the following identification (cf. (2.2.3»): 

(6.1.1) 

The purpose of this section is to prove the following lemmas: 
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00 

Lemma (6.2). The C function 1 defined by 

1:0 ~ :R 

is a proper map. In particular its minimum is always attained 

at some point of the orbit o. 

Lemma (6.3). Let SE~. Then the following are equivalent. 

(i) S is a critical point of 1 i 

(ii) J X AelPSn = 0 for all lP E He i 

(iii) e is expressible as wO(w) for some function 

VI E Ii such that J X tP lP an = 0 for all c.p € He 

Lemma (6.4). Let e € 0 be a critical point of t • Then 

the Hessian (Hess 1)e of 1 at the point e is given by 

( He s s 1.) ( 4> I I <p" ) = J (1 + 1.0 A ) <.p I c.p II en IV e X 2 e e 

for all 

(6.5) Proof of (6.2): By the well-known regularity theorem 

applied to the equation A (lP' = - IlJ + f I the proof is reduced *) 

to showing 

(6.5. 1 ) 9i ven a real number r ~ 0, one can always find 

positive numbers K K' Kit € lR such that - r' r' r 

and K'w ~ wO(~) ~ K"w r 0 r 0 

hold simultaneously for all ~ € 0 satisfying Ita (wo (tP» I ~ r. 

*) This reduction is easily obtained from the followinq standard 
fact: 0 18 a connected component of f (aee Calabils article 
"Extremal KKhler matrics II";1n "Differential Geometry and Complex 
Analysis" dedicated to H.E. Rauch, Springer-Verlag, 1985). 
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Fix an. arbitrary element ~ of 0' as in (6.5.1). Then 

by (1. 6.4), I (0,'41 ) =s (n + 1) r. In view of (4.2), we have 

~ E H(1) and hence by (3.6), 

(6.5.2) Ose lfJ ~ K , where 2 
K : = (n + 1) r + 2n (K

O 
V 0 + (n - 1 ) 6 (n) 11" ). 

On the other hand, from A(~) = -~ + f we obtain 

~~erefore by the mean value theorem, there exists a point 

x E X such that ~V (x) = f (x). Together with (6.5.2), we have 

II '/J \I CO:i K + II f II CO • 

Then applying standard arguments (cf. Aubin [1iPP. 151 - 154]) I 

we obtain K ,K' Kit 
r r' r as required in (6.5.1). 

(6.6) Proof of (6.3): (ii) and (iii) are clearly equivalent. 

To see the equivalence of (i) and (ii), we fix an arbitrary 

I.PEHe(=Te(O» with its corresponding 1-parameter families 

{ e (t) E 0 I t E JR} . and { A (t) E 0 I t E lR } as in (6. 1 ). Then 

in view of (1.6.5), 

d 
dt t(6(t»lt=O = 

d dt (I(O,A(t» - J(O,A(t»)lt=o 

(cf. (6.1.1» 

(because <.p E He) • 

The required equivalence is now straightforward. 

(6.7) Proof of (6.4): Let {A t l (Sit) E [-t:,t:] x [-t:,t:]}(e: > 0) s, 
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be a smooth family of functions in 0 satisfying the 

following conditions: 

(i) AO,O = Ae 

(ii) (.l...x ) = <p' 
as s,t I (s,t)=(O,O) , 

(iii) (aOt hs,t) I (s,t)=(O,O) = <p". 

We shall denote 0 (resp W (A » 
As,t • 0 S,t 

for brevity. Differentiating the identitiy 

by t, we obtain 

(6.7.1) 

Further differentiation by s yields 

by 0s,t (resp. 8 s ,t) 

A(hs,t) + hS/t - f = 0 

where we denote <'>e (cf. (2.3» simply by 
s,t 

<,> t· S, 

Evaluating this at (Sit) = (0,0), we obtain 

o = - I -(0 e + 1) ( as at As ,t) I (0 1 0 ) < 0 o<p ,a olP" > 8· 

Together with (2.3.1), it then follows that 

2 
(6.7.2) (a!at As,t)1 (0,0) !!i «4)1 ,a<.pn>e II <o<d',dq>'>e 

a: (modulo He). 

We can now finish the proof by the following computation: 
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( He SSt ) e (tp t , tp" ) 

(cf. (6.7.1» 

(cf. (6.7.2)) 
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§ 7. Unfolding the singularity at t = 1 

by a bifurcation technique. 

We again assume that E * $ and fix an arbitrary 

G-orbit 0 in E. Using the same notation as in § 6, 

we fix a critical point a of the mapping t:O ~ ~ 

(cf. (6.2». The purpose of this section is to find out 

a good sufficient condition for a to be minimally 

Einstein (cf. (ii) of (5.2». Fixing a E:R with 

o < a < 1, we set 

k = 0, 1 ,2 .. , . •• • 

Recall that, corresponding to a, we have the function 

Aa E H with the following properties (cf. (6.1) ,(6.3»: 

(i) a=wo(A a ) , 

(ii) A( Aa) = -A e + ff 

(iii) AS E 
J.. 

Ha,k 

Let k ~ 2 and we now consider the mapping 

<P::R x Ck , a (X) ~ ck - 2 ,a (X) 
:R Eo I 

(t ,u) ~ ~(t/U) := A(u) + tu - f • 

Note that, by the well-known regularity theorem, any v E Uk,a 
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(cf. (4.4» satisfying ~(t,v) = 0 for some t is 

automatically in H. Let p:co,a(X)~ (. Ha e ~,o) ~ Ha 

be the natural plojection to the first factor. For each 

u E ck
, a (X):R ' we wr i te 

(7.1.1) 

with 4': = P (u - A a) E He 

Now the equation 

(7.1.2) ~(t,u) = 0 

is written in the form 

..L 
and l/J: = (1 - P) (u - Aa) E Ha, k • 

p~ (t, A a + 4' + tJ;.) = 0 and 

where 

by 

..L 
He,k-2 is the mapping defined 

'i' ( t, 4', lP) : = (1 - P) ~ (t , A a + <P + 1P) 

TheI: '¥(1,O,O) = 0 and the Frechet derivative DtJ; 'l' I (1 , a , a ) 
'i' with respect to l/J' at (t,4',1JJ) = (1,0,0) js 

of 

JjJ' E H..L H-- (Dtp '¥) I (1 , 0 , 0) (1JJ' ) = (c e + 1) lJi' E H~, k- 2 e,k 

which is invertible. Therefore the implicit function theorem 
..L enables us to obtain a smooth mapping (t,tp) E U ~ l/Jt,<t>EHe,k 

of a small neighbourhood U of (1 ,0) in lR x He to the 

Banach space Hi such that e,k 

, 
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(j ) 1JJ"o = 0 , 

(ii) II ~t,~11 Ck,o S 6 on U for some 6 > 0 , and 

(iii) '¥(t,<v,V') = 0 (where IliIJ IIck,a Si 6) is, as an 

equation in W e: Ck,a (X}:R ' uniquely solvable in the 

form t.J; = Wt on U .. 
,<,p 

Differentiating the identity '¥(t,<.P,lPt,q» = 0 at ·(t,q» = (1,0), 

we obtain 

(7.1.3) 

(7.1.4) 

where denotes the Frechet derivative 

of ~t with respect to q> at the point (t,~) = (1,0). Then 
,q> 

the equation (7.1.2), on a small neighbourhood of Aa' reduces 

to 

(7.1.5) ~o(t,q» = ° (with u = Aa + q> + tV t,q» , 

where we put ~o (t,,,,,) := P~(t,Ae+ <p + tJ; t,q» for (t,tp) E U. 

Recall that <P (1,u) = ° for all u EO.. Hence 410 = ° on 

{t = 1} and therefore the mapping 

naturally extends to a smooth map: U ~ He (denoted by the 

same <P,) of finite dimensional sets. In view of (7.1.3), we 

obtain 
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Furthermore we shall later show that the Frechet derivative 

DlP~' I (1,0) :He -+- He of ~1 with respect to lP at 

(t,<.p) = (1,0) is written in the following form: 

Lenuna (7.2). For all ~',lP" E He (where e is a critical 

point of 1.), 

= Vo (Hess 1.) e (q>' ,q,") • 

Suppose now that (Hess 1.)e : He x He ~ E is a nondegenerate 

bilinear form. Then by this lemma, DlP~1 I (1,0) is invertible, 

and the implicit function theorem shows that the equation 

~1 (t,lP) = 0 in lP is uniquely solvable in a neighbourhood 

of (1,0) to produce a smooth curve {<.p (t) I 1 - £ S t S 1 } (£ >0) 

in He such that (i) q>(1) = 0 and (ii) ~1 (t,<p(t» = 0 

(1 - e: S t S 1). Therefore, in. view of (7 • 1 .5), we have 

<I> (t,Ae + <.p(t) + 'Pt,q;>(t» = 0 (1 - €: S t S 1), and hence 

{lPt : = Ae + q;>(t) + tPt,<s>(t) 11- €: S t S 1} forms a smooth 

1-parameter family of solutions of (4.1.2) in H with 

W, = A e ' i. e. , e is minimally Einstein on the Kahler 

manifold (X,wO) (cf. (ii) of (5.2». Thus we obtained 

Theorem .(7.3). Every critical point e of 1 with non

degenerate Hessian is minimally Einstein on the K!hler 

manifold 

We shall finally show Lemma (7.2). 
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(7.4) Proof of (7.2): By (7.1.4), using the notation in 

(2.3), we have 

a 
Dtp4>1 I (1,0) (t.p') = (Dq> at ~o) 1(1,0) (t.p') 

a = tpl - P <a11(at t.lJt,t.p 1(1,0»)' aatpl >9 • 

Hence, it follows that 

(cf. (6.7.2) 

(see the end of (6.7». 

Since V = n!vO ' this completes the proof (cf. (1.4), (6.4) ) • 

Remark ,(7.4. 1 ). If e E 0 is a point where 1 attains its 

minimum (cf. (6.2», then (Hess 1) e is positive semidefinite. 

In the next section, we shall realize a critical point of 

1 with positive definite Hessian via a small change of our 

presently fixed WOe 
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§ 8. Proof of Main Theorem 

(8.1) Proof of (i) of Theorem A: Fix an element 
,... 
w of 

K+ and a G- orbit 0 in E arbitrarily. In this section, 

we write 

regarding Wo as a function of Ef [0,1]. Hence the 

corresponding f,<PO,1.,H,wO(<p) and A(tP) (where 4>€:C
oo

(X)m,) 

written respectively as fE'4>OiE'lE,H£,w~(<P) and A£(<P) 

will be 

(see (1.7.1),(4.3.2),(6.2),(1.1),(1.1.1) and (4.1». We first 

consider the special case E = 0 and then go to the general 

situation E > O. 

Case 1: £ = O. Put wg := R(w). Then 1. 0:0 ---+- R takes 

its minimum at some point e of 0 (cf. (6.2». Corresponding 

to this e, there uniquely exists a function ASiO (HO such 

that ° and that 0 ::: -A + fO (cf" ( ii) e;. Wo (AGiO) A (A
eiO

) 
~;O 

of (5.2». Recall that He is Ker (oe+ 1 ) in 
00 

C (X) JR " Then 

by (6.3), 

(8.1.1) for all 

and the bilinear form (Hess to) G : He x He --+- R is posi ti ve 

semidefinite. 

~ 2: e:: > o. In this case, we set 

Again by (ii) of (5.2), one obtains a function AS;£ E He:: 
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uniquely determined by the identities 

A£(Ae;t)= -A S;£ + f£ • Then in view of 

= Wg(A e;£ +£Ae;O)' we have 

e = W~(Aa;£) and 

wg (A e ; 0) = e = 

(8.1.2) for some C € ~. £ .. 

(8.1.1». Therefore by (6.3), e is a critical point of 

1 £:0 -;... R. Moreover for all 0 * <P € He ' 

(cf. (6.4» 

= (cf.(8.1.2» 

Theorem (7.3) now shows that e is minimally Einstein on the 

Kahler manifold (X,w~) . In particular, by (ii) of (5.4), 

(8.1.3) £ 
M(e,wO(<PO;£» ~ o. 

By (4.3.2) , £ £ We also have R(w) 0 
R(wO(tpOi£» = Wo = Wo 

Note that £ 0 in CO,a (as 
'" 

0) • Then by (1.1.3), Wo ~ Wo £ 

£ ,..., 
in C2 ,a. wO(""Oi£) --> w Let £ '" 0 in (8.1.3). By the 

continuity of M, we have 

M (e , w) ~ 0, i. e. , + + ,..., 
J.I. (e)~J.I. (w). 

Recall that + 
J.I. is a constant function on 0 (cf. [9]). 

Since both w € K+ and the G-orbit 0 in E are arbitrary, 



-47-

it now follows that + 
\.l K'" -+ lR takes its absol u te 

minimum C on E. Note that E 1s the set of all 

critical points of (cf. [9]). Hence 

because, otherwise, at some point 
,..., 
w of with w f. E, 

the function ~+ would take its critical value C in 

contradiction to w t E • 

(8.2) Proof of (ii) of Theorem A: Let 0' and 0" be 

arbitrary G-orbits in E. Then from the argument of (8.1) 

applied to the orbit O· , we see the following: 

(8.2.1) For a suitable choice of Wo € K, the function 

'l':w E O· t--+ 1.' (w) := I (wO,w) - J(wO'w) E:R has a critical 

po!nt at E 0' with positive definite Hessian. 

Recall that the function 1.": wE 0" t---+- l."(w~ := I(wO,w)-J(wo'w) 

E:R takes its minimum at some point e" EO" (ef. (6.2». 

We now put wE .- (1 •. £)w' + £6", (0 S E S 1). Again by the o • - 0 

argument of (8.1) applied to 0", we have: 

(8.2.2) e" is minimally Einstein on the Klhler manifold 

(X,w~) whenever 0< £ ~ 1. 

We finally define 1. ~ : 0' -;... :R by 



Note that 1.~ converges to 1. I , say in c2 ,a. , as 

tends to, zero. Fix a sufficiently small £ > O. Then by 

(8.2.1), the function ,,' takes.its local minimum with e: 

positive definite Hessian at some point e' of O· e: 

near a'. In view of Theorem (7.3), one finds that 

is also minimally Einstein on the K!hler manifold 

e' 
£: 

(X,w~) • 

Combining this with (8.2.2), we conclude from (i) of (5.4) 

that e I - en £: - • Thus, o· = a" and the proof is now complete. 

Theorem A is valid even when M: K x K -+ 1\ is replaced 

by N:K x K ~ JR (cf. (1.5». We conclude this section 

by showing 

Corollary (8.3). Under the same assumption as in Theorem A, 

the mapping 

+ K+ \J : 

w 

JR 

+ v (w) := N(w
1 

,w) 

is bounded from below and takes its absolute minimum exactly 

on E. 

Proof: By + + (1.8.1) , v (w) = II (w) + J(w,R(w» - J(w1 ,R(w1» 

for every w E K+ • Since both ~+ and J(w,R(w» (w E K+) 

take their minimums exactly on E (see (1.6.3) and Theorem A), 

so does + 
\) 
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§ 9. Proof of Theorems Band C. 

(9.1) Proof of Theorem B: Recall that the natural Riemannian 

metric on E is characterized in terms of lengths of smooth 

paths in E as follows (cf. [10]): 

Fo.r every smooth path f= (Yt la ~t~b} in E I 

let {Y t I a ~ t :s b} be the corresponding smooth path in 

~o (cf. (1.4» uniquely determined bl wO(Yt ) = Yt , 
(t E [a,b]). Then the length L(r) of the path r in terms 

of the 'metric of E is defined by 

In view of Th~orem A, the proof is reduced to showing that 

Aut (X) acts isometrically on E. Hence it suffices to show 

L (g*f) = L (f) (g E Aut (X) ) 

for every smooth path f = {Y t I a ;s; t :s b} in E. Then even 

if g ~ AutO(X), the same proof as in [10] goes through 

as follows: 

Let tpg be the function in H uniquely determined by 

the properties g*wO = Wo (tpg> and q)g + g*Ya E HO . We 

put nt := <Pg + g*Yt (a:stSb). Then g* Yt = wO(nt ) 

and nt E HO for all t. Hence 
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(9.2) Proof of Theorem C: By Theorem B, E is isometric 

to the Riemannian symmetric space G/K without compact 

factors. In particular, E is a simply connected Riemannian 

manifold with nonpositive sectional curvature. Since the 

compact group H acts isometrically on E, it always 

has a fixed point in E. 

Remark (9.3). If X admits no nonzero holomorphic vector 

fields, then Theorems A and C assert the following: 

Einstein Kahler metrics on X are, if any, unique 

up to constant multiple. Moreover, they are invariant under 

the action of Aut(X). 
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