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§o. Introduction

In [1], Artal Bartolo defined the notion of Zariski pairs as follows:

Definition. A couple of complex reduced projective plane curves Cl and C2 of a
same degree is said to make a Zariski pair, if there exist tubular neighhorhoods T( Cd C p2
of Ci for i = 1,2 such that (T(Cl),Cd and (T(C2 ),C2 ) are diffeomorphic, while the pairs
(p2, Cl) and (p2, C2 ) are not homeomorphic; that is, the singularities of Cl and C2 are
topologieally equivalent, but the embeddings of Cl and C2 into 1P2 ure not topologieally
equivalent.

The first example of Zariski pair was discovered and studied by Zariski in [9] and [11].
He showed that there exist projectivc plane eurves Cl and C2 of elegree 6 with 6 cusps anel
no other singularities such that trI (1P2

\ Cd and trI (p2 \ C2 ) are not isomorphie. Indeed,
the placement of the 6 cusps on the sextic curve has a crueial effect on the fundamental
group of the complement. Let Cl be a sextic curve defined by an equation /2 + g3 = 0,
where / and 9 are general homogeneous polynomials of degree 3 and 2, respectively. Then
Cl has 6 cusps lying on a conie defined by 9 = 0. In [9], it was shown that trI (1P2

\ Cd
is isomorphie to thc free product Z/(2) * Z/(3) of cyclic groups of order 2 and 3. On thc
other hand, in [11], it was proved that there exists a sextic curve C2 with 6 cusps which
are not lying on any conie, and that the fundanlental group tr] (IF2

\ C2 ) is cyclic of order
6. In [4], Oka gave an explicit defining equation of C2 . In {1], Artal Bartolo presented a
sinipIe way to construct (C], C2) from a cubic curve C by means of a !(ummel' covcring of
JP2 of exponent 2 branched along three lines tangent to C at its points of infleetion.

Except for this exanlple, very few Zariski pairs are known ({1], [8]). In [5], and
independently in [7], infinite series of Zariski pairs have been constructed from the above
example of Zariski by means of covcring tricks of the plane.

In this paper, we present a luethod to constl'uct Zariski pairs, which yields two infinite
series of new examples of Zariski pairs as special cases.

A germ of eurve singularity is called of type (p, q) if it is loeally defined by x P + yq = O.

Series I. This series consists of pairs (C} (q), C2 ( q)) of curves of degree 3q, where q
runs through the set of integers ~ 2 prime to 3. Each of Cl (q) and C2 ( q) has 3q singular
points of type (3, q) and no other singularities. The fundamental group 7f} (1P2

\ Cl (q)) is
non-abelian, while tr] (p2 \ C2(q)) is abelian. When q = 2, this exarnple is nothing but thc
classical oue of the sextic curves due to Zariski.

S eries 11. This sel'ies consists of pairs (D I (q), D2 ( q)) of curves of degree 4q, where q
runs through the set of odd integers > 2. Eaeh of D1 (q) and D2 (q) has Sq singular points
of type (2, q) - that is, rational double points of typc A q- 1 - and no other singularities.
The fundamental group 1f} (IP2

\ D} (q)) is non-abelian, while 1f](p2 \ D2 (q)) is abelian.

1



Dur method is a generalization of Artal Bartolo's lnethod for re-constructiong the
classical example of Zariski to higher dimensions and arbitrary exponents of the !(Uffilner
covering. Indeed, when q = 2 in Series I, our constrllction coincides with his.

Instead of the computation of the first Betti number of the cyclic branched covering of
p2, which was employed in [1], we use the fundamental groups of the complements in order
to distinguish two embeddings of curves in p2. For the calculation of the fundamental
groups, we use [6; Theorem 1] and a result of [3] and [7].

Acknowledgmellt. Part of this work was done during the author's stay at Institute
of Mathematics in Hanoi and Max-Planck-Institut für Mathematik in Bonn. The author
thanks to people at these institutes for their warm hospitality. He also thanks to Professors
M. Oka and H. Tokunaga for stilnulating discussions.

§1. A Inethod of constructing Zariski pairs

1.1. Non-abelian nlembers. Let p and q be integers :2: 2 prüne to each other. We
choose homogeneous polynomials f E HO(p2,O(pk)) and 9 E HO(p2,O(qk)), where k is
an integer :2: 1. Suppose that fand 9 are generally chosen. Consider the projective plane
curve

of degree pqk (cf. [2]). It is easy to see that the singular lOCHS of this curve consists of
pqk2 points of type (p, q). In [7; Example (3) in §O], the following is shown.

Proposition 1. The fundamental group 71'"1 (p2 \ Cp,qlk) is iSOlnorphic to tl1e group
( a, b, c I aP = bq = c, ck = 1 ). In particular, it is non-abelian.

See also [3], in which the fundaluental grollps of the cOluplements of curves of this type
are calculated. There the groups are presented in a different way.

This curve Cp,q,k will be a lnember Cl of a Zariski pair.

1.2. Abelian partners. We shall construct the other member C2 cf the Zariski
pair such that 7r1 (p2 \ C2 ) is abelian.

Let p, q and k be integers as above. We put n = pk. Interchanging p and q if
necessary, we may assume that n :2: 3. Let So C pn-l be a hypersurface of degree n
defined by FO(X1 , • .. ,Xn ) = O. Vve consider a linear pencil of hypersurfaces

St FO(XI , ..• ,Xn ) +t· Xl .. 'Xn = 0,

which is spanned by So and Soo := {Xl'" X n = O}. We put Hi = {Xi = O} (i = 1, ... ,n).
We consider the morphism cj;q : IPn

-
1 --+ pn-l given by

(Y1 : ... : ~l) f---t (Xl: ... : X n ) = (Y/: ... : YJ),

which is a covering of degree qn-l branched along Soo.

Proposition 2. Suppose that (1) every melnber St is reduced, and that (2) So contains
none of the hyperplaJleS Hi . Then 7rl (IP'n-1 \ c,b~l (Sd) is a.beliall for a general member St.
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Proof. Let pI be the t-line, and we put Al := pI \ {oo}. Let W C pn-I X Al be the
divisor defined by

which is the union of Soo x Al and the universal family of the affine part { St ; t E Al
}

of the pencil. For t E Al, we denote by W t C pn-I the divisor obtained from the scheme
theoretic intersection ({t} x pn-I) n W, which is equal with the divisor St + Soo.

First, \ve shall show that 1fI (pn-l \ Hft} is abelian for a general t. Remark that the
assumption (2) implies that Si contains none of Hi unless t = 00. Combining this with
the assumption (1), we see that Wt is reduced for all t E Al. Hence, by [6; Theoreul 1],
the indusion pn-I \ ltVt y. (pn-I x A l

) \ W induces an isomorphisIll on the fundamental
groups for a general t. Therefore, it is enough to show that 1fI ((pn-I x Al) \ W) is abelian.
In order to prove this, we consider the first projection

p (pn-I x Al ) \ W ---+ pn-I \ Soo.

Since { St ; t E pI} is a pencil whose base locus is contained in Soo, there is a unique
lnelnber St(P) (t(P) =I- 00) containing P for each point P E pn-l \ Soo. Therefore p-I (P)
is a punctured affine line Al \ {t(P)} for every P E r n- I

\ Soo. Consequently, p is a locally
trivial fiber space. Moreover, p has a section

which is given by, for exalnple, s(P) = (P, t(P) +1). Hence the homotopy exact sequence
of p splits. COlnbining this with the fact that the image of the injection 11"1 (Al \ {t(P)}) --t

11"1 ((rn
-

1 x A l
) \ W) is contained in the center, we see that

This shows that 1fl ((rn
-

l x A l
) \ W) is abclian.

Note that 1>q : r n
-

l --t r n
-

1 is etale over IPn
-

1
\ ltf!t for every t. Hence the natural

hOlnomorphisul

is injective. This implies that 11"} (Ipn-l \ <p~l (Wt}) is abelian for a general t. On the other

hancl, since IP'n -1 \ 1>~ 1(Hft ) is a Zariski open dense subset of r n
-1 \ 1>~ 1 ( St), the indusion

induces a surjective homomorphism

Thus 11"1 (rn
-

1
\ 1>~l(St}) is also abelian for a general t. D

Proposition 3. Suppose the following; (3) So n Bi is a non-reduced divisor pDi of Hi of
multiplicity p, where D i is a reduced divisor of Bi, none of whose irreducible cODlponents
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is con tained in Hin (Uj '# iH j ), and (4) the singular locus of S t is oE codiInension 2:: 2 in S t

for a general t. Then tbe general plane section p2 n 4>;;1 (St} of 4>;;1 (Sd is a curve of degree
pqk, and its singular locus cOllsists oE pqkZ points of type (p, q).

Prao/. Note that the assumption (3) implies that St nHi is also equal with pD i for t i= 00.

Let P be a general point of any irredueible component of D i , and let Q be a point such
that 4>q(Q) == P, whieh lies on the hyperplane defined by Yi == O. By the assumption (3),
Q is not contained in any of the other hyperplanes defined by Yj = 0 (j i= i). Hence there
exist analytic loeal coordinate systems (101, ... , 10n-1) and (Z1' ... , Zn -1) of pn-} with the
origins P and Q, respectively, such that Hi is given by 101 = 0, 4>;;1 (Hd is given by Z1 = 0,
and c/Jq is given by

Let t E A I be general. By the assumption (3), the defining equation of St at P is of the
fonn

u(1O)· 101 + v(wz, ... , wn-dP = O.

By the assumption (4), St is non-singular at P, because Pis ageneral point ofan irreducible
component of D i . This implies that u(P) i= 0. On the other hand, the divisor Di, which
is defined by v(wz, ... ,wn-d = 0 on the hyperplane Hi == {Wl == O}, is non-singular at P,
beeause Di is reduced by the assumption (3) and P is general. Hence we have

:; (P) cF 0 at least far ane j :::: 2.
)

The defining equation of c/J;;1 (Si) is then of the fonn

U(Z) . zi + v(zz, ... , zn-t}P == 0, where u(Q) i= O.

Then, it is easy to see that, in terms of suitable analytic coordinates (ZI, . .. ,Zn-I) with
the origin Q, this equatioll can be written as follows;

Thus, when we cut 4>;;1 (St} by a general 2-dimensional plane passing through Q, a germ
of curve singularity of type (p, q) appears at Q.

Since the clegree of Di is k == n/p, the inverse image c/J;;I(Dd is a reducecl hypersurface
of degree qk in the hyperplane defined by Yi == O. Moreover 4>;;1(Dd and 4>;;1(D j) have
no common irredueible eomponents when i =I- j because of the assumption (3). Hence
the interseetion points of 4>;;1 (2:7=1 Dd with a general plane r 2c r n is pqk Z in number.

Moreover, rZn c/J;I (St) is non-singular outside of these intersection points, because of the
assumption (4). 0

1.3. Sununary. Suppose that we have constructed a hypersurface So c r n
-

1 of
degree n 2:: 3 whieh satisfies the asslunptions (1)-(4) in Propositions 2 and 3. Let C2 be
a general plane seet ion of <p;; 1 ( Sd, where t is general. Because of Zariski' s hyperplane
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section theorem [10] and Propositions 1, 2 and 3, we see that the curve C2 has the same
type of singularities aB that of Cp,g,k, hut the fundaInental group 7r1 (p2 \ C2 ) is abelian.
Hence (Cl, C2 ) is a Zariski pair, with Cl = Cp,g,k'

§2. Construction of Series I

We carry out the construction of the previous section with p = 3, k = 1, n = 3 and q
an arbitrary integer 2:: 2 prime to 3.

We fix a homogeneous coordinate system (X : Y : Z) of p2, and put

LI = {X = O}, L 2 = {Y = O}, La = {Z = O}, and

R 1 =(0:1:-1) E LI, R2 =(1:0:-1) E L2.

Let p* (r(p2 ,0(3))) be the spacc of all cubic curves on p2, which is isonl0rphic to the
projective space of dimension 9, and let Fe p * (r(p2, 0(3))) he the faInily of cubic curves
C which satisfy the followillg conditions;

(a) C intersects LI at R1 with lnultiplicity 2:: 3,
(b) C intersects L2 at R2 with multiplicity 2:: 3, and
(c) C intersects La at a point with lnultiplicity 2:: 3.

(We consider that C intersects a line Li with multiplicity 00, if Li is contained in C.)

Proposition 4. Tbe Eamily F consists oE 3 projective lines. Tbey meet at one point
corresponding to Coo := {XY Z = O}.

Proof. Let F(X, Y, Z) = 0 be the defining equation of a nlember C of this family F. By
the condition (a), F is of the fOrIn

F(X, Y, Z) = A(Y + Z)3 +X . G(X, Y, Z),

where A is a constant, and G(X, Y, Z) is a homogeneous polynomial of degree 2. By the
condition (b), we have F(X, 0, Z) = A(Z + X)3, and hence we get

G(X, Y, Z) = A(3Z2+3ZX + X 2) +Y . H(X, Y, Z),

where H(X, Y, Z) is a homogeneous polynolnial of degree 1. By the condition (c), we have
F(X, Y, 0) = A(Y + crX)3 for some Q. Thell a must be a cubic foot of unity, and we get

H(X, Y, Z) = 3Aa2X + 3AaY + BZ,

where B is a constant. Combinillg all of these, we get

F(X, Y, Z)

=A(X3 + y 3 + Z3) + 3A(a2X 2y +aXy2+ y 2Z +YZ2+ Z2 X + ZX2) + BXYZ

=A(X + Y + Z)3 + 3A(a2 - 1)X2y + 3A(a - 1)Xy2+ (B - 6A)XY Z.
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This curve C = {F = o} intersects La at

Ra = Ra(o:) := (1: -0: : 0) E La

with multiplicity 2:: 3. This lneans that the falnily F consists of three lines .c(1), .c(w) and
.c(w2 ) in thc projective space 1P*(f(p2, 0(3))), where w = exp(21Ti/3), such that a general
cubic C in .c(0:) intersects La at Ra (0:) with multiplicity 3. The ratio of the coefficients
t := B / A gives an affine coordinate on each line L:(0: ). The three lines .c(1), .c(w ), L: (w 2 )

intersect at one point t = 00 corresponding to the cubic Coo = LI +L 2 + La. 0

Hence we get three pencils of cubic curves { C(1h j tEL:(1)}, { C(w}t j t E L:(w)},
and { C(w2 h ; t E .c(w2

)}. It is easy to check that these pencils satisfy the assumptions
(2), (3) and (4) in the previous section. Note that the pencil .c(1) does not satisfy the
assumption (1) because C(1)6 is a tripie line. However, the other two satisfy (1). Indeed,
if a eubic curve C in the family Fis non-reduced, then the conditions (a)-(c) iInply that
it must be a tripie line. TheI'efoI'e the three points R1, R2 and Ra (0) are co-linear, which
is equivalent to a = 1. Consequently, C fiust be a member of .c(1).

Now, by using the pencil .c(w) or L: (w 2
), we complete the construction of Series 1.

Note that, if C(1)a is a non-singular meluber of .c(1), then 1T] (lP2
\ 4>~ 1 (C(1)a)) is

isomorphie to the free product Z/(3) *7l/(q). Indeed, since C(1)a is defined by

(X +Y + Z)a + (a - 6)XY Z = 0,

the puH-baek 4>~](C(1)(l) is defined by

(Uq+V q+ vVq)a + (a - 6)(UVvf!)q = 0,

which is of the form j3 +9q = 0. The polynoluials 1and ?i are not general by any means.
However, since the type of singulari ties of 4>~ 1 ( C(1)a) is the same as that of C3, q,1, we

have an isomorphism 1Tl(1P2 \ 4>;-1(C(1)a)):: 1T](~ \ C3 ,q,d.

§3. Construction of Series 11

It is enough to show the following:

Proposition 5. Tbe quartic surface

So FO(XI,X2,X3,X4):= (xi + x~)2 + 2X3X4(xi - x~) + x~x~ - 0

in p3 satisfies tbe assumptions (1)-(4) with p = 2 and k = 2.

Proof. The assumptions (2) and (3) can be trivially checked. To check the assulnptions
(1) and (4), we Pllt

Pt := Fo + t . X]X2XaX4,

alld calculate the partial derivatives aFt / 8x i for i = 1, ... , 4. Let Qt C p3 be the quadric
surface defined by
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It is easy to see that Qt is irreducible for all t =I=- 00. It is also easy to see that Qt is the
unique common irreducible cOluponent of thc two cubic surfaces

8Ft -0
8X 3 - ,

and

Suppose that a surface Sa = {Fa = O} in this pencil contains a non-reduced irreducible
component mT (rn 2:: 2). Then, both of 8Fa/8x3 and 8Fa /8xlj must vanish on T. Hence
T fiust coincide with Qa, and we get Sa = 2Qa. Comparing the elefining equations of Sa
and 2Qa, we see that there are no such a. Thus the asslunption (1) is satisfieel. Ta check
the assumption (4), we rcmark that the condition dün Sing Si :::; 0 is an open condition
for t. Hence it is enough to prove, for example, dim Sing S2 = O. It is easy to show that
Sing S2 consists ?f four points (1 : ±A : 0 : 0), (0 : 0 : 0 : 1) anel (0 : 0 : 1 : 0). D

References

[1] Artal Bartolo, E.: Sur 1es coup1es de Zariski, J. Alg. Geom. 3 (1994), 223 - 247
[2] Libgober, A.: Fundamental groups of tl1e comp1ements to plane singu1al' curves, Proc.

SYIUp. in Pure Math. 46 (1987), 29 - 45
[3] Nemethi, A.: On tbe fundamental group of the comp1ement of certain singular plane

curves, Math. Proc. Cambridge Philos. Soc. 102 (1987), 453 - 457
[4] Oka, M.: Synlnletric plane cW'ves witl1 nodcs and cusps, J. Math. Soc..Japan 44

(1992), 375 - 414
[5] 0 ka, M.: Two transforma tiOllS of plane curves and tl1eir fun danlcll tal groups, preprint
[6] Shünada, 1.: Fundamental groups of opcn algebraic varieties, to appeal" in Topology
[7] Shimada, 1.: A weighted version of Zariski's hyperplane section theorem and funda-

mental groups of comp1ements of plane curves, preprint
[8] Tokunaga, H.: Aremark Oll Bart010's paper, preprint
[9] Zariski, 0.: On the prob1enl of existellce of algebraic functions of two variables pos­

sessing a given branch curve, Amer. J. Math. 51 (1929), 305 - 328
[10] Zariski, 0.: A theorem Oll the Poincare group of an algebraic bypersurface, Ann.

Math. 38 (1937), 131 - 141
[11] Zariski, 0.: The topo1ogical discriminant group of aRiemann sUlface of genus p,

Amer. J. Math. 59 (1937), 335 - 358

Max-Planck-Institut für Mathematik
Got tfried-Claren-Strasse 26
53225 Bonn, Germany
shimada@mpim-bonn.mpg.de

7


