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Ta the memory Andrej Novikov

The main purpose of this paper is to prove the Lehmer famous conjecture that r(n)

is not zero for all n, where the Ramanujan function T(n) is the nth Fourier coefficient

of the cusp form &(z) of weight 12 on PSL(2)1l).

More generally, we will show: for any even weight k for which the space of cusp

forms of weight k and level 1 is non-zero, and for any n ~ 1 , there exists at last one

cusp form of weight k and level 1 (in the respect to the full modular group) whose nth

Fourier coefficient is not zero.

And furthermore) the surprising theorem will be established here: if q is a prime and

q --t +m then T
2(q) >> q9-O: for any fixed positive Cl.

So the Serre conjecture is true for the Ramanujan function T.

This last assertion is the result of the work what was beginning together with A.

Novikov. So it happened that this deal was not finished in hisllfe.

This work has a long history and it finished only in time of the inviting visit to

Max-Planck-Institut für Mathematik; I am grateful to professor F. Hirzebruch for this

invitation.

§ 1. Introduction.

Let G = PSL(2,1l) be the full modular group which acts on the upper half-plane !EI,

H = {z = x+iy Ix,y E IR) y > O} ) by z~ gz = ~t~, a, b, c, d are rational integers

with ad-bc = 1 .

We write j(g,z) = cz+d if a transformation g is defined by a matrix with second

line (c,d).
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A holomorphic function f on JE[ is called a CUBp form of the weight k with respect

to the full modular group G if

i) for g E G

f(gz) = jk(g,z)f(z)

ii) the G-invariant function yk/2 1f(z) I is bounded on H,

iii) the oth Fourier coefficient f ~f(z)dx is O.

We d~note by .Atk the space of cusp forms of the weight k; we assume that k is

an even integer and k ~ 12 ,

It is weil known that ..J(k has finite dimension; namely (see [1]):

(1.1) dim vf(k = [hJ , if k ~ 2 (mod 12) ,

= [hJ-l , when k =2 (mod 12)

where [x] is the integral part of x ,

The space ..J(k is generated by the Poincare series Pn(zjk) j by the definition,

~ k 2'(1.2) Pn(zjk) =~ 1: j- (g,z)e(ngz), e(z) = e 1I1Z ,

gEGm\G

where G .is the cyclic subgroup of G generated by the transformation z.............-+ k+1 ,
m

All these series are identically zero if k = 4,6,8,10 or 14, because dirn "'*k = 0 for

these cases, At the same time it is well known that



(1.3)
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Pn(zjk) =0

for 1 ~ n ~. dim ~k if dim vik ~ 1 .

In general the problem of the identical vanishing for these series was unsolved up to

the present' day.

The main result of this work is the following

Theorem 1. Let dim vik ~ 1 . Thenfor any n ~ 1 the Poincare senes Pn(zjk) is not

identicaUy zero.

There are other forms of this assertion. Let us denote by (fl'~) the Petersson inner

product for f1)f2 E vik :

(1.4)

Then we have the Petersson formula for arbitrary f E ~k

(1.5)

where a~n) is the n-th Fourier coefficient of the expansion

(1.6) f(z) = l a~n)e(nz), e(z) = e2riz .

n~l

H fl' .... ,f
V

) V = dim v/{k ' is an orthonormal basis of ~k then !rom (1.5) we

conclude that



(1. 7)
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v

P (z;k) = \ a.(n)f.(z), a.(n) = af (n) .
n L J J J J'

j=1

So P n == 0 is equivalent to aj(n) = 0 for all j = 1,... ,v . For this reason we have

Corollary 1. Let v = dim .Atk ~ 1 and &1 (n), ... ,av(n) are nth Fourier coelftcients 01

the base functions; then fOT any n ~ 1

(1.8)
v

l I ain) 1
2 f 0

j=1

The special case k = 12 (when dim .At12 = 1 ) givea

Corollary 2. Let T(n), n = 1,2,... , be the Ramanujan function which is defined by the

expansion

(1.9)

Then fOT aU n ~ 1 we have r(n) =F 0 and hence

(1.10) I r(n) I ~ 1 .

This corollary of the theorem 1 means that the Lehmer conjecture is true.

D. Lehmer conjectured that r(n) =F 0 ([2]) on the basis of a computer experiment;

up to now it was known that r(n) f 0 for all n ~ 214 928 639. J.-P. SeITe has given a
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deeper basis for this conjecture in his excellent work [3].

The outstanding achievement of P. Deligne ia the estimate

(1.11) I r(q) I ~ 2q11/2

for a prime q (more generally, for the Fourier coefficients of a cusp form of the weight k

what are the eigenfunctiona of the Hecke operators Deligne proved the inequality

(1.12)

k-1

la(n) I ~ n~d(n)la(1)1

where d(n) is the number of a divisor of the natural n). It is known that for a positive

proportion of the primes (Rum Murty, [4])

(1.13) 11/2I r(q) I ~ (1.189..... )q

Our theorem 1 gjves the more weak inequality (1.10) but for any individual primej

the following additional result will be proved at the end of this paper.

Theorem 2. Let q be a prime and q -1 +00 . Then for any positive E > 0 we have

(1.14)

§ 2. Preliminaries.
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2.1. The forms ofthe weight zero.

Let us denote by E(z,s) the Eisenstein-Maass series which is defined for Res> 1

and z E IH by the infinite surn

(2.1) E(z,s) = l (Im gz)s

gEG \Gm

l Ij(g,z) j-2sys

gEG \Gm

We have the weIl known way to give the analytic continuation of this series by using

the Fourier ,expansion

(2.2)

where Ks- 1/ 2(·) is the modified Hessel function of the order s-1/2, with the usual

designation for the Riernann zeta-function and gamma-function

(2.3)

and

~(s) = ~-sr(s)((2s) ,



(2.4)
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8 1/2 [I n I'J 8-1/2
T8(n) = In I - 0"1_2s(n) = l + .

dln d
d>O

May be it would useful to note: the modified Bes8el function is exponentially decreasing

when an argument islarge,

(2.5)

The main characteristic property of the Fourier coefficient8 Ts(n) of the

Eisenstein-Maass series for the full modular group is the weil known Ramanujan identity:

for Re s > 1 we have

(2.5)

where S is'the Ramanujan sum; this one ia the special case of the Kloosterman sum

S(n,m;c) ,

(2.6) S(n,m;c) = l e [~d + m~'J
(d , c) =1, dd I ::1(mod c)

d(mod c),

The Eisenstein-Maass series E(z,s) for Re s = 1/2 is the eigenfunction of the

continuous spectrum of the automorphic Laplacian.

There exists the infinite sequence
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so that for each ~. we have the non-zero G-automorphic solution u· of the equation
J J

(2.7)

with the condition

(2.8)

- y2(Ä +Ju. =~. U.
fixL. fJy J J J

1t is convenient to &Saume that the functons uj are choosen real and these ones are

the eigenfunctions of all Hecke operators T(n) and the reflection operator T_1 which are

defined by the equalities

(2.9)

(2.10)

(T(n)f)(z) = _1 1: 1: r(aa+bJ I

{D. ad=n b(mod d)
d>O

For this choice we have pi±.1) f 0 for all j ~ 1 and for any n ~ 1 the real

quantities

(2.11) t .(n) = (p.(I))-lp.(n) = (p.(_I))-1 p.(-n)
J J J J J

are the eigenvalues of the Hecke operator T(n) . As a consequence we have for all integers

n,m ~ 1
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(2.12)

The similar notations we shall use for the eigenvalues of the Hecke operators in the

space of a cusp form of the integer even weight t.

If the base functions fl' ... ,f
llt

, IIt = dim .At t ' are the Hecke basis then their

Fourier coeffcients a· t (n) are connected with the eigenvalues t. t (n) of the n-th
J, J,

Hecke operator by the relations

(2.13)

2.2. The trace formulas.

Now the bilinear form of the eigenvalues of the Hecke operators is expressed in terms

of the SUffi of Kloosterman sums; it is essential for our proof. We have the following

identity ( [5], [6], [7]; .sometimes it ia called "the Kuznetsov trace formula").

Theorem 3 (1). Let ep EC3(O,m), CP(O) = ep' (0) = 0 anti

Irp(x) I + Iep' (x) I + Iepl1(x) I = =(x-B) for some positive B > 2 if x -+ +m . Let

S(n,m;c) be the Kloostennan sum

(2.14) S(n,m;c) = 1: t [na~md] ,c ~ 1 .
ad::l(mod c)
d(mod c)

Then fOT all n,m ~ 1 we haue
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(2.15)

(])

- 1: 1 f h (r)- o. t .(n)t .(m)h(x:.) + - T1/ 2+· (n)T1/ 2+· (m) 2 dr
j~l J J J J r --m Ir Ir I ((1+2ir) I

+ l
t>12
t- == O(mod 2)

Vt

ht l aj,ttj,t(n)tj,t(m) ,
j=l

where the nonnalizing coefficients a.) Q. l are defined by the equalities
J J,

(2.16)

(2.17)

and the function h(r) and the coefftcients ht are defined by the integral trans/orms (with

the standard notations for the Bessel functions)

(2.18)

(2.19)

(])

L( ) = MT) f (J2ir(x) -J_2ir(x))<p(x) ~ I

o

(XI

ht = i
t f J t_l(X)<p(x)~

o

1t will be usefullater to refonnulate thiB theorem when the weight function in the

biliner form of the quantities t .(n) is considered as a given. .
J
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Theorem 3 (2). Let h(r) be a reflUlar even function in the strip IIm r I ~!J. for some

A > 1/2 and Ih(r) I « Ir I-B for some B > 2 when r --t m in this strip. Then for

any n,m ~ 1 we have

(2.20)

where for x > 0

(2.21)

\ o.t .(n)t .(m)h{IC.) +
L) JJ J J. 1J_

m

1 J ( ) () h (r) dr -
+ T -1Il T H2+> n T 1/2+ir m I ((l+2ir) 12 -

o m
= ut( J r th( n)h(r)dr + l ~ S(u,mjc)cp [4l1"t um]

r -m c~1

m

qx) = ~J (J2ir(x) -J_2ir(x)) ~~(~) dr
-m

§ 3. The initial identity.

Now we shall consider the following integral of the Rankin type in which three

automorphic functions occur:

(3.1) A~s,N) = r yk{(z) PN(z,k) E(z,s)dJl(z) ,
G\N
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where fE .Atk' k ~ 4 is the fixed integer and N is a positive integer; G is written

instead of r 0(1) .

Because ea.ch cusp form decreases exponentially when Im z --+ +CD and

IE(z,s) I «ymax(Re s,1-Re s) ,

the integral (3.1) convergea for all fixed s E ( .

There are two different ways to calculate this integral since both PN and E have a

representation as a sum over the group.

If the definition (1.2) will be used then one can go to the next expression for Af :

(3.2) r( k-a!1 A~s,N) = l r ykf(z)(j-k(g,z)e(Ngz))E(z,s)dp
(4rN) gEG \G G\H

CD

(because of the absolute convergence in (1.2) for k ~ 4 )

= L J ykf(z) eeNZJ E(z,s) d~(z)
gEGm\G g(G\H)

(since f(gz) = jk(g,z)f(z), E(gz,s) = E(z,s) and dp(z) is G-invariant measure)

m 1

= JJy f( ) €(f0 E(z,s) dxgy

o 0 y

(it is a consequence of the fact that U g(G\H) is a fundamental domain of G
gEG \G ro

• CD

which may be choosen as the strip 0 ~ x < 1, Y> 0 ).
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After replacing f and E by their Fourier expansions we obtain in this way the first

expression for A~s,N) , containing the integer N as an additive variable,

(3.3) Als N) - 1 {[l.'(k-1+S) ~(s) + r( k-s) W--s)J a(N) +
1'"' - r(k-l){(s) L-(41rN) s (41rN)1-S

ThiB equality holds for all s E 4: for which the series on the right side is convergent.

Another w~y is to da the same using (2.1) instead of (1.2) and replacing P N by the

corresponding expansion (1.9) over the base functions in .Atk .

In this way one gets the equality

(3.4)

where for Re s > 1

(3.5)

and for all 5 E ( we have for these Rankin series

(3.6) IX) 1 -2 { kR. k(s) ='(k-l+s ) Ia. k(l) I y fr: E(z,s)dJl(z)J, J, J
G H .
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Now in (3.4) the integer N ia the argument of a multiplicative function only. One

can look in the tables of the integral transfortDs ( [8] , eh. 10, (23); this equality may be

eheeked easily by the eomparison of the differential equations for the left and right sides)

to see that for Re( a+1) > 0

(3.7)
m

f e-OYKS_l/Z(y)yk....:J/Zdy =

o

= ['K'J 2 2 r(k-1+S~f(k-ll) F(k-l+s s.k.a-l)
~ (a+1)k-l+S r (k ' "a+l )

where F is the Gauss hypergeometrie funetion.

It follows from this equality that the series on the right side (3.3) converges

absolutely when

(3.8) 3/2 - k/2 < Re s < k/2 -1/2

(this strip is not empty if k > 2 ).

In connection with (3.7) it will be usefullater to introduce the funetion

and take into aceount that for

e= e (N) = log ß + {N
n 1{Il-YNI

we have
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th
2

U2 = n+: In-:~,n+ + n-

Then the result of our calculations of the integral A~s,N) on two ways is the

following i~.itial identity.

Lemma 3.1. Let k be an even integer with k ~ 4, N is a positive integer. Then for any

fE .J(k and s E 4: satisfying 1Re s - 1/21 < k/2-1 we have

(3.10)

where

(3.11)

m

1: (nN)-1/4t(n)Ts(n-N)~ en(N),s) =
n=l
n+N

= -r(k)t(N){ {( s) + (t1- S ) } +
(41rN) sr(k-s) (4,...N) -8r (k-1+s)

Vk
+ r(k)r(k-l) {(s) \ t.(N) 1a. (1) 12R. (8)

(411l'-1+sr (k-fi) j~l j j,k j,k

and e(s), R. k(s) are defined by (2.3), (3.5).J,

Now t.he following simple philosophy underlies of trus work. If we want to know

whether the quantities tj(q) are zero for a fixed q, then we can use the fact that there
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are two free variables in the identity of Lemma 3.1.

Let us consider the simplest case when lIk = 1 (k = 12 , for example) so there is

one arithmetical quantity t(N) in the right side of (3.10). We are writing mq instead of

N in (3.10); then t(N) = t(n)t(q) for m which will be coprime with q. After this we

shall construct same average over two free variables sand m ((m,q) = 1) .

A common principle is "an average can be estimated more precisely than an

individual" .

For this reason we can hope that the result of a reasonable averaging in the left side

will be near to the true order. At the same time the average in the right side is

proportional to the quantity t(q) .

Now we have the inequality

(3.12) (average on the left aide)« It(q) I · (average on the right side) .

If the estimate on the left is non-trivial (and non-zero f<?r this reason) then we

immediately have t(q) f 0 .

If we have also a reasonable estimate on the right then we shall be able to give a

non-triviallower estimate for the quantity It(q) I of the kind It(q) I ~ tO(q) with same

increasing function tO '

§ 4. The preparation to the averaging.

To avoid same difficulties for the terms with large "n" in the left side (3.10) we

shall rewrite this identity. The aim is to replace the SUffi over n» N by the linear form

of the eigenvalues of the N-th Hecke operator.
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4.1. The certain Rankin senes.

To express the result we shall introduce some new notations. First of all we shall

consider the family of the Rankin series

(4.1)
m

Rj(s) = l n-Ilt (n)tj(n); Re s > 1 ,

n=l

where t(n), n = 1,2,... J are the same normalized Fourier coefiicients of the fixed

(non~ero) cusp form as in (3.10) and tj(n) are connected with the Fourier coefficients of

j-th eingenfunction by (2.14).

Further let R. Cl be the similar Rankin seriesJ,-t.

(4.2)
m

R. t(s) = 1: n-6 t (n)t. t(n), Re s > 1J, J,
n=l

which is associated with a regular cusp form of the weight t.

The same symbols R
J
., R. t we shall use for the analytical continuation of these

J,

functions in the half plane Re s ~ 1 .

Ta do the analytical continuation we introduce the Eisenstein-Maass series with the

Hecke character; for Re s > 1 and zEH it is the sum

(4.3) Em(z,s) = 1: e-irn arg j(g,z)(Im gz)s

gEG \Gm

8 \ .-rn() 1'( )1-2s+m= y L J g,z J g,z

gEG \Gm
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We shall assurne that m is an even integer; then we have the Fourier expansion

(4.4) Ir--B ((2s)r(s + ]!-)Em(z,s) = .

-m m Ts(n)
+ i 1: -n- e(nx)Wm/ 2,1/2-5(4rny) +

n=l vn

m m Ts(n) r(s+~)
+i- l --e(-nx) W_ /21/2--s(4rny)

n=l vn r(s - ]!) m,

where W is the Whittaker function. This Fourier expansion gives the meromorphic
J1.,V

continuation for E on the whole s-plane; furthermore, as the consequence of them

Kummer relation

(4.5)

we have tht: functional equation

(4.6)

for the function

(4.7)

* *Em(z,s) = Em(z,l--s), m E 71, m == O(mod 2) I
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Now for the first Rankin series (4.1) we have the representation

(4.8)
r(k-l )r(k-l ')2 +s+X:j 2 +s-;"y -28

k-l k/ 2-1 (2~) PJ·(l) ä{I) RJ.(s) =
2 ~ r(k/2+ s)

where fE .,.tk . Finally it follows !rom (4.8) that Rls) has a meromorphic continuation

on the whole s-plane and further: the function

(4.9)

aatisfies to the functional equation

(4.10) * *R .(a) = R .(1~)
J J

The similar functional equation we have for the Rankin series (4.2); for this case for

fj E .4 f..' fE .4k we have

(4.11)

t.+k
---r+1~ t+k

(4~) r (--r +s-l) a. i.(1) a( 1) R. .e.(s) =J, J,

Hence the functional equation is satisfied



(4.12)

where

(4.13)
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* *R. t(s) = R
J
. t(l-S) ,J, ,

The functional equations (4.10) and (4.12) are well known for the Rankin series so

there is no need to add the details.

4.2. The Hecke senes.

In the special case when the quantities tj(n) in the definition (2.7) are replaced by

the Fourier coefficients of the Eisenstein series this Rankin series may be expressed as the

product two Hecke series. Namely, we have

(4.14)
m T (n)t(n)
1: v s =~ H(s+v-1/2)H(s-v+1/2)

nn=l

m

if Re s > 1.+ IRe(v-1/2) I . Here H(s) = 1: n-St(n) i this identity is another form of

n=l

the multiplicative relations

(4.15) t(n)t(m) = l t~J
d I(n,m)

Note that H(s) is the entire function in s.
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4.3. One cO,,!volution formwa.

Theorem 4.- Let ~ E Coo(O,oo) with a bounded support and t(x) :: 0 for x ~ 1+6 for

some 0> 0 . Then tor every N ~ 1 and Re 8 = 1/2 we have

(4.16)

00

1'( ){ ~ ()R ( )h( ) 1 J H( s+ i r )H(5-i r) ( ) ( )= \ 2s L O'J.t. N J. S "'.,5 + - 2 T 1/ 2+· N h r,s dr +.> J J 1(' 1((1+2ir)1 1IJ_l -G)

V t
+ 1: ht (6) 1: aj,ttj,t(N)Rj,t(s)}

t>12 j=1
t::Ofmod 2)

where R. and R. t are defined by (4.9) and (4.13), the function h is defined by the
J J,

integral transform

00

4 1) mr,s) = Lh n)(Ul-Zs Jy-lj4*(y){rtfj >Hp, )+ dy

1

with

(4.18)v(YjS,~) = yk/2-1/4(y_l)S-I/2r (1_2S)F(!? +s+ir,!? +s-ir;2sjl-y) ,

(4.19) A(s,r) = r(!? +S+ir)r(!? +s-ir) .
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The coefficients ht (s) are defined by the integrals

r( t+k )r(t-k ) 00
1 1-2s ----r- -1+s 2 +s f -1/4

(4.20) ht(s) = 2" sin(n)· (21')· I'(t) Y CI(y)vt(y,s)dy

1

where

4.4. The proof of the convolution formula.

Ta prove the identity (4.16) we shall use the Ramanujan identity (2.5) (note again 

this representation for the Fourier coefficients of the Eisenstein series is a pecularity of the

full modular group) and the following summation fonnula from [9].

Theorem 5.· Let cp: [0,(1)) ---i ( be a Coo-junction with a bounded support and

k-l
t(n)· n2, n = 1,2,... , are the Fourier coefficients of a c'USp form /rom .At'k . Then for

every integer c ~ 1 and any a which is relatively prime to c we have

(4.22)
00 k 00

1: t(n)e(~a)<p(n) = 4~ 1: t(n)e(- n~' )t(4/ff)
n=1 n=1

where a' ia defined by the congruence

aa' =1 (mod c)
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and for x > °

(4.23)

(I)

t(x) = JJk- 1(xy}lp(y2)y dy
o

It is useful to note an immediate consequence of (4.22). There is the possibility to

express the .SUffi of the Ramanujan sums in terms of the Kloosterman sums:

m k (I)

(4.24) Lt(n)S(O,n-N;c)cp(n) = 4~ L t(n)S(n,Njc)t(4~p)
n=1 n=l

The conditions of Theorem 5 are not necess&ry, of coursej for the practical using

(4.22) it is sufficient to know that both series on the left and right sides are convergent

absolutely. Now for an arbitrary "good" function ~ we have for Re s > 1 :

(4.25)

(I)

l t(n)Ts(n-N)~(N) =

n=l

= ((2s) 1: -k (1: t(n)S(O,n-Njc)(n-N)S-1/2t (N)) .
c~1 c n~l

Using (4.24) for the inner SUffi we corne to the double series with the terms

(4.26) ik •(411'")1-2s. if!. t(n) • S(nbN;c) ·
n

(J)

· }sJJk_l(xvY)(Y-lt-l/2t(y)dy, x = 4rf!N .
1
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For any fixed B ~ 2 the last integral ie O(x-B} when x~ +m (it is the result of

the multiple integration by parts because it was assumed t == 0 in some neighbourhood of

-B
1). Further,· if for y large we have I(y} « y 1 with a sufficiently large B1 then this

B
integral is O(x 2}, B2 = min(2Bl -3/2,k-1+2Re s} when x ----+ 0 .

So the double series is absolutely convergent and, furthermore, for k ~ 4 and

Re s > 1 the conditions of the theorem 3(1} are fullfilled for the function

(4.27)

m

~(x) = x28 f Jk_1(X{y)(y-l)B-l/2t (y)dy

1

For this reason all series on the right side (2.18) (with the function (4.27) instead of

cp } will be convergent for Re s > 1 .

So for Re s > 1 we can write the expression on the right side (4.16) in the form

(4.28)

where tl(r,~} and ilt(s) are defined by the integral transformations (2.21) and (2.22)

with cp replaced by the function ., from (4.27).
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The result of the summation over n ~ 1 for Re B > 1 is expressed in the terms of

the corresponding Rankin series (the definitions (4.1), (4.2) and the identity (4.14)).

1t rest.s to calculate the coefficients t(r,s) and tt(s) and to see that our identity

may be continued in the strip 0 < Re 8 5 1 .

What. will be the result of the integral transformation

m

A( ,) = &n) f (JS (x .,\ ~
o

we can obtain by the following manner.

For the case when t E Cm(O,ro) has a bounded support the function t(· jS) is the

regular function of s in the half-plane 1 - ~ < Re s .

There is the strip 1 - ~ < Re 8 < ~ where we can integrate over x nnder the sign of

the integration over y (after the replacement of ~ by its definition (4.27)).

The inner integral is the well known Weber-SchafheitIin integralj for any positive

numbers O. < a< b and for -1 < Re p < Re(v+p+1) we have

(4.29)

lDf J j'(ax)J)bx)x-Pdx =
o

with C = JL+1, A = ~1+v+p-p, B = ~l+p-ZJ-p) .

As a special case we have now

(4.30)
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~ik+1 1-28 r (~ +s+ i r)
- • (271'") • •
- 4sh( 7I'"r) r( 1+2i r)r(!.t! -s-ir)

(I)·f y-1/2-ir(1 ~)8-1/2F(~+8+irJ~+s+ir;1+2irJ) ·
1

· t(y)dy + {the same with r...-.-..... -r} .

By the same way we come to the formula (4.20) for the coefficients in the sum over

the regular cusp forms.

From the representations (4.30) and (4.20) it is clear that h(·,s) and ht (s ) are

regular in Re s ~ 0 .

Furth~rmore, we can integrate any times by parts; it gives the estimate

Ih(r,s) I « II I-B fOI any fixed B when r ---+ :I:: m and s is a fixed with Re s ~ 0 .

So the sums over the discrete and the continuous spectrum are convergent.

The same is true for the sum over cusp forms because hl are exponentially small

when l---+ m since ~(y) == 0 for y ~ 1+6 with a positive 6.

It is convenient to have two representations for the coefficients h(r,s) . The first is

(4.30) and the second one is given in (4.17). It follows from (4.-30) with the help of the

Kummer relations ([8]) the relation between ul' u2 and u6 ia the subsection 2.9) and

the simple relation F(A,BiC;Z) = (l-z)-AF(A,C-BiCjZ~l) which follows from the Gauss

integral representation for the hypergeometric function.

4.5. The truncation on the Zeft side 0/ the initial identity.

For ~any cases it will be convenient to use the smoothed (by a special manner)
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characteristic function of a given interval.

Let a and b be real numbers and a < b . We define the function

wa b(x) E CCD(-m,CD) supposing,

(4.31) Wa,b(x) = 0, -iD < X ~ a ,

= 1, a + !Tsx ~ b -!T )
= 0, x ~ b .

We assune wa,b be a monotonic in (-<Jl, a}b) and in (~, w) and for all x

o~ wa,b(x) ~ 1 .

Further, for a given wa b we define,

x CD

(4.32) 71a,b(x) = ca,b f wa,b(y)dy, ca,b = (f Wa,b(y)dy)-l ,
~ -iD

so this function from COJ
( -tD)OJ) ia a smoothed "steplI: 11a b(x) :: 0 for x ~ a and,

17a b(x) == 1 if x ~ b .,
Let &, b with 0 < & < b be the fixed positive numbers and T is a large parameter

(the suitable value for T will be choosen later as a reault of the certain estimates).

We write the sum on the left side (3.10) in the form

with



-28-

(4.34)

The first sum in (4.33) is the truncated initial sum; for any given T > 1 it is finite.

The second. sum ZN,T will be expressed with the help of the convolution formula (4.16) in

the form which will be convenient for the estimates.

Lemma 4.1. For any positive a < band for T with T > 1 we have for Re s = 1/2

(4.35)

1 fOO ((2s) Hj ( s +ir)H .(s--ir)
+ - ~ Tl/2+ir(N)hT(r,s)dr +". I ((1+ 2ir) I-m

where the same notations are used as in (4.16) and hT(r,s), hT f.,(s) are the coefficients,
(4.17), (4.20) with t replaced by the function

(4.36) Ai. ( ) -1/4 (x)JJl 6+1 )
'J!' x;s = x '7a b T "" og ,s.

, {i-I

Later we shall write 1'J(x) instead of "a b ; the parameter T will be choosen closed,
to L.
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§ 5. The identity with an arbitrary function.

What is a llfitting lt averaging? We can integrate (3.10) over s after multiplication

by an arbitiary function. This function we choose as the Fourier transformation in the

following sense.

Let cp E CQ)(O,m) be a function with a bounded support; then we define cp by the

equality

(5.1)
m

~s) = J9l(y,s)cP(y)dy
o

( 1/J(. ,s) is the same what occurs in (3.10)).

Indeed f/J(. ,s) ia the eigenfunction of the singular boundary problem

(5.2)

with the condition

(5.3)

2 2-9 + (k-1~ -1/4 ,= -{S-1/2)2t/J
d{ sh {

when e--t 0 . When {--t +00, Re s = 1/2 , then

Of course both equalities (5.3) and (5.4) are the consequence of the explicit form
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(3.9): the first ia evident and the second follows after nsing the Kummer relation whieh

links hypergeometrie function of argument z with the functions of argument 1-z.

Now for any arbitrary cp E Cm(O,m) with bounded support the following expansion

holds - anq. this fact ia the true reason for considering the transformation (5.1) -

(5.5) cp(x) = J .xx,s)eP<s)dX(s)
(1/2)

where f denotes the integral over the line Re s = a and the spectral measure dX· is
(a)

(5.6)

so that

(5.7)

dX(s) = S-1~2 cos(n)r(k+s-1)r(k-s)ds
2i ~r (k)

We do not need to prove (5.5) because this equality is a slightly modified form of the

known theorem (see [10], eh. 4, section 4.16).

Ta integrate the terms of the SUffi on the left side of (3.10) we have to calculate the

integral

(5.8) U(e,Tj<p) = J .x e,s)e(1/2--B)TeP<s)dX(s)

(1/2)

This integral arosed because
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Note that

(5.10)

-31-

(s-1/2)r d [I n I'J
rs(n) = 1: e n, , T n,d = log +

dln d

so that we have together with (5.8)

(5.11) U(e,T;!p) = I ~eJs)ch(S-1/2)T)~s)dx(s) .
(1/2)

Taking in account the differential equation for , and the representation (5.11) we

see that u, ia the solution of the Cauchy problem

(5.12)

with the initial conditiona

(5.13) Duu({,O;cp) = cp({) , ~{,O;cp) = 0 .

This observation is essential becauae there ia a second way to find the same solution

besides the representation (5.8). It ia sufficient for this to know the Riemann function for

the problem (5.12) (in other words - to know the fundamental solution or the Green

function). '

It ia possible to find the explicit form of the Riemann function for our Cauchy

problem. Let UB define
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( ) eh{ lixehl, Üz e,XjT = 8 8 .

Then we have (it is the result of the direct differentiation):

Proposition 5.1.

(5.15)

(5.16)

2 2
[8z] _[8z] = _ z(l-z)
7T( 7fT ~

2 2o z 0 z 2z-1
oe2 - 8T2 = sh2e .

Consequently there is a solution of the equation (5.12) in the form

u = W{z{e,xjr))

since the same denominator sh2ewill occur for all terms.

Proposition 5.2. The differential identity holds:

(5.17)

2 2 2 2 2
= [[8z] _[8z] JW II + [8 z_8z] W' _(k-1) -1/4 W
~ 7fT 8{2 8r2 sh2e

= -~ {Z(l--z)WII + (1-2z)W' + «k-l)2_1/4)W}, '=~ .
sh {

In other words, by our substitution (5.14) we have reduced the partial differential
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equation (5.12) to an ordinary one.

ln our case when k is the even integer we shall define for all z ~ 0

(5.18) W(z) = ~ 1 im {F(3/2-k,k-l/2;1;Z+iE)+F(3/2-k~k-1/2jl;Z-iE)}
E-+O

Since F(a,b;cjz) is the solution of the differential equation

(5.19) z(l-z)F" + (c-{a+b+l)z)F' - abF = 0

the function W(z) turns the differential expression (5.12) into zero.

For z > 1 aB the result of an analytical continuation to both sides of the cut (l,+CD)

we have

Proposition 5.3. For an positive z > 1

(5.20)
2

W(z) = r ;k-1i z-k 12p(k-l/2 k-l/2'2k-1'!)'l"r 2k- ) " IZ

Finallyat z = 1 the function W has the logarithmical singularity,

. (5.21) W(z) = +~ log 11--2 1+~ [Hk-1/2) - H1)J +

1+ O( Iz-l l1og -rz=rr) .

Note that z = 1 corresponds to the lines

x+{:l:r=O
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on the plane (~, r) and z = 0 if

x-({:l:r)=O.

Now with this function W(z(e~,r)) we have

Lemma 5.1. The solution ofthe Cauchy problem (5.12)-{5.13) is given by the formulae

(5.22)

(5.23)

{+r
+ i f w' (z( ~,X;T)) Blie

h;hX <p(x)dx if ~ ~ T ~ 0 ,

!-r

e+r
+ i f W'(Z(~,X;T)) adh;hX <p(x)dx if T ~ ~ > 0 ,

o

where f is Cav.chy' 8 principal valv.e,

e+r r-}-E ~+r

f = 1im [J + J ] '
o E-tQ + 0 r-e-E

and z( e,x;r) is defined by (5.14).

We have two representations for the same solution of the Cauchy problem; UBing the
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first (it is averaging over 8) we have the following identity with an arbitrary function.

Lemma 5.2. Let cp E Cal(O,m) be an arbitrary /unction with a bounded support which 19

separated /rom zero. Then for any integer N ~ 1 and for sufficiently large T > 1 we have

al

(5.24) 1: (nN)-1/4(1-1J(*'r))t(n) 1: u( ~n(N), Tn-N d;CP) +,
n=l dl(n-N)
ntN

+ J ZN,T(s)~s)dx(s) =
(1/2)

= na{N) J [ [ )ffZs) +-)iZ s) ] ~s)dX(s) +
(1/2) (2~{"N) r(k-s) (2~{"N) r(k-1+s)

Vk

+ unk 1) LjLtj (NJ J (hP )kif R k '
j =1 (1/2)

'"
where cP is defined by (5.1), ~n(N) and Tm d are defined by the equalities,

{ (N) = log {U + iN J T = log Im I
n Ivn-{Nj m,d ~

and other designations as in Lemma 9.1.
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§ 6. The av~ragingover two free integer variables.

6.1. Why there is a need for a new averaging.

First of all we shall consider the following idea (which is ideal but idle).

Let cp € be a model of the Dira.c 6-function: the support of rp € ia (xO-E ,xo+E)

and fcp € (x)dx = 1 for all € > 0 . When € --+ 0 we have I i m € cp (x) = 0 if x:f Xo€-tO €

and 1im € cp (xO) = C :f 0 where C is the normalizing constant. For this reason for
E-tO E €

- { + T f Xo we have

1i m € u( { ,T; cp ) = ~ C
€-iO €

if ~ + T = Xo or {- T = Xo.

Suppoae now that we could da the passage to the limit E -t 0 under the summation

sign (namely, this possibility ia an idle idea). Then we have

(6.1)

= ~ C l n-1/4t (n)

{n (N)%T n-N d=xO,
d I (n-N) I nfN
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Let us choose

where L > N and NL is not a perfect square. For this case the equation

which is the same as

log [ ß + iN · Jnd2N LJ = 2 log {il aiN = 2 log({L + {N)
I{li-{NI

or

{D. = d{L + (d-l){N

has the unique integer solution

(n,d) = (L,1) ,

(because this equation means that n = (integer) + 2d(d-l){NL and LN ia not a full

square). By the same manner we have



-38-

if and only if (n,d) = (L, IN-L I) . At the same time the equation

or, equivalently,

1ll = dy'L + (d+l){N ,

has no integer solution (n,d).

The sum on the left side (5.24) is a multiple to t(N) if dim .J(k = 1 (see (5.24)

with T = CD ); if the quantity t(N) is zero then the result of the passage to the limit

E ---i 0 will be zero also. So we would have t(L) = 0 if NL is not a perfect square. If N

itself is not a perfect square (if N is prime, for example) then" this conclusion is the

contradiction.

There is no need to consider the case when N is a full square because the idea to do

the passage under the summation sign fails. The reason - the nonuniform convergence of

the series when E tends to zero.

To av~id this difficulty we need stronger methods. We shall see that for the case of

the full modu1ar group the double averaging will be sufficient.

6.2. The Averaging over two free integer variables.

Let q > 1 be a fixed integer number.

Ta prove the Poincare series P q(zjk) is not the identical zero we shall average the

identity (5.24) over two integer variables by the following manner.

We suppose N = mq with (m,q) = 1 in (5.24) and we take in tms identity the

function tp as a model of the Dirac delta-function with the small support (XO-E I xo+E)
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where for the new integer variable 1I the point Xo is defined by the equality

For t~e more definiteness we assume in (5.24) <p(x) = cp€(x-xo) where

(6.3)

= 0 ,

lyl < € ,

with the normalizing constant C !rom the condition JI{J /y)dy = 1 ,80

1

C = ( Jexp(-{l-i)-l)dy)-l .
-1

Furthermore, let !Va b be the same function what was used for the definition of the,
function ZN T in (4.34).,

Assuming in (5.24)

N = mq, cp(x) = cp€(x-xo(mq,lI)), Xo= 2 log((V + Vmq) ,

we shall consider the double average of both sides

= {the same double average on the right side (5.24)} .

Here M and L are the suitable large parameters which will be choosen as certain
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functions in E, al'bl'a2,b2 are certain fixed positive numbers. The main conditions for

the parameter M, L are

(6.5)

(6.6)

2L,M --+ m, M = o(L)) f L --+ 0

For more definiteness we fixe the small positive numbers 02 > 01 > 0 and define

-2+°1 -2+°2L=f M=f

The parameter Q = (f2L)-1) Q ---t +m )will be connected with q later; it will be

assumed q4+a« Q for any fixed positive a.

The multiplier t(v) is introduced in (6.4) to increase the separating effect which

occurs initially by the specialization of the function rp f (the coefficient before t(n) is

large if cp is replaced by cP f !rom (6.3) and n is near to v). After the summation aver

v in the lang interval this effect will be better because of the essentially different estimates

(when L --+ +m ) for the sums

l t
2(v)W(v) and l i(V)t(V+vO)W(v), vo*0 ,

v

with a cert~n smoothed characteristic function of the interval (L,2L).

Unfortunately I know only one way to show that the left side in (6.4) ia not zero. Trus

way is to give a kind of an asymptotic formula for tbis quantity when f tends to zero and

at the same time L, M tend to Q) in the manner specified above.

We must remember that function cp in our identity depends .on m and v j to

express tbis fact we set for cp = cp €(x-2 log({V + Vmq))
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v (n,djmq,v) = u(log ß + {"iiiq ,Ilog Jn-2q LI; f{) ) •

€ I{il - Vmq I d f

Furthermore u( e, TjC{J) is the even function of T. For this reason the SUffi over

divisors of (n-mq) may be written as

1: V€(n,d;mq,v) = 2

d I(n-mq)

(6.8)
\ I
l V f(n,d;mq,v)

d I(n-mq)

1~d~ VTJi=iiiCiT

I

where 1: .means that the t~rm with d = vrn=m<IT is to be counted with multiplicity

1/2 because Vf is invariant under d -+ Jnämq L.
Now we can write the sum on the left side of (6.4) in the form

(6.9)

where with the notation

1: + J 1: (s)dX(s)
1 (1/2) 2

the SUffi l' is equal to
1

(6.11) 1: = 2 1: 1:1: nM L(n,mq,v)t(v)t(n) 1: V f(n,djmq,v)

1 (m,q)=1 l/ n ' dl(n-mq)

1~d~fTil=illiiT

...
and where l2 is the same average of the function 'P • Zmq I
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2 (s) =
2

In the last equality f{J f is the Fourier transform of our function f{J f '

m

(6.13) ~E(Sjxa) = Jtl(y,s)cpE(y-xa)dy, Xo = 2 log(v'II + v' mq) .
o .

§ 7. The main part of the sum. 1: .
1

7.1. The non-zero terms in the sumo

The presence of the multiplier 0M L in the terms of the surn 1: means these
, 1

terms are not zeroes only for

(7.1) mq :::: M, l/:::: L, n << MT .

Let us write, for the brevity, e and T instead of en(N) and T n-N d . As it,
follows !rom the representations (5.22) and (5.23) in the case where r.p = r.p€(x-xo) we

have

(7.2) vf(n,d;mq,lI) = 0
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if e+ T ~ XO-f = 210g({V + {N)-f . So the terms of our suro are not zeroes only for

(7.3)

here d is a divisor of In-N I . Since N = o(L) we have for non-zero terms

(7.4)

In particularJ for non-zero terms of our SUID we have

(7.5)

For non-zero terms oI the sunt 1: we have
. 1

and at the same time

Jn2N L '
Tn-N,d = log d »log L .

So e ia a sroall quantity in the compariaon with T and the representation (5.23)

must be used.
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7.2. The main part ofthe sum 1: .
1

In the accordance with the forroula (5.23) for u we subdivide the sum 1: onto two
1

subsums

(7.6)

where' . contains the terms with cP ({+T-Xr.) for d = 1L 10 € u,

rest (so l contains the terms with cPE for d ~ 2 also).
1,1

For the sum 1: we have
1,0

and 1: contains the
1,1

{ = { (mq) = log ß + {1ii(i , T = Tn-mq,l = log In-mq I
n I{il- vmql

Since cPE(X) f 0 only for Ix I ~ € the region of the summation for this SUffi 1:
1,0

is defined by the condition

(7.7)

(7.8)

It means that for these terms

Iv-n I << E V << € L .

Now we replace n by v+n where the new variable n is an integer with

In I << EL and after this the suro l has the form
1,0
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(7.9)

+}: }:}: 0M,L(n+lI,mq,lI)t(lI)t(lI+n)cpE(21og i lI+n + .y=mq)
(m,q)=1 In I<4fL l/ VV + rrnq

n~O

=l + l
1,0,0 1,0,1

where 1: (1: )is the first (the second) sum on the right side. For the first sum
1,0,0 1,0,1

the following asymptotic formula holds.

Lemma 7.1. Under our assumption3 for the parameters we have the asymptotic equality

(7.10)
3/4 3/4 1/4

\ = C (ML) + °[M L exp(-c (log L)3/5J
L 100 k,q f f 0, , .

where with the notation rk for the residue at 8 = 1 0f the Rankin senes

R(s) = l n-Bt 2(n) I with C from (6.3) we have

n~1

(7.11)

m m

Ck q = Cq rk[n(l - _pI)] Jwa b (x)x-1/4dx · Jw
L

b (y)y-1/2dy ,
, p Iq 0 l' 1 ° --z' 2

and Co is a fixed positive constant.

Firstly we write the Mellin integral
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(7.12)

where J.denotes the integral over the line Re p = a and

(a)

(7.13)
CD

fl(lI,p) =J~,L(II,N,II)NP-ldN
o

For l/::::: L the function n(l/,p) is an entire function in p and for any fixed value

Re p = Q and for any fixed B > 2 we have

(7.14)

when Ip I ---t Q), Re P = a .

Since"

In(lI,p) I «Ma-1/4 1p I-B

1: _1_ = _1 TI {1 __1 )((p)
(m,q)=1 (mq)p qP p Iq pP

and there ia the unique pole of this function at P = 1 with the residue .!. TI (1 _.!.) we
q pi q p

have for any B > 2

(7.15) l nM L(II,mq,lI) = ijTI (1 - !.)fl(II,I) + 0[~] BM-1/ 4)
(m,q)=1 ' p Iq p

(it ia obvioua that TI p ~ q ).
" plq
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After·lhis we wrile

fI(v,l) =JrJÖ(s)v-Bds
(Q)

and

(7.16) 2 1 J...l 1 (v)f1(v,1) =~ Cl(s)R(s)dB, Q > 1 .
v (Q)

...
Here O(s) is the entire function in s, for any B > 2 we have

(7.17)

when Is I ---1 Q) and Re s = Q • Further, R(s) has the simple pole at s = 1 (with the

residue rk ), the function (s-1)((2s)R(s) is the regular one for Re s > 0 . It is known

that ((s) has no zeroes for Re s > 1/2 and IIm si 513 -10.5 and for IIm s I ~ 13 0 105

there is no zeroes in (J' ~ 1 - co(1og It 1)-2/3, s = (J' + it , for same constant cO' Since for

10(8) I we have the estimate (7.17) our assertion (7.10) folIows.

7.3. The convolution of the Fourier coefficients of a cu.sp fONn

Let fE .Atk be the cusp form of the even integer weight k ~ 12 in the respect to

the full modular group and a(v), v = 1,2,... , are the Fourier coefficients of this cups

form.

We consider the series (it is some kind of the convolution)



(7.18)
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m

l t( 11) t( lI+n) '(11)
v:=1

where t(lI) = lI-(k-1)/2a(lI) and t is an arbitrary "good lt function; the explicit form

will be given for this convolution. Slightly other way for the estimates of the similar sums

was proposed by A. Good [11].

To formulate the result we shall introduce some notations. Let uj be j-th

eigenfunction of the automorphic Laplacian (as in the subsection 2.1); for j ~ 1 we define

the quantities i. by the equality
J

(7.19)

Further, for the given t E Cm(O,m) and for any positive integer n ~ 1 we define the

integral transform t ~ hn :

(7.20)

m

hn(r) =Jt(nsh2({/2»(W({,r) + W({,-r»(8li( d{ I

S

where with the standard notation for the Gauss hypergeometri.c function the kernel is

defined by the equality

(7.21) W({ ) - 2-1/2rp/2+ir~r~3/2-k+ir)
,r - 1 th n) 1'( + 1r )

(th {/2)3/2-k(ch ~/2)-2irF(1/2+ir,3/2-k+ir;1+2ir;(ch~/2)-2)

FurthermoJ;'e, let R(s) be the Rankin series for our cusp form f,
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(J)

R(s) = l n--s It 2(n) I , Re s > 1 ,

n=l

6(r) = r~k-1L2+ir)R(lL2+ir) .
~ lrr( 1/ 2-i r) ((1-2ir)

Theorem 6. Let t E C(I)(O,(I)) be a function with a bou.nded su.pport. Then for any positive

integer n ~ 1

(7.23)

(I)

1: t(v) t(v+n) I(v) =

v=l

(I)

= (47r)k-l L 7j..fD. Pj(n) hn(/I} + 2 f ..fD. T l/2+ir(n) 1l'(r)hn(r)dr
j~l -(])

The proof is not long. Let Un(z,s) denotes the Poincare-Selberg series,

(7.24) Un(z,s) = 1: e(ng z)(Im gz)s, Re s > 1 I n ~ 1 .

gEG(I)\G

Then we have the obvious identity for Re s > 1 :
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(I) (1)1
r(k-1+8) \ a(v) a(lI+n). 1 = JJyk If(z) 12e(nz)dJl(z)
(4 )k-1+8 L (1I+n)k-1 (1I+n)8

7r lI=1 0 0 .

_ r yk I f(z) 1
2 Un(z,s)d#(z)

g\lH

Using the Parseval identity for the full system of the eigenfunctions of the automorphic

Laplacian we can rewrite the last integral aB the Bum over discret and continuous spectrum.

Then it equals to

(7.26)

(I)

IJ~k2 {-+ 4;: ( y Ifl E{z,l/2+ir)dJl{z))( Un(z,s) E(z,l/2+u) dJl{z))dr
-(I) G lH G lH

For the inner products we have the well known Selberg formulae:

(7.27)

(7.28) cu lE(. ,1/2+ir)) = {D. T 1~2+ir(n) . (41r)1-5 r(s-lL2+ i r) r(s-1/2-ir)
n {(1/ - 1 r) nSr ( s)

(here {(.) is the same what was in (2.2)).

Now for the giyen iI let U8 define for x > n

(k-1)/2
g(x) = [x~] t(x-n) I
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so that for v> 0 we have

(k-1)/2
[ II~n ] g( 11+n) = • (11) .

'"
Let g(s) be the Mellin transform of g . We shall integrate both sides of (7.27) over

the line Re s = 1+0 with some fixed 6> 0 with the multiplier

On the left side we come to the series

(7.29)
lD (k-1)/2 lD

1: t(11)( [v/n ] g( lI+n) = 1: H i( lI+nJ t( 11)
v=1 v=1

On the other aide we have the integral

(7.30) 1 J "'(s) r(s-lj2+ir)r (s-lj2-ir) -Bds~ g l'(s)r(k-l+s) n )
(1+6)

or (because g has a bounded support)

lD

(7.31) JgJE {I J (!)s r(s-l{2+ i r~r( s -lL2-ir} ds } dx
x 2"ii n r s) 1'( - t+s ) .

o (1+ 0)

Here the inner integral is zero for x ~ n (it follow8 after the translation of the path

of the integration to the right). H x > n then the same integral is the SUffi of the residues
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at s = 1/2-ir-m and sm = 1/2+ir-m with m = 0,1,2, .... Now we havern ,

(7.32)

and i t equals to

Res {r::/ Ts-1[2+ir+} =
n f 8) f( - +8)

S=8m

1/2-ir-m (_1)m r(' )= (!) ~ . -2 1 r-m
n m. f(l. )f (k f. )r1r-rn ~lI-m

(7.33) (!)1fm m (- )k 1 tttf»{ .[(JIJ-k+ir+m)( "? (!)-m
n 2'K1 8 'Kr 1'(1+21 r +m) m. n'

so the corresponding sum over m ~ 0 i8

(7 34)(!)1f ~. (_1)k-l tm ni.T{3IJ-k+i [(1/ +ir F(1/2+' 3/2-k+' '1+2' .~)
. n 271'"1 s 'Kr . l'(f+21r) 1I, Ir, lI'n

It gives the integral transform (7.20) after the change of the variable

x ............... n ch2 {/2 and the using of the duplication formula for the gamma-function.

In the continuous spectrum one can note that for n = 0 the identity (7.25) gives the

integral representation for the Rankin series for Re s > 1 and it holels on the half-plane

Re s ~ 1/2 . Now (7.23) follows.

It is useful to note that for an even integer k ~ 2

(7.35)
k-1 /

W( e,r)+W( e,-r) =hn (ah d-1 2F(k-l/2+ir,k-l/2-ir;k;-sh2eJ2) ,

so there is no singularity at ,= 0 in the transformation (7.20). At the same time we have
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(it is the co~equenceof the Kummer quadratic relations)

(7.36) F(1/2+ir,3/2-k+ir;1+2ir;(ch 3/2)-2) =

3-2k+2ir 2~
= (l+e-~) F(3/2-k+ir,3/2-k;1+ir;e- ).

This equality gives the uniform (over r E IR ) asymptotic expansion for the case

~ --i +00.

It is known that for T large and n« T4- o for any 0> 0 we have (see [5])

so the qUaD:tities IPj(n) I are exponentially large in the average. This growth would he

com~ensated hy the corresponding decrease of the coefficients 7j.

Lemma 7.2. Let 7j be defined by (7.19) for j ~ 1 and for a fixed c'USp form /rom .Atk'

k == O(mod 2), k ~ 12 . Then for T Zarge

(7.37) ~ 2 -2k 2l exp(+IfIC·)7· IC. «T log T

< J J J
IC. TJ-

The remark. The estimate (7.37) ia sufficient for the purposes of this paper hut it is far

!rom the true order of the coefficients 7f' I assume that it is possible replace (7.37) by the

more strong assertion
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\ 2 2-2k 2L exp( Il"Je.) 'Y. Je. « T

<
J J J

K,. T
J-

To give (7.37) we use the following simple fact: the first Poincare series P 1"",P )vk

Vk = dim ....fk ) are the base in .Atk . So there are the constants cl'""c
vk

such that

. (7.39)

For this reason

V k
f = 1: ct Pt(z;k)

t=l

Vk

(7.40) 'lj = 1: Ct 'lj,t' 'lj,t = r lf(z) Pt(zjk) u/z)dp(z) ,
t=1 G\[H

and it is sufficient to estimate the integrals 'Yj,t) 1·~ t ~ dim ....fk . Of course the last

integral is equal to

(7.41)

k 1 m m
= (2t) - l a(v)p.(Iv-f.1) Je-(lI+t)YK. (!v-tly)yk-3/2dy

2yrIi r(k-1) v= 1 J 0 11(;j

v'4=t

The explicit form for these integrals may be taken from the tables and we have the
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representation

where v is expressed in the terms of the Gauss hypergeometrie function,

(7.43) v(x,r) = xk/ 2- 1/ 4(1_x)ir F(~ + i,~-i;k;x), 0 ~ x < 1

This normalization is accepted here to simplify the corresponding differential

equation; namely, the function

(7.44)

is the solution of the equation

N 2f.v = v(th ~,r)

(7.45)

This solutio'n is

2'" 2 2
d v+[r _~+ 1 + 1 J~=o
d ~2 r 4 sh'" ~ 4 sh2 ~ 16 ch2 t .

({/2)k-1/2

when {----+ 0 and it ia easy to give the asymptotic formula

(7.46)



-56-

for r large, uniformly over e~ 0 . It rollows from (7.46)

(7.47)

and we have from (7.42)

(7.48)

For the case A >> K,~ we have
, J

(7.49)

so the second term on the right eide (7.48) gives 0(1). It means

(7.50)

2 -1rK..

Ip.(v-t) I e J 2
J + T2

K,.
J

and the rough estimate (7.37) holds.
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Of course, there is a roore reasonable way; one can write

(7.52)

is reduced to the suro of the Kloosterman sums; the estimate (7.38) would be ensured after

the using of the sum formula (2.20).

7.5. The asymptotic formula for the sum l:
1,0,1

7.5.1. The first summation.

Let us write for an integer n ~ 1

(7.53) ~(II;n,N) = 2cp (2 log y lI+n + U)(nM L(II+N,N,II) + nM L(lI,N,II+n))
E VV+VN' I

(we replace II by 1I+ In I in the terms of the SUlD}: with n ~ -1 ); then our surn
1,0,1

ia the tripIe one

1: t(zr,n,N)t(lI)t(lI+n)
lI,n,N
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The "convolution fonnula" (7.23) will be used nowj but before it ia convenient to do

the summation over N (note that N = mq with (m,q) = 1 ). We write

where " ia the corresponding Mel1in transformation. For tbis reason we have

(7.54) L t( v;n,mq) = Jr J~(v,n,p) 1p 8 (1 - 1p) · ((p )dp
(m,q)=l q p Iq p

-B+im

= ~(II;n,l) • 1:. 8 (1 - 1.) +Jr J ;(v;n,p) (W8(1 -l-)dp
q p Iq P n. qP p Iq pP

-B-lm

where we can take any positive B. Since there is the condition ~» MO for some
q

positive 0 the second term on the right side (7.54) may be rejected without making worse

the remainder term. So it will be sufficient consider the double SUffi

(7.55)
N m

L = A L t(v)t(v+n) J1(v,n,N)dN, A =18(1-1)
1,0,1 q n II ° q q p Iq p,

7.5.2. The Mellin integrals.

The sum (7.55) equals to

m

(7.6) q {ur)A 1L 'i Mn h(xr )+ 2 JT1f2y.(n) ~(r)h(r,n)dr}
n j~l ~

where
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m m

(7.57) h(r,n) = {D. J18Ii"1"W(e,r) + W(e,-r» Jt(n sh2 et2;n,N)dN de
o 0

and all others as in the identity (7.23).

1t is eonvenient to rewrite (7.56) in the form

(7.58)

m

+ 2 J t(r) (s+ir) (s--ir)h(r,s)dr} ds, Q = Re s > 1 ,

-m

A

where eN .(s) denotes the Hecke series and h(r,s) is the Mellin transform of the funetion
J.

h(r,n) ,

(7.59)
m

h(r;s) = Jh(r,n)ns-1dn .

o

Note that t in the integrand on the right eide (7.57) is not zero only under the

conditions

(7.60) N x MI {D. sh ~/2 + {N x {L OI {D. eh ~/2 + {N )( {L

and

(7.61) {D eh {/2 + {N ~ exp(~)({D.sh {/2 + {N) .
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Here M = o(L) and for this reason we have neex L j together with (7.61) it gives

e{ >> 1/ f . So we can introduce the multiplier 1]( fee) in the integrand on the right side

(7.57). The 'value of the integral will be the same if we take the suitable numbers a, b in

the definition (4.32) of the truncating function ".

Now we eonsider the explieit form of the integral (7.59) to see the Ioeation of the

singularities of this funetion.
'" '"

Let wl' w2 be the Mellin transforms for wl' w2 respectively and ~l (x) denotes the

Fourier cosine-transformation of rpl '

m

t I (x) =J'PI(y)cos(xy)dy .
;n

With these notations we have the first integral representation.

Proposition 7.1. For any 5 with Re s > 0

im

(762W = -PtJ t Imu) JW(v) ( v+*)Ls-vHMv . n .
(271'"i) -iCD (a) r(2s+~-2v)

'" '"
· (1](rjs,u,v) + 1](-rjs,u,v))dvdu'

where a =Re v < 3/4 and
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CD

(7.63) ~(rjS,u,v) = f !'J(Eee)(th e/2)2u(clJ. el2)-2sF(-2u,3/2-2vj2s-2v+3/2;

o
2e-{
-~) • W({,r)d{

l-e

After the change of the variable N -+ nx2 we come to the inner integral

Now we can replace the functions cp€ and cu! by their Mellin transforms. Since

CD CDf cp /log Y)y u- 1
dY = f cp10(Y)ch(yu)dY = +1(i EU)

o ~

the Mellin transform of the function cp€(log Y) is the Fourier cosine-transformation.

After this integral over x may be expressed in the terms of the Guass hypergeometrie

function and the equality (7.62) folIows.

7.5.3. The poles and the residues.

v
The integrand in (7.62) contains the multiplier (~) L8 and for this reason it will be

useful to move the path of the integration over v to the right. and in the integral over s

to the left.

The first move gives for the inner integral the series (we take the residues at

v = 3/4 + m/2, m = 0,1, ... )
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Jt J(...)dv =
(a)

~ ~

• (1](r;s,u,3/4+m/2) + 1](-rj8,u,3/4+m/2))

Here M = o(L) so the series is convergent and the term with m = 0 ia the leading

term.
~

The poles of 1](rjs,u,3/4+m/2) are located at the points s = -ir, -ir-1, .... Indeed,

we have in (7.63) after the replacement W by the expressions (7.21) and (7.36) and the

change of the variable ee = ~
€

l1l

(7.66) ~(rjSluI3/4+m/2) = 1k(r) J'7(x)fm(~ir,8,u)x-s-ir-ldx • E
s+ir

o

where, for the brevity, we write

. (7.67)

(7.68)

• F(3/2-k+ir,3/2-k;1+irjz2)F(-2u,-m;2s-m;-~) .

Now the repeating integration by parts gives on the first step
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m m

(7.69) f 1](x)fm(~.···)a-S-ir-ldx = 8~1I f x-s-ir~ 1](x)fm(~'···)dx.
o 0

It meana this integral has the pole at s = -ir . The residue at this pole equals to

(7.70)

CD

f~ (11 f )dx = 1](x)f (!,...) Im = 228+2ir .
VA m m x 0

o

Furthermore, the integarl

(7.71)
CDf 1]' (x)fm(~"")x -s-irdx
o

is the entire function in s and in the integral with f I we can do the new integration by
m

parts:

(7.71)

m

f -5-ir-2 ( )f I (E )dx
-E x 1'/ x m x'··· =

o

CD

E f -5-ir-1 Li ( )fl (E .))dx
= - 8+ 1 r+1 x iJx\ 1'/ x m x"" .

o

So we have the pole at s =-ir-1 with the residue

-E f' (0)m
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and we can repeat the same operations to see the poles at -ir-2 t -ir-3J ••••

The integrand in (7.58) in the case of the continuous 8pectrum contains two

additional poles at s = l+ir and s = l-ir with the residues

(7.72)
~ ~

h(r,l+ir) 8(r) (l+2ir) , h(r,l--ir) I(r) (l-2ir) .

Now we are ready to give the main tenns for the contribution of the continuous

spectrum in (7.58).

Proposition 7.2. Under our aBsumptions for the parameters

(7.73)
lD

2J &(r)( (l+2ir)h(r,l+ir) + (l-2ir)h(v,l-ir))dr =
-<D

where Co is the positive constant,

lD

(7.74) Co =~ (3)R(3/2) JmX )CP1(i)x-4dx ~1(3/4)~2(2)
o

Dur integrand contains the following terms
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m

.J(r) J11(X){1k(t)( '(1+2ir)fm(~ir,1+ir)x-2-2ir +
o

+ ((1-2ir)f (!.;r,1-ir)x-2) +
mx

(here the variable u is not written since it is the same for all terms).

The first observation is: there are na poles at r=O and ir = :I:: 1/2 ; it follows from

the explicit. form for 6, ik and Im (note that the function R(1/2+ir) has the simple

pole at ir = + 1/2 1 has no pole at ir = - 1/2 and R(1/2) = 0 ).

Furthermore, we have the poles at ir = :I:: 1, :I:: 2, ... (due to sh( 7IT) in the

denominator) and fm(~;r,1+ir) contains the multiplier €L2 •(€2L)ir . So it would be

prefarable to move the path of the integration to the right (no~e that €2L ----t 0 when

€ ----t 0 ) . The path of the integration will be moved to the left in the integral with

f (!.j-r,1-ir) for the same reason. The SUffi of the residues (for the first integral atmx

ir = + 1 and for the second one at ir = -1) gives the main terms of the asymptotic.

Now the integrals with fm(i'j:l:: r,l T ir) contains only L=Fir (without the multiplier

€=F2ir )j so the same operation gives the estimate O( EL) for the residues and

O(L1/4M3/4) for the final result. For this reason these terms may be rejected and (7.73)

folIows.
A

For the terms in the sum over the discret spectrum we have the poles 01 h("'j'S) at

s = :I: L"j . So the contribution 01 the surn over this spectrum is smaller; namely, we have

Proposition 7.3. Under Dur assumptions for the parameters
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(7.76)

Now as the immediate consequence !rom the preceding estimates we have the

asymptotic formula for the sum l .
1,0,1

Lemma 7.3. With the positive constant Co from (7.74)

(7.77)

§ 8. The sum l .
. 1,1

8.1. The additional representations for V .
f

If the quantity ~ will be small enough then both terms . (~r.p f and integral) on the

right side (5.23) must be of the same order. For this reason in the integral aue integration

by parts would be advisable. As a result we abtain the following representation for the

function V .
E

Proposition 8.1. Let {= log ß+..rN , T = log~. Then for all non-zero terms of
fll -.IN d

the SUffi 1: with d ~ 2 we have
),1

(D T-X

fj n Vfn,o;N,v;= f W{z; ch(+NLlJsh! I"/log ch! () T +!;U-ß
° L
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where Xo= 2 log({V+{N) and

(8.2)

with

(8.3)

_ 2 e-2x+e-2T-2e-X- Tch{
ß- (1+e-2x)(1+e-2r)-4e-x-reh~

Firstly we change the variable of the integrationj we define x = x(z; {,T) by the

equation

(8.4)

(8.5)

eh T-eh(X-~) _
2sh x sh - z .

Then thiB function is given in the explicit form by the equality (8.3); besides

and we have together with (5.23) (for rp(x) = CP f(x-xO) )

(I)

(5.6) U( (,r w = t f iHr) +tJw' (z) cfi~r~~liE lpt"(x(z)-xo)dz
o

Now it follows from (8.3)
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X{Z)-T = -log{ch~ + (2z-1)sh~) + ~ ,

where ~ is the smaIl quantity,

(8.8)
( ) 2 -T

A= log{l + 4z z-l sh f e )

J sh2T+4z{z-1)sh2{+shr

Let ~ = r-log{ch~+{2z-1)sh{)-xO ; then x(z)-Xo = ~ + ~ and we want reject A

out of the argument.

Note that for z large enough we have W' (z) = O(z-1/2-k) . To the integral over

o
the interval (zO,+m) is O{ €-lz01/2-k) = O({L. L 1z01/2-k . The last quantity is

-2 0'1 5+261 5+261 1 2r . 2
O(L ) for zO» L 'al = 2k-l ~ 23 < 4· As e »L we have for z ~ Zo

Iz(z-1)e-2T I «L-3/2 .It means we can write ~ as the power series in Al'

( ) 2 -T

Al = 4z z-lsh ee . Now we replace the difference cp (~+A)-<p (~) by the

I 2 2 € €
sh T+4z(z-1)sh {+shr

integral

1

6. Jcp~(~H6.)dt
o

and integrate by parts over z. It gives the integral without derivative of cp € and W

because

(8.9)

Furthermore,

(z(z-l)W')' = ((k-1)2_1/ 4)W
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m

f IW(z)ll cPE(~Hä) Idz «tlog ~« IOi L
o

and it gives the first assertion: with the remainder term O(~) we can replace the
L

argument of C{J f in (8.6) by ~.

After that we integrate by parts:

m( ) 1 '() shx shT (N) ( ) sh( {+T)shT ( )
8.11 W z chXchT-ch{ C{Jf x dz = -W 0 ch(l+T)chT-eh{ "P f ~+T -

o

Since

and W(O) = 1 ) the integrated term equal to (--<p f( e+T)) . So this term cancelled with

the first term on the right side (8.6). The integral with W cPE gives 0 po~2L] again and

the equality (8.1) folIows.

8.2. The explicit form /or the terms and the amplijication ofthe parameters.

Now it ia time to choose the parameter T in the definition (6.10)i we define

(8.12) T=L
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6
Now let the new parameter Q be introduced instead of f 1 in the definition (6.6):

. (8.13)

Here and later we assume

(8.14)

2 -1
E L =Q .

(0) (1) (0)
We subdivide the sum 1: anto twa SUbSUInS, say 1: and 1: ,where l

1,1
(1)

contains the terms with d ~ 2 and the terms with d = 1 are taken in 1: .
(0)

For the sum l 'we replace the condition n == N(mod d) by the multiplier

1, , [(n-N)a] _ { 1, n == N(mod d)
Q l lee - 0, n ~ N)mod d)

eid (a,c)=1

(0)
As it follows from (8.1) we have for the sum l :

(0)
tsY i = 2 i ; i i i i t(n)t(v)e [(n~N)a] v t;(n,v,N,d) +

d~2 eid N n v
N=mq, (m,q)=1

~ IN ViiN -1/2
wherewith y=~+. 1 . (1 + 4z~ )

, VV+IN 0 (YD.-rN)2



-71-

(8.16)

m

· JW(z)· 2~ 2 (l-ß)cp' (2 log Y)dz
o _ ({D.-["N) +4z{iiN E

(1)
The t~rms of the sum l we write in slightly different form. To avoid some

difficulties what are concerned with the singularity of W' (z) at z=l we introduce in the

integrand the function

with a suitable positive smaIl 6 and integrat~ by parts in the· integral with ~6 .

It gives the representation

\ (1) __ 2
(8.17) L 1: LL t(n)t(II)~ c:(n,II,N) + O(L-1/4M7/41og2L)

N N II

N=mq, (m,q)=l

where with w· = wa b
1 " •

1 1

(8.18)

m m

·{Jw' (z)(l--vJ~z-l»cpE(21og Y)(l-ß)dz - JW(z)~;Pe5'z-l)cpE(21og Y)(l-ß»dzj
o 0

In tbis representation
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y = {i + iN . (1 + 4z{iiN 2)-1/2
ß+{N (yn-ß)

the parameter 6' will be chosen later and ß denotes the same function what was in (8.2).

(0)
8.3. The tre.atment ofthe sum l .

The real our intend in this section is to obtain a certain asymptotic formula for the

(0) (0)
sum 1: .The most difficulty is the understanding that this sum 1: and the integral

with the sum 1: (s) taken separately are not small enough; only the sum of these
2

quantities give the desired estimate.

It is a very inquisitive process how to immense sums become more and more simple

and give at the end the asymptotic formula which contains only the Fourier coefficients of

the initial non-zero cusp form (the final result is given in § 10, Lemma 10).

(0)
The possibility to obtain the asymptotic expression for the sum 1: is based on the

sum formula (4.22) and on the siInilar formulae for the Fourier coefficients of the

eigenfunctions of the automorphic Laplacian.

1+0
After.the first using (4.22) it will be sufficient to remain O(Q 0) integrals for

any °0 > 0 . The second summation (over n's) with using the same sum formulae gives

only one integral which with a sufficient accuracy approximates this sum; so the full

1+00number is O(Q ) again.

After the second summation the sum of the Kloosterman" sums will be arosed. This

sum will be expressed in the terms of tj(N) . 1t allows us to carry out the summation over

N's in a very explicit form: instead of this sum we obtain a finite number of integrals.
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Now the corresponding function h (we will UBe the formula (2.15) for our sum of the

Kloosterman sums) with large accuracy equals to

(8.19)

it is a consequence of a certain good luck - the explicit form for the integrals

(8.20)
m cos

I . ((2z-1) {)W(z)dz
Sln

o

what are expressed in terms {-1/2Jk-
1
({) .

Hy the very difficult way from the integral I l2(s)dx(s) will be appeared the same

sums over the spectrum and over the regular cusp forms, but with the taste function

(8.20)

The sum (8.19) and (8.20) ia zero, because of the orthogonality of the Hessel function

of odd order to J2· -J 2i . The similar expressions will be for the coefficients in the sum
1I - r

(0)
over cusp forms. Here the main term of the sum two expressions (one from l and the

second one form Il2(s)dx(s) is equal to

(8.21)

m

I Jt_1WJk_1W %!
o
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what is not zero only in the case f..=k.

At tbis case the result follows from the asymptotical forrp.ulae for the GauBs

hypergeoroetric functions and the explicite form the the shortened functional equation für

the Rankin series.

On the choosen way we rollSt keep an eye on the sign and the explicit coefficient

before main terms; furthermore, a certain time we will remain slightly more terms in an

asymptotic expansions than it is needed for the final expression.

8.4. The first summation.

Firstly we consider the inner sums over lI'S in (8.15) and (8.17). We have

m m

(8.22) Lt(v)v f(n,v,N,d) = 4ri
k Lt(v) JJk_I (411X{V)vE(n,x2jn,d)xdx.

v v=1 0

Using the integral representation (8.16) we write

(8.23)
m

JJk- I (4 n:{V)v /n,x
2

,...)xdx = PI + P2 + P3
o

where, if we write for the brevity

(8.24)

the function P. ia defined by the integral
J
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m m 2

(8.25) Pj(v,n,N,d)=fW(z)"j(z)f Jk_1(4n:{V)"'2«X+(Nl )(1-ß)<p~(21ogY){Xdxdz
o 0

In this integral we treat by the different ways the cases 0 ~ z ~ Q, Q ~ z ~ vNand

VN~ z . To do this by the "smooth" manner we introduce the expansion

with the dear notations.

Our nearest purpose is to prove the following assertion.

Proposition 8.2. For any fixed a > 1 we have

(8.27) l t(v}v E(n,v,NJd) = 4ri
k l t( v}P1(v,nJN,d) + O(L-2)

v ~Qa

In the integral (8.25) we have

It is convenient to do the change of the variable and rewrite the inner integral in the

form

E 2 -
(8.28) f <p~(2 log 1~u)Jk-l(4u(u){V)"'2«x(ut+{N) )(1-ß) {i(iiJ x' (u)du

-€
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with

(8.29) x(u) == x(u,z) = -{N + {ntiN · (1 + 4z@ 2)-1/2. (l+u)
(yn-y-N)

Of course, we can use the asymptotic expansion for the Bessel function since

x(u) » {M i this expansion may be written in the form

1t ia sufficient to take four terms and reject the terms with x-5, x-6, .... Now for z

large enough we have the additional resouree which concerned with a possibility to

integrate firstly over z.

Proposition 8.3.

(8.31)

and for any positive R

(8.32)
1/4P «.!.. 1 [MJ (Q {V)-R .

2 E ~ V

For z large we have in the exponent
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with A = 4Jf({ii!{N){ii • » {liL and b ~~» d • 11; in the integral Ps
. VN

we have z» b . The change of the variable

[
zJ -1/2 1/2 1

1 + 0 = zlb ,z = 2 - b
zl

gives the integral

Here z« 1/{D and for W we have the power series with the main term zl2k-l . The

standard asymptotic fonnulae from [13] for the integrals oI this kind give (8.31).

The second estimate may be obtained by the same way after the change of the

variable

1/2 l-z2/4b
(l+z/b)- = 1 - z2/2b, z - z · ------.

- 2 {1-z
2

/2b)2

Now in the integral we have

( . A ) A ({ii+{N){NV rvM
exp -l l z2' 1 = »-----a- .

d{fi

As a oonsequence of the choice (8.12) we have d« {M. {see (7.5)); so Al » {l/

and we can integrate by parts any times. It gives (8.32). The quantities on the right side

( ) ( ) -2 -2 >8.31 and 8.32 are smaller than L l/ • In the first case it follows since k _ 12 and
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for the second case we can take the suitable R because Q is some positive power of L .

It rests to consider the integrals PI for 11 large, v ~ Qa with a > 1 . Here

z «Q and z v'~ is small. Now

and for any. R

[
8 ] R 1 1
7Jii cp~(2Iog I+u)« R+2 .

f

It means after R-multiple integartion by parts we obtain the additional multiplier in

the integrand (VE
2L)-R/2 = [%] R/2 . So for v ~ QO, 0 > 1 , we can take the finite R

so that our integrals are estimated as O(L-2v-2) . It gives (8.27).

In the conclusion of this subsection we rewrite the integral representation for P1

interating by parts over u; now we can omit index 1 in this function.

We have

I 1 1 a 1
cp f(2log I+u) = - ~l+u) 7Jii cP f(2log I+u)

and

Jk-l (x) = -Jk(x) + k~l Jk- 1(x) .

So together with (8.27) we have

Proposition 8.4. Far any fixed a > 1 we have
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(8.34) 1: t(v)v E(n,v,N,d) = 1: t(v)P(v,n,N,d) + 0(L-2)
v 15vSQa

where P is defined by the integral

E CD

(8.J5) HZ'. h d = _bk f 0(21oS,) f W(z)(l-m&»ifu,Z' du

-f 0

where with x(u) from (8.29) and A(n,N,z) from (8.24)

(8.35) if = ;«n h,z){2xjl(1+u)vzrur [#[1 2u:;V P )(1-ßh-

2 2
- J _ (4rx(u){V) ((k-l)(l+U) (8xJ w ((x+p )(1-ß)-

k 1 2"; x(u ) 7JU. 2

8.5. The second summation.

Proposition 8.5.

(8.37) 1: 1: t(n)e((n~N)a) 1: t(v)P(v,n,N,d) =

(a,c)=l n 15vSQ Q
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Of course the assertion means: after using the sum formula (4.22) only one integral

will be survived and all athers give the remainder term which is small enough.

Ta see this we use the integral representation (8.35) and the asymptotic expansions

for the Bessel functiona. Then we corne to the integrals (the c~ange y~ yiN ia done)

(8.38) Jexp [± i~ · (y+l)(l+u)(l + ~)-1/2 ±4ri~ yJ .J(y,... ,)dy
(y-1)

where 6(y, ... ) is an infinitely smooth function, which is not zero only for

If we have %{D. ~ VIV then each integration by parts gives the additional

multiplier O(_c_ ,) = O( 1 r;). So after live integration we c reject these
{T1N y n

integrals.

2
H %{D. is nea: to ..[V but v:f [%J n then

At he same me - << i '4 so the derivative ofhe function in ten is

not zero fo~ tbis case and its absolute value larger than d-1Q-a/2. It means we can

integrate by parts any times and it gives our assertion.
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8.6. The Fourier trans/arm ofthe function W(z) .

(0)
In the obtained expression for the SUID l we change d by cd (note cl d) and

change y by y{N. Now we have

(8.39) I (0) =

At thfs moment we ca.n reject same small terms in the integral representation for P

and simplify the main terms. Ta da this the following niee result is very useful.

Lemma 8.1. Let W(z) be defined by the equality (5.18) with the even integer k >4 .

Then for all e> 0

(8.40)

(8.41)

<D

f cOB«(2z-1)~)W(z)dz = --jk 1fJk-lW ,
o

<D

f Bin((2z-1)~)W(z)dz = i
k

/fJk-1W
o

These equalities are a consequence of the differential equation for W , but befare we

note that for the uaua! Fourier transformation it followB !rom (8.40) and (8.41):
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CD

842) faatE W(z)dz = -ik Jf= J k YI2) ces e/2 + sin eJ2) ,
o .

CD

.43) f sin(HW(zb = ik Jf= Jk lU12 ces/ - sin e/2)

o

Now let us write

(8.44)
CD

fW = f eie(2z-1)W(z)dz

o

Since W(z)« zl/2-k for z large and k ~ 4 we can diffe~entiate two times under

the sign of the integration. It follows from the equation for W.:

CD

(8.45) Hk-l)2+1/4)f = f (z(l--z)W I eie(2z-1)dz

o

CD

= f W(z)(z(l--z)(eie(2z-1)j') I dz

o

CD

= fW(z)(-4e2z(l--z)-2i e(2z-1j)ei e(2z-1)dz

o

since al1 integrated terms at z=l, z=O amd z=co are disappearing. If we denote {f
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by '1 then for this last function we have the differential equation

(8.46) 1"+- l' = 0
e

It means '1 = cl VI Jk- l (~) + c2 VI Yk-l(e) ; but the function ef is bounded at

~ = 0 and VI Yk- l » e3/ 2- k when e--+ 0 . So c2 = 0 . The constant cl may be

easily defined by the compa.rison of the asymptotic behavior for both sides on (8.40) and

(8.41) at e. = m .

8.7. The main terms for the integrakl in (8.39) after the su.mmation over N's .

We make ready to use the identity (2.15) for the transformation the suro over c's in

(8.39) so it is convenient to introduce the special notation for the combination

e= 41rf!lN .Now for the integrals in (8.39) we have the repr~sentation

4rikNfm 2 2 ~fm 2 2N(8.47) c P(vd ,y N,N,cd)Jk_ 1(ey)ydy= P(vd ,y "72",N,cd)Jk_ 1(y)ydy
o efV 0 e

2 m m

= f p (21og ,) fMzj(l-:<N f- cu N
-f 0 0

Here in the accordance with (8.35)-(8.36) the function' isv

(8.48)

with
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A 4zye -1/2
y = (y+{)(l+u)(l+~) - {cd

(y-{)

and with the following coefficients A, B :

(8.50) A= 1+U2· [~J 3/2 [Y+;J 2 [1+ ~J-2.[;i. (l-ß)(l-f7e:~))· w1(~).11/ 4

(4 r) IId y (y-{) L{

.. 2
• tu r1Y+i"NfJ

24r2l1Ld

(8.51)

Here y,; are large enough, y,;:::..r;;r;J1 and { is small in the comparison with

y . So the Besse! functions may be replaced by their asymptotic expansions and in (8.39)

we have the following sum over N'a

(8.52) 1:
N

n=mq, ( m,q)=l

..
S(II,Nic)e:i:iY({)w(~)g(N), {= 41rf!N '

where w ia written instead of wb' g(N) ia an infinitely smooth function for which
al' 1

with any fixed R ~ 1 we have
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Note that in tms sum we have

A 2
_lz = (d_u + _. rY+iJ. 1+u > cd-l >1

7J7 h +f 5 (1 + 3 -

(y_{)2 (y-e)

since cd ~ 2 . So there is the possibility to utilize the oscillatios of the members in tms

sumo The result is

Popo tion 8 . L t cd? 2d q << 0 1 t en in the (ase (5 q far anyx

R> 1 we have

A

(8.53) 1: e iY({)S(II,NiC)W(ii)g(N) « M-R ma x Ig(N)
N NxM=mq

(m, q )=1

and in the (ase q 5 ( 5 {NI this sum is estimated by the quantity

(8.54)

Firstly we replace N by mq and further instead of the condition (m,q) = 1 we

write m == mO(mod q) where mO runs the reduced system (mod q) . So Dur sum equals

to
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Now by the nsual way we replace m by n+mqc with 1 ~ n ~ qc, m = 0,1,2, ... , ,

and use the Fourier expansion. It gives for the sum (8.55) the expression

(8.56)

(8.57)

q m r qc m

~ 1: 1: e(- -+) l e(~)S(v,nqjc) l e(~~)Bm
r=1 (mO' q)=l n=1 m=--(D

2M f ,.tI 2) ( 2) ( . M 2 ."(47:{liM )) <Ix=~ IU\X g Mx exp -2nm -:--2' x + lY ~ X

cq cq

Here the integration is doing over the interval {'1i'1 ~ x ~ ..["'Ei2 for same fixe<!

positive bl' b
2

. Remember with a = (1 + 16rzy{liM x c-1(y - 47:{liM c-1x)-2)-1/2

(8.58)

so the derivative over x is near to -41:/vd2M (1 - k) .
If m=O we can integrate by parts any times and it immediately gives the estimate

BO« M-R for any fixed R. H m*"O and m > 0 then there are no teroes for the

derivative

8 M 2 "
(9i(-21:ID~x +y)

cq

and for this reason we come to the same estimate Bm « (m.y'ld)-R again. If m < 0

then zero of this derivative is near to
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(8.59)

Here vd2 ~ QO with ° which ia near to 1; so for c ~ iJ! for all m ~ -1 the

point Xo is on the left of the interval ({"61, f62) where the integrand is not zero. It

means the etsimate Bm « {I m I{lI}-R hold in this case.

Finally, if

(8.60)

then there are O{q2 [:d.1) values of m for which XoE [{Dl' fTi2] .For each such m

we have

(8.61)

At the same time

qc qc

(8.62) 1: e(:)S(/I,nq;c)e(~~)= 1: e(a~ /I) 1: e(~m+aq2 +rc))

n=l (a,c)=1 n=l

and for any given m the inner SU1D on the right side equals qc at most for one value of a

for c > q .

So the sum on the left side does not exceed qc. Two summations over roo and r's

give the additional factor q2 and (8.54) follows.
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. (0)
For the full sum l the obtained estimate is not sufficient because the mian terms

have the order

here a > 1 so this term is not O( f -1(ML)3/4) . At the same time this estimate is more

than sufficient to reject all terms in the expression for" except the main ones and rejectv

all members with c ~ Q-lVfJ. . It means that really we have in trus expression

(8.64) e« Ql+a/2 J a is near to 1 and (} > 1 .

Furthermore, with the acceptable accuracy we have

(8.65)
... 1 ... ...

Jk- 1(y)Jk- 1(y) ~ ,. (sin(y+y) + cos(y-y))

rV yy

and after the integrations by parts over y the terms with y+y give a negligible
...

remainder term. So it is sufficient to remain only the terms with cos(y-y) where

(8.66) i-: =( -2ME + uy - (h;-nu( _ 2z(( +
(y-e)
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and now it is obvious that we can remain only two terms (1-2z){ + uy !rom the

expansion under the signe of sine.

Hy the same reason we can replace log l~U by -u in the argument of cp € ; using

the identities (8.40) and (8.41) and introducing the cutting function (l-f'J({/Q{li)) (it is

ofor e» Q{V what corresponds to c ~ Q-1{Jl) we obtain the following

(0)
representation for the sum l .

Proposition 8.7. Under our assumptions for the parameters and with the additional

condition Q >> q4 we have

(8.67) 1: (0) =

w(~). {"2" OOS(4,,"/vd2N + i) 1: S(VCNjC) .

c~l

where with the notation

1

t(u) = f 1I'1(x)cos(ux)dx
-1

for the Fourier transform of the function 'PI (it is 'PE for €=1) we have

(8.68)
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2 2 2 2where eO= 4rlld y and really ~ ~ y ~ b2 .

Later we shall see (in the beginning § 10) the function t(u) is etsimated for u large

as O(exp(-.yli)). So the condition vd2 ~ QQ we can replace by the more strong one

lId2 << Q log2 Q (or reject any conditions since the series with t is convergent).

8.8. The coefficients in the spectral representation.

(0)
On tbis step of the obtaining the asymptotic fomrula for 1: we use the idetity

(2.15) to transform the inner sum in (8.67). To have the integral transforms (2.18) and

(2.19) be calculated for the function (8.68) we write tbis function in the form

(8.69) !P,)~) = Jk-1W · hJC 2Pu",(p)dp
(0')

Here J denotes the integral over the line Re p = U i Uv is the Mellin transform

(0')

af the multiplier in (8.68); it is the entire function in p and it is obvious far Ipilarge

with (J = Re p be fixed, (J > 0 , we have for any R > 1

(8.70) i a",(P) << (Qi].l2U .
Ipl

We denote by h (r) and h e accordingly the integrals (2.18) and (2.15) with cp = t/J .
II 1I, v

Using the special case of the Weber-Schafheitlin integral we carne ta the following

representations for tbis coefficients:
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r(k-1 . )r(k-1 . ). k f 2 -r -P+lI -,-- -p+tr
(8.71) hZ/er) = -k 2- Psin(irp)(2p+1)· k+l . k+l . Qv(p)dp

(0") r(-,-- +P+lI)r(-r +p-u

l+k t-k
.k f 2 r(--r-1- p)r(--r -p)

(8.72) h .e. = - 2-m 2- Psin( 1rp)r(2p+l)· t+k i-k av(p)dp
V J 1rl(0") r(--r +p)r(~ +l+p)

1t follows immediately !rom these representations:

Proposition 8.8. For all r» 1 we have

(8.73)

and at the same time for r2 » Qß, t 2 » Q{V for any 0" > 1 we have

(8.74)

Of course it ia a consequence of the Stirling expansion for gamma-functionj we

integrate over the line Re p = 0 to obtain (8.73) and move the path of the integration to

the right; it gives (8.74).

Since .v « Q log2Q in the sums on the right side (2.15) for the case tp = "pv we

can reject all members with "~»Q31l, f.4» Q31l ror any 11 > 1 .

It allows üs to give the explicit form for the sum over N's j but we begin the new

section to avoid four~git numeration for the next formulae.
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(0) (1)
§ 9. The sums 1: and 1: (the end).

9.1. Two additional surn formulae.

Lemma 9.1. Let fE CQ)(O,Q») be a function with a bounded support. Then for any integer

c ~ 1 and a which is coprime with c we have for j ~ 1

(9.1)

Q)

41r ~ t .(m)e(ma)f(4'K{iii) =
c L J C c

m=l

Q) . Q)

= 1: tj(m) J(e(- ~d)kO(x{ID,}til\}+€j k1(x{ID,1/2+ill:j)e(~d»f(x)x dx

m=1 0

where €j is the ei.genvalue of the reflection operator (€ j = +1 for even eigenfuntions and

€ j = -1 for odd ones) I d is defined by the congruence ad == 1(mod c) and the kernels

kO' k1 are expressed in terms of tbe Bessel functions by the equalities

(9.2)

(9.3) kl (x,lI) = ~ sin( 'K1I)K2v-l(x) .

This analogue of (4.22) is an easy consequence of tbe functional equation for tbe

corresponding Hecke series; the details are in my doctoral dissertation (LOMI, 1981).

Tbe following similar sum formula corresponds to tbe continuous spectrum of tbe

Hecke operators.
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Lemma 9.2. Under the same assumptions aB in Lemma 9.1 we have for any LI E C

(9.4)

(J)

~if 1: T v(m)e(~a)f(4I"F) =

m=1

m 2v 2-2v.
= 2 J((2v)(h) + «(2-2v)(h) )f(x)dx +

o

m (J)

+ 1: T )m) J(e(- ~d)kO(x{ID,v)+ e(~d)kl(x{ID,v))f(x)x dx .
m=1 0

9.2. The second summation over N's .

The very special case of the identities (4.22), (9.1) and (9.4) will be used here. After

the replacement of the inner sum in (8.67) by the corresponding bilinear form. of the

eigenvalues of the Hecke operators we corne to the following sums

(9.5) Tq(g) = t(q) 1: t(m)w(~) ~ cos(4~V mg + if/4) ,
(m,q)=1

where w is written instead of ~ b ' g is an integer and
l' 2

In our special case we have g = vqd2 and we can &Bsume that for every fixed (small)

a>O
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g, Itj , t., Ir I << M
Q

•

It meana the usual asymptotic expansions can be used for the Bessel functionsj in

particular the integrals with the kerne! k1(x, 11) (11 = 1/2+ir or 11 = 1/2+iIC. )
. J

contribute O(exp(-{M)).

For these conditions we have the following asymptotic formula for the sum (9.5).

Proposition 9.1. Let for cl q

(9.7)

where p is the Möbius function. Then

First of all , for any quantities z(m) we have

(9.9) 1: z(m) = 1: 1: z(m)
(m,q)=l (mO' q) =1 lIEmO(mod q)

1~mO<q

=

and in the inner sum m's run all integers without any conditions. For this inner SUffi we
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ca.n use (9.1), (9.4) or (4.22). If t(m) = tj(m) or T1/ 2+ir(m) we have

(9.10) kO(x,I/2+ir) = J':rx {cos(x+r/4).(I+O(~» +~ sin(x+r/4) + O(~)}

and for an even integer f.. we have the same main term

(9.11)

Now all integrals

(9.12)
m 2 2

f ko(xvm,I/2+ir)cos(xMH/4)W[ gc 2 ] {X <Ix
o (41') M

with m t- c2g can be rejected; the same is true for the Mellin integral

(9.13)

since Ir I is small in the comparison with {1l..

So one term with m = c2g rests; in this term t{~a) = 1 and for the Ramanujan

sum we have the explicit form,

and the assertion (9.8) follows.
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9.3. The asymptotic representation for the $'Um l (0) .

Let UB write the definition (8.68) in the form

(9.15)

where

(9.16)

and ,L1){ e) = 1]{ e/Q1V)t/J{O){ e) . Accordingly to this subdividing the coefficients hv(r),

h 11 (r) are the quantities
v,~

(9.17)

80 that

(9.18)

(9.19)

h (r) = h ( 0)(r)-h ( 1)(r), h 11 ( r) = h( 0 ) - h ( 1) J
V 11 11 11,(, lI,t lI,t

CD

h~O)(r) = 2skfn) ; (J2irW-J-2ir(m~~0)(~)~ ,
o

in the last equality
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This possibility to write b(v) outside of the sign of the integration over e is the

2 2 .
consequen~ of the definition of 1]: we have q(4rvd2

y ) == 0 for y::: 1, vd2 « QQ and
e

{ >> Q{V . The similar representations we have fo'r the coefficients h ( 0 ) a.nd h (1) .v,t v,t
Now, for brevity, let U8 denote (for the given function h a.nd for an integer

n,m ~ 1 ) by Zdi8(n,mih) Zcon(n,mih) and ZCUSP(n,mi{ht }) three sum on the right

side (2.15). For example,

(9.20)

and by the similar manner the quantities Zcon and ZCUSP are defined.

With these notations we have the following asymptotic expansion.

Proposition 9.2. With the same remainder term aB in (8.67) we have

(9.21) ,(0) = 2ika M3/ 4L5/ 4 \ A \ \ t( v) t(vd
2

) .
L 0 L q,c 2 L 2 L r:l

cl q vd ~Q log Q ml (v,q) V vd-

where
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CD

aO= lr J{i Wal'b
1
(x

2
)dx

o

Trus assertion is the same that we can reject the sum

(9.23)

because all the rest follows from (8.67) and (9.8); remember that

t.{q)t.{II) = 1: t.{.q)
J J J m

ml (1I,q)

and the same relations we have for t. tI and T •J,-t. v

The possibility of trus rejection follows from the following fact.

Proposition 9.3. Let Q > q4+ 0 for some positive 0; then the sum (9.23) is zero.

Let u~ read the identity (2.15) !rom the right to the leIt; then we see that the surn

(9.23) is the sum of the Kloosterman sums

(9.24)
1 v 2 2 riit" vqc1d)1: cS{.q,vqc d ;c)V L- mc

c~l m .

where Cl Iq 1 ml (v,q); the taste Iunction V is equal to

(9.25)
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In the surn (9.24) we have

2 2
vd << Q log Q, cl ~ q, m ~ I

, for ibis reason

(9.26)
1 v qcld q2 I0 g Q • _1

-_. rnc << - - - e
Q{V vq

S· () 0 r < r .•. fi d we have V r4r
::

c
l
d
] -- 0Inee TI x == lor x _ xl lor sorne POSI ~Ive xe xl L-

q2 10g Q
for all e ~ 1 if the quantity - - - is srnall enough.

vq

(1)
9.4. The sum 2 .

(1)
To fin.ish the eonsideration of the SUffi 2 it rests to estimate the SUffi 2 .It

1

will be proved here that this suro is small enough in th~ eomparison with the main terms of

the suro l· .
1

Proposition 9.4.

(9.27)

As it was early we use the identity (4.22) for the inner sum over v's in (8.17). This

allow us to replaee aur sum by the ahort aum of the integrals. The number of these
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integrals is .O(Ql+a) for every fixed a > 0 .

Let us write

(9.28)
.fDN -1/2

x(u) = (l+u)({ii+{N)(l + 4z~ 2)
({ß-{rf)

and with this notation

(9.29)

We subdivide the hall-axis z ~ 0 on to three interval (0,1-0), (1-0,1+0),

(1+0,+(1)) and define three function Al J A2, A3 :

(9.30)

(9.31)

(9.32)

Al = n · (1-ß)Jx(u)-{N) ~ · (l~~z-l)) ,

Then a.s the result of the first summation we have the following representation:



(9.33)
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l t{v)v f{n,v,N) =
v

f m

=4ri
X L t v) f V E 2 leg liu){J W'(z)Jx_I(4r1Ji(x(u)-{N)A1dz+
~Ql+a -f 0

(I)

+ JW(z)(4.n[iI Jx(4l"1Ji(x(u)-{N) - x-I Jx_I(4l"1Ji(x(u)-{N») A2dz +
o x{u)~

m

+ JW(z)Jx_l(4l"1Ji(x(u)-{N» A3dz} + O«ML)-l)
o

Now we have for 0 ~ z ~ .yN

(9.34)

(9.35)

It means we can repeate the considerations what were done in the proof of

Proposition 8.3 and integrate by parts any times.

If for some positive a we have in (9.33)

(9.36)

then only the neighbourhood of the point z=O gives a noticeable contribution to the
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asymptotic of the first integral (with Al)' Since

xlz=o = ({Ii+{N)(I+u) = {D. + fN + O(E{J1) and

(9.38) ~I =-2(l+u)fN n+YJiN 2
z z=o (vn-V'N)

one can easily check that our integral with Al ia equal to

2
(9.39) 1 ·l~u· ({"ii-{N) ·w' (Z)A11 (Jk_ l (41rVvn+4rn{V{ ß+{N))+

8'1:{ViiN ß+fN z=O

1+ O( 174~)
(vn) {liW

At the same time the argument of the Hessel functions in the integrals with A2 and

A3 ia near to

(9.40) 4'1:{V{ß+{N)(l - 2z rN + ...) - 4'1:yz;N = 4'1:1 vn- 87:Zyz;N + ...
. {D.

where z is near to 1 and 1I« Ql+a for any a > 0 .

For this reason we can repeat the same considerations what we have had in

Proposition 8.6; it gives the same integrals as in (8.57) (with c=l in our case).

All these integrals are small enough and after the summation over N's we can reject

the mernbers with A2 and A3 without any 10s8 for the remainder term.

Now the Burn of quantities (9.39) over n'8 may be reduced to one integral (we use

the summation formula (4.22) again); as an immediate consequence we corne to the

estirnate (9.27).
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§ 10. The integral with the sum 1: .
2

Dur nen problem is the consideration of the integral with the sum l which is
2

defined by ~he equality (6.12).

It seems the members of the series for this SUlD are very different nature than in the

considered sum 1: .But it will be seen later the integral with 1: may be expressed in
1 2

the same terms aB in (9.21) with one natural distinction. Namely, in the integrals which

~~
define the coefficients of this representation the cutting function (1-1](~)) will be

~

replaced by '1( e~/e2) . So the coefficients in the representation for the sum

l +Jl (s )dX(s) are defined by the full integrals
1 2

00 00

(l.I) sli H(1h/(-J_h/( Jk (( f 2{t-1) JJt- (

o 0

Hut the first integral is 0 and the second one differs !rom 0 only for f.. = k . Since

each term in the final representation contains tj,k(q) our main Theorem 1 will be an

immediate consequence of tms result.
N

For the beginning we consider the function tp E in the integral (6.12).

10.1. The asymptotic formula for CP E •

Proposition 10.1. Let Xo= log iIJ with a positive iIJ > 1 and s = 1/2+it, t E IR . Then

for the integral transform (6.13) we have



(10.2)
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~ .
tp f(S,Xo) == tp f(1/2+it,10g w)

where t/J(.) is the Fourier cosine-transform of 'PI '

(10.3)

and

(10.4)

1

t(x) = JCOS(x11)CPl(l1)dl1 ,
-1

b(s) = r (k )r (s-l/ 2 )
2{r r(k-1+s)

In the addition we have for x ----+ * (D

(10.5) -3/4 1/2It(x) 1<< Ix I exp(-I x I )

Firstly we can rewrite the definition (6.13) in the form

(10.6)

f

~€(s,xa) = J~log v,s)cp / l1)dl1
-f

where for Xo= log w the variable v is equal to e"w . Here it ia convenient to use the

Goursat square transformation for the hypergeometric function in (3.9) (see [8] I equality

(36) in the section 2.11):



(10.7)
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F(k-l+s,s;k;z) =

= (1+{Z)-2k+2-2SF(k-l+s,k-l/2;2k-l; 4 {Z )
(1+{Z)2

For the case e= log v it gives

(10.8) ~log v,s) = 21-2kvl/2--B(I_ ~)k-1/2F(k-l+S,k-l/2;2k-1;1-~) .
v v

Finally, the Kummer relations between the hypergeometric functions of argument z

and l-z ([8], subsection 2.10) give the representation

(10.9) "log v,s) = (b(S)v8-l/2F(k--B,k-l/2j3/2--Bi~) +
v

+ b(l--B)v1/2--BF(k-1+S,k-l/2il/2+8;~))(1- ~)k-l/2
v . v

with b(s) from (10.4). Hence, replacing the hypergeometrie functions by their power series

expansions and substituting the power serles developments of (1- ~)k-l/2 , we find
v

(D

(10.10) ~log v,s) = b(s) 1: ßm,k(s)vS-1/2-2m + {the same with s~ 1-s }

m=O

where the coefficients ß k(s) are bounded by the quantities (m+l)B with a fixed Bm,

uniformly over s on the line Re s = 1/2 .

The term with m=O gives the term of (10.2) since ßOk = 1 . All other terms give,
the remainder term of (10.2)i it remains to estimate the integrals



(10.11)
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e
; =Je(it-2m)11<p ('7)dl1

m f
-e

1

= cJexp( e{it-2m)1J - ~)dl1 .
1-1]-1

For auy real t we have I 'm I ~ e2mf, so for Iet I ~ 1 we have

(10.12)

Hit I islarge in that measUIe that el tl islarge also then we can use the same trivial

estimate fOI m ~ mO= A.yE'fiT/log w with a sufEiciently large constant A. So it

remains to estimate the integrals ;m for the case ft ----+ +m, m ~ mO• Now we shall

write the integral 'Pm in the form

(10.13) ;m = Jeid".... 2d+'1}L( q)dq + Jeid".... 2(L11Jg+(11)d11

~ t+.

where t% are paths from % 1 to +im shown in the picture and

(10.14)
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-1 ~,

The paths of the integration.

The main contribution to J comes from the neighbourhood of the saddle points

t:l:

where the derivative of the expression

. !t )-1Ift1]-2\1 T 1/

vanishes.

Now by applying the standard fonnulae of the saddle-point method we see that the

sum of the integrals in (10.14) does not exceed the quantity

0(( ft)-3/4exp(-{€t + 2Tm)) . Hence fer ft large

(10.15)
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and the proposition is proved since Ib(1/2 :I:: it) I «t1/ 2- k .

10.2. The coefficients in (4.35); rand t are Zarge.

As it follows from the inequality

the essential part for all integrals with this function in (5.24) is defined by the interval

Isi« €-110g2 !.
. E

There is a similar sharp bound for the sums over ICj and l in the representation

(4.35). Firstly the multiple integration by parts will be done and on trus way we corne to

the following estirnates for 8 = 1/2+it with a positive large t .

Proposition 10.2. For any fixed positive integer m ~ 1 we have

(10.16)

(10.17)

2
1-k [ ~0+1] mIhT(r,s) I = IhL(r,s) I «t 7 '

where ~~ = T-1t2 = L-1t2 .

It follows from these inequalities it is sumcient to take in our sums only the terms

with

/(. « Q1/4+a, l« Q1/4+a
J
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for any fixed a > 0 since we cau assume {~« Q log2Q .

To give (10.16) aud (10.17) we UBe the following simple fact which may be checked by

the direct differentiation.

Lemma 10.1. Let Yl' Y2 are auy solutions of the differential equations

(10.18)

then the product Y = Y 1Y2 is a solution of the equation

(10.19)

To apply this assertion to our case we use the repre8entation (4.30) in the following

. form (the change of the variable y~ cth2 {/2 ia done 80 that

,(log fiTI,8) = ~ {,8)) :
{Fr

(10.20)

where

(10.21) V({is,r) =



(10.22)
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r(k-1 ')
r .k+1 1-2s ~ +S+lr

;(t,r) = 41 (2r) •
sh(n)r(1+2i r )r(~ -s-ir)

The function v is the solution of the differential equation

(10.23)
2 2 2

d v + (t2 + r + 1 + (k-1)·) v = 0
de2 sh2e/2 4 sh2~ 4 ch

2
{/2

and the similar equation we have for ,s( ~,s) .

Applying (10.19) we have the differential equation for the product f/J. v with the

difference of the potentials

Now let D be the differential operator which acts as

(10.24)

Here

(10.25)
2 2

P =_t2+~_ 1 _~
1 4sh e/2 4sh2e 4ch {/2 '

2 2
P __t 2 _ r _ 1 _~

2 - sh2e/2 4sh2~ 4ch {/2 .
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As a consequence (10.19) we have for any m ~ 1

(D

(10.26) . hL(s,r) = (4r2+(k_1)2)-2m J~~,s)(v(~;s,r) + v(~;s,-r))Dmf d~
o

with

(10.27)

Mter the change of the variable 't---i L-1/2x in (10.26) we have x << 1 and

with

x 4 4 1 6
ux 1) = >Jeud = x +m X + ...

our differential operator D has the form

[d ]4 [2t
2

4r
2

] [d ]2 d
2

[2t
2

4r
2

](10.28)D= - <IX p(x,L)- L + 2 + ... ax p(x,L)- ~p(xJL) L + 2 + ... )
x ~ x

Now one can easily see that the result of the differentiation in (10.26) may be

estimated as

(10.29)

It rests to use the simple estimates

(10.30) I~"s) I «min(V7,t1
/

2
-

k) ,
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(10.31)

for t largej then it follows from (10.26)

(10.32)

The same considerations give the second inequalit y (10.17).

10.3. The coefficients in (4.35); rand t are smaU.

The equation (10.23) is near to

(10.33)

so any solution of this equation roust be nea.r to a combination of the function (7. J 2ir(te)

and n J_2ir(t~) .

Let

(10.34)

and the coefficients An' Bn are defined by the recurrent relations

(10.35)

with
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and for n ~ 0

(10.36)
2 B'

B = 1 (A" _ f A ) + 16r +1 [n] B (0) = 0 .
n 2" n n 4{ r' n

Proposition 10.3. For every integer' m ~ 1 there is the solution Vo of the differential

equation (10.23) such that for all {~O

m m

(lO.37)v =y \ t-2nA +Y' \ t-2nB +O(t-2m- 2min(.ß »o(r2+l)ID)o l n l n r' t
n=O n=l

It is the we~ known fact for the equations of this type.

Proposition 10.4. For t large and r4 << t we have

(10.38)

where

(10.39) 70(t,r) = weil'{t) (1 + 0( 11)), N = 2t log h - 2t .

It follows !rom the compa.rison both solutions at {= 0 and the Stirling expansion

for the gamma-function.

By the same way we obtain
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Proposition 10.5. Let Yt (~) be the solution of the differential equation

(10.40)

which has the asymptotic expansion

where An' fjn are defined by (10.35) and (10.36) with r = i(f..2"l) .

Then for all ~ ~ 0 we have

(10.42)
(t-k ) (t-k )

1 . 1-2s r 2-1+ s r 2 +s 2
2" sln(n)(2wJ rtf) Vt(cth {/2,s) =

As the special case of the same expansions we have (for t = k )

(10.43)
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10.4. The shortened functional equations.

The Rankin series (more precisely, the produets ((2s)Ris) and ((2s)Rj ,l(s)) have

been integrated over s at the concluding step. For this purpose it is necessary to represent

our RAnkin series by finite part of the corresponding Diriehlet series.

We introduce the new "cutting tl function 0' i this function from Coo(O,oo) is 0 on

the halfiine x ~ b for some b > 1 and a(x) == 1 for small x. It is convenient to assume

a(x) + a(~) =1, x > 0 .

For the definiteness we assume O'(x) == 0 for x 5 3/4 (and hence a(x) =0 for

x > 4/3 ) and we suppose a be monotonie. The cireumstance of no small importance is

01 61the fact tha~ for our aims it is sufficient to consider only the case K j << L ,.e. << L

for same fixed (and small) 61 and t» {L . There are infinitely many forms of the

shortened functional equation for the Hecke series (many years aga the similar thought was

expressed by Gelfond for the case of the Riemann zeta-function). It seems, the more

suitable are those where the tlcutting" function will be an infinitely smooth function with a

bounded support. Ta give an aceeptable form we shall introduee same additional notations.

Let Bn be the n-th Bernoulli polynomial (BO == 1, BI(x) = x-1/2,

B2(x) = x2-x+l/6 ,... ) and 7 be a positive number with 7 < 1 . We define the

polynomial bn(U,1) in u (and 7 will be a parameter) by the recurrent relation

(10.45)

n

bn+1(u,1) = 1: (1- n~1)nn_m+2(u,1)bm(U,1),bO == 1 ,

m=O

where for n ~ 2
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Finally, let for z > 0

(10.47)

Lemma 10.2. Let J'j(n) be the n-th coefficient of the Dirichlet series far ((2s)Ris)'

(10.48)

Let x, y be the positive numbers with the canditions x,y» 1 and

(10.49)

-
Then for t large and "'j = 0 (t) we have for any fixed m ~ 2

(10.50) ((2s)R.(s) = \ n--Bjj.(n)o(!!) -
J L J x

n~l

where 8 = 1/2+it ,for 0 < r < t



(10.51)
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t2_r2 t+r
x(t,r) = 2t log~ + 2r log t-r - 4t ,

4J"

and with at !rom (10.47) for x > 0, 0 < 7< 1

(10.52)

m

ßm(X,7,t) = l t-tQt(x,7) .

t=O

Let 8 be in the half-plane Re 8 > 1 . Then for any x > 0 we have (since

a(x) + a(!) =1 )x

(10.53)

The first sum contains «x terms. The second sum may be written in the form

(10.54) Ji f '(2s-2u)R.(s-u)~(u)x-udu , 0 > 0
(0) J

...
where a(u) is the Mellin transform of a ,

(10.55)

m
... f u 1 'a(u) = a(x)x - dx ,

o

and 0 is taken 80 small that Re s - 0> 1 .
...

1t is clear !rom the definition of a that a(u) is the regular function in the

half-plane Re u > 0 . Further,
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m

~(U) = - ~ f a' (x)xudx I

o

...
so ua(u) is the entire function. If u --t (D with a fixed value of the real part of U l then

for any fixed B > 1 we have

(10.56)
... BIa(u) I << Iu 1- J Re u = const, u --t m .

So we can integrate in (10.54) on any line Re u = u and this integral represents the

second SUffi.on the right side (10.53) for any s.

In the case Re s = 1/2 we integrate on the line Re u = 1/2+ 6 with same (smali)

8> 0 . Using the functional equation (4.10) we corne to the representation for this integral

(2r)4S-2 f r(zlr(z/) [~u ...
(10.57) ~n l'(k-z l'(k-z') ((2-2S+2u)Ri1+u-s) x -J a(u)du

(1/2+6)

h k+l . I k+1 . N ~ 1/2" h ..w ere z =-r -S+U+1JCj , Z =-r --6+U-lK:j . ow lor s = + 1t Wlt a posItIve t

we have on the line Re u = 1/2+6, 6 > 0 ,

Re(1+u-s) > 1 .

For this reason we can replace the function ((2-2s+2u)Rj (1-S+u) by the absolutely

convergent .Dirichlet series, after this it will be sufficient to calculate the arising integrals.

The following form of the Stirling expansion will be convenient here:

(10.58) log r{z+v) = (z+v-1/2)10g z - z + ~ 10g(2,,-) +
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B (v) (_1)n+1 B (v)
2 -1 n+1 -n ( Iv In+1)

+ 1-2 z + ... + n(n+1) z +0 Z

where Bn is the n-th Bernoulli polynomial. Uisng trus asymptotic series with

z = :t: i( t :t: r) and v = ~ :t: U we obtain the equality

(10.59)
r(~ -i(t+r)+u)r(~ -i(t-r)+u)

rrj -nt+u--u)r y+i{t-r}-u} =

Because k .ie an even integer we have exp(-i(k-1)7r) = -1 here; so it rests to write

exp( 1: t-
nbn+1(n,7))

n~l

with a given polynomial bn in the asymptotic form

where bn are some polynomials in u . It is easy to do this by the comparison of the

logarithmic derivatives for both sides. Finally, for any polynomial P(u) we have far x > 0

(10.60) 1 J A a2"i1 P(u) a(u)x-udu = P(-x 7Ji) a(x)
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and the union of these fonnulae gives the assertion (10.50).

We shall use the shortened functional equation (10.50) later in the situation when K.. is
J

very small in the comparison with t. In this case

(10.61)
2 4

tU Ti = 4t \oeh-4t ++ Q(Ttt
1

)

t 2
and, taking in (10.50) m=l, x = y = :-2" we obtain the representation

4r

(10.62) «(1+2it)Rj(1/2+it) =

2
-2it log k+2it-r JS. (n) [4 2 J [ t 2

J= 2ie r ) ~ a ~ sin 2t log ---2t+ ~ -
n~tr;4r2 .yn t 2r{D.

where r is written on the right aide instead of /C. and
J

(10.63) a(x) = ((k-1)2 - i)a(x) + 4xa' (x) + 4x2
QII(X)

Of co~rse, the shortened functional equation of the same kind holds for the Rankin

series Rj,t(8) . By the same way as in the preceding case one can write the following

representation.
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Lemma 10.3. Let the real positive t be large, the even integer t be small in the sense

that t,4 = O(t) and k be a fixed even integer. Then for 8 = 1/2+it

(10.64) az8)R. d) = r E'V'-W + j(ii1)2) •
J,

p. (n) [ 2] [ (t-1)2']• )' J t t Q ~ sin 2t log t - 2t _ + _
n~tt;4r2 vn t 2r{ü

- w -NU)) 1: <Ju · )' ä[4y>] + o[t4t1]
t 2 vn t t

n<t
- --:-24r

where ';; is the same what was occured in (10.63) and in the accordance with (4.2)

(10.65)

10.5. The first summation.

Bere we consider the sum

(10.5) z(W) =} d v)h1f4w[LtA JW/8,2jO ...G+M, 11) = 11)2 '
v

s = 1/2+it .

As it was earlier we replace this SUffi (using the identity (4.22)) by the short SUffi of

the integrals
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m '

o nk LUV) f Jk_1f4mc)t..w (L2log(x+,;mjuV p dx ,

~Q log2Q 0

1
Q=2; .

€ L

The integrals in this sum may be calculated with ease by the standard method of the

stationary phase (see [13]) and after this we obtain the same sums over m's what were

considered In § 9. The certain time is needed to remain the more terms in the asymptotic

expansions than it ia required for the final result. Hut after the integration over t all

terms in these expansions, excepting the main ones, may be rejected without any lass {or

the remainder term. The main terms for cp € are equal to

(10.68)

(we use the Stirling expansion) and the integrals in (10.67) may be written as

(10.69)

where here and later ~ denotes an asymptotic series in t-1 ·(not necessary the same for

other cases) with the main term 1. The main property what is su:fficient for our purposes is

the possibility to integrate by parts auy times (rea.lly four times is sufficient); it is ensured

by the inequallties
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(10.70)

which hold for every fixed integer R ~ 1 .

Now the asymptotic calculation of the integrals in (10.69) which is reduced to the

substitution of the special values of the variables in the standard formulae gives the

following representation for the SUffi (10.67).

Proposition 10.6.

(10.71) Z(N,t)=i
k.,t"2"7· t (Et)'Re{ 2t(v)' [2~~ .exp(i16v(t)+4ri{llN-~)

. v

2
u r_ j JA}

Lt~ vL

where

(10.72) t/J (t) = 2t log t - 2t ,x = 21f(VN
V 2,;{V v

and ~ is the asymptotic series in t-1 with the main term 1; we have for any fixed

R~l

(10.73) ( IJ )R -R (8)R () -Rt9t ~« t , 7fi. ~ t,x «x .

10.6. The second summation.

Now we have the SUffi over N's which is almost identical with the sums what we
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considered in 9.2. The members with cos(4r{VN + r/4) are the same nature and the

sums with sine are smaller any power of M-1 . So all details may be omitted and we have

Proposition 10.7. Let t(m) = tj(m), T 1/2+ir(m) OI tj,t(m) j then

(10.74) l t(mq)z(mq,t)w1(ir) =

(m,q)=l

where Aare the same as in (9.7),q,c

(10.75)

and ~ is the asymptotic series in t-1 with the main term 1.

10.7. The integration over t .

This integration ia an easy and pleasurable work. First of all the remainder term from

the shortened functional equations gives O((ML)3/4.fQ) which is more smaller than aur

main term.'

Further, the oscillating multiplier exp(--i ;(t )), f( t) = 2t log h - 2t , in (10.62) and

(10.64) is compensated by the multiplier exp(+i~t)) which results in the coefficients

hL(r,s), hL t(s) from the asymptotic formulae of the functions v({;s,r) and Vt({,s).,
So we have the integrals
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(10.76)

where " (t) = 2t log t -2t, 8 is a smooth function with the smaIl derivatives,
11 , 27:{V

fj"(m) « t-m . Here L ia luge and for any a> 0 we have v« La . So it is obvious

that after integration over t only the terms with n = 11 will be survivedj all terms with

n :f: v give the small contribution to the remainder term and may be rejected.

Furthermore, since 11 ia very small in the copari80n with t, t:::: {liL , the cutting

2
function a(~) in (10.62) and (10.64) is equal to 1 in the remained integrals.

t

The explicit form for these integrals comes by the union of (10.74), (10.62) and

(10.64), the definitions hL(s,r), hL t(s) and the corresponding asymptotic formulae,
(10.38), (10.42) and (10.43); finally, it follows from (5.7) for t large

(10.77)
2k-1

dX(1/2+it) = t 2 (1+0(~))dt
2r (k) t

Firstly we consider the SUffi over discrete spectrum. To facilitate the control for the

coefficients we write the integrand in the form { }(n
1
) · { }(n

2
)'" where (nI)' (n2), ...

is the number of the corresoncling formula. Now we have under the sign of the summations

over cl q, 11 and I'j (for the brevity we write r instead of "'j):
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(10.78) ~.J{2i v-1/21J.(V)}(10 62) · {Jf(k V( n )M5/4A } (q)t(v) _1_.
. J. t q, J J {V

[ t -1 r_ t2 -1 1/4} {t 2k
-
1

}· 2xp GJ r2vU' L (10 74) 2 (10.77) ·

Q)

· J{r(k) J (~)} { ~ (J. ({)-J . (eH} ·
o tt=t k-l (10.20),(10.43) 4sh( n) 2ir -2ir (10.20),(10,38),(10.34)

2

{2" [4 t ] M} dt
• L{2 ~ (10.20)

Here the coefficient (1/2) before the integral is the mean value of sin2~ (t) and inv

the integral (10.20) the change of the variable ~~ t-1~ is done and the function
. 2

UL th 02t) 1)8 redacd by n [ >;furthe.he variable x CQIDG frOID (10.58)

and we have x::: 1, t-1{llKf« (M/L)1/2 « Q-2 (see (8.14)).

Now after the change of the variable t = 27:..fllL • Y we obtain in (10.78)

Q) 2

(10 79ncJGJ2Y)rY(2;yJiH2sk(; f(Jh/;>T_h /t))Jk-1(

2
3/4 5/4 tj(q)t(v)t.(c qV)IJ·(v)

·M LA. J J
q,c {V

2 2 2where eO= 47: vy .

Finally,
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(10.80)

and after t~e replacement 11 by vd2 we obtain the same expression as in (9.21) with the

coefficients in the spectral representation

(10.81 )

e2

In (9.21) we have the similar integral with (1-1'](--2)); so the sum of two
e~ .

(0)
representations (for the Bum l and for the integral with l2(s) ) is reduced to the SUffi

Zdis + Zcon + Zcusp where the coefficients are defined by the integral t~ansformations

(2.18) and (2.19) for the function <p(x) = Jk- 1(x) with even k ~ 12 . The integral (2.18)

equals to zero in this case and the integrals (2.19) are zeroes for all t =f:. k ; if t = k we

have

(10.82)
.k
1

hk = 2(k-l) .

It gives the following asymptotic formula for the average (6.4) of the left side (5.24).

Proposition 10.8. Let E --+ 0, M and L are taken in the form (6.6) and

Q= (E2L)-1 » q4+6 for sorne positive O. Then we have
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(10.83) l W b (J.Tl)l W
L

b {f)t{V){the lefi aide of (5.24) with N = roq ,
a1, 1 --~, 2

(ro,q)=1 v

T = L and I{J = I{JE(x-21og(VV+.J mq»} =

3/4 3/4
= C (LM) + 8 + O{(LM) Q-2)

k,q E E

with

(10.84)
a v k 2

8 = 0 M3/ 4L5/ 4 \ Q. \ A \ b(vd)
~ ~ J,k ~ q,c ~ ~

j=1 cl q v,d y vd-

here the quantities b(lI), aO' Aq,c and Ck,q are defined by the equalities (9.19), (9.22),

(9.7) and (7.11) accordingly.

10.8. The right side 0/(5.24).

The ri,ght side of (5.24) and 8 in (10.83) are the linear combination of the quantities

tj,k(q) . So the case tj,k(q) = 0 for all j, 1 ~ j ~ lIk ' is impossible and our Theorem 1

follows from the asymptotic representation (10.83).

Now we consider the same average of the right aide (5.24)j it will be expressed in the

same explicit form. Really all ia ready for the calulation of thia average. Für the sums over

v's and aver ro's, (m,q) = 1 J we have the representatian (10.74) (with

t(m) = t· k(m)) ,the Rankin series ia given by (10.64) with l = k and instead of hL k(s)
J, ,

we have the multiplier
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(10.85)

The simple calculation of the coefficients gives 48 for this integral over t. So it

rests to estimate the double average for tbe first term from tbe right aide (5.24). Using the

representations (10.71) for tbe sum over V'8 and estimating by modulus the result of the

summation over m's we obtain

Proposition 10.9.

(10.86)

Here

and this term is smaller than the remainder term in (10.83).

We conclude this subsection by the last

Proposition 10.10. Let 8 be defined by (10.84); then
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3/4 .
8 = 1 C (ML) (1 + O(Q-o))

! k,q E

§ 11. The cases k = 12,16,18,20,22 illil 26; the estirnate !rom below.

For aIl enumerated cases we have IIk = 1 in (10.84) 80 we can omit the indexes j, k

in the notations for the eigenvalues of the Hecke operators. Of course now we can forget a

lot of the parameters and remain the large parameter Q and two arbitrary function cp

and w.

The first function ia an even !rom Cm(--1D,+m) for which the support ia the

symmetrical interval (-a,a) for sorne a > 0 . Dur identity (10.87) ia proved only for the

realization (6.3); neverthelesa it is obviously enough that we can take other models of the

similar function.

Let cp be such a function; we define

(11.1)

and note that

(11.2)

m

t(x) = f <p(y)cos(xy)dy
;J)

m

<P(o) = h f l6(x)dx
;J)

The second function w has the support which ia strongly separated !rom zerOj of

course we assume w E Cm(O,m) ; we note again that (10.87) is proved for the specialization

of the kind (4.31) but we can take any function with the similar properties.
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It is known for any fE .Atk the explicit form for the residue of the corresponwng

Rankin series:

(11.3)
m 2o I LjZh[ ; t inf =; IIfllZ .

(4".) n=1 n s=1

Finally, assume q be a prime. This q was alm08t fixed in our considerationsj

nevertheless if our estimates will be examined then one can see that is ia allowable to take

the growing q under the condition q« Q1/4+€ for an arbitarary small fixed € > 0 .

Now we can reformulate the assertion (10.87) in the following form.

Lemma 11.1. Let tp E Cm(-;n,m) be an even function with a bounded support (-a,a) and

t ia the Fourier cosine-transformation of tp. Let for X > 0 and for q prime

(11.4)
2 2 t:::;'1

1} 4) = t(q\ ; t ( )t ri ) uruh-it(v}]
v,d R

where t(n) , n = 1,2,... , are the eigenvalues of the Hecke operators in ....Kk and is

assumed dim A(k = 1 (Le. k = 12,16,18,20,22 or 26). Now let w E Cm(O,m) has a

bounded support which is strongly separated !rom zero. Then for Q --+ +m and for

q «Q1/4+€ with a sufficiently small fixed € > 0 we have

(11.5)

where for k with the condition dim ~k = 1
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8(4r)2k-3 2 m (k 1)/2
ik = l'(k)t(k-i) IIfli , f= l n - t(n)e(nz)

n=l

The equality (11.5) is a reformulation of (10.87) for the case dim .A(k = 1 (we

replaced "'a b (y2) by w(Y))i it means that in the average
·2' 2

(11.7)

m

1 1 J- '1 (X;;) N - 1k t(x)dxyx q q
~

if X is luge enough.

As a consequence (11.5) we abtain the estimate from below for the eigenvalues of the

Hecke operators.

Theorem 11.1. Let q be a prime, q ---+ milet q(k-1)/2t (q) be the q-th Fourier

coefficient for the cusp form in .Atk and dirn .Atk =1 . Then for any positive € > 0 we

have

(11.8) It(q) I » q-1-€

Gf course it is the immediate consequence of the asymptotic formula (11.7). Since for

every 6 > 0 we have It( v) I << vo (the Deligne estimate in the rough form) we can

estimate the quantity _1_ '1 (X;I) by O( It(q) Iq°X(6) . At the same time this
yxq

1 4+°1quantity is »Ci' Since we can take X = q for same small 61 > 0 the inequality

(11.8) fallows.
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