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Abstract

We consider non-elementary Kleinian groups Γ without invariant plane

generated by an elliptic and a hyperbolic elements with their axes lying

in one plane. We find presentations and a complete list of orbifolds uni-

formized by such Γ.
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1 Introduction

This work is a part of the program on description of all 2-generator Kleinian
groups with real parameters. We study RP groups, that is, 2-generator sub-
groups of PSL(2, C) with real parameters β, β′, and γ (see Section 2 for exact
definitions). Since discreteness questions were answered for elementary groups
and groups with invariant hyperbolic plane (in particular, all Fuchsian groups
were described), we concentrate on the non-elementary RP groups without in-
variant plane, which we call truly spatial RP groups.

This paper deals with the most complicated and filled with discrete groups
case of RP groups with one generator elliptic and the other one hyperbolic.
‘Truly spatial’ for this class means that the elliptic generator is not a half-turn
and the axes of the generators either (1) are disjoint lines lying in a hyperbolic
plane or (2) intersect non-orthogonally at a point of H3. In terms of parameters,
we have here β ∈ (−4, 0), β′ ∈ (0,∞), and γ for (1) and (2) belongs to the
intervals (−∞, 0) and (0,−ββ′/4), respectively [9, Theorem 1 and Table 2]. In
the previous papers [7, 9, 10] necessary and sufficient conditions for discreteness
of all such groups were found constructively. Here we use the construction
(we reproduce it in Section 3) to determine fundamental sets, presentations,
and orbifolds for all truly spatial discrete RP groups with an elliptic and a
hyperbolic generators (Section 4).
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Note that throughout this paper f is elliptic and g is hyperbolic. The other
cases of f and g with real traces that generate a truly spatial RP group and the
question when the group is discrete were investigated in earlier papers [6, 8, 11].
The final results including the results of the present paper are collected in [12]
(mostly without proofs), where parameters, presentations and orbifolds for all
truly spatial discrete RP groups with real traces of the generators are given.

Acknowledgements. The second author would like to thank Gettysburg Col-
lege for sincere hospitality during her stay in October 2004 when an essential
part of the work was done.

2 Preliminaries

Definitions and notation

We identify PSL(2, C) with the full group of orientation preserving isometries
of hyperbolic 3-space H3.

A two-generator subgroup Γ = 〈f, g〉 of PSL(2, C) is determined up to con-
jugacy by its parameters β = β(f) = tr2f − 4, β′ = β(g) = tr2g − 4, and
γ = γ(f, g) = tr[f, g] − 2 whenever γ(f, g) 6= 0 [3].

The class of RP groups (two-generator groups with real parameters) is de-
fined as follows:

RP = {Γ |Γ = 〈f, g〉 for some f, g ∈ PSL(2, C) with β, β′, γ ∈ R}.

Note that the requirement of discreteness is not included in the definition of
RP groups.

We recall that an element f ∈ PSL(2, C) with real β = β(f) is elliptic,
parabolic, hyperbolic, or π-loxodromic according to whether β ∈ [−4, 0), β = 0,
β ∈ (0, +∞), or β ∈ (−∞,−4). If β /∈ [−4,∞), i.e. trf is not real, then f is
called strictly loxodromic.

An elliptic element f of order n is said to be primitive if it is a rotation
through 2π/n (with β = −4 sin2(π/n)); otherwise, it is called non-primitive
(and then β = −4 sin2(πq/n), where q and n are coprime and 1 < q < n/2).

A plane divides H3 into two components; we will call the closure of either of
them a half-space in H3. A connected subset P of H3 with non-empty interior
is said to be a (convex) polyhedron if it is the intersection of a family H of half-
spaces with the property that each point of P has a neighbourhood meeting at
most a finite number of boundaries of elements of H. A closed polyhedron with
finite number of faces bounded by planes α1, . . . , αk is denoted by P(α1, . . . , αk).

We define a tetrahedron T to be a polyhedron which in the projective ball
model is the intersection of the hyperbolic space H3 with a Euclidean tetrahe-
dron TE (possibly with vertices on the sphere ∂H3 at infinity or beyond it) so
that the intersection of each edge of TE with H3 is non-empty.

A tetrahedron T (possibly of infinite volume) in H3 is uniquely determined
up to isometry by its dihedral angles. Let T have dihedral angles π/p1, π/p2,
π/p3 at some face and let π/q1, π/q2, π/q3 be dihedral angles of T that are
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opposite to π/p1, π/p2, π/p3, respectively. Then a standard notation for such
a T is T [p1, p2, p3; q1, q2, q3].

We denote the reflection in a plane κ by Rκ. The axis of an element h ∈
PSL(2, C) with two distinct fixed points in ∂H3 is denoted by the same h if this
does not lead to any confusion.

We use symbols ∞ and ∞ with the following convention. We assume that
∞ > ∞ > x and x/∞ = x/∞ = 0 for every real x; ∞/x = ∞ and ∞/x = ∞ for
every positive real x; in particular, (∞, k) = (∞, k) = k for every positive integer
k. If we denote the dihedral angle between two planes by π/p (1 < p ≤ ∞),
then the planes intersect when p is finite, they are parallel when p = ∞ and
disjoint when p = ∞.

Convention on pictures

Since the methods we use here are essentially geometrical, the paper contains
many pictures of hyperbolic polyhedra. In those pictures, shaded polygons are
not faces of polyhedra, but are drawn to underline the combinatorial structure
of the corresponding polyhedron. They are just intersections of the polyhedron
with appropriate planes.

The edges of polyhedra are marked with the values of corresponding dihedral
angles; we omit labels π/2. Some other lines on such pictures are labeled with
positive integers k ≥ 2, which means that such a line is the axis of an elliptic
element of order k that belongs to Γ∗ (see below).

3 Fundamental polyhedra and parameters

From here on f is a primitive elliptic element and g is hyperbolic. The main
tool in the study of discreteness of Γ = 〈f, g〉 in [7, 9, 10] was a construction
of a ‘convenient’ finite index extension Γ∗ of Γ together with a fundamental
polyhedron for each discrete Γ∗. In this section, we reproduce the construction
of Γ∗ and describe the fundamental polyhedra for all discrete Γ∗. This is a
preliminary part for Section 4, where we will work with the groups Γ themselves
to list the corresponding orbifolds.

3.1 Geometric description of discrete groups for the case

of disjoint axes

Theorem 3.1 below gives necessary and sufficient conditions for discreteness of
Γ for the case of disjoint axes of the generators f and g; a complete proof can
be found in [7]. We also repeat the geometric construction from [7] and recall
fundamental polyhedra for the series of discrete groups Γ∗ corresponding to
Items 2(i)–2(iii) of Theorem 3.1.

Theorem 3.1 ([7]). Let f ∈ PSL(2, C) be a primitive elliptic element of order
n ≥ 3, g ∈ PSL(2, C) be a hyperbolic element, and let their axes be disjoint lines
lying in a hyperbolic plane. Then
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(1) There exists h ∈ PSL(2, C) such that h2 = fgf−1g−1 and (hg)2 = 1.

(2) Γ = 〈f, g〉 is discrete if and only if one of the following holds:

(i) h is a hyperbolic, parabolic, or primitive elliptic element of order
p ≥ 3;

(ii) n ≥ 5 is odd, h = x2, where x is a primitive elliptic element of order
n, and y = hgfx−1f isa hyperbolic, parabolic, or primitive elliptic
element of order q ≥ 4;

(iii) n = 3, h = x2, where x is a primitive elliptic element of order 5,
and z = hgf(x−1f)3 is a hyperbolic, parabolic, or primitive elliptic
element of order r ≥ 3.

Let f and g be as in Theorem 3.1 and let ω be the plane in which the
(disjoint) axes of f and g lie.
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Figure 1: Fundamental polyhedra for Γ∗ (γ < 0)

Denote by ε the plane that passes through the common perpendicular to
the axes of f and g and is orthogonal to ω. Let α and τ be the planes such
that f = RαRω and g = RτRε, and let P = P(ω, ε, α, τ). The planes ω and α
make a dihedral angle of π/n; the planes ε and τ are disjoint so that the axis
of g is their common perpendicular. Moreover, α is orthogonal to ε, and τ is
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orthogonal to ω. The planes α and τ either intersect non-orthogonally or are
parallel or disjoint. We denote the dihedral angle of P between these planes by
π/p, p > 2, where p = ∞ if α and τ are parallel and p = ∞ if they are disjoint.

For the group Γ = 〈f, g〉, we consider two finite index extensions of it:

Γ̃ = 〈f, g, e〉, where e = RεRω, and Γ∗ = 〈f, g, e, Rω〉. Γ̃ is the orientation

preserving subgroup of index 2 in Γ∗, and Γ̃ contains Γ as a subgroup of index
at most 2. In Section 4, we shall see when Γ = Γ̃ and when Γ 6= Γ̃.

It was shown in [7] that h = RαRτ is the only element that satisfies both h2 =
[f, g] and (hg)2 = 1. There are three series of discrete groups Γ depending on
how P is decomposed into fundamental polyhedra for Γ∗. The series correspond
to the conditions 2(i), 2(ii), and 2(iii) of Theorem 3.1.

1. h is hyperbolic, parabolic, or a primitive elliptic element of order p ≥ 3 (that
is 2(i) holds) if and only if the dihedral angle of P between α and τ is of the form
π/p with p = ∞, p = ∞, or p ∈ Z, p ≥ 3, respectively. This is the first series of
the discrete groups. In this case the polyhedron P is a fundamental polyhedron
for Γ∗. In Figure 1(a) P is drawn under assumption that 1/n + 1/p > 1/2.

The other discrete groups appear only if h is the square of a primitive elliptic
element x = RκRτ , where κ is the bisector of the dihedral angle of P made by
α and τ . Fundamental polyhedra for Γ∗ corresponding to these two series are
obtained by decomposing P into smaller polyhedra as follows (see [7] for the
proof).

2. Let Γ be determined by the condition 2(ii). In this case, n ≥ 5 is odd, the
dihedral angle of P between α and τ is 2π/n, and κ and ω make a dihedral angle
of π/3. Hence, ξ1, where ξ1 = Rκ(ω), and ω also make a dihedral angle of π/3,
and ξ1 and α are orthogonal. The planes ξ1 and ε either intersect at an angle
of π/q, where q ∈ Z, q ≥ 4, or are parallel or disjoint (q = 3 is not included,
because then ε and τ must intersect). One can show that if y = RεRξ1

, then
y = hgfx−1f . The polyhedron P(ω, ε, α, ξ1) is a fundamental polyhedron for
Γ∗. For q = 4 or 5 and n = 5, P(ω, ε, α, ξ1) is compact and we show it in
Figure 1(b) by bold lines.

3. Let Γ be determined by the condition 2(iii). In this case n = 3 and the
dihedral angle of P between α and τ is 2π/5. Denote ξ2 = Rκ(ω). The planes
κ and ω make a dihedral angle of 2π/5 and, hence, ξ2 and ω make an angle of
π/5. It can be shown that ξ2 and α are orthogonal. The planes ε and ξ2 either
intersect at an angle of π/r, where r ∈ Z, r ≥ 3, or are parallel or disjoint. In this
case z = RεRξ2

= hgf(x−1f)3. The polyhedron P(ω, ε, α, ξ2) is a fundamental
polyhedron for Γ∗ (see Figure 1(c), where P(ω, ε, α, ξ2) is drawn for r = 3).
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3.2 Parameters for discrete groups in the case of disjoint

axes

Let U = {u : u = iπ/p, p ∈ Z, p ≥ 2} ∪ [0, +∞). Define a function t : U →
{2, 3, . . .} ∪ {∞,∞} as follows:

t(u) =





p if u = iπ/p,
∞ if u = 0,
∞ if u > 0.

The purpose of introducing the function t(u) is to shorten statements that
involve parameters (β, β′, γ). We use it in Theorems 3.2, 3.3, 4.1, 4.2, and 4.5.

Now we give a parameter version of Theorem 3.1 with a proof. Theorem 3.2
is new and did not appear before, however, we did use a similar technique in
earlier papers.

Theorem 3.2. Let f, g ∈ PSL(2, C), β = −4 sin2(π/n), n ≥ 3, β′ ∈ (0, +∞),
and γ ∈ (−∞, 0). Then the group Γ = 〈f, g〉 is discrete if and only if one of the
following holds:

1. γ = −4 cosh2 u, where u ∈ U and t(u) ≥ 3;

2. n ≥ 5, (n, 2) = 1, γ = −(β + 2)2, and β′ = 4(β + 4) cosh2 u − 4, where
u ∈ U and t(u) ≥ 4;

3. β = −3, γ = (
√

5 − 3)/2, and β′ = 2(7 + 3
√

5) cosh2 u − 4, where u ∈ U
and t(u) ≥ 3.

Proof. β = −4 sin2(π/n), n ∈ Z, if and only if f is a primitive elliptic element
of order n, and β′ ∈ (0, +∞) if and only if g is hyperbolic. Since n ≥ 3 and
γ ∈ (−∞, 0), Γ is non-elementary and the axes of f and g are disjoint by [9,
Theorem 1]. So, the hypotheses of Theorem 3.2 and Theorem 3.1 are equivalent.

Let us find explicit values of β′ and γ for each of the discrete groups from
part (2) of Theorem 3.1. The idea is to use the fundamental polyhedra described
in Section 3.1. Since γ = tr[f, g] − 2 and h is a square root of [f, g], it is not
difficult to get conditions on γ.

The element h = RαRτ is hyperbolic if and only if the planes α and τ (see
Figure 1(a)) are disjoint. Therefore, tr[f, g] = trh2 = −2 cosh(2d), where d
is the hyperbolic distance between α and τ . Here tr[f, g] must be negative,
because γ is negative for all values of β and β′ that satisfy the hypotheses of
the theorem.

The element h is parabolic if and only if [f, g] is parabolic and if and only if
tr[f, g] = −2 which is equivalent to γ = −4 (tr[f, g] = 2 would give γ = 0).

Thus, h is hyperbolic or parabolic if and only if

γ = tr[f, g] − 2 = −2 cosh(2d) − 2 = −4 cosh2 d, d ≥ 0. (3.1)

Now suppose that h is an elliptic element with rotation angle φ, where
φ/2 = π/p < π/2 is the dihedral angle of P(ω, ε, α, τ) made by α and τ .
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Then [f, g] = h2 is also elliptic with rotation angle 2φ. Since tr[f, g] is well-
defined, we conclude that tr[f, g] = −2 cosφ by continuity. On the other hand,
if tr[f, g] ∈ (−2, 2) is given, we can use the formula tr[f, g] = −2 cosφ, φ < π,
to determine the rotation angle φ of the element h from Theorem 3.1.

Hence, h is a primitive elliptic element of order p (p ≥ 3), that is, φ = 2π/p,
if and only if

γ = tr[f, g] − 2 = −2 cos(2π/p) − 2 = −4 cos2(π/p), p ∈ Z, p ≥ 3. (3.2)

Now we can combine the formulas (3.1) and (3.2) for γ and write them as

γ = −4 cosh2 u, where u ∈ U and t(u) ≥ 3.

It is clear that for the groups from Item 2(i) of Theorem 3.1, we have no
further restrictions on n and β′. So, part 1 of Theorem 3.2 is equivalent to 2(i)
of Theorem 3.1.

Further, in 2(ii), n ≥ 5 is odd and h is the square of a primitive elliptic
element of order n (that is, φ = 4π/n) if and only if n ≥ 5, (n, 2) = 1, and
γ = −4 cos2(2π/n) = −(β + 2)2.

So it remains to specify β′ for 2(ii). Now β′ depends on the order of element
y defined in Theorem 3.1. Since g = RτRε, β′ = tr2g − 4 = 4 sinh2 T , where T
is the distance between the planes ε and τ .

Elementary calculations in the plane ω show that for the groups from
Item 2(ii),

β′ =





4(β + 4) cos2(π/q) − 4 if 4 ≤ q < ∞,
4(β + 4) − 4 if q = ∞,

4(β + 4) cosh2 d1 − 4 if q = ∞,

where d1 is the distance between ε and ξ1 if they are disjoint, and π/q is the
angle between ε and ξ1 if they intersect. Hence, β′ can be written in general
form as follows:

β′ = 4(β + 4) cosh2 u − 4, where u ∈ U and t(u) ≥ 4.

Analogously, for the groups from Item 2(iii), we have n = 3 and φ = 4π/5,
and therefore

β = −3, and γ = −4 cos2(2π/5) = (
√

5 − 3)/2.

Moreover,

β′ =






2(7 + 3
√

5) cos2(π/r) − 4 if 3 ≤ r < ∞,

2(7 + 3
√

5) − 4 if r = ∞,

2(7 + 3
√

5) cosh2 d2 − 4 if r = ∞,

where d2 is the distance between ε and ξ2 if they are disjoint, and π/r is the
angle between ε and ξ2 if they intersect, and hence,

β′ = 2(7 + 3
√

5) cosh2 u − 4, where u ∈ U and t(u) ≥ 3.
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3.3 Geometric description of discrete groups for the case

of intersecting axes

Now we consider Γ = 〈f, g〉 with f primitive elliptic of order n > 2 and g
hyperbolic with non-orthogonally intersecting axes. In [9] and [10], criteria for
discreteness of such groups were found for n even and odd, respectively. In this
section we recall the criteria in terms of parameters and remind the construction
of a fundamental polyhedron for each discrete group Γ∗.

Theorem 3.3 ([9] and [10]). Let f, g ∈ PSL(2, C), β = −4 sin2(π/n), n ≥ 3,
β′ > 0, and 0 < γ < −ββ′/4. Then Γ = 〈f, g〉 is discrete if and only if (β, β′, γ)
is one of the triples listed in Table 1.

Remark 3.4. Note that if a formula in Table 1 involves u ∈ U such that
(t(u), 2) = 1, then t(u) is finite and odd, while for u ∈ U with (t(u), 2) = 2, t(u)
can be not only finite (and even), but ∞ or ∞, which implies that the formula
is applicable also to u ≥ 0.

Table 1: All parameters for discrete RP groups generated by a primitive elliptic
element f of order n ≥ 3 and a hyperbolic element g whose axes intersect non-
orthogonally.

β = β(f) γ = γ(f, g) β′ = β(g)

n ≥ 4, (n, 2) = 2, u, v ∈ U , 1/n + 1/t(u) < 1/2

P1 −4 sin2 π

n
, n ≥ 4 4 cosh2 u + β,

4

γ
cosh2 v − 4γ

β
,

(t(u), 2) = 2 t(v) ≥ 3

P2 −4 sin2 π

n
, n ≥ 4 4 cosh2 u + β,

4(γ − β)

γ
cosh2 v −

4γ

β
,

(t(u), 2) = 1 t(v) ≥ 3

P3 −2 2 cos(2π/m), m ≥ 5, γ2 + 4γ

(m, 2) = 1

n ≥ 3, (n, 2) = 1, u, v ∈ U , 1/n + 1/t(u) < 1/2;

S = −2
(γ − β)2 cos π

n
+ γ(γ + β)

γβ
, T = −2

(β + 2)2 cos π

n

β + 1
− 2

(β2 + 6β + 4)

β

P4 −4 sin2 π

n
, n ≥ 3 4 cosh2 u + β,

2

γ
(cosh v − cos

π

n
) + S,

(t(u), 2) = 2 t(v) ≥ 2

P5 −4 sin2 π

n
, n ≥ 3 4 cosh2 u + β,

2(γ − β)

γ
cosh v + S,

(t(u), 2) = 1 t(v) ≥ 2

P6 −4 sin2 π

n
, n ≥ 7 (β + 4)(β + 1)

2(β + 2)2

β + 1
cosh v + T, t(v) ≥ 2

P7 −4 sin2
π

n
, β + 3

2

β

“

(β − 3) cos
π

n
− 2β − 3

”

n ≥ 5, (n, 3) = 1

P8 −4 sin2
π

n
, 2(β + 3) −

6

β

“

2 cos
π

n
+ β + 2

”
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Table 1: (continued)

β = β(f) γ = γ(f, g) β′ = β(g)

n ≥ 5, (n, 3) = 1

P9 −3 2 cos(2π/m) − 1,
2

γ

`

γ2 + 2γ + 2
´

m ≥ 7, (m, 2) = 1

P10 −3 2 cos(π/m) − 1, γ2 + 4γ

m ≥ 4, (m, 3) = 1

P11 −3 2 cos(2π/m), 2γ

m ≥ 7, (m, 4) ≤ 2

P12 −3 (
√

5 + 1)/2
√

5

P13 −3 (
√

5 − 1)/2
√

5

P14 −3 (
√

5 − 1)/2
√

5 − 1

P15 (
√

5 − 5)/2 (
√

5 − 1)/2
√

5

P16 (
√

5 − 5)/2 (
√

5 − 1)/2 (3
√

5 − 1)/2

P17 (
√

5 − 5)/2 (
√

5 − 1)/2 3(
√

5 + 1)/2

P18 (
√

5 − 5)/2 (
√

5 + 1)/2 3(
√

5 + 1)/2

P19 (
√

5 − 5)/2
√

5 + 2 (5
√

5 + 9)/2

Let f and g be as in Theorem 3.3, that is, let f be a primitive elliptic
element of order n ≥ 3, g be a hyperbolic element, and let their axes intersect
non-orthogonally. Let ω be a plane containing f and g, and let e be a half-turn
whose axis is orthogonal to ω and passes through the point of intersection of f
and g.

Again, we define two finite index extensions of Γ = 〈f, g〉 as follows: Γ̃ =
〈f, g, e〉 and Γ∗ = 〈f, g, e, Rω〉.

Let ef and eg be half-turns such that f = efe and g = ege. The lines ef

and e lie in a plane, denote it by ε, and intersect at an angle of π/n; ε and ω
are mutually orthogonal; eg is orthogonal to ω and intersects g.

Let α be a hyperbolic plane such that f = RωRα and let α′ = eg(α). There
exists a plane δ which is orthogonal to the planes α, ω, and α′. The plane δ
passes through the common perpendicular to f and eg(f) orthogonally to ω. It
is clear that eg ⊂ δ.

From here on, we discribe the cases of even n and odd n separately (n is the
order of the elliptic generator f).

n ≥ 4 is even

Let P = P(α, ω, α′, δ, ε). The polyhedron P can be compact or non-compact;
in Figure 2(a), P is drawn as compact.

The polyhedron P has five right dihedral angles; the dihedral angles formed
by ω with α and α′ equal π/n. The planes α and α′ can either intersect, or be
parallel or disjoint; the same is true for ε and α′. Denote the angle between ε
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Figure 2: Fundamental polyhedra for Γ∗ in the case of even n (0 < γ < −ββ′/4)

and α′ by π/`, where ` ∈ (2,∞)∪ {∞,∞} and denote the angle between α and
α′ by 2π/m, where m ∈ (2,∞) ∪ {∞,∞}, 1/n + 1/m < 1/2.

For each triple of parameters with n even in Table 1, we know a fundamental
polyhedron for Γ∗ [9] and we describe all such polyhedra below.

P1. P is a fundamental polyhedron for Γ∗ if and only if m ∈ Z ∪ {∞,∞}, m is
even (1/m + 1/n < 1/2), and ` ∈ Z ∪ {∞,∞} (` ≥ 3). In terms of the function
t, m = t(u) and ` = t(v) (cf. Table 1).

P2. Note that in this case m = t(u) is finite and odd. Let ξ be the bisector of
the dihedral angle of P at the edge α ∩ α′. It is clear that ξ passes through eg

and is orthogonal to ω. The polyhedron P(α, δ, ξ, ε, ω) is bounded by reflection
planes of Γ∗ (see Figure 2(b)) and, therefore, it is a fundamental polyhedron
for Γ∗ if and only if ξ and ε intersect at an angle of π/k, where k ≥ 3, or are
parallel or disjoint (k = ∞ or k = ∞, respectively). In Table 1, k = t(v) for the
parameters P2.

P3. In this case n = 4 and the dihedral angle of P(α, δ, ξ, ε, ω) at the edge ξ ∩ ε
is 2π/m, where m = t(u) is odd, 5 ≤ m < ∞. The polyhedron P(α, δ, ξ, ε, ω)
is decomposed by reflection planes of Γ∗ into three (possibly infinite volume)
tetrahedra [2, 2, 4; 2, 3, m], each of which is a fundamental polyhedron for Γ∗

(see Figure 2(c)).

n ≥ 3 is odd

Denote e1 = f (n−1)/2e. Note that e1 makes angles of π/(2n) with α and ω.
We can forget about the plane ε, because now we need another plane, denote

it by ζ, for the construction of a fundamental polyhedron for Γ∗. To construct
ζ we use an auxiliary plane κ that passes through e1 orthogonally to α′. The
plane ζ then passes through e1 orthogonally to κ. (Note that ζ is not orthogonal
to each of α and ω if m 6= 2n.) In fact, the planes ζ and α′ can either intersect,
or be parallel, or disjoint. Note that if ζ ∩α′ 6= ∅ then e1 is orthogonal to ζ ∩α′.
Let P = P(α, ω, α′, δ, ζ). In Figure 3(a), P is drawn for the compact case.
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Consider the dihedral angles of P . The angles between δ and ω, δ and α, δ
and α′ are all of π/2; the angles formed by ω with α and α′ equal π/n; since ζ
passes through e1, which is orthogonal to f , the sum of the angles formed by ζ
with ω and α equals π. The planes α and α′ can either intersect or be parallel
or disjoint. The same is true for ζ and α′. Denote the angle between α and α′

by 2π/m and the angle between α′ and ζ by π/(2`).
Fundamental polyhedra for groups Γ∗ for all triples of parameters with odd

n from Table 1 were constructed in [10]. Now we describe them.
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π
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π
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δ

α
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(a): P4 (b): P5

Figure 3:

P4. P itself is a fundamental polyhedron for Γ∗ if and only if m is even (1/m +
1/n < 1/2), m = ∞, or m = ∞, and ` ∈ Z ∪ {∞,∞}, ` ≥ 2. In terms of the
function t, m = t(u) and ` = t(v) (cf. Table 1).

P5. Let ξ be the bisector of the dihedral angle of P at the edge α∩α′. Clearly,
ξ passes through eg orthogonally to ω and δ. Construct a plane ζ1 in a similar
way as ζ above (now ξ plays the role of α′). The polyhedron Q = P(α, δ, ξ, ζ1, ω)
is a fundamental polyhedron for Γ∗ (see Figure 3(b)) if and only if m is odd and
ξ and ζ1 make an angle of π/(2k), where k ≥ 2 is an integer, ∞ or ∞.

P6. In this case, the dihedral angle of Q at the edge α ∩ ξ equals 2π/n (i.e.
m = n/2), n ≥ 7 is odd. Let ρ be the bisector of this dihedral angle and let
τ = Rρ(ω). The bisector ρ makes an angle of π/3 with ω and, therefore, so does
τ . It is clear that then τ is orthogonal to α (we have one of Knapp’s triangles
in δ). Construct a plane ζ2 similarly to the planes ζ and ζ1 above (but using τ).
The polyhedron P(α, δ, ω, τ, ζ2) (see Figure 4(a), where we show also a part of
the plane δ) is a fundamental polyhedron for Γ∗ if and only if ζ2 and τ intersect
at an angle of π/(2k), where k ≥ 2 is an integer, or are parallel or disjoint
(k = ∞ or k = ∞, respectively). In Table 1, t(v) corresponds to k.

P9. The dihedral angles of Q at the edges α∩α′ and ζ1∩α′ equal π/m, m is odd.
The plane ζ1 makes dihedral angles of 2π/3 and π/3 with α and ω, respectively.
Let σ be the bisector of the dihedral angle of Q at α ∩ ζ1. It is clear that σ is
orthogonal to ω. P(α, ω, ξ, δ, µ), where µ is the plane that passes through σ ∩ω
orthogonally to α, is a fundamental polyhedron for Γ∗ (see Figure 4(b)). The
dihedral angle of P(α, ω, ξ, δ, µ) at µ ∩ ω equals π/4.
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Figure 4:

Fundamental polyhedra for remaining discrete groups Γ∗ are obtained after
decomposition of P (which is shown in Figuree 3(a)) by the planes of reflections
from Γ∗, that is, (m, 2) = 2, m ≥ 4, and ` is fractional. We first consider the
cases where Rζ ∈ Γ∗.

A compact convex polyhedron in H3 whose skeleton is a trivalent graph is
uniquely determined by its dihedral angles up to isometry of H3 [5]. Given
n, m, and `, all the dihedral angles of the polyhedron P ∪ e1(P) are defined.
Therefore, the dihedral angle φ of P at α ∩ ζ can be obtained. So to determine
a compact P it is sufficient to indicate only n, m, and `, but we shall also give
the value of φ for convenience. If P has infinite volume, but ` < ∞ and m < ∞
(then 2/m + 1/n + 1/` < 1), P is also determined by the values of n, m, and `,
since we can cut off a compact polyhedron from P∪e1(P) by a plane orthogonal
to ζ, α, α′ and a plane orthogonal to ζ, ω, α′.

There are no discrete groups for which m = ∞ or ` ≥ ∞ except for those
with parameters of type P4. When m = ∞ we also indicate the distance d
between α and α′ to determine P . In fact, given d, one can find φ, but we shall
give φ explicitely for convenience.

In all of these cases Rδ 6∈ Γ∗, so we do not show δ (but indicate eg) in figures
in order to simplify the picture. By the same reason we draw only those parts
of the decomposition (including ω) that are important for the reconstruction of
the action of Γ∗ and help to determine positions of e1 and eg .

P11. n = 3, m = ∞, ` = r/4, (r, 4) ≤ 2, r ≥ 7, φ = 2π/3, and
cosh d = 2 cos2(π/r) − 1/2. P(α, α′, ω, ζ) is decomposed into tetrahedra
T = T [2, 3, r; 2, 2, 4] each of which is a fundamental polyhedron for Γ∗ (Fig-
ure 5(a)).

P12. n = 3, m = ∞, ` = 3/2, φ = 4π/5, and cosh d = (3+
√

5)/4. P(α, α′, ω, ζ)
is decomposed into tetrahedra T = T [2, 2, 3; 2, 5, 3]. A half of T is a fundamental
polyhedron for Γ∗ (Figure 5(b)).

P13. n = 3, m = 10, ` = 3/2, φ = 3π/5. P(α, α′, ω, ζ) is decomposed into
tetrahedra T = T [2, 3, 5; 2, 3, 2]. A half of T is a fundamental polyhedron for
Γ∗ (Figure 6(a)).
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Figure 5:

P14. n = 3, m = 10, ` = 5/4, φ = 2π/3. P(α, α′, ω, ζ) is decomposed into
tetrahedra T = T [2, 3, 5; 2, 2, 4]. A half of T is a fundamental polyhedron for
Γ∗ (Figure 6(b)).

P15. n = 5, m = 4, ` = 3/2, φ = π/5. P(α, α′, ω, ζ) is decomposed into tetrahe-
dra T = T [2, 3, 5; 2, 3, 2]. T is a fundamental polyhedron for Γ∗ (Figure 6(c)).

P17. n = 5, m = 4, ` = 5/2, φ = π/3. P(α, α′, ω, ζ) is decomposed into
tetrahedra T = T [2, 3, 5; 2, 2, 5]. A half of T is a fundamental polyhedron for
Γ∗ (Figure 6(d)).

P18. n = 5, m = 6, ` = 5/4, φ = π/3. P(α, α′, ω, ζ) is decomposed into
tetrahedra T = T [2, 3, 5; 2, 2, 5]. A half of T is a fundamental polyhedron for
Γ∗ (Figure 6(e)).

Now consider discrete groups for which Rζ 6∈ Γ∗. In all these cases ` = p/3,
where (p, 3) = 1. Let η be the plane through α′ ∩ ζ that makes a dihedral angle
of 2π/p with α′ and let P = P(α, α′, ω, δ, η). Denote by θ1 and θ2 dihedral
angles of P at η ∩ α and η ∩ ω, respectively.

If P is compact or non-compact with m < ∞, P is determined by values n,
m, `, θ1, and θ2. For m = ∞, we give the distance d between α and α′.

P7. n ≥ 5, (n, 3) = 1, m = 6, ` = n/3, θ1 = π/3, θ2 = π/2. P(α, α′, ω, η) is de-
composed into tetrahedra T = T [2, 3, n; 2, 3, n]. A quarter of T is a fundamental
polyhedron for Γ∗ (Figure 7(a)).

P8. n ≥ 5, (n, 3) = 1, m = ∞, ` = n/3, θ1 = π/2, θ2 = π/n, and cosh d =
2 cos2(π/n). P(α, α′, ω, η) is decomposed into tetrahedra T = T [2, 2, 4; 2, n, 4].
A half of T is a fundamental polyhedron for Γ∗ (Figure 7(b)).

P10. n = 3, m ≥ 8 is even, (m, 3) = 1, ` = m/6, θ1 = π/2, θ2 = π/3.
P(α, α′, ω, η) is decomposed into tetrahedra T = T [2, 3, m/2; 2, 3, 3]. A half of
T is a fundamental polyhedron for Γ∗ (Figure 7(c)).

P16. n = 5, m = 4, ` = 5/3, θ1 = π/5, θ2 = 2π/3. P(α, α′, ω, η) is decomposed
into tetrahedra T = T [2, 3, 5; 2, 3, 2]. A half of T is a fundamental polyhedron
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for Γ∗ (Figure 7(d)).

P19. n = 5, m = ∞, ` = 5/3, θ1 = 3π/5, and cosh d = (5 +
√

5)/4. The
planes η and ω are disjoint. P(α, α′, ω, η) is decomposed into tetrahedra T =
T [2, 2, 3; 2, 5, 3]. A half of T is a fundamental polyhedron for Γ∗, see Figure 7(e),
where LM = eg and V E = e1.

4 Kleinian orbifolds and their fundamental

groups

Let Γ be a non-elementary Kleinian group, and let Ω(Γ) be the discontinuity
set of Γ. Following [1], we say that the Kleinian orbifold Q(Γ) = (H3 ∪Ω(Γ))/Γ
is an orientable 3-orbifold with a complete hyperbolic structure on its interior
H3/Γ and a conformal structure on its boundary Ω(Γ)/Γ.

In this section we shall describe the Kleinian orbifold Q(Γ) and a presenta-
tion for each truly spatial discrete RP group Γ generated by an elliptic and a
hyperbolic elements. Since a fundamental polyhedron for Γ∗ (a finite index ex-
tension of Γ) was shown, it remains to construct a fundamental polyhedron for Γ
itself and identify the equivalent points on the boundary of the new polyhedron
to get the corresponding orbifold.

In figures, we schematically draw singular sets and boundary components
of the orbifolds using fat vertices and fat edges. A fat vertex is either a sin-
gular point of Q(Γ), or corresponds to a puncture, or is deleted together with
its neighbourhood (which means that the orbifold has a non-empty boundary)
depending on the indices of the incident edges. A fat edge can be labelled by
an integer, ∞, or ∞. If the index at a fat edge is ∞, then the egde corresponds
to a cusp, and if the index is ∞, the edge must be removed together with its
regular neighbourhood.

More details on how to ‘decode’ an orbifold with fat edges and vertices are
given in [12]. We do not discuss them here since fundamental polyhedra for all
Γ will be found, so it is not difficult to reconstruct the orbifolds.

Denote

1. GT [n, m; q] = 〈f, g | fn, gm, [f, g]q〉

2. PH [n, m, q] = 〈x, y, z |xn, y2, z2, (xz)2, [x, y]m, (yxyz)q〉

3. H [p; n, m; q] = 〈x, y, s | s2, xn, ym, (xy−1)p, (sxsy−1)q , (sx−1y)2〉

4. P [n, m, q] = 〈w, x, y, z |wn, x2, y2, z2, (wx)2, (wy)2, (yz)2, (zx)q, (zw)m〉

5. Tet[p1, p2, p3; q1, q2, q3] = 〈x, y, z |xp1 , yp2 , zp3 , (yz−1)q1 , (zx−1)q2 , (xy−1)q3 〉.
The group Tet[2, 2, n; 2, q, m] is denoted by Tet[n, m; q] for simplicity.

6. GTet1[n, m, q] = 〈x, y, z |xn, y2, (xy)m, [y, z]q, [x, z]〉

7. GTet2[n, m, q] = 〈x, y, z |xn, y2, (xy)m, (xz−1y−1zy)q, [x, z]〉
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8. S2[n, m, q] = 〈x, L |xn, (xLxL−1)m, (xL2x−1L−2)q〉

9. S3[n, m, q] = 〈x, L |xn, (xLxL−1)m, (xLxLxL−2)q〉

10. R[n, m; q] = 〈u, v | (uv)n, (uv−1)m, [u, v]q〉

In the presentations 1–10, the exponents n, m, q, . . . may be integers (greater
than 1), ∞, or ∞. We employ the symbols ∞ and ∞ in the following way. If
we have relations of the form wn = 1, where n = ∞, we remove them from
the presentation (in fact, this means that the element w is hyperbolic in the
Kleinian group). Further, if we keep the relations w∞ = 1, we get a Kleinian
group presentation where parabolics are indicated. To get an abstract group
presentation, we need to remove such relations as well.

The reader can find the orbifolds that correspond to the above presentations
in Figures 9, 10, and 12.

We start with description of presentations and orbifolds for all truly spatial
discrete groups generated by a primitive elliptic and a hyperbolic elements with
disjoint axes (Theorem 4.1). As usual, we can also use the theorem when the
elliptic generator is non-primitive, using recalculation formulas for parameters
(see [4] or [9]).

Theorem 4.1. Let Γ = 〈f, g〉 be a discrete RP group with β = −4 sin2(π/n),
n ≥ 3, β′ ∈ (0, +∞), and γ ∈ (−∞, 0). The one of the following occurs:

1. γ = −4 cosh2 u, where u ∈ U , (t(u), 2) = 2, and t(u) ≥ 4; Γ is isomorphic
to GT [n,∞; t(u)/2].

2. γ = −4 cosh2 u, where u ∈ U , (t(u), 2) = 1, and t(u) ≥ 3; Γ is isomorphic
to Tet[n,∞; t(u)].

3. n ≥ 5, (n, 2) = 1, γ = −(β + 2)2, and β′ = 4(β + 4) cosh2 u − 4, where
u ∈ U and t(u) ≥ 4; Γ is isomorphic to Tet[n, t(u); 3].

4. β = −3, γ = (
√

5 − 3)/2, and β′ = 2(7 + 3
√

5) cosh2 u − 4, where u ∈ U
and t(u) ≥ 3; Γ is isomorphic to Tet[3, t(u); 5].

Proof. All parameters for discrete groups in the statement of Theorem 4.1 are
described in Theorem 3.2. We shall obtain a presentation for each discrete group
by using the Poincaré polyhedron theorem.

Let Γ have parameters as in part 1 of Theorem 3.2. In Section 3.1, a funda-
mental polyhedron for the group Γ∗ was described. Since Γ̃ is the orientation
preserving index 2 subgroup of Γ∗, we can take P̃ = P(ε, α, τ, Rω(α)) as a

fundamental polyhedron for Γ̃ (see Figure 8(a)). In our notation p = t(u).
Let eg = RτRω. It is clear that eg = ge. By applying the Poincaré polyhe-

dron theorem to P̃ and face pairing transformations e, eg, and f , we get

Γ̃ = 〈e, eg, f | e2, e2
g, f

n, (fe)2, (feg)
p〉,
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Figure 8: Fundamental polyhedra for Γ̃ and Γ in case of disjoint axes

where p is an integer, ∞, or ∞. Since g = ege,

Γ̃ = 〈f, g, e | fn, e2, (fe)2, (ge)2, (fge)p〉.

If p is odd, then from the relations for Γ̃ it follows that e = (fgf−1g−1)(p−1)/2fg.

Hence, in this case Γ̃ = Γ and Γ ∼= Tet[n,∞; p]. Identifying faces of P̃, we get
the orbifold Q(Γ) shown in Figure 9(d).

If p is even, ∞, or ∞, then Γ is a subgroup of index 2 in Γ̃. To see this
we apply the Poincaré theorem to the polyhedron P(α, τ, Rω(α), Rε(τ)) (see
Figure 8(b)). Then

Γ = 〈f, g | fn, (fgf−1g−1)p/2〉 ∼= GT [n,∞; p/2].

The orbifold Q(Γ) is shown in Figure 9(a).

Now consider the groups with parameters from part 2 of Theorem 3.2. In
this case t(u) = q from Theorem 3.1. By applying the Poincaré theorem to the
polyhedron P(ε, α, ξ1, Rω(α), Rω(ξ1)) and the group generated by f , e, and s,
where s = RωRξ1

, we get the following presentation for the group 〈f, e, s〉:

〈f, e, s | fn, e2, s3, (fe)2, (fs)2, (se)q〉.

Since x = RκRτ , we have x2 = h and x = fs−1. Therefore, g = ege = f−1he =
f−1x2e = f−1(fs−1)2e = s−1fs−1e, and hence Γ ⊆ 〈f, e, s〉.

Since hn = 1, n is odd and h2 = [f, g], we have that h = [f, g]−(n−1)/2 ∈ Γ.
Further, eg = f−1h, and so e = egg = f−1hg ∈ Γ. From xn = 1 we have that
x = h−(n−1)/2 ∈ Γ and, therefore, s = xeg = xge ∈ Γ. Thus, 〈f, e, s〉 ⊆ Γ.

We see that 〈f, e, s〉 = Γ and Γ is isomorphic to the group Tet[n, q; 3], where
q ≥ 4 is an integer, ∞, or ∞.

The orbifold Q(Γ) is shown in Figure 9(d).
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Similarly, one can show that the groups with parameters from part 3 of
Theorem 3.2 are isomorphic to Tet[3, t(u); 5], where t(u) ≥ 3 is an integer, ∞,
or ∞.

n
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n n m
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p

(a): GT [n,∞; q] (b): PH [n, m, q] (c): H [p; n, m; q]

p
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(d): Tet[p1, p2, p3; q1, q2, q3] (d’): Tet[n, m; q] (e): P [n, m, q]

Figure 9: Orbifolds embedded in S3

Let T (p), p ∈ Z, be a Seifert fibred solid torus obtained from a trivial fibred
solid torus D2 × S

1 by cutting it along D2 × {x} for some x ∈ S
1, rotating one

of the discs through 2π/p and glueing back together.
Denote by S(p) a space obtained by glueing T (p) with its mirror symmetric

copy along their boundaries fibre to fibre. Clearly, S(p) is homeomorphic to
S2 × S1 and is p-fold covered by trivially fibred S2 × S1. There are two critical
fibres in S(p) whose length is p times shorter than the length of a regular fibre.

Next two theorems describe presentations and orbifolds for all truly spatial
discrete groups Γ = 〈f, g〉 whose generators have intersecting axes, g is hy-
perbolic and f is primitive elliptic of even order (Theorem 4.2) or odd order
(Theorem 4.5). In both theorems there are series of orbifolds embedded into
S2 × S1, and in case when f has odd order some orbifolds are embedded into
RP 3.

Theorem 4.2. Let Γ = 〈f, g〉 be a discrete RP group so that β = −4 sin2(π/n),
n ≥ 4, (n, 2) = 2, β′ ∈ (0, +∞), and γ ∈ (0,−ββ′/4). Then γ = 4 cosh2 u + β,
where u ∈ U , 1/n + 1/t(u) < 1/2, and one of the following occurs:

1. (t(u), 2) = 2 and β′ = 4 cosh2 v/γ − 4γ/β, where v ∈ U , t(v) ≥ 3, and
(t(v), 2) = 1; Γ is isomorphic to PH [n, t(u)/2; t(v)].

2. (t(u), 2) = 2 and β′ = 4 cosh2 v/γ − 4γ/β, where v ∈ U , t(v) ≥ 4, and
(t(v), 2) = 2; Γ is isomorphic to S2[n, t(u)/2; t(v)/2].

3. (t(u), 2) = 1 and β′ = 4(γ − β) cosh2 v/γ − 4γ/β, where v ∈ U , t(v) ≥ 3,
and (t(v), 2) = 1; Γ is isomorphic to P [n, t(u), t(v)].

19



4. (t(u), 2) = 1 and β′ = 4(γ − β) cosh2 v/γ − 4γ/β, where v ∈ U , t(v) ≥ 4,
and (t(v), 2) = 2; Γ is isomorphic to GTet1[n, t(u), t(v)/2].

5. β = −2, (t(u), 2) = 1, t(u) ≥ 5, and β′ = γ2 + 4γ; Γ is isomorphic to
Tet[4, t(u); 3].

Proof. The idea of the proof is the same as for Theorem 4.1. We refer now to
the part of Section 3.3 where n is even.

1. Let Γ have parameters as in row P1 of Table 1. A fundamental polyhedron
P(α, α′, δ, ε, ω) for Γ∗ is shown in Figure 2(a). A fundamental polyhedron for Γ̃
is P(α, α′, Rω(α), Rω(α′), δ, ε), whose faces are identified by face pairing trans-
formations f , f ′ = RωRα′ , e2 = fn/2e, and eg. By the Poincaré polyhedron
theorem, we get that

Γ̃ = 〈f, f ′, eg, e2 | fn, (f ′)n, e2
g, e

2
2, (fe2)

2, egf
−1egf

′, (f−1f ′)m/2, (e2f
′)`〉.

Since eg = ge and e2 = fn/2e, we have that

Γ̃ = 〈f, g, e | fn, e2, (fe)2, (ge)2, (gfg−1f)m/2, (fn/2g−1fge)`〉.

If ` is odd, e ∈ 〈f, g〉. Therefore, in this case Γ = Γ̃ ∼= PH [n, m/2; `], where m/2
is an integer, ∞, or ∞, and ` is odd; the orbifold Q(Γ) is shown in Figure 9(b).

Suppose now that ` is even. Then |Γ̃ : Γ| = 2 and a fundamental polyhedron
for Γ is P ′ = P(α, α′, ε, Rω(α), Rω(α′), eg(ε)). Indeed, let L be a π-loxodromic
element such that L = ege2. Then L identifies the faces of P ′ lying in ε and
eg(ε) and the group generated by f , f ′, and L has the following presentation:

〈f, f ′, L | fn, (f ′)n, (f−1f ′)m/2, L−1f ′Lf, (L−1fLf ′)`/2〉.

Further, since L = ege2 = gfn/2, 〈f, f ′, L〉 = Γ and Γ ∼= S2[n, m/2; `/2], where
m/2 and `/2 are integers, ∞, or ∞; the orbifold Q(Γ) is shown in Figure 10(a),
see also remarks after the proof.

2. Now let Γ have parameters as in row P2 of Table 1. A fundamental polyhe-
dron for Γ̃ is P(α, δ, ε, ξ, Rω(α)), whose faces are identified by f , e2, x = RδRω,
and y = RωRξ. (We doubled the fundamental polyhedron for Γ∗ shown in
Figure 2(b).) Then

〈f, e2, x, y | fn, e2
2, x

2, y2, (xy)2, (xf)2, (fe2)
2, (ye2)

k, (fy)m〉.

Using the facts that eg = xy = ge and xfx = f−1, we get yfy =
(yx)(xfx)(xy) = gef−1ge = gfg−1. Therefore, since m is odd, y = y(f, g).

Furthermore, since e2 = fn/2e, 〈f, e2, x, y〉 = Γ̃. Similarly to part 1 above, if

k is odd, since in this case e = e(f, g) ∈ Γ, we have that Γ̃ = Γ ∼= P [n, m, k],
where m < ∞ is also odd. The orbifold Q(Γ) is shown in Figure 9(e).

If k is even, Γ is an index 2 subgroup in Γ̃. The polyhedron
P(α, ε, ξ, Rω(α), Rδ(ε)), whose faces are identified by f , y, and z = xe2 =
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ygfn/2 ∈ Γ, is a fundamental polyhedron for Γ. Then Γ is isomorphic to
GTet1[n, m, k/2], where m < ∞ is odd and k/2 is an integer, ∞, or ∞. The
orbifold Q(Γ) is shown in Figure 10(d).

3. If Γ has parameters as in row P3 of Table 1, it is easy to show that Γ = Γ̃
and Γ is isomorphic to a tetrahedron group Tet[4, m; 3], where 5 ≤ m < ∞ is
odd.

q
n

m
m

q

n

2

(a) Orbifolds embedded in S(2); (b) Orbifolds embedded in S(2);
πorb

1 (Q) ∼= S2[n, m, q] πorb
1 (Q) ∼= GTet2[n, m, q]

m

n
q

q

n

m
2

(c) Orbifolds embedded in S(3); (d) Orbifolds embedded in S2 × S1;
πorb

1 (Q) ∼= S3[n, m, q] πorb
1 (Q) ∼= GTet1[n, m, q]

Figure 10: Orbifolds embedded in Seifert fibre spaces; only the torus that con-
tains cone points or boundary components is shown.

Remark 4.3. Note that when Q = Q(S2[n, m/2, `/2]), due to the action of the
face pairing transformation of the fundamental polyhedron, Q is embedded in a
Seifert fibre space S(2) and the singular set is placed in S(2) in such a way that
the axis of order m (if m < ∞) lies on a critical fibre of S(2) and the axis of
order n lies on a regular one. In Figure 10(a) we draw only the solid torus that
contains singular points (or boundary components). The other fibred torus is
meant to be attached and is not shown.

Remark 4.4. Consider the case when parameters of Γ are as in row P1 and
t(u) = ` is even. Denote Q = Q(Γ) and Q̃ = Q(Γ̃), where Γ ∼= S2[n, m/2, `/2]

and Γ̃ ∼= PH [n, m/2, `]. Let us show the structure of the orbifold covering

π : Q → Q̃. Assume for simplicity that m, ` < ∞. Draw the orbifold Q (same
as in Figure 10(a), but with the change of indices q → `/2, m → m/2) in the
spherical shell S2 × I as shown in Figure 11; keep in mind that the inner and
outer spheres are identified. Let σ be a circle in the plane (x, y) such that the
inversion in the sphere for which σ is a big circle identifies the inner and the
outer spheres. Let s be the order 2 automorphism of Q with the axis σ. Then
s determines π : Q → Q̃ and 〈πorb

1 (Q), s〉 = πorb
1 (Q̃). The underlying space of

Q̃ is S3.
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π/2

Q=Q (Γ)

Q=Q
~

(Γ)
~

m/2
l/2

m/2

2π/l

2π/m

2π/l

lπ/

lπ/
π/2

m/2

n

n

n

n

y

z

=
σ

n

π/2

σ
s

2

=

n

x

l

Figure 11: Branched covering π : Q → Q̃

Theorem 4.5. Let Γ = 〈f, g〉 be a discrete RP group so that β = −4 sin2(π/n),
n ≥ 3, (n, 2) = 1, β′ ∈ (0, +∞), and γ ∈ (0,−ββ′/4). Then one of the following
occurs:

1. γ = 4 cosh2 u+β, where u ∈ U , (t(u), 2) = 2, 1/n+1/t(u) < 1/2, and β ′ =
2
γ (cosh v − cos(π/n)) − 2

γβ

(
(γ − β)2 cos(π/n) + γ(γ + β)

)
, where v ∈ U ;

Γ is isomorphic to S3[n, t(u)/2, t(v)].

2. γ = 4 cosh2 u + β, where u ∈ U , (t(u), 2) = 1, 1/n + 1/t(u) < 1/2, and

β′ = 2(γ−β)
γ cosh v− 2

γβ

(
(γ − β)2 cos(π/n) + γ(γ + β)

)
, where v ∈ U ; Γ is

isomorphic to GTet2[n, t(u), t(v)].

3. n ≥ 7, γ = (β +4)(β +1) and β′ = 2(β +2)2(cosh v− cos(π/n))/(β +1)−
2

(
β2 + 6β + 4

)
/β, where v ∈ U ; Γ is isomorphic GTet2[n, 3, t(v)].

4. β = −3, γ = 2 cos(2π/m) − 1, where m ≥ 7, (m, 2) = 1, and β ′ =
2(γ2 + 2γ + 2)/γ; Γ is isomorphic to GTet1[m, 3, 2].

5. n ≥ 5, (n, 3) = 1, γ = β +3, and β′ = 2 ((β − 3) cos(π/n) − 2β − 3) /β; Γ
is isomorphic to H [2; 3, n; 2].

6. (β, γ, β′) = ((
√

5 − 5)/2, (
√

5 ± 1)/2, 3(
√

5 + 1)/2); Γ is isomorphic to
H [2; 2, 5; 3].

7. (β, γ, β′) = (−3, (
√

5 ± 1)/2,
√

5) or (β, γ, β′) = ((
√

5 − 5)/2, (
√

5 −
1)/2,

√
5), or (β, γ, β′) = ((

√
5 − 5)/2,

√
5 + 2, (5

√
5 + 9)/2); in all cases

Γ is isomorphic to H [2; 2, 3; 5].
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8. (β, γ, β′) = ((
√

5 − 5)/2, (
√

5 − 1)/2, (3
√

5 − 1)/2); Γ is isomorphic to
Tet[3, 3; 5].

9. β = −3, γ = 2 cos(2π/m), where m ≥ 7, (m, 4) = 1, and β ′ = 2γ; Γ is
isomorphic to Tet[3, 4; m].

10. n ≥ 5, (n, 3) = 1, γ = 2(β + 3), and β′ = −6(2 cos(π/n) + β + 2)/β; Γ is
isomorphic to R[n, 2; 2].

11. β = −3, γ = 2 cos(2π/m), where m ≥ 8, (m, 4) = 2, and β ′ = 2γ, then Γ
is isomorphic to H [m; 3, 3; 2].

12. β = −3, γ = 2 cos(2π/m)−1, where m ≥ 4, (m, 3) = 1, and β ′ = γ2 +4γ;
Γ is isomorphic to T [2, 3, 3; 2, 3, m].

Sketch of proof. Now we shall use fundamental polyhedra for Γ∗ described in
Section 3.3 for n odd and the Poincaré theorem to find a presentation for Γ.

1. Let Γ have parameters as in row P4 of Table 1. Consider the polyhedron
bounded by α, α′, Rω(α), Rω(α′), ζ, Rω(ζ), eg(ζ), and Rω(eg(ζ)), which is the
union of four copies of P . Its faces are identified by f , f ′ = egfeg, and two
loxodromic elements L = ege1 and L′ = ege1f

−1 = Lf−1. Using the Poincaré
theorem, one can show that

〈f, f ′, L, L′〉 = 〈f, L | fn, (LfL−1f)m/2, (LfL−1fL−1fL)`〉.

Further, since L = ege1 = gef (n−1)/2e = gf−(n−1)/2, the group 〈f, L〉 = Γ.
Hence, Γ is isomorphic to S3[n, m/2, `], where m is even (1/n + 1/m ≤ 1/2), or

m = ∞ or ∞, and ` ≥ 2 is an integer. It is clear that Γ 6= Γ̃ for all admissible
values of m and `. The orbifold Q(Γ) is shown in Figure 10(c).

2. For groups Γ with parameters as in rows P5 or P6, one can show that Γ
is isomorphic to GTet2[n, m, `] and GTet2[n, 3, `], respectively, where m is odd
(1/n + 1/m < 1/2) and ` ≥ 2 is an integer, ∞, or ∞. In this case Γ is always

an index 2 subgroup of Γ̃. The orbifold is shown in Figure 10(b).

3. If Γ has parameters as in row P9, one can show that a fundamental poly-
hedron of Γ (compare with Figure 4(b)) is bounded by ω, ξ, Rα(ω), Rα(ξ), µ,
and Rδ(µ), and its faces are identified by f , h = RξRα, and L = RδRµ. Then
Γ ∼= GTet1[m, 3, 2] and the orbifold Q(Γ) is shown in Figure 10(d).

π/2

n
2

n

πorb
1 (Q) ∼= R[n, 2; 2]

Figure 12: Underlying space is RP 3\B3
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4. Analogously, one can produce orbifolds and presentations of their funda-
mental groups for the rest of the parameters. The corresponding orbifolds are
embedded in S3 for all of these groups except R[n, 2; 2], for which the underlying
space is RP 3\B3. This group has parameters P8.

Remark 4.6. When Q = Q(S3[n, m; q]), the singular set of Q is placed into
S(3) in such a way that the curve consisting of cone points of indices n and m
lies on a regular fibre. When Q = Q(GTet2[n, m; q]), the curve consisting of
cone points of indices m and 2 lies on a regular fibre, and the singular component
of index n lies on a critical fibre.
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