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Rheintor t - | Christine Klinkusch Burgplatz10 - 2738 Mi MA - ’

Em Stropp- - -| Klaus Staby- .NeustraBe 13 2824 Mo . S
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Schmeck'Lacker* - | Flesche-Aimola - Burgplatz 13 7937 P MAC | .

Zum alten Sterm “Toni Euskirchen . Asbacher Strafie 139 2658 Do |P [MA 20-100 nv.
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Linzer Café-Restaurant * . | Dietmar Bristzke Kanzlerstrafe 1882 M. 90 n.v.

Caté Schneider ~ " . | P.Schnetder. Neustrafe 15 2502 1. .

Peppers Café, Galerie "Klaus Pepper Asbacher Strae 25 4707 -| F-Wohnung-

. - N N M . Klainkunst

Martins Stuben. .. | Martin Scherer Am Qestade 2 5253 Mt [P :

Em Stiiffle - _Jﬂfgen Kryil- Buttermarkt 10- - 470 Mo-
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Ets-Salon Dolomiten " {*Jullo Corazza Rheinstrafie 15 5735 -

Ital Eiadlele am Markt Elisabeth Sagui Marktplatz 22 4308 :

Eis-Salon Cordella Modesto Cordeila KlosterstraBe 12 - 3689 ' ‘
‘Bahnhofsgaststitte Katharina Schmidt Bahnhofspiatz 1 3428 P | MA nVv.

Kaktus Jean-Regis Dibus CommenderiestraBe2 | 1474 ° Mo MA
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0. Introducition.

Until now one misses a clear gqlution of Hilbert's 12-th sro-
blem entitiec¢ "Ausdelrnunc des Krmnecke:sghen Satzes ueher abelsche
Xoerper aus ein2n belienigen algebraischen Rationalitaetsbe-
reich". This preoklem plafs a cenﬁxal zole among the 23 Hilbext
preblems because it ‘olns some AT them with each othexr, namely
the proklems 7, 8, 21 and 22. The 17-th problem is bas2d on Kro-
neckzrs work on the explicit description of abelian number fielcs
over the field @ cf rational numberg or cver imaginary guadratic
number fields, respectiyely, by mesens cf special va;ueé of spe-
cial transcendént functions of onelcomplex variable. The Theoreﬁ
of Kronecker-weber asserts that each absoluce abellan number
field is generated by a rat;onal‘exp:ession of a unit root over
§, whers unit roots are understood as special valueé of the ex-
ponential fuaction.

"As a counter Part-appears Hilbert's 7-th probizm. It asks for
the quality of values of the shifted exponential function

e(zJ'z exp[ﬁiz}/i = J:Ei ‘

at algehraic arguments outside of the rationals @ and conjectures
that all these values aré transcendent numbers (see [.{CQ]). This
problem has been solved affirmatively and independently by Gelfond
[ 31 and Schheider 129 1 in 1934. Altogether we know
1. e(z) has algebraic values on §;
II. e{z) has transcendent values on 0 - @ (§ the field of alge-

braic numkters);

III. the number-theoretic meaning of the wvzlues el(c), ge .



Substituting the base field § By an imaginary quadratic num-
ker field one needs special values of Weierstrass' Q-function (at
torsion points of an elliptic curve) and special values (singular
rcduli) of the elliptic modular functiocn j in order to generate
all abelian extensions. For a oprecise formulaticrn of this Main
Theorem of Complex Multiplicatior we refer to Shimura's book
{351, Ch.5. Historically, this main theorsm is known as "Krcnek-
kers Jugendtraum”. It appears in Hilbert's programm ac "Aufgabe"
(Xronecker's problem) preparing the 1Z-th problem itself.

Cn the other hand C.L.Siegel {3A4] proved in 1949 that j takes
transcendent values at algebraic points on the wupper nhalf plane
= {ttcC; Imvr > 0} which are not singular. In analcqgy with the
exponantial function we can summerize the situation in the folio-
wing manner. Let

Bing = (T €8 (0(e):0] = 2}
be the sec of singular moduli. The transcendent function j has a
well-known Fourier series
i(e) = g% + 724 + 196384q + 21493760g% +

with integral coefficients and g = exp(iwiT), ses [ {0 ]. One knows

[0}

I. j has algehraic values on mSMg ;

II. Jj tekes transzendent values on H(F) - Esinﬂ’ where H{§) deno-
tes the set HaQ of algebraic numbers on the upper half plane;

ITII. the number-theorztic construction / quality / meaning of
§(6), 6 & By, |

Hilbert asked in his 12-th problem for transcendert functions

of s everal variables with properties correspcnding to



rhose of the exponential funzction and the elliptic modular func-
ion: "Von der hoechsten Zedeutuny endlich erscheint mir dia Aus-
dehnung des Xronezkerscher Satzes auf den Fall, dass an Stelle des
Rereichs der rationalen Zahlen 2der des imaginaeren Zahlenberei-
ches ein beliehiger algebraischrer Zahlkoerper 3ls Ratlonalitaets-
bereich zugrunde gelegt wird; ich halte dies Problem fuer eines
der tiefgehendsten und weittrageadsten Probleme der Zahlen- und
Funktionentheorie”; and a littlebit later: "Wie wir sehen, treten
in dem eben gekennzeichneten Problem die drei qgrundlegenden Disgzi-
plinen der Mathematik, rnaemlich Zahlentheorie, Algebra und Funk-
tionentheorie in die innigste gegenseitige Beruehriung, und ich bin
3icher, dass insbesondere die Theorie der analytischen Funkticnen
mehrerer Variablen eins wesentliche Bereicherung erfahren
wuerde, wenn es gelaenge, diejenigen Funktionen aufzufinden und zu
diskutieren, die fuer einen helisbigen algebraischen Zah%koerper
die entsprechenée Rolle spielen, wie die Exponenitialfunktion fuer
den Koerper der raticnalen Zahlen und die elliptische Modulfunk-
tion fuer den imaginaeren guadratischen Zahlkoerper”.

We found only a few places in the mathematical literaturs with
an explicit referernce to the twelvth problem of Hilbert. On first
place we rememker o Hecke's thesis [ 8 | and habilitatzion [ q 1].
They are clcsely connected with the creation nof the theory of Hil-
bert medular surfaces. This work is difficult tc understand and
it would be nice to clarify the situation from a modern point of
view. The next important place where the twelvth problem is men-

tioned one can find in the book { 36! of Shimura-Tanivama. Indeed,



shimura's theory of complex multiplication is an important ool
for finding sclutions of the problem. The latest hint to Filbert's
twelvth protlem we found is due to Tate [3F ! in conneétion vith
ths Stark conjecture. It touches the probklsm but will not solve
it in the original sense of Hilbert. Maﬁin accspts in his review
[ 21) only Eecke's work of 1912, 1913 as a finer apprcximation

o a sclution of the 12-th problem. Langlands announced in [ A1 ]
some doibts of Hilbert's formulations. In our opinion the twelvth
preblem needs a stronger formulation in orcder to caich solutions,
With regard to the transcendental functions e,j above and their
prcperties I.,II.,II1. we propose the fellowing definition.

A solution model for Hilbert's twelvth problem
is a triple {V,Vgnﬂ ,f) consisting of
(1) a {non-compact) complex manifeld V with fixed analytic em-

bedding into a complex projective space B (c);
(11} a subset Vﬁhs of the algebraic points V(J) = V;HP”(UJ lying
dense in V;
(i1i) A transcendeni holomorphic map
f = (fczf,‘: :ngJ: V—%lPN(tE);
satisfying the postulates I.,II.,III. below.

Remark. We call £ transcendent 1f f ig not the re-
striction of a raticnal map in the sense of alcgebraic geometry.
The elemerts of Vgha are called the s ingulazr points of V.
I. flg) = (fD(g): ...!fN(g}) is algebraic, that means

fle) e PV}, for G Vging

II. f£(7) is transcendent, that means flr) € Pu(ﬁ), for



T e VD N Vaing
III. cne has a number-theoretic construction / guality / meaning
of fi2ld extensicns

Fo{f{g)} = F_(....f: (/% {g)....)

AR
for suitable weli-defired "elesmentary” number fielis E/,
G e V““S'
0f course, we assume that Vsmﬁ is given irdependently of the ho-
lomorphic functioas for «-- yin-

Taes first two conditions are very sharp but corndition III. is free
for several irtervretations.

A (twodimensioral) ball model for Eilbert's twelvth
p&oblem is a sclution model (BrBsinj'f)’ where B is the complex
two-dimensional unit ball. The Main Thecrem of section 1 presents
a pall model (B,B(y th) for the twelvth preblem satisfying I. and
III. Recently Shica proved that also II. is essentially satisfiad

(sse Remark 13.18). The components th- of th = (th&:thi:th tthy)

3 4
are restrictions of elementary polyromials of theta constants to
the ball B embedded in the generalized Siegel upper half.plane
HB' where the theta constants live.

We pref=zred to formulate the number-treoretic Main Theozem in
the first section ccrresponding to Hilbert's order in his list
of probliems. Consequently we have to explain immediately after the
notions of Shimura's class fields, complex multiplication of abe-
lian varieties, moduli fields in the secticrs 2.,3.,4. and 5. This

prepares at the same time the number-theoretic side of procf of

the Main Theorem in secticn 13.



The geometric and analytic starting point is section §. For
an algebraic geometer it is convenient tec begin there. The follo-
wing sections will demcnsitrate that the simple configuration of
fcur points end six lines througa pairs of thkem in the nrcjective
plare determines . completely the constructicn of gur
pall model. This is a conseguence of scme recent develepments: A
theoren of R.Kohavashi [ A§ ) provides the existence of a ball co-
vering of B branched along the guadrilateral introduced ahove.
Tasre 1s only one pcssibility. The corresponding ramificacion in-
dices can be calculated by the effective finiteness thecrem for
ball lattices due to the author [ 4h j. The correspending group
of the covering has been Zfound in a classificeticon atlas of Pi-
card modular surfaces due to the author ard Feustel. This Jroup
abpears as monndromy group 2f a Fucheian system of partial diffe-
reqtial equations uniquely derermined by the quadrilateral. This
svstem coincides with the Euler-Picard system of an algebraic
curve family in the 3ense of the author's book {AL ]. The solution
consists of variations of integrals of a differential form of
first kind alcng cycles on Picard curves. The Picard curve family
studlec first by Picard in 1882 plays the sams role as the ellip-
tiz curve family in Kronecker's problem. Now we discovered that
its investigation was absclutely necessary for finding cur ball
model for Hilbert's twelvth problem. The proof of the Main Theorem
is delegated to the fine arithmetic and analytic study of the fa-
mily of Picard curves. This will be done in the sections S. - 12.

usirg and explaining available recent results of Shiga { IL]. Feu-



stel [ ¢ | ard the author [ A3%].

The modern tools in the way of procf shculd also werk for other
cases, vhere the starting situaticr of a branched coveting iz pze-
cisely kncwn. We think of Hilbstt modular surfaces, Picard modular
surfaces, a Picard modular threeiold inveetigated carefully by
8ruce Hunt and the Siegel modular threefold connected with hypexr-
elliptic curves of genus Z. The latter case should be open a door
to a pgrecise modern understanding of Hecke's work on Hilbart's
twzlvth problem.

W 2 close the introduction with twd problems. More of them can

be found at the end of the final section 12.

0.1 Problem. 3tudy special values of Picard modular funcrtions of

nigher level in connection with non-abelian class field theory.

0.2 Problem. Generate more (if possible all) abelian extensions
of reflex fields of cubic extensionse of the Eisenstein numbers
py means of special values of some additioral transcendent func-

tions.

1. Fermulation ¢f the Main Theorem
First we present roughly the basic objects we ne=d in the
Main Theorem. Mcre precise definitions are given in the later

sections.

0. Basic field: X = D(V~-3) the field of Zisenstein numbers:



i to)

1. Geometric cbject: the hall B T (Z-linear equivazlent in P
3" = {v= (Tt e Jr, i+ o, IF <1,
exbedded in @, (Siegel domain, see 19.):
2. Analytic fuactions: thh’thi’thS’thH: B — £ (restricted
theta constants);
3. Special arquments (CM-modules): ¢ & B(D) (dense in B);
4. Correspondences: ¢ = F_/K {relative cubic number fields)
—> M, ?-lattice in F,
> q)<r= %?; ;) Q. Fo & € (field em-
beddings) ; C_QL:F?J XY, g, *?k;
— Fd'_, the reflex field of (F_, o)
5. Function field K(th) = K[thi/tht,th4/th‘, ... ,th3/thq);
6. Numper fields X(th(s)) = K(thi{g) = R(f(g); f € K(th)), where
we neglect to adjoint fi¢), if fle) = o0 ;
7. Symmetric group Stﬁacting on K(th) via permutation of indices
at the qgenerators th;/thj'

s.(¢) = 3, Gal(K(th(s))/0) acting on K(th(c));

Li
8. Shimura class fields Sh({ ¢%_,11(J.

Now we can formulate the

MAIN THECOREM {(Construction of Shimura class fields for cubic ex-
tensions of Elsenstein numbers via special values of Theta con-
stants).

With the atove notations one has for each CM-module ¢ ¢ 1B field

towers as described in diagram (1.1):



function fields number fieclds

K(th) X(th(g))

Shi @y, )

“ ' L abelian;
5 - 5,00
kith)”t K{zhig)) |

(unramified, if

Q. is an F;—ideal)

\ //
K

2. ' Chimura Class Fields.

We follcew the book [201 of S.Lang. First we have to introduce
the reflex fields. Fixirg notations we let F e a toktallv imagi-
nary nunber field of zbsolute degrée 23 and.(P a cnoice of g em-
bezddings g.: Fe—> ¢ pairwise nct cojugated to cach other. We

i
Jrite q) = (PF = 2 ¥. and call the pair (F,Cp) a CM-type.

If M/F is a finite field extension, the2n we can lift ¢F to
ch = % 2. {all extenzions of g. to M}
1 - i
L=A
30 we cet a CM-type lifting (F,Qp) — u1,¢ﬂ). We set

(2.1) stab(¢ ) = (pe Aut(c);/uo¢ =4,
where Aut(C) denotes the group ¢f all field automorphizms of €.
Mow assume that M/F a3 above 13 a Galols extension. Then we de-

fins the r e flex fiegeld F' of (F,¢ ) as fixed field

MS(‘ab(b

(2.2) F' = = ﬁ(fr® (F)),
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wvhere Trcbz F —— F' .enotes the type trace defined bv

Trq) Ly = _% cg:(fJ. With dPn:‘?"*’j , -Yj urderstond as automor-
phizms of M, we st O/ = 2?~+§4 . One can show that the type

(4, @HJ is the 1lift of a vniquly determined primitive'ﬁype

', ¢ '), which iz called the r ¢ £l cecx type cf (F,pi.

Atype 18 72elled pr imi - ive

, 1if it 15 not lifted from
= lower field. If the starting tv/ps (F,¢ ] i3 priminive, then
the reflex (F'', ¢"J of its reflex (F', ¢ ') ccincides

with (F, Q). In general, the double reflex ficld F'' is con-
zainsd in F. Rltogether we descrihe the situaticn in the folle-

wing diagram (2.3):

(2.3) M — b =T
Gal I
- [
F F'o, ¢ -¢F q)F': ¢'
Fixing F,$ , che t y pe norTn N¢ or the r 2 f 1 ¢ X

rorm N = Ngi are respectively defined by

— F' , m’:Nw F! ——>5 F''¢e F
f— 1
I . ?E(f)
c=A
5atr, w¢ and N', <an b2 extended to the idele groups of the
firlds F or F', rezpectively:
N T ‘——?IP* N &3* _______)/A-'f
¢ . F .F, ;7 - _FI F
Now we are well-prepared to define the Shimura claszs fields men-
bicned severzl times above. For this purpose we let £l a 7-lars-

ri¢e in F. The =abzolute norm of idelaes 3 13 denoted kv iIN(s). Now
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we define the idele group Ui , 4 < A?; of an (extended) tyre
(F,¢ .&) by
- - A . N et - g = Y
(2.4) Ut ,o) = (se AT N (s ) P& ,PF N(z™%) e ¢
for a suitable f¢ F})
We ramark that the multiplicaticn of an idele t e &: with & is

defined ccmponentwise on the finite par: t?h = (t,) € A

o+

P F tin
Thers is a unique ¥-lattice t& in F with local components
(t‘ﬁ«)[, = ty @, for all p € Spec %, OLP= 2,8 0.

Now we apply global abelian class field theory in order to
define 3h( § faJ as class field of the reflex field F'. For de-
tails we refef to the monograph [ 15 ] of Neukirch. |

Let M be a finite abelian field extension of F'. Then there
is an exact sequence

(2.5)

1 —> U/F'"™ —-——)rA*F: JENY ——————3 Gal(M/F') ——> ]

where (t,M/F'}, t € At,, is the global norm rest symbol locally
defined by Fropenius automorphisms. The idele grocup U = U, is

|

equal tc the extended norm groupIﬂM,P(A:J-F;K. Conversely, if
U is a cofinite subgroup of the idele group A cof F' containing
F'¥ then there exists a unigue finite abelian extensicn My = M
the class field of F beloncing to U, such that the above se-
guence (2.5) is exact; Sc there is a biunivogue correspcondence
UHz U&e/—y M = Mu (reciprocity).

Now we take the projective limit of our finite abelian groups

Gal(M/F') along all finite abelian extensions M of F'. On this

way we cbtain the Galois group Gal(F'®*® /F') 0f the maximal abe-
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lian extension 7'6% of P'. The norm rest maps in (2.5) yields

i

an injective map (.,7'): mi JF S — Gal(?"b/F’]. Via the

norm vest symbols (s,F’} the idele group A*‘ acts on F, and

the finite abelian extension fields M appear as fixed fields

of the corresponding subgroups U cf A%, . so we can writs
) - )
{UFf' VI
-~ - i — * 1
(2.6) M, = (Flab) = ¢ ,

where (U,F') denotes the group of all extensions of elements
(s,7') € Gal(F'“b/F'J, s € U, to automorphisms of C.

2.7 Definition. The S himuzra <c¢class field
Sh(@ .&) of the type (F,P ) is the class field of F'corres-
ponéing to U{¢ ,& ) defined in (2.4):

(ute,m F')  (Ulp.a) £)
Sh(@.&)z(Flub) [hads" = ¢ h

3. Complex multiplication.

Lzt A be an abelian varilety over the complex numbhers and F a
finite field extension of Q. We say that A has F-mul ¢t i -
plicatilon, if there is an embedding : Fe—2> g®End A
into the endomorphism algebra O®End A of A. In this case the de-
gree [F:Q] is not greater than 29, g = dim A. If (F:0] = 2g,
then we say that A has conmnpleax multiplica-

t 1 on . In this case F acts on the tangent space TA of A (at Q).
So we have an embedding F* &3 Gl(TA) = 61 (€). This represen-
tation splits into g one-dimensional representations. The corres-

ponding characters are understood as embeddings . : Fe—T7T,
{

i=1, ... ,g. Setting § = é&gz we get a type (F, ¢ ). Then
124

A is called an abelian variety of Ty pe

&
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(7. ).
' Jne can prove that an abelian variczty with comrlex multipli-
cation of type (F,® , &) is iscrmorphic to Cs',/CD (&), where

P (4) iz the Z-laztice in r? gqenerated bv the vectors

1]

; _‘%: ; Kl .
@\aj) = l?d(aij' ,9?(35,”, 3 1, «.. , <9

Fh

ané a‘, e al3 is a 7-basis of & . For

the cdiagonal matrix with the elements ¢ (£) in the diagonal. The

€ F we let Dg (£}

representation Dq) : F¥ —— Gl%(ﬁlJ defines a complex multiplica-
tion on C’/ @(.01,). Jnéder the isomorphism with A both mulitiplica-
tions are compatible. The mul tiplicaticnrn Tring
is:
C = FaEnd A = [OL:&]F ={fev £Ch}.

Refining cur language we will sav that A is of type (O.F ,CP}
and we will call &:%/@(OU together with the complex multiplica-
tiondefinedbyn¢ the standard L o0rus mo -
de l of A or of the types (F,¢ , &), (0, Q , ). Two standard
necels of type (U,Q)) are isomorphic (with‘compatibility of mul-
tipiication) if and only if the corresponding U~mcdules 4, o'
are isomorphic, The standarzd torus @%/47 (&) of given multiplica-
zion type (5, @, M) is an abelian variety iff @ is lifted from
a primitive type. For proofs we refer to (IB] again.

iet F be a number field and ¢ an crder in F (multiplicatively
closed Z-lattice in F). We denote by L{(J) the set of (~latticzes
& in F {Z-lattices in F which are U-modules) with factor ring
[ & ::O'}F = . The set cl(0) of O-iszomorpay classes of L(J) is fi-

nite (see e.g. [3], II.6, Th.3). Its number is denot=d hy n(J).



For inztance. if T = J# i3 the ring 2f integers in F, tnen L(J)
is the ideal group of F, cili0) the ideal class group and n{d) co-

incides with the cliass nmumher h(F) of F. Altogether we can count

acw the isomorphy classes of abelian CM-varieties of given types:

3.1 Fropositon. Let (F, ) be a complex multiplication type,
J an crder in F. The number of isomorphy classes of akellan va-
rieties with complex multiplicaticn of type (U,¢ ) is eqgual to
n(d), if (F,¢ ) is a liited tyse, or ecual to 0, otherwise.

The numiper of isomorphy classes of abelian CM-varieties A with
CM-ring 0 = FnEnd A is egual to h(J)»i(F), whers 1(F) d=notes
the number of lifted types (F,§ J. It cannot be greater than
Fnd), g = (F:Q]/2 = rank,(3)/2 = din A,
3.2 Remarks. "Lifted type" means: lifted from 2 primitive type.
Especially, primitive types are uaderstood as special éases o
lifted types. The rumber fields E of primitive types are well-un-

e 1l ds characte-

pae

derstood. These are the sc-called M- 1
rized as imacinary quadratic extensions of totally real number
fields. So the set cf multipiicaticn fields of compliex C¥-varie-
ties coincides with the set of extensions of CM-fields. Namely,
each CM-type (E, YY) of a CM-field E is lifted from a primitive
zype {see (10 ], I.2, Lemma 2.2), hence E is a multiplication
field of an abelian CM~varlety by the above torus construction.
This is true for any lifted type. Especially, each cubic exten-

sion F of X = p({-2) appears as multiplication field of a sui-



A

table ahelian CM-threefolid.

Each abslian variety A can be decomocsed Up to isogeny into a
product of simple abelian varietlies. S impl e abelian
variezzies are defined as indecomposabie cnes in this
sense. If A 1s an apslian Cid-varisty, then the isogeny decompo-
sition of A into simple abeliian variesties i3 a power A » 3 ... B.
The multipliication type (F,§ ) of A is liftad from a (uniguely
determined) muitiplication type (E, Y ) of B. Especially,. the
simple rfactor B of A is a CM—variety.'The corfespondinq CM--alge-
brz ®End B is 1isomorphic to E. Locking back to A one checks ea-
sily that the CM-algebra £8® End A is isomcrphic to the matrix ai-
gebra Matg (E), where s denotes the number of the decomposing fac-

tors B of A.

4, Mocdull fields.

Let X be a complex projective variety (subvariety of E”, say),
M€ Aut(C) a field aucomorphism cf €. Applying/u te point ccordi-
nates we optain the #-transform x™* 0f X embedded also in P. I
X is defined by the homogeneous egquatior system F, = ... = F,=10,
then X* is defined ty F:‘= .. = Rﬁ = 0, where F? arises from F;
by applying p to all the coefficierts of the polynomial F.. We
dencte by cl(X) the the class of models X' of X. The projective
variety X' iz a model (or €-model) o X, 1f it is iscmorphic o
X in the analytic category (that means over €). If the model X'
of X 1is defined ovar the subfield k of %, then we call X' a

k-model of X. This mean:z tnatz X' is defined by eqguations

-
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with coerficients in k. In this case k is called a de £ ini-
ticn field of cliX) {or of X, if X is understood as
scheme without specification of embadding). In arithmetic geome-
try one looks Zor small Zields of cdefinition.

The correspondence X =—-3 XM 15 functorial: Fer each raticnal
map f: X —3 Y of complex praojective wvarieties the transform

M
e xH — ¥

is wsll-defined via pm-transformation of con-
stante. On thie way we can .corractiy define cl(x) by regresen-

tants. We set

He

Stab cl(X) = { u € Aut(€); X¥ = x3.
4.1 Defirztinn. The fixed field cf 3tad cl(X) in € is caliled
the moduli £ield cf X (or cl(X)). It is dencted by
40 = M(cl(x)) = ¢ 0

We come back now to complex abelian varietles A with complex
rultiplication of type (F, @), say. For M € A%t(m] the /t—trans~
form A* of A is alsc an abelian variety. The endomoarphism rings
of A and A* are isomorphic by functoriality of 4. The isomorphism
extends to the algebras of complex multiplication. Therefore A%
has F~pultiplication, tco. Looking at the representations on the
tangent spaces it is easv tn see that A" is of type (F,/uo¢). S0
the type doesn't change if and only if/u belongs to Aut(L/F') by

aefinition (2.2} aof the reflex field F'. We come to the first

comparision playing a role in the Main [iagram (1.1).

4.2 Lemma. For a compliex CM~variety of type (F, ® ) with reilex

field F' and moduli field M(A) it holds that F' € M({a).
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Procf. It sufilces to chack that Stab cl(A) £ :Stab((p Y. If P
stanilizes cl(A), then the representations of F in che tancent

spaces TA nr T respectively, are sguivalent. Thererore A has

A

the same typs (F,$ ) as A, hence m€ Stab{ @ ), which was %o be

/
proved.

In the theory oi abslian varieties it 1s usefui tc specify
classes of crojective embeddings translated to the internal geome-
try of A. A polarized abslian variety is a pair (A, ¥¢)
consisting of an abelian varisty A and a Q-line in ¢ &FPic®(A)
containing an ample divisor class; Pic™(A) denctss the group of
algebraic equivalence classes of divisors on A. We sav that
(A, €) is defined over k, if A is and if € can be represented

-~
~

by an ample diviscr T defined over k by the k-enbedding of A used
just before. If A is defined over k, then we can find a polariza-
rion € of A also defined over k. Namely, choose an ample divi-

sor D cn A defined over the algebraic closure k of k. It is real-

ly defined already over a finite Galols extensicn of k. The sum

f-i-

of all Galois cornjugates of D represents obviously & polarization
€ defined over k.

In obvious manrer one introduces the u-transforms (3, ¢ y¥ for
M € Aue(g), cl(a,® Y, Stab ci(a, ) and the mo 4 w2 1 1 -
field of apolarized abslian varieiy

tab e1(A €
N(eL(A, ) = g e et )

M{A,€)

4.3 Lemma. Let k be & definition field of the polarized abelian

varieny (A, €). Then it holds that M(A, ¢ ¢ k.
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Proof (see {36 ], I.4.2, Frop.i4). For me Aut{t/k) we navs
an obvious isomarpnizm (A, €)FT (4, €), hence,y.eStab(A,fj. The
rest iz clear. . n
Tre next resurt nrepares th2 drawing-up of the field tower on

the right-hand side of the main diagram (1.1).

&£.4 Proposicion. Let A be a complex CM-variety. Then we can
choose algebraic number fields X as definition fieids of A or
(A, € ), respectively. For each such field one has the field towar
(4.5) . F' & M(A) € M(A,®) € k€ T,

where F' is the reflex field of the type (F,® ) of A.

Proofr. The existence of a small definition fieid k¢ D has
neen verified by Shimura-Taniyama in {36 1. The second inclusion
follews from Stab cl(A) 2 Stab cl(A, €). The remaining inclusicns

come from the Lemmzs 4.2 and 4.3. ]

5. Main thzorem of ccmplex multiplication.

We want to connect the modull fieid of a polarizad CM-variety
(4,€ ), A of type (F,$ ,&) with the Shimura class field of the
same type introduced in 2. Fcr this ourpose we refine the notion
of types again taking into accournt the polarization. Via projec-
tively embedding Theta functions one corresponds to the pcolari-
zation ¥ a (unigue, up to §"-multiplicaticn,) Riemann form
E: T,x T, ----» € (R-bilinear, scaw-symmetric, non-degenerate

A TA

witn rational values on Q(@AxQ ). It is useful to choose a basic
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form £ of this class. Tt taxes integrzl values on @ (@xa) and is
nct an integra. auitiple of a form of the same kind. With these
rnotaticns the polarized abslian CM-variety (A, € ) is said to be
or type (F,® .0 ,E). I there 15 no danger of misunder-—
standings, =hen we identify & with its 3tandard torus model
C?,’q; (Bv:, see 3. Since F = D@ & <=he embedding § of F into c¥
induces an embedding F/& -——> A . into che torsion points of
A{C). We will deapte tnis embedding shortly also by @ .

The Riemann form E is said tobe ¢ -admissible ,
if 5(D

(£yz,w) = E(z,D,(F)w) for all f€ F, z,we C¥ = T,. In this

o o
case also the pclarization U corresponding to £ is cailed ad-
missible. From now on we assume that the multinlication fisld F
is a CM-field: A needs not tc be simple. Then there exists an ad-
missilble peclarizacion on A (see [20 ], I.4, Thn. 4.5). We will

work only with polarized abelian CM-varieties of admissible type

(F,® .D,2). The following Main Theorem of

Q

omplex mulbtiplicatdion holds for them:

5.1 Theorem {[L01], III.€). With the above assumpticons ard no-
tations let‘y.e Aut(T/F') with restriction iu|F'°b = (s5,F') for

A suitable s e &;.. Then it holds that:

(1) (A, 9" is of type (F,Q ,N'(s™ 8, N(3)E).

{1i) wWith the comporentwise action of the finite part of-the idele
N'(s™) e m} on F/n = %’ﬂ,/a? the following diagram is commu-

tative:



- 20 -

5/ ————— A,

ser
-4 /"‘--/'
(5.2) NY (s M e (5, F")
1 -4 ,u'
N ————t AL .
F/N' (s )V Bl B

As ar immediate conseguence we get the relation with moduli

fields.

5.3 Thecrem (Shimura {36 ]; [ 3 ), V.5.5; see also [ L01, V.4).
Let (A,¥€) be a polarized abslian variety of admissible CM-type
(F,® .0, E). Then the corresponding Shimura class field and modu-
11 fielid coincide:
sn(d, @) = M, €).
; . . (u,F')

Froof. Ws remsmber that Sh'= Sh(Q ) = ¢ , U=Uu(e, by,
see (2.5). For M = M(A,€ ) wa first show that M £ Sh. This fol-
lows immediately £from
.- P ——

(5.4) (U,F') € Stab cl(A,€).

. L, O —? - .
So we take an automorpnism m € (s,7') fcr 53 € U. By the Main Theo-
rem of complex multiplication 5.1 (i) the /K—transform (a, € )

is of type (F, @ ,N'(s )O ,W(s)E). 3y definition of U in (2.4)

phe v

Comparing the standard torus models cf (2, %) and (A%, €5 we get

1]

there i3 a (5 € F such that N'(s7M)at = Fﬁl and (s~

~ ~ . 5 A
AT /PR /0 BR) = o, NsE = (RP)7-E € 0.
Therefore (A, € ) ¥ (A, ® )}, hence e stah cl(A, €).
Conversely, take /ke Stab cl(A,¥€); then we dispcse on an isomor-

phism (A, €) --%=9 (4,2 )% 0On the torsion lsvel it has been made
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e
preciss multiplvingy F/& by N' (s}, x ¢ (.7, see 5.1 (ii).
/

On =he other hand 4 and A" have sguivalent standaré torus models.
More precisely, the isomorphism A —=% Acorresponds to a p-mul-
tiplication E%/Q (o) —L=s m3;¢ (F&J for a sultable ﬁ € F°. But
(A, €)* 15 of type i.F,D,N'(s"')&_,ﬁw'ES)E) by 5.1 (i). Comparing
poth presentatlons we gat

NsTO A =FR, T = pBe o

N

Therefore s belengs to U and P € {5,F'"), hence

(5.%) Stab cl(A,€) < (U.F")

in contrast to (5.4). It follows that Sh € M. The identity we

looked for is proved. -
6. The geometric starting point, the projective plane covered
by the bal

In order to gsnerate Shimurza class fieilds of cubic extensions
¥ of the Eisenctzin numpers by special values of transcendent
functions we need special Thetfa constants essentliezlly definsd by
certain special functional equations. In order to find and under-
ctand them deeply we enclose them into the most general and ac-
tual framework hoping for similar applicztions to cther interes-
tirg cases in the future. Ve want also Justify Hilbert's imagina-
tion about the "innigste Beruehrung". Consider the picture/diagram
H
j151 (z)
(6.1) P!

hranch locus: o0

-
-
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The left-nand side 1s well-known from the theory oif =1liptic cur-
ves., It describkes e guotlent map of the medular group Zxzor 2oin-
caré's upper hal?® planz E: Im z > 0 to the projestive line P .
There are three branch poiats: twe in the ordinary sense with za-
mificaiion indices z or 3, respectively. The thizd is a cusp
pociat coming frem the bourdary of H. thareforz it has been weigh-
ted by ®@ . The guotient map can be realized by the eiliptic modu-
lar function
A

o0
Stey = g+ 744" + 196834g + l‘Z" end", Q=

We are wzll-prepared for the understanding of the right-hand

2 1504 .
e yay, € 7.
side of (H.1) by the previous saciions and chanters: We icoked

for a ball covering of the projsctive plane Pi with discrete cove-

ring group [ '€ Aut | (B) = PUH(2.1),¢C) brarched precisely along

ho
the six lines of the complete guadrilateral with triple peints as
cusp points. W2 denote by W the corresponding (analytic) quotient

nap.

w
.
~o

Theorem. Up to linear is=omocrphy (PUI{(2,1),{)-coniugaticon

for T[') there exists one and only one such covering.

The unigueness has been proved in [AF], IV.11 via orbital heights,
the proportiornality conditions and their translation into a sol-
vagle sy3stem of diophantine eguations. Moreover, the proporticna-
lity test i3 positive: The only soiuticn of the diophantine equa-
tion svstem yields the ramification index 3 for all six lines.

The most general result providing the existence cof The covering
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i3 due to R.Xobayashi {48 ). He proved under geometric conditions
inciuding the wights found in our proportionality Lest the exi-
stence of a ball covering over a given surface witn prescribed
tranch locus. This generzl resuvlt can be applied to our sitvation
described in {(5.1). We will not use XKcbayashi's resuit bhecause

the existence of ¥ has basn nroved by another more arithmstic me-
thod in the framework of classzification of Picard modular surfa-
ces, see Prop.V.1.3 in [24F ] or [AL ] , where we started from the
arithmetic croup (congruence Elsenstein lattice) ' = f'((:EJ,

T = W{z,1),0¢). The proof involved orbital hights calculated as
voiumes or a fundamental domain by means of a special L-saries va-
lue (see { 49 ] ). The advantage is to disposs explicitly on the
diescrete group of the covering W. This will be important for fin-
ding the functlonal eguations for Theta constants we lock for.

6.3 Remark. The covering onroblism is related with Eilkert’s 2:i-th
proplem "Uniformisierung anzlytischer Zeziehungen mittsls automor-
pher Funktionen”. Looking for unifecrmizations of two-dimensioral

A

analytic varieties ("Gebilde"; Hilbert says: "Vielmehr scheinen

.«.., abgesshen von den Verazwelgungspunkten, noch gswisse ande-
re, im allgemeinen unendlich viele diskrete Stellen des vcrgeleg-
ten analviischen Gebildes ausgenommen zu sein, zu denen man nhur
geiangt, indem man die neue Varliable gewissen Grenzstellen der
Funktionen naechert. Eine Klaerung und Loesung disser Schwierig-
xeit scheint mir in Anbetradht der fundamentalen 3edeutung der
Poincareschen Fragestellung aeusserst wuenschenswert”. At the end

Eilbert refers to: ... "die neuveren Untersuchungen von Picard
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uebsr algedbraische Funkticren von zwei Variablen als willkommane

und bedeutszame Vorarbeiten ..."

7. Differsntial ejquasions.

Ir [3p ] M.Yo3hida succeeded to sclve a higner-dimensional
version cf the Rizmann-Eilbert problem. The fackground is Hil-
bert's 21-st problem "Bewels der Existenz linearer Diiferential-
gleichungen mit vorgeschriekbener Morodremiegruppe" set up for
functions of one variable, "...welches darin besteht z:1 zeigen,
dass es stets eine lineare Differentialgleichung der Fuchsschen
Xlasse mit gegebenen singulaeren Stellen und eirer gegabenen Mo~
nodromiegruppe gibt"™, It shculd pe rsmarked that the final solu-
zicn of this Hilbert problem has been given by E. Roearl 71§ ] in

1957

7.1 Theorem (M.Yoshida). Let X »Pe an orbifold (complex manifold
vith prescribed wighted branch locus) with realizing guotient map
p:IBn — X, B" the n-dimensicnal complex ball, and covering
group A € U((n,1),€). Then the inverse p~ ' of p is a (multiva-
lued) developing map of a Fuchsian system of linesr partial dirffe-

rential eguations. 8

This means that there is locally a Zundamertal system of 3o0lu-

tions I,.I,, ... ,I, extending analytically to X~ B, £ the branch

locus of p, such that the multivaived map

(T T : ... :I $~3 ———3 8" cp”

e T n



- 25 -~

- ] o [ ""'1 -
P t+=——=3 (IO(P): - :IH(BJ), colncides with p on X~2. The
Fuchsien system is called the uniformizing e gua-

= 1ion cf the orbifoid and A is the mcocnodrcmevw

al choice of

i'n
| .

groulp of the system not dapendiag on <he =neci

solutions ¢f tre system. Especially in cur situatior described in
(6.1) wizth n =2, B = é%&,(quadrilateral), it 1s importart to re-
mark that there 1s a surjective group homemorphlsm

(7.2) T, A — 7

describing the unitary monodromy representation of the fundamental
Group 1&(E¢5~1§§J. Yoshida found alzo an effective method in cr-
der to determine a corresponding Fuchsian system (see {3§), ch.s
10, 12). It turns cut that these eguaticns and alsc their araly-
tic solutions (Appell series) ars well-known long tims ago. Wor-

king with affine coordinates u,v one can take the following sy-

ztem (7.3) cf differential egquations:

(7.3) DlSF(u’V) = 0 on g*s ¢= p*~ A with

D,, = —EL + 19 (u-Dutv-w) T (3(-5u +4uv+3u—2vjji+3(V~1)v——+{u—vj},
14 dut L A 5 u Y
- v R _
e T
. -A 2 g
= y— {(u- 1 (u-" — 4+ (-
Dyy 5 + {9(v=1)v(u-v)] " {3{u 1Juau‘3( -5V Hhuv+3v-2u) st (u-v) )

7.4 Remark. Yoshlda's general approach 1ifting the CGauss-Schwarz
theory of Fuchsian egquations to higher dimensions hac a classical
origin in the work of Ficard and Appell. Especia’ly for the situa-
ticn of (£.1) a more immediate extension of explicit classical

results known as PTDM-Theorem (due to Picard, Terada, Mostow, De-
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iigne) would be zufficient for our purposes. We refer te (3§ )

i & 1 and further literature jJiven thers.

8. Gauss-Manin connsction.
The analytic thsory presents analytic solutinns of the system
(7.3) of partial differsntial equaticns. We look for "alcebraic

snlutiong"”

represented by integrals on algebraic curves along cy-
cles dagending on parameters u,v. The ganeral framework of the
corresponding algebraic theory is known as S auws 3 -Manin
connection of algehraic families of algebraic mani-
folds. We refer to [4¥] in order to understand the rather expli-
cit approacnh for algebraic families of curves invciving diffecen-
tial eguations.
Let €/T be a smocth algebrai:s family of smooth algebraic va-

rieties all defined over the complex numbers, say. The relativs

de Rham complex 1s a seguence

. d A d ) d
Qe &= Ngyr = Qyr —

v
Using op=n {affine, cay) coverings one defines the Cech complexes
i n8 .. o0t L N1 . _d A
e j: ) ‘—ﬂ + e
in the usual manner. Taking the limit along refirements of open

v .., .
cecverings cone gets the Cerch - de Rham bicomplex C \‘n‘ﬂfT)' The

de Rham cohomology groupsfﬂsnffqﬂﬂ of the familv ¢€/T are the

hypercochomalegy groups of C ‘(‘D"ffﬁ defined as cohomology groups
. e .Y ~ . ~tet
of the corresponding total Cech - dm Rham complex C “'Q‘fIT)'

The construction appiies to all restricted families ‘eu/U, U an

open part of T. On this way one gets the de Fham coho-
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{
homolwecagy neavves }Emaif;’l‘)onf.

in

We restrict curselvas now tn curve families €/T. For our pus-
Jcses it suffices tc assume that T is an affine part of a projec-

tive space eV

Ty

Let ﬂT.be the shea# of differential operators on T.
Then the de Rham cchomology sheaf Bﬁgﬂ(*a/TJ is 7ot only an C%—

module but also a 91,~module sheaZ. Looking for a family with a

cection @@ 2

1
]

I‘ . - 1 1
1EDQJ€/T) satisiyliag the differential eguations
(7.3) with @ instead of F cre cen take the Picard cur -
v e family
& 3 . .
C/PNVA Y = X(X-1) (X-u) (X-v)
ané B represented by the differenitial form w = dx/y devending

on u,v. For details we refer to [AL]), IZ, 1.5. Taking integrals

over cycles one gets an "algebraic" fundamesntal system of solu-

ticns
(8.1)
. , ) 3
Ik(t; = [w(tJ, k=1,2,3, t = (u,v) ERP A, w=dx/y
«k(l-) '
We refer to | ', 1II.2.5, Theorem 2.5.Z2. Altcogether we fourd the

developing map of the Fuchsian system (7.3) in an explicit and
algebraic manner. Looking back to the gecmetric starting point

{6.1) and Zo the the2orems 5.2 and 7.1 we recelive

8.2 Theorem. The guotient map w: B ——3 e with covering group

M = [({=3) is inverted by (I :I,:I,): B A ---=> 8 on e A

with cycloelliptic integrals Ik(tJ described in (8.1) along in-

dependent cycle famiiies & (&), xl(t), dz(t)' 3
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Another prour bazed ¢n the PIDM-theorem car e fourd in {ag ],
1.6.3. Trerz has beer used also a firer aznalysic of the Picarc
ciurve fsmily, which is useful for our number thecrstic ambitions.

The rext =hree sections are sevoced Lo this trems=.

9. Modull space Zor Picard curves.

We investigate the Picard curve family in mcre detail. A cur-
ve C {algebraic, complex, compact) 1s calleda P icacx d
curve, if it is isomorphic to a plane prajective curve C' of

affine eguation type C': Y3

= pq(X), where pﬁ.(x) is a polynomial
nf degrze 4 in X. Ve exclude subseguently curves C with model
crroyd s X* because they will get lest in our moduli space below.

Via proiective Tscnirnhaus transformation any Picard curve has a

model of egquaticin type ,

(9.1)
L‘
’3 - — Yoo— T, H . wJ' '72 - ¢ - R
Y° = Jl (X Sl = { =+ Glx + 53A + Gy (affinez),
b
wyd = W X - ew) = xt 46wt 4 sz3x + 6wl (projective),
1z 4 t " L ’ ¢
Zs. = 0.
izA

The correspondiné equaticns are czlled normal forms

of Picard curves. A Picard curve is smooth if and only if for ore
(each) of its nermal forms (J.1) it holds that e. ¢ e; T

i1 £ 2. We correspond tc the normal form (9.1) the point

y
L P3= {{z :z 12 :2,) € WB; 2 z- = 0}.

(e :e :e3:que P o LRI Z .=

A 1l

The follcowing result is do teo the author. We refer again to the
monograph [4L], ch.I, 5.2. It asserts that the corresponderce

Picard curve C +-—-> (e‘:e ce_:e. ) via normal form (2.1)

L3 Y
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is correctly definad (at least for smooth curves) up to symmetry
interchanuing zeros cf the normal fcrm polynomial p%(x) anc that
non-isomorpric (smootn) curves cannct be represented Ly the same
point irn et Obviously, the eaootn Picard curves are represented

by points rcot belonging to the six lines e. = i#+ 3.

:I' '

9.2 Prcposition. The above correspordence induces a bijective map

. . . 1
{cl(C);C smooth Picard curve} &——> (P~ A J/Sq ,
where the symmetric group SH acts via natural permutations of the
3 24 I
Eb—coora¢naues. =]
We remark that the proof given in [4A1} uses geometric inva-
riants, for instance the Hassean of a homogeneous romal fcorm po-
lyromial. Ve call the surfacs wi/sq the (compactified) mo d u -

+ 1 l Rl t
11 space of Picard curves and (P \A)/S'-t the mcdull space

of smooth Picard curves by a slight abuse of language.

10. The relative Schottky prchblem for Picard curves.

A smcotn Picard curve C has genus 3. Therefore its Jacoblan
varietv J(Z) 1s an abelian threefcld. We want to determine in an
effective manner the poliarized abeliaﬁ threefolde, which are Ja-
cobian varieties of Picard curves. The period lattice A of an

abelian variety A is abstractly definsé by the exact seguence

(10.1) 0 -—=-—2 A 7 TA > A > 0,

TA the tangent spsce of A (at 0). Croceging coordiratss and a ba-



sis of A we ideatify To wizh ©9, and A is generated bv the co-
jumns of a gx2g-matrix T callea a peziocd matr ix of
A. Taking into cconsideration all possikie base changes 1n TA and
A\ we see that a period matrix of 2 is urigue up to Slg(m)—multi—l
plicaticn Zrom the left and G;I (F)-multiplication frcm the rignt-
hand side. Let X be & primitive Riemanr form on ;A representing

a polarization of A. By a theorem of Frobenius there exists a 2-

basis A, , N of A such that
] 1&
(10.2) ,
bO'D) duzo 1 1=d |d d
(B s Ae = ’ , D = , . N, 1= .
e =570 N EC e TN

H

If the above diagonal matrix D is the unit matrix Eﬁ; then the
corresponding polarization is called principail . Wewill

cnly consider principally polarized abelian varieties in this sec-

0

tion. A basis of A zatisfying (10.2) wich
/

s . A period matrix of a prin-

0, E 9,

2

-
| -

-
-

-E , 0 -D , 0

e

is calleda normal b as
cipally polarized abelian variety 13 always constructed by use of
a normal basis of A . For a fixed basis cI TA i1t 1s uniguely de-
termined up to right-mulciplication with elemerts of the s y m -
9 lectic (modular) group

~ - ,—\ - el r1 q]' -"T.t —_ T

So(2g,d) = {S € bl,a(d,, 3I°S = I}.

o«
The lattice in cd generated by the the colums of T is dencted

by A1T' The cocrdinate version of (10.1) is the exact seguence

(16.3) 0 — A’W ;'r:% > A > 0,



A metrix I 6Mat, () is calleda Riemann matrtix
«*13

(of principal wype), if it satisfies the following two conditions

knewn as R 1 emann 's f1irst or second rela-

t 10 n , raspectivelv:

(R 2) MM > 0 (positive definit) , 1 = {-I.

For a proof we refer to [A® ], IV, App.I.
Now we turn our at:=ention to {smooth) Picard curves and their
(principally polarized) Jacobian threefclds. X period matrisx of

a Pilcarxd curve can be writtan as

(10.5) :
Ay Ay Ay by Ap A,

= = [ w = = 2 B B 3.7
LRSS Iy B, By B, By 3.8

g, T, 0,5, 55 T,

where @ = t(dA 9y Wy, ) is a basis of I—IO(C,.O.C) = HA(C, ('JCJ and
b o=« F* .Fi Py ’P3 ’ﬁ? ,Fs ) is a Z-basis of the homclogy group
H,(C,2). The relative Schottky proplem for Picard curves asks for
an affectivzs criterion characcerizing period macrices of Picard
curves among all period matricss of (principally polarized) abe-
lian threefolds. The idea of constructing t vy p i c a l period
matrices described below goes back to Zicard 26 ]. In order to
formulate the theorem we need a linear embedding :

* : C3 S e —— L}

(A.B,C) b (A,B,—S;A,C,§B,9C} , 9 =
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. .y . o ‘ : 3 .
and the hermitian form < , > of signaturs (2,1) on [° represented

[o 0§
by the antli-diagonal matrix R = | O 1 O . it d=fines at the
¢ 0 0]

o - s , L . iy :
same time extlizitly a ball B in P anc a cisc D =D, ¢ I5:

R

[}

L
B Phel® ; <&a,&> < G},

i

D, = {v=7Fa € B; kT =7

© =Dy

e
.

10.6 Th=orem (relative 3chottky fcr Picard curves).
The matrix 1 in (i9.5) is a period matrix of a smcoth Picard

curve if and only if the following conditions are satisfied:

l

*”
«l &
PR

T bhelongs to Els(cJ- * “Splb6,T); <& ,&> < C (ball condition;;

3

. - i o
& . 4 1s a basis of & (orthegonal condition); © = Pa does
not 2elong Lo Q} = FHDR ("nor~-decenerate "-condition), where [
denctes the rull Eisenstein lattice

r = U<, >,Gk) = UH(2,1),0) Uk =7+ 2 K= 0({=3).

Proof (sketch). Let C be 3 smooth Picard curve wiih normal
form (2.1). The projection (X,y) r-> x defines a cubic Galols
sovering © ——3 E' with Galois group G = ty, = 1/37 generated ay
g, say. The homology group H (C,32) is a 2(G]-module. A normal ba-

sis & = ¢ f4' coo 0B ) o2 2 (C.3) is a ¥-basis satisfying

—_—0
et
[}
s
A 4
S
il

I, o the intersection producit of cycies. A t v p i -

cal basis of H1(C,7) 15 a normal basis of the form
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- L
*o<=*{°(,‘:o(z:‘3{3J: [D‘","(,:‘G"(q:c{z-gdl.gc( J

X 3
Tre existence of ac least one typisal homology basis on a smooth

Ficerd curve Azs heen proved by Pisard himself irn [ 261, see also

Alezais [ 1 1. A reproduced version can be found in Picture 5.3.A

2G-(L g o)k ' ¢is = H%(C
L G-{i snltvpilical basgis of H 5 B°(, Q..

sheaf of regilar (holemorphic) differential fcrms (of degree 1)

o She
on C, is a basis ccnesisting ¢f G-elgenvectors of E'. One can take
simultanecusly for all Picard curves with nermal form equation
(8.1) the differential forms of first kind @, = dx/y, dx/y%,

- -~ ’ b q -~ . ] " -
xXGx/y . The use of a typical basis x & of H1yc,vj and a isotypicali

. , - t X , :
hasis & = (w ,W,, ¥;) has the advantage that the ccrrespon-
k)

ding period matrix (10.5) 1s essentially determired by the thres

fi

]

ntries A LA LA,. With &
177473

one obtains typical period matzrices

(AJ,AL,AzJ and tne above notatlons

X &
(10.7) T o= 8 = |4
¥ _

*x ¥,

We check now the conditions of Theorem 10.6. The first of them

b_a_

s satisfied because we can chooss a typical period matrtix. The
second and third conditlons are translaticns of Riemann’s period
relations (R 1), (R 2) in (10.4). The *non-degenerate”-condition
is delegated to the if-part of prooi below.

Convesssly, we assume that & smooth curve C has a ZyvD

f=-
9]
n
[ =
g
(i
|

ricé matrix as described on the right-rand side of (12.7). Wwe

=
o
ay
¢
O
(1
o
o
ct
—
[84]
cr
fel)
jny
[
Ui
(]
n
hon
(o]
3
—
<
=
]
Lr @l
WO
(8]
3
FH

‘or a Picard curve. FOr
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this purposzs we lock at the moduli space of smooth Picard cuzves

"

) - . ‘ ., ..
(@ “AB)qu, see Prop. S.7. Ve construct a commutative ciagranm

.

lB\éb\it; A
(10.38) F\ . Y lsP[é'Z)
¢ Su
et A5

y TS T

wher= JK3 or ,43 are the modull spaces of smooth curves of genus
3 or principally polarized abalian threefclds, respectively. The
Torelli embedding ¢K?C————9V43 is represented Dy the correspon-
cence cl(C} +»->cli(J(C)), C a curve of genus 3 and C(C) its Jaco-
bian threefold. The upper rcov is correctiy explainsc by the chain

of the follcwing (partly multivalued) correspondences:

(10.3) ' /'xa,
T=Po -3 k| = (MT) — @)1 T)— T.
M-
;‘E A

The point *T =T belongs to the generalized Siegel upper half
prane of polarized abelian threefolds

Hy = {‘t’eu;l3(c); T =T, T o0l

The vertical arrows in diagram (i0.8) represent analytic gquo-

tient maps: The Eisenstein lattice [ = U((Z,lJ,UkJ acts on B.

This action can be extended to an action on iy along the geome-

tric embezdding *:8 «—— H, by the foilowing s ym2 1l e c it ic

3
Teprepreseantctatilion of I also denoted bv *:

(10.10) r:muz,m,oksa———*—-es;)cﬁ,:'
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For an aexplicit definition we refsr to [4Y ]. Mors intrinsicaliy

6

one endows T with ch2 hermitian procuct [ , ] of signature (3,3)
- . T |—— N - d o 4 3
represented by J = I/{-3. Its zastristion to €7 along the *x-em-
baddine coincides with < , > introducsd zbove, that means:
'&. = £ gc 3
(xa,x k] = <o, b> for all & & < ¢°.
The modular symplectic croup Sp(h,7) consists of all linear trans-
formations cf C‘, vhich are compatibls with [ , | aand presarve 26,
‘ - . . . 3 .
All thuse elements of Sp(6,7) preserving additionally *C° are col-
lected in 2 group $p'(6,7). Their pull hacks -o ©® are compatible
. 3 e , .
wvilth < , > and pressrve Uk. One can check tnat the homomorphism
S5'(€,%) ——» [ defined cn this way is an isomorphism. Its in-
verse map yieilds the embedcdirg (13.10). Chancing over from the
right-action on vector rows to the transpnosed left-action on the

tna columns we nohtice that

I

{10.11 gl = (xg)ix) : aéﬁy f&r

%
-~

,
t

(kgiixT) , T=Pa &8 .

Since 443= B,/Sp(5,7) it follows that the diagram (10.8) is com-
mutative.

We are now able to verii

O

v the iz-zarz c¢r Theorem 10.6. Lat
C be a smmoth.cu:ve of genus 3 with a typical period matrix. The
oreimage of cl{J(C)) ¢ A% iniH3 i3 represented Dy an element
unicuely determined up to Sp(s,%)-multiplication. Withouh loss

of generality we can assume that T = *T because of the corres-

poncdence {10.5) going throuch all cTvpical pericd matrices. Thus



J(2) must be the {generalized) Jacopian tareefold of a'possibly'
dagenerace (nar-smooth) Picard curve. But € is smooth of genus 3.
Tharefore C.has to 26 a smooth Pipa:d curve. It remains to check
_that ¥ does not belong to €. In 9. we prayed‘thathl\Ak is
the complate S*~preimage of the mcdali space of smooth Picard
curves. The symmetrib group 3, agpears as fa:tor'groub /0" in
diagramA(IO.SJ. For thé coinciderce proof of the symmetric ac-
‘tio; of Sy on P%’and the arithmetic abtion of T/{ ' on et ve 8-
fer fo\{li,J. Ve diépose:also‘on the an;ledée of the prsimage‘of
A ir B. This is’ the braﬁch locus of the cove;:ing wW: 8 —»B/1"
we.starteé with in (6.1), fee also Theorem 6.2 and bhe‘explana—
tion thereafter. fha ramificaticn locus of K’_has hesr carefully
anaiyzéd in [4Lf, I.3., especially'diégtam 5.3.5. It consisﬁs»of
S all (infiﬁitely many) f{ffﬁJ—:eflebtion discs. This set coiﬁci-
‘des with the [ -transforms of onefof them, say.qf‘DR:'So, if ¢ be-
longs to a smooth Picard curve, then it canrot belong to.éb. fhe

‘Theorem. 1C.§ is proved. ' C B

11: -'Effectiﬁe Torelli theorem fo%i?iégrd curves.vié Ficaxrd
modular- fcrms. |
Tacitly we used already Torelli's theoren. It appears in'dia—
gram (10.8) assérting that Vq3 ~—#—9t43 is an embedaing or,
more generally, the isomorphy clasé of a smoocth burve is uniqueiy
determined by its (polarizea) qacobian variety. We lock for a pre-
cise pointwise version of this theorem in the case of Picard cuz-

vas!
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11.1 Find for giver T« B {(or *xT ¢ *B ¢ (H;} the normal form of

a Picarc cuzsve Ct_corresponding to the modull point w (1) € et

In anaiogyy teo the Waisrsctrass normal Zform of elliptic curves

t_,t, B — € s5uch

ve carn rind helomorphis furckioas & ,t
oLP R T

that the normal forms we louk for can be written as

li
(11.2) C_: ¥2= TX - t ()
' ' - T =4 v

similtaneously for all T € 8. In othar words we try to describe
the quotient map T we started with in {6.1) in terms of holo-

nmorphic functlons identifying the quotient map @ with

(11.3) (& %, b ik )-: B ey P

The existence proof for thesavholomo;phic functions was the main
rasult of Ghépter I inj[42)]. We refer the reader %o seﬁtion 6.3
there entitizd 'Invezsion of t@e'?icard integral map by means of
automorphic forms', espgcially_to Thaorem 6.3.12.

Since w3 need the Juality of the functions t.L for fihdipg ex-
-plicit Fourier series of them, we repeat the.way of their con-
struction in [ AL ] without proofs.

12.4 tefinition. A holomozphic function £: 8 —» C 1is a P1i-
card modu lar form of the imaginary gquadratic

number field X and of we i ght m, if there exists a sublat-
tice T['' of U([Z,lJ,Uk) such that thse following functio-

nal egquatilons are savisfied:
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(11.5) . 'gﬂf} = j‘-f for all X E &,
J

*

wners Y'U£)(¢) = Iy (&)) and jrﬁw) is the Cacobi determinant of
F:B-ﬁiﬁatf.

Tf (11.%) i= satisiied, theﬁ we shortly céll fa ['F - m.o -
Guler form (of weicht m). These functions‘iorm & fi-
'nite—dimensionéi Qector space denoted by [F"Jn]. We come back

now t§ the Eilsenstein numbers, sspscially fo- C = UK(Z,l),J&J,
[ ,_.Tg{f§) and define.the' 5 ple-c 1al mbdulas groups by
SO = Tasl (€, sCETF = T({TDaslylel | ... |

We have three.sxact sequencses

1 % § T ({=3) —— T ({73) — >0y > 1
(11.6) 1 —3 [iN=2) ——> T —I5x5 —> 1 .
) . v v v .
1 ==y S [ ({=3) ~——> 8[ » S, —> 1
. - (1% ’

W
¥ > F

The grcup :i ='Z/22 comes from-the element.-~ide [ (Zl c ZL)L

We look for Picard,modular_forms,th,tt,tB,t Satisfying the

Y

following conditions (11.7) and 11.8:

(11.7) t'1+tl+'t'3+ tgl:.o'

t+;ti,t3‘are linearly independent.

11.8- Sp=a2cial Functic nal Equations

n

(i) yiey) j‘;:;lL for i =1,2,3,4, & ST({3)

s ¥ oL e 1 =
(ll) " (bl/tj) = t"fu)/t?[j) fer 1 = 1,2,3,4, r & Sr .

fl

- X, : 2.
(1;1) d—kti) [detd’J'lfti

for i = 1,2,2,%, J reprssenting r((—3J/S r{=3).
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i1:3  Theovem (EHolzapfel i4l]:. There exist four Picard modular
forms t1,tL,t;,t% satisfying the properties (11.7) and 11.8.
They are uniguely determined up o the'humeratian and a ccmmon

constant factor. The condition (iii) is a conseguence of all the

oreving conditions (11.7), 11.8 (i),0di&). .

11.10 Remgrk. The last statement haz be=n proved_first by\Feu— ;
stel [ & by an analytic argument_using.the,Theta bresentatiqn

;of the‘médular furczions t; we-look for. An alcekraic proof has-

“bean founé by thé aﬁthpf {12 b§ mezns of the dimension fcrmulas
fo:.cusﬁ forms of bail‘laptices (41 ]. We caa give a more érécise_
version of Thecrem 11.9 whiﬁh trinys the thrae ﬁonditions (1),
(ii),(iii) of.ll.S'together. Dénoting ﬁhe.image of fé f a;ong

_r'-—a-;sq»"z‘ —_— Sq (see diagram (11.6)) by ? we get

11.11  Corollary. The four Picard modular functions_t{,tl,.ts,tq
are.charactezized (up to a constant factor) by (11.7) and che
functional aguations

Yl = (dety Jl°sgn('i-lj‘-t» ) for i=1,2,3,4, fgel.

¥ G)
-Main idsa of proof (sse [AL]). Easically one has to ciassify-
thé surfaca § = 67;::??E§7. The group $ M{{=3) acts almos£ freely
on B, that means that the non-trivially abting elaménts.have at
most isolated fixsd points on 8. It turns out.that
STor ) =% vt = 5 0 ()

is the unigus (cyclic) Z3~covering-of FL branched along A (ses
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the diagrams (i1.5) and (6.1). It is not: difficult to describe

”~ . . ’ .
the surface ¥ by aa egquation {(ses [AX]. I.4.3)..

~ 3 [ IREE T S B SRS
2 . 5 = V., - ': b . - ¥
(11.12) X0 £ = (- Y- e - v
This is a veigated sguation with .z of weight 2 and'Ys,$4,jL of

waight 1. More greciselv, this means that R is the projective
spectram cf the corrasponding graded ring
. - o .
cly. v v, ,z1/¢z2 =TT (v¥ - vh.
RN peicyjel -J ¢
. 11.13  Remazk. Cn this place we remaember again to the 22-nd Hil-
bsrt problem mentioned in 6.3. It turns out- that the algebraic
relation in (11.12) is satisfied by Picard modulér forms ¥ ,i1,
A substituting the variables Y,,¥;,Y, or 7, raspébtively. The .
’ 1 . h 13 * A " M .
knowledgs of the uriformization B -———> X together with the cor-
respording arithmetic unifeorrizing lzattice St (¥-3) becomes am-
portant for this purpose as it has bsen predicted by Hilbert in .
general.

+ The key point is to understand sutomorphic forms as sestions
of logarithmic pluricanonical sheaves. In [41l], T.4.3 we proved
(11.14) @ (sT({=3),n} = @ E%X,0(mk_ + mT)),.

mz=0 : T w20 . X

- . , . . : - o oa . L R , e
wiere X 1s the minimal resolptlon 0of singu.iarities of X, T the
compactification diviscr resolving the cusp siagularities of X.
Iz consists of four disjoint elliptic curves. As usual Ky denctes
3 canonical divisor and G (D) is the sheaf corresponding to the
divisor L. A careful geometric analysis (explicit knowledge cf a
canonical divisor, vanishing theorem on-surrfaces) accomplished in
(421 yields tha ring structure

- m - .
(11.15) @ HG(X,@(mKi + ml)) = ¢€is ,s ,s ,sl]
m=C . 0
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orf walght 1, 3 of weicht 2 and the generating rela-

with Sy 18, .8,
zion
L2 3.z o4l
(11.1¢€3 Csd = (et - STt - 51J(5 - szJ
: 1 A )] e 1 0
Together wich [11.14) we found gen=rators T, 74 ,ﬂl of

{Sf;iJ??J,lj ard a [ ({=2)-modular formw a of weight 2 such that

N - . .
% .M, .7 and m gJenerate ths. ring & [57(J=3),n] of &7 ({=3)-mo-
to 1 L . wz) :
dular forms satisfying the relation

¢ Ty 'L_ l'_ i 2. - L t - 1.
(11.17) m- = (wzl _ 7,, )(ozz ﬁ‘"o J(IZA ’20 )

we locked for.
If [" is an arbii:ary ball laxztice, than it acts on the space
- of holomorphic functiong on the ball B via

. ‘= ok 0.“ : " -.
(11.28) f‘_-_.”)' e, fe H_uB.OBJ, NG r.

Tha f"*invériant functions are the ["-modular forms (compare
with (11.5)). Especially the lattice §F acts cn (s ({=3).1]
vith ineffective kernel § F({:3Jl With the last row of {(11.6) we

get a three-dimensional rspresentation of S,. In [ 42] we proved

s
- that thie representaticn is irreducible. It induces a.prciective

rapresentation of 3, on E{S'Tifng,l] = PL. There is only one

4

such representation. Explicitly'it can-be described by

(x :x :xzzxq) — (%

PN cg):xﬂg) :XVG) :XGCH)J'

G’E’S , X- € C, ZX. = (.
4 t L

Looking back to [§ r(]—S);l] one finds four Picard modular forms
t ,t ,t.,t, satisfying (21.7) and 11.8 (), (ii).
4y 5y By ying | i) (.) (

It remains to verify the property (iii) of 11.8. This is much

more difficult than it looks like at the first glance. There

exist two proofs of differert kind. The first kas bean fcund by



Feus=el in [ @ ]. He used a trarscandental method: The modular

forms b, can e urderstecod as restricticns of explicitly Xaown

theta constantz on H3 tz B (see below and alsc Shiga's article

[(321). Then the transformation behaviour described in 11.8 (1i1)
can he checked directly. an algebraic-ceomerric prooi of thé
functional aguatioans (ii;) can be found in the author's paper
(43].

=

In order to solve ths relative Torelli: problem 11.1 in an ef-

fective mannex by'means of our mocdulaer forms tA’SL’:J'tH We €0

tack to the guotient map (11.3). It is r2alized by the modular

forms oi Theorem 11.9¢ for the fcilowing reasons (see [ 42] for
more details). Frem the thizré row of (11.3) one gets a commuta-

tive gquotient diagram

(11.13)

' . A
Tre logaritiamic canonzcal map 9k +T goes cown to X —-—-49PLand
- X
coincides with the 23-qoutient map on the bottom of diagram

of

(11.19) as nas been croved in [4L]. Using geaerators s:

HO(X,O(KE + T).-ic can be realized as the projective morphism

(s_:sd:sl). The sections s. have been lifted to s T ({=3)-modular
v L .

forns m. 1= 0,1,2 via (11.14). Without loss of generality we
: :
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can assune that o] = 1:_4 , 1 =1,2,3. We zan ideatify the big

guotisnt map of (11.13} with the map of (11.3), where £, 1s de-

fined by (21.7}.

11.20  Theorem (2ffective Torellii for 2icard curves viz moduilar

‘ forms). Let J(C) e the Jacobi thres~old of a smooth Picard curve

Pl

C corresponding to-the paiat T = xTé€ Hy - Then the Picard mcdular

“forms tq’tL' t;,tq defined in theorem 11.9 (vp to a common can-

stant facteri yield a normal form of C in the followirg manner:

' w;_ _ L 4 ¢ - Vo N ¥ o— | - 4
(11.21)  ¥7 = (X - & {g)) X tl\qx}(x tyle)) (X t&(c,J

Proof.. By the relative Schctiky thneorem 10.8 for Picard cur-

ves we have J(2) = C%/ATI , where T is givea as (T{1|1TzJ in -

(10.9) connecting T € B with T = x%. The diagram {1(.8, with
ro= i R . 4 | i ' -
=1 (ftﬁ) yields the modull point of C orn P~ as image ci T

~along the T{{-3)-quotizant map. By;(ll.S) this image is equal to

(b (o)t ()t

. N 3[#):tq{¢JJ.‘But the normal form of a corresponding

Picard curve is. given in (11.21), se= Prop. %.2..For the canve-
nience of the readesr we preseat a diagram 27 corraspoadencas

used anova in olos2 connacilon with ciagram 1i0.8).

. A

B 3 1-_- = P & { W: #

»
o 4
{
[
3 4 | >

Cc: ¥*¥ = }fo - t;(T)J( ——————— 4 Sac(C)
[



The thenrem is proved. ' ' =

12. Ficard modular forms as.theta conscants.
Th=ta functions {%[%1 with characteristics a,b ¢ Q%'are holg-
morphic furctions oa &QXIH?,
't/\..

Eigé.{’té Gl%(ﬂ:); _L=T., Im'C'k'U‘}

the generalized Siegel upper half'plane unitormizing. whe muduli
space of iprincipally) Qolafizedlabelian variepies af'ﬁimension é-'
(zze e.q. | 1). Expiicitly the theta fﬁncuiqﬁs -
P[] o¥x Hy ¢
are ?efinéd by | | |
ool Ty = Z%s&p{ri*(ma)”mma + 2w Snsa) (z42))
nezZi . . o : .

The restrictions 3]0*m?
QJimy .. Q ¥t
oleJeT =P8
are called t heta constants (with characte:igtips).

¥e restrict our attentior to tn2 case ¢ = 5 ang loox for exten-

sions of the Picard modulac- Z0THS ta,tl,t;,tQ-defined'in the pre-
vious section in My .along the embzading =: B aammad S defined in

(10.9) and hope to express them in terms oi treta conscancs.

Very impor:iant for this purdoss arce mne fuactioaal aguasioins ¢as-

cribed in 11.8. So we icox for elsmentary comblaaciosns Ta of the-
Ea constania wnose restriciions
thir! = ThixT), T E€B

satisZy the special functional equations $.11 (i), (iii}:

(12.15  Th Gey) = det;l{-ja’-’fh onBC Hy e (0.
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For the corvenlence of the reader we summer’i:ze the —estrictiocrs

(or extersicns} veed ebove anc below in the Zollowing diagram.

1(12.2‘1 ‘ B’—f‘———‘;ah'ib
f3)> ¢ | Pi“lf ¢ 5p 62
B < —';L‘.g-L -3 E?‘xtH

"
it

12.3 Theorem (Feustel, Shigaj.

Let Giftﬁ = '?-(U,Tf), i =0,1,2, be the theta constants an E3
"

restricting the theta fuactions

- A Q-
al,kij"[kg ‘V‘z k(); (S,T) , k =C,1,2, z € lfs.

Set _ . : : ,

(12.4) T, = '6:+'9: +0) ., m, =--393+ 9: + 93 .
Th, = 93"39: + Gi , Thq_z G:‘+ 93_ ~36;,

-ind' . | | | |

(12.5) | thi(c) = Tﬁi(*t), i= 1,2,3,4, Te B..

Then the furctions th. (¢) are the (normalized) Picarcd modu.ar
‘ L -

Zorms satisfying (11.7) and ali the funcilonal eguacionas (1),

"Proot (main steps). We follow Fouscal's 2raof ana ©2iey ox
explicit calculiacions to niz pajer [ & | and the related Licsra-
ture given taezs. Tne Pro0l IUMMSTLIR3 JYelsvalory wivgd Jf Rie-

mann, Picard 6], 13, zrezaiz | 1 ], Mumford [ 247, ¥.5higa
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{3%] and Hoizapfel [4%£] (the functional requations above).
Step 1 {restriction to six functicnal egquationa).
- ) ’ '
Eere we go back to the fundamental group ¥, E"~ &\ ) of the
Fachsian system (7.3} of partzal differential =quations and tlre
. . - . 1
surjective monodromy repressntation }1&(@ VA —» C(§-3),

e A.) has obvicusly

see (7.2). But the fundamental group ﬁ}(E
six generators coming from simple.;oops in P! around each cne of
the six omi;ted lires. Therefore also i'{frﬁ) nas sik generators,
: say:gd, ... /9 They have_beeﬁ.expliciély described élready by
Picard {26 j.(wiﬁhacorrécturé in [27%71]) &nd Aleiais. iheir symp;
lectic lifﬁs Gt;lkqi~e Spr,ﬁ}} i= i;...hs, caﬁ.be fdund expli-:
citly in Feusiels’paper [ é 1. In order to‘check.the functional
equaticns 8.1 (i), (iii) for'suitable ﬂoiomdrphic functions th

or B itlis sufficient to check them for the generators g, ....9,
of r.({:E) . AccordingAto_our claim th = ThlB.we nave now only to
look for hoiomorphic furctions Th'oniH3 satisfying the six r é -
stricted fu nction al re-q u.ati 6 ns

(12.6) The ("':’.. 3

= (det’g,)’ja-Th oniB ¢ H

L

i=1,...,6,

implying (12.1).
Step 2_(Riemaﬁn's tﬂeorem]. R

It is a gereral problem in the theory of algekraic curves to des-

cribe a given mefomofphib function on a curve C in terms of theta

functions on its Jacobian.variety by restriction alcng thé Jaco-

hi embedding C‘——-—an(C).'This problem has been solved essential-

ly by Riemann. We refer to Mumford's book [24].



- 47 -

12.7 Theorem (Riemann). Let C be a (smocth, compact, complex)
curve of positive genus g, '(1,

.
. Yy

and @ = (.-,;4 y e wj) a basis of H°(C,_D.c) suchk that the cor-

a2 normal bzsis of Hd(C,ZJ

regponding period matrix has the normalized form

({lc—) = (E.]T), T'Elas E, the unit matrix.
5 : ’

I £f: C -—-—-7 P! is a meronorpn c f,mctlon with dJ.VJ.sor

o

(1) = 2{ b ak'bk e C,
then it holds that

(12.8) . . zp‘.A O _ g.'\’ ’ b
’H‘r(P) =constT\-{'3"( S - IU—AJ/-J‘ I W - Ilg"m}
' : kea P ?c, . P° .I’D.

&g mercmo"ph...c function on C'/3 One has to use the same pathes

¥

in -hu first integrals of the denominatar and numerator.

Notations. Here the Riemann theﬁa'functicn 4% is considered as
holomérphic function on_C%. It coincides with the restriction of
‘D’[o] to C KT T the fixed pe;'l';:d matrix defined above, with
th° notatlons introduced at the beglnnlng of this secylan The
auxiliary p01nt‘%>e C is used to fix the Jaconl_embeddlng

C'-'-—-—-?J(C),Pt-——-afwnod /\ /\,t,':z'?+-"('f-z7.
A denotes the Riemann consf::?ant This is. a special well-defined
2-torsion -point on 3(C) (see (241, uh II 3) Both sides are con-
sidered as functions on C9 or ¢¥/s_, namely Z P. is understood zs

9’ . |-4

point con C%VS .. On the right-hand-side of (12.8) appcars a con-

4

stant denoted by const. In general one knows only its existence
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but not its explicit value. Finally, we used the notaticn

f3=ZJB forD=_ZP
po- =4 P, st

Remark. For the proof of Riemann’'s thecrem one compares zercs
and poiss of both sides of {12.8). The key point is' the under-

standing of Rismann'’s bonstant 4. on c¥ it is defined mod At,by

&=
{z4 ‘ '
oA+ [ B mad Af,ee'; P e C,
6 |
~vhere @ ¢ J(C) .denotes t:n‘é theta divliislor .definea by J‘(z) = 0.
Settiné £.9. E; = a, in (12.8) opens tﬁe way of proof of Riej
mann's theorem in an obvious manner.

Now we apply Riemann’s theorem for finding two generatorslof.
the field of r'(fré)-autoﬁorphic fuﬁctioﬁs_in theta terms. This
hés been done already by Picard'anq Alezais. We write a smoothl
'Picard curve C-in the modified norﬁal form

c: ¥P = X(X - DX - WX - V) |
Theﬁ u=ul), v=v(T), T& B, géneraté;the fielé of r(J:E)—mo-
‘dular functions. The.raﬁification locus of‘the'zs—Galois covering
4

C-——» P ccnsists of the following fivé‘points on C:

0=0Q, = (0,0), Q, = (1,0), Q, = (u,0}, Qy = (v,0), & .

("}

We apply (12.8) to.the function f'= x: C —> " at the points

P =90 %y =0, B3 =0y

and at the points
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. P =0 we get with the same constant ¢

with (x) = 30 - 3reo P,
, e o 2014,
w=e W] B - 38 -APCf B - AR
A o0 ol 0
3 ﬂn+zau 0 a4+'mu ]
JL='C'T‘-{'3'(f @ - f?-ﬂ)/-‘ﬁ'(’ % —.A)}
1 o0 0 . oa

r L I ) b ~ 1 -
Since u'= u /u we get by division of both expressions above a

theta foimula_fo; u(t) without the unknown cohstant'c:
.A 3 . . N ' ' ‘—' | .
uE WA =)R, - - R =) P - = 0

2

In the same manner using Q,, instead of .0, w8 can express v, v

and finally vig) = v*/v in terms of the theta function belﬁnging
Step 3 (Theta constants).
Thié step is due té Shiga [3y1. He caleulated explicitlyv the
kiemanﬁ ¢on5tant Ay ébovg usigg special values. Furthermcre he
used stanéérd ;ransformation laws to prdve that
(12.9) ulx) = J‘:(o.m/«?:!o,m,* vie) = X 0,40/ (0,50
with the no£ations of Theorem 12.3. The denominator does not;va;
nish identically on B (Shiga [111).
Step 4 (automofphic forms) .
This_lést step is'due to Feustesl [:6 ]. He checked that‘the domi-
nator and the numerators in (12.9) satisfy the six functional

equations (12.6). By step 1. we dispose on three linearly indepen-
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daat § { ({-%)-zodular fcrms QZ(*r), 8. (T . Gz(*t) on B8 of wight 1

(4

with the nctations of Theorem 12.3. 3ince dim (S F({~=3)1 = 2 by

the considerations around {11.16) we found up to linear combira- -
. - . 3 3
tiors all ${ ({-3;-moduler forms of wight 1. So 90’9:’9L can be
identified with v .7 .7 in (11.17). Now we remember to the §, =
¢ ta : %
$ /ST {{=3)-action on [T ({=3),1]. There must be linear combi-
nations th‘;tht,thl,thb of 9:,63,3‘ satisfying the rslation

{11.7) and the finctional equations 11.8 uniqueiy cefined up %o

4

rerated by three tranpositions.. It is not difficult to find re-

a common factor, see Theozem 11.9. The symmetric group S, is ge-
presentants of them in $r and also threir symplectic representa-
tione acting on H,y explicitly. This has been done in [ § ]. With
the definitions (12.4) and (6.12.5) Feustel proved that th,th,,
thz,thh are functions with the correct tranformation behaviour

we look for. The Thecerem 12.3 is proved. . - B Es

13. ." Prcof of the Main Theorem.

" Now we are able to prove the Main Theorem formulated at ‘the

end of 1. We have’tp coﬁcentrate our attention to the verifica-
tion of the field tower on tﬁe right-hand side of diagram (1.1).
First we check the list t.,...,8. of definitions in 1. and fill
the gaps. The ball 8 is understood as subball of MB via the em-
bedding * defined in (10.3). The restricted theta constants th:f

i =1,2,3,4, have beer. defined in the previous section.
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Next we havs to give a precise

guments used in the Main Thzorem.

polnt on M? is a point of
W (D) = H_n

) )

An arithrmetic ball

B{D) = BalH, (D)
A (principally) polarized abelian
complex multiplication destermines

Namely w2 kncow from section 3 tha

On. the othsr hand A 1s isonerphic

and (E%ITT) must belong to the same double csset of Mat

or €1, (7)

1

(T) and Z &'511
¥

with respect to Glii@)

elements G € £1

¥

Now it is clear that 5. G and finally T =

?(E;‘-

51

definztion fcr the special ar-

An arlithmetic
61 (D).

3
poinrnt 1is a point of
= x ' gH, ()
= X ‘J'sa .

varzsiy A of dimension g with

an arithmetic poiat T € H, (7).

3
b e Mz
M b%d7

Thersfore

t & T a:7/’4> (D), (9).
¥

i.

Lo € /A(Eil‘nt.)
(c)

i<y

, respectivaly. Hence there exist

(Z) such that &Z = {(G|G-T).

¢~ (6T} belong to

Especiallv we dizpose oa the following well-known

13.1 Lemma. If C is 3 {smooth) curve of genus ¢ and its Jacbdian

variety J(C} sorrespondéing tao T

then T is an arithmetic point of

€ [ has complex multiplication,

Hw.

13.2 Definition. A point o € B is called a CM-module (with re-

3pect to Ficard curves), if there

-~

N

such that ¢ belongs to the Jaccbian threefold J(C) o

exists a (smooth) Picard curve

C (t.m.

(> ,LJ(CJ is simple and has complex multiplication.



From the above considerations it is clear that a CM-module 27 B
is an avithmetic ball point. There 1s a dense set cf very expli-
cit examples called s tationazy modul 23 . They

points €& BN A of elements

T
53

are defined a3 l3clated fix
Y e AC(2.1),K) with [K(x-):K] = 2. For detailes w2 refer to Hyi.

Now we arc able to define Fy, §, and t%_ appraring in the tain
Thzrrem. ¥e heve only to cnrnect the cbove detinition with those

2f section 3. Let G € E{(Q) be a CM-maodule crrresponding to tis

Picard curve  with Jacobian threetfecld J(C). It has a CM-tvre

(E}, QC.,ﬁ¢) and this 1s all we need. The crorresponding 3himura
class field sk ¢G has bean defined at the end of section 2.
. We coke to the proof cf the #air Theorm. For this purpose wa

*

let ¢ e B(T) be a CM-wndule correspoading to the Picard curve Cg

with Jacohian threeiold Je of Lype (Er, @r“&
. ' ~ .3 WS\' .
(13.3) Ce =0 .Y = (X - thiacJ}

This comes from the =2ffective Torelli Thecrem 11,20 for Pi-

card curves in combination with the theta representation 2¢ the

i
-
9]
s
L }
(o N
=
S
[o8
=
[
M)
1~
1=
0
[}
=
"
T

found in sectign 12, zsee Thecren 12.2,

13.4 kg = K(th{(¢)) is a definition ficld of cl(CG) and af
cl(qri in thke zense of sechion 4.
FPer the ciurve Ce this 13 an immediate concequerce 57 12,3, T8
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£ield of the Jacodiar manifcld J(C). ¥For tnis weil-krown fact we
refer the reader to Milre's article [23] ia [5]. Consecuently,

¥

¥ is 3 definition field of cl(qu or of J. itself without loss

of gererality. Tre same ic true for (< fa), f% a suiteble pola-

Jb‘"

Tizatlion of J_.
T

(13.5) | M(T.. € = Shcqn‘,,ao,)
‘This was {the conseguence 5.3 of) Shimura's Main Theorem 5.1 of
complex multiplicaticn.

(13.6) M(J ) € MIC_) = K(th 15406
nuS g’ - . G/

Procf. We remember that
~ _ o - L
(th (z):th, (¢i:thyie) ith, (@))/S, & €7/8,
is the moduli point of the Ficard curve Co by (13.3) and Prcposi-
tion 9.2. So for M € Aut(C€) one has the follawing egquivalent
conditions:
e € Stab cliCg) e—> ctre e——>cl(c? = clic) e
. . . # = ) - . .
(thA(r).thL(cd.tha(v).thq(wJJ (thdt.).thL(vJ.th3(¢0.nnq(¢JJ
mod S

q

> e (@/eh (p)F = thyy (@) /thy) (o)

i)
for all i,j e (1,2,2,4}) and a suitable T & SH

Sul
&= M€ Dlale) () .

On the other hand we have Stab cl(C¢) € Stab cl[JUJ, hence

M(CG).Z M(Jg) by tne definition 4.1 ¢f moduli fields. It remains
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t.& show thet X is a subfield of the fi=lis appearirg in (13.6).
- The curve Coy in (13.3) has an cbvious atvtomarphism of ordexr 3.
Tnerefcre the field X = @(g} is a subfield of the endomorphism
alcebra DG>EHQ(J¢J- Since J, is simple, the field F; coincides
with this zlgebra (up tc isomorphy). Therefsore K is a subfieid of

F This Is also true if Jg is not simple and has complex mulbti-

i
plication in the gsnerslized sense of section 3 (DCM = deccmposed
complex multiplicaticn): Then Jg is 1sogeneous to I *TxT, T an

elliptic CM-curve with imaginary guadratic multiplicaticn fisld E,

say. As alresdy mentioned at the end of section 3. the erdomorphism

algekra of Cp 1s iscmcrpaic to Mat,(E). The diagonally embedded

3
field & commutes with aﬁy other subfieid of §®z=nd{J;), especially
with K. Thus the endomorphism algebga contains. the subfield X{E).
The ébsoluce degréé of a subfield of the Q-algebxa‘QGDEnd(A) of

an sbelian variety A divides Z:dim A, sees {20], I.1, Th.3.1.
Therafore [K(E):Q]'dividgs § = 2-4im J,. This is only possibhle for
X = E. Consequentiy; K is central in Q®=nd(Jg), and X-F, is a
subfield. Since fa_:g] = 2-dim JV’ = 6.by definition of complex
multiplication it.cannot happan that K-F_ > F. bacause Fg¢ i3 ob-
viougly a maximal subfieldlc-f QeEné(Jc). So we have KC.FO_,' that
means that in any case the multiplication fiela F of a CM—Picafd
curve is a cubic extension of XK. It follows immediately from the
trace definition (2.2) of the reflex fisld ¥' that X ¢ F'. Now we
apply (4.5) to obtain F;-E M(Jz). Together with (13.6) and the |
equivalence considerations above we gzt |

v

Sy o)
K & M(Cg) = B(thie)) _
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The ident.ty on the right-hend side =f (:3.6) 1= verified. By the

way we ectabliched also the bottem part of diagram (1.1).

12.7 The definition Zield ke = K(th(g)) of the CMlor LCM)-Picard

curve Cgls an algedraic number field.

Prcof. Let € be a_priﬁcipal polarization‘of J&. The.polarized
Jacobian varieﬁy Jac(Cg) = (Jf,f ) has an algekraic definition
field k by Fropositicn 4.4. From Lemms 4.3 we know that

M(Jac(C,)) € k € .
Sbviously, the moduli field M(C,) coincides with M(Jac(Cgi). To-

)
gethe S“?'

3

with the id=ntity in (13.6) we see that K(thleg)) is a

aunber field. Since k. = K(th(s)) is a finite extension, it is a

number fie%d. ~o6. | T =
Altogether we have the following inclusions:

{13.8)  M(J4 € ) = S (s  Ag) |

Ke F_ € M‘(Jich € M(Cq) = M(Jac(t;:;,))

i
K(thlg) )5“(6)

1)
ke = Kith(e)) ¢ §

We restrict ourselves from now on te the case of simple Jacobian
threafolds Je. Fcr the sake of clear distinction we call & some-

times in this case a s imp l s CM-module (SCM).

13.10 Lemma. If A is a simple abelian variety with complex wmulti-
plication, then each polarization € of A is admissible and the

moduli field M(A, € ) dees not depend con the chcice of €.
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ror the pronf we zefer tn lanc’s becok [0} again. The first
statament comes from {z¢], I.4, Thm. 4.5 (iii) and the conditiocn
AOM 2, p. 20. Accorﬁing to che remark iﬁ 1401, p. 135, the moduli
fieid M(A,€ ) doss rnot depend on the embedding v: Fe-2> §®Endia),
F the CM-field of A. The last statement of :hs lemma is Proposi-

[w], ':h-‘r,. m

i

tion 1.7 {1) o©
Let 66 B ke a simple CM-module and € a principal polariza-
tion of Jy. By lemma 13.10 € is admissible and M(J., € ) coinci-
des with the moduli field M(J¢q Q’J for any other zdmissible po-
larization ff cf J. Cosequéntly the inclusions of (13.8) become

sharpsr:

15.11. For simple CM-modulss geB it holds that
X&r' ¢ MkJ €_) = Sh(¢ A_) = Kith! Wf“hﬁ ¢ Xlthig))e §
- - c" d- \Qg.r 6— '\6'- - AT Ly B‘
=)
We established the diagram (1.1} of field towers in the Main
Theorem. By the definition 2.7 Sh( ¢6_,jhd} (Shimura class field)
is an abslian extension of the reflex field E;. It remaias to
prove that this extencion is unramified, if AZT is a (fractional)-

ideal of P This follows easily from tne construction of Shimura

clase fields:

13.12 Lemma (see [0}, V.4, Thm. 4.1 (ii)). Let A be an abelian
CM-variety of type (F, ¢,,ﬁJ such that O is a fractional ideal

of F. Then the abelian extension Sh(@ ,Q)/F’' is unramified.
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Proot. Yie go back to the construction of the Shimura ciass
field Sh(Q),be in section 2. Via reciprocity it ccrresponds to
the idels groun U(, &) definzd in (224). It suffices to verify
that U(Q,gl) centaling the waole unit group G:ﬁﬁ F'. This 13 a
well~xneovn necessary ané sufflcient criverion for the correspon:
ding class fi2ld o be unramified i(see e.g. (2S5 ]1). So let & be
a unit of f’L fhen, with the notation of (2.4}, also N'(g) € F
is a unit. Since . is a tractional ideal it holds that

N (g) =17 = 1 A
Thus the relations of the'righthhand side of (2.4) are satisfied
for s =-£ F>= 1. Hence & belongs to U('.'P,&J. The lemma :is

proved, aad at the same time we finish the prcof of the Main

Theorem. : ) 53}

The field of Picard modular functicns (of level { ) is defined

1.,.,'-;, Y ' L
, G /63y of I -~automcrnohic functions,

e fiaiéd §iG [/
to be the fieid @an/Gl AN

vhere G, = 0, GL'Gg'Gq are the elementary symmetric functions of

th‘,thl,th3,:hq. The subfield of K-moiular functions (of the full

3.

1 It ig the subfield of

\ “ L
level [) is defined to be K(GH/GL,G;',’_G

Sq-invariant functions of X{th). For T& 13 we define the field of

values of Picard X-modular Functions (of full level § ) at T by
L }-/ Iy iy - (= . £ NP e L ‘ v
K(Glt/Gl,G}/GL)(LJ = {.L(’f),..&K((Jlt/GL,GB/GJ-), £() F o2 )}

13.13. Lefinition. Let s’élB be a simple CM-module with Jg.of‘type
(Fe, (b,,_,/ﬁls.) such that ﬁ(; 15 a fractional ideal of Fgp. Then & is

called an ideal simple CM-module
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13.14. Corolilary. Let €6 1B be an (ideal) simple CM-module. Then
K(GQ/Gt,G:/Gi)(G) i3 an {unrzmified) abelian extension nf the re-

flex fieid F! of tha tvpe (Fg, §q)-

Frocf. Looking at the acticn of SquJ we have th2 obvious re-
laticn .
- Sqt6)

L1, 30
K(6,/6,,5,/6,)(¢) € K(th(e))

Ncw we can apply the Main Thecrem concantrated in diagram (1.1).

13.14. Remark. The celebrated H i lbert ciass fiel
¢f a basié aumber field-F’ is defired as the maximal abelian ex-
tersion of F'. Itvis a finite Galois extension with Galonis group
isomorphic tc the ideal class group of F' (s=zg e.g9. (L§]). 3il—.
bert class fields plav an iméortant role in aumber theory. The
explicit constructipﬁ hy means of special values of transcendent
functions can be considsred as the essential part cf Eilberti's
twelvth problem. Witn our Main Theorem we succeded 4o construct
at least a part of the Hilbert class field oz Eé,—if G &€B is an
ideal simple CM-module., Feustel observed that the very expl@cit
stationary mcdules of elements ¥ € W(z,1).X) are simple (CM-mo-
dules, if K(FJ 1s a cubic extension of K.’So we dispose on abe-
: s, o)
iian extensions M(Jac(Cg)) = <(zhig) ) at all these stationa-

"ty CM-modules ¢~ We can produce more abelian extensions of our

reflex fields by means of torsioa points g ; «+v o I, 0n Gy The

moduli field M(Jg, € T ,...,T,) has been dsfined by Shimura (see

(3§] or [LQ!). For any CM-module ¢ it is an abelian extension cof

d



E} extending M(J.. e,ﬁz. Tae corresoonding idele group in the
szrse of class field theory is also well-known. We refer the rea-
der who is inter=sted on these extensions to {410}, Ch.V., Thm.4.2.
Unforkunately, nntil now there exists no.description of these ex-
tended claés rields in terms of special values of analyhic func-
tions except for the case of elliptic curves.

Sy (¢

3.15. Problem. For which ideal CM-modules is K{thig)) the

whole Hilb=rt class field of ﬁ} ?

L]

13.16., Problem. Is the maximal abellan extensiaon Féfb for fixed

.CM-module ¢ gsnerated by all the generalized moduli fields of

T ?

type M{Jg, fT;TA,. ¢)

It seems to be that the field X(th(g¢)) of K-modular functicons
of level FL{:EJ is not in general an abelian extension of the

aflex field F.. This happens certainly, if the subgroup S, (¢) of

¢ 4

the svmmetric groug.S,_l is not abelian.

13.17 Problem. For which (M-modules ¢ is K(th(f))/ﬁ; an abelian

(or non-abzlian) field extension ?

Let us change over from the »ig level groups [ and r(1133 to
smaller ones, say to normal subgroups (" of finite index cf (.
We dencte by ‘}k( ") the ailgebraic closure of K(Gq/G:,G:/G:J in

the field F_. (") = ¢c(B/ V") of "—automorghis funcrions. With
c bl
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ohvious notatione we obtain at esach CM-module ¢ ar infinite tree
{ ?k(‘-")(¢); [ " normal subgrour of  of finitg index}
of field exteﬁsions of Fé. The analogue construction iﬁ the theo-
ry of elliptic curves yields a generzating system of the maximal
abelilan extension of an imaginary guadratic number fields. It
would be interesting tc wundsrstand our constructicn in a sultable
framework of (non-abelian) class field theory. éspecially, one
has tc igvestigate the acticn of (subgroups of} the factor groups
I /7" in the toweré Q’K(F")(JJ 2 ’}'K(r)(c'l'?_ F of number

fields at épecial CM-values ¢

13.18. Remark.-Let T¢ B(T) be an arithmetic point of the ball.
¥e proved that

tn(T) = {th (¢):th, (g):thy (¢):th, (o) ¢ Ip*
is arithmetic, if v is a CM (or DCM)-module..The cecnverse impli-
cation seems to be true. Very recently Shiga (34! succeeded to
prove thet at least at simple (simple J) arithnetic modules T
the point th(eq) is transcendent, that means a non-algebraic point

of PL, if £ 13 not a CM-module.

13.19. Problilem. What happens precisely at non-simple arithmetic
mcéules in both cases. the case of CM-modules and the opposite

case ?
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0. - Introduction.

Until now one misses a clear %olution of Hilbert's 12-th pro-
blem entitled "Ausdehnung des Kroneckerschen Satzes ueber abelsche
Koerper auf einen beliebigen algebraischen Rationalitaetsbe-
reich". This problem plafs‘a central role among the 23 Hilbert .
problems because it joins some O0f them with each other, namely
the problems 7, 9, 21 and 22. The 12-th problem is based on Kro-
neckers work on the explicit degcription of abelian number fields
over the field @ of rational numberg or over imaginary guadratic
number fields, respectiyely, by means of special valueé of spe-
cial transcendent functions of one complex variable. The Theorem
of Kronecker-Weber asserts that each absolyte abelian number
field is generated Dy a rational expression of a unit root over
§, where unit roots are understood as special valueé of the ex-
ponential function.

As a counter part appears Hilbert's 7-th problem. It asks for
the quality of values of the shifted exponential functicn

| e(z).= exp(qiz)’i = J:I: .
at algebraic argquments outside of the rationals @ and conjectures
that all these values aré transcendent numbers {see [AQ]). This
problem has been solved affirmatively and independently by Gelfond
{ 31 and Schneider [29 ] in 1934. Altogether we know
I. e(z) has algebraic values on @; . l
II. e(z) has transcendent values on § - © (@ the field of alge—

braic numbers):

ITI. the number-theoretic meaning of the values e{g), geg 0.



Substituting the base field @ by an imaginary quadratic num-
ber field one needs special values of Weierstrass' ¢ ~function (at
torsion points of an elliptic curve) and special values (singular
moduli) of the elliptic modular function j in order to generate
all abelian extensions. For a precise formulation of this Main
Theorem of Complex Multiplication we refer to Shimura's book
[35], Ch.5. Historically, this main theorem is known as "Kronek-
kers Jugendtraum”". It appears in Hilbert's programm as "Aufgabe"
(Kronecker's problem) preparing the 12-th problem itself.

On the other hand C.L.Siegel [73A4] proved in 1949 that J takes
transcendent values at algebraic points on the upper half plane
H={r¢ C; Imv > 0} which are not singular. In analogy with the
exponential function we can summerize the situation in the follo-
wing manner. Let

Hing = {z el; [D(e):Q] = 2}
be the set of singular moduli. The transcendent function j has a

well-known Fourier series

i(g) = g~ + 744 + 196884g + 21433760g% +
with integral coefficients and g = exp(2wit), see [30 1. One knows
I. J has algebraic values on ESM5 ;

II. J takes transzendent values on H(E) v H;,., where H(]) deno-

i
tes the set lHaJ of algebraic numbers on the upper half plane;

III. the number-theoretic construction / quality / meaning of
jle), 6 & msins.

Hilbert asked in his 12-th problem for transcendent functions

of s everal variables with properties corresponding to



- 3 -

those of the exponential function and the elliptic modular fuﬁc—
tion: "Von der hoechsten Bedeutung endlich erscheint mir die Aus-
dehnung des Kroneckerschen Satzes auf den Fall, dass an Stelle des
Bereichs der rationalen Zahlen oder des imaginaeren Zahlenberei-
ches ein beliebiger algebréischer Zahlkoerper als Rationalitaets-
bereich zugrunde gelegt wird; ich halte dies Problem fuer eines
der tiefgehendsten und weittragendsten Probleme der Zahlen- und
Funktionentheorie”"; and a littlebit later: "Wie wir sehen, treten
in dem eben gekennzeichneten Problem die drei grundleqgenden Diszi-
plinen der Mathematik, naemlich Zahlentheorie, Algebra und Funk-
tionentheorie in die inniggte gegenseitige Berueshrung, und ich bin
sicher, dasg insbesondere die Theorie der analytischen Funktionen
mehrerer Variablen eine wesentliche Bereicherung exfahren
wuerde, wenn es gelaenge, diejenigen Funktionen aufzufinden und zu
diskutieren, die fuer einen beliebigen algebraischen Zahlkoerper
die entsprechende Rolle spielen, wie die Exponentialfunktion fuer
den Koerper der rationalen Zahlen und die elliptische Modulfunk-
tion fuer den imaginaeren gquadratischen Zahlkoerper”.

We found only a few places in the mathematical literature with
an explicit reference to the twelvth problem of Hilbert. Cn first
place we remember to Hecke's thesis { 8 } and habilitation [ q ].
They are closely connected with the creation of the theory of Hil-
bert modular surfaces. This work is difficult to understand and
it would be nice to clarify the situation from a modern point of
view. The next important place where the twelvth problem is men-

tioned one can find in the book [ 36] of Shimura-Taniyama. Indeed,



Shimura's theory of complex multiplication is an important tool
for finding solutions of the problem. The latest hint to Hilbert's
twelvth problem we found is due to Tate [3F] in connection with
the Stark conjecture. It touches the problem but will not solve
it in the original sense of Hilbert. Manin accepts in his review
[ 3L ] only Fecke's work of 1912, 1913 as a finér approximation
to a solution of the 12-th problem. Langlands announced in [J11]
some doubts of Hilbert's formulations. In our opinion the twelvth
problem needs a stronger formulation in order to catch solutions,
With regard to the transcendental functions e,j above and their
properties I.,II.,III. we propose the following definition.

A solution model for Filbert's twelvth problem

is a triple (V,V ,f) consisting of

sing
(1) a (non-compact) complex manifold V with fixed analytic em-
bedding into a complex projective space e (c);
(ii) a subset Vﬁnﬁ of the algebraic points V(§) = VA" (J) lying
dense 1in V;
(ii1) A transcendent holomorphic map
£= (fyifqr ... tf)): vV —— B¥(e);
satisfying the postulates I.,II.,III. below.
Remark. We call f t ranscendent if f is not the re-

striction of a rational map in the sense of algebraic geometry.

The elements of Vgh% are called the s ingular poilnts

I. flg) = (fo(g): ...:f”(wl) is algebraic, that means
flg) e iP“('FJ), for Gé Vbintj"
I1. f(v) is transcendent, that means f(x)} € PN(ﬁJ, for

of



T e VD N Vsing s
II1. one has a number-theoretic construction / guality / meaning

of field extensions

RUE()) = FLO L (0) /6 (5) 00 )

-4

c:l

for suitable well-defined "elementary” number fields E',

T e Vg -
0f course, we assume that Vshﬁ is given independently of the ho-
lomorphic functions fo' cee iy
The first two conditions are very sharp but condition III. is free
for several interpretations.

A (twodimensional) b all model for Filbert's twelvth
problem is a solution model (B,Bsinj,fJ, where B is the complex
two-dimensional unit ball. The Main Theorem of section 1 presents
a ball model (B,B.,, th) for the twelvth problem satisfying I. and
II1. Recently Shiga proved that also II. 1s essentially satisfied
(see Remark 13.18). The components th. of th = (thqzthL:th3:thq)
are restrictions of elementary polynomials of theta constants to
the ball B embedded in the generalized Siegel upper half plane
Hy where the theta constants live.

We prefered to formulate the number-theoretic Main Theorem in
the first section corresponding to Eilbert's order in his list
of problems. Ccnsequently we have to explain immediately after the
notions of Shimura's class fields, complex multiplication of abe-
lian varieties, moduli fields in the sectiors 2.,3.,4. and 5. This
prepares at the same time the number-theoretic side of proof of

the Main Theorem in section 13.



The geometric and analytic starting point 1s section 6. For
an algebraic geometer it 1s convenient tec begin there. The follo-
wing sections will demonstrate that the simple configuration of
four points and six lines through pairs of them in the projective
plane determines © - > completely the construction of our
nall model. This is a consequence of some recent develpments: A
theorem of R.Xobayashi [ A8 ] provides the existence of a ball co-
vering of #Y branched along the gquadrilateral introduced above.
There 1s only cne possibility. The corresponding ramification in-
dices can be calculated by the effective finiteness theorem for
ball lattices due to the author [ 46 ]. The corresponding group
of the covering has been found in a classification atlas of Pi-
card modular surfaces due to the author and Feustel. This group
appears as monodromy group of a Fuchsian system of partial diffe-
rential equations uniquely determined by the guadrilateral. This
3ystem coincides with the Euler-Picard system of an algebraic
curve family in the sense of the author's book [AL ]. The solution
consists of variations of inteqrals of a differential form of
first kind along cycles on Picard curves. The Picard curve family
studied first by Picard in 1883 plays the same role as the ellip-
tic curve family in Kronecker's problem. Now we discovered that
its investigation was abéolutely necessary for finding our ball
model for Hilbert's twelvth problem. The proof of the Main Theorem
is delegated to the fine arithmetic and analytic study of the fa-
mily of Picard curves. This will be done in the sections 9. - 12.

using and explaining available recent results of Shiga [ 3L}, Feu-



stel [ ¢ ] and the author [A3].

The modern tools in the way of proof should also work for other
cases, where the starting situation of a branched covering is pre-
cisely known. We think of Hilbert modular surfaces, Picard modular
surfaces, a Picard modular threefold investigated carefully by
Bruce Hunt and the Siegel modular threefold connected with hyper-
elliptic curves of genus 2. The latter case should be open a door
to a precise modern understanding of Hecke's work on Eilbert's
twelvth problem.

W e close the introduction with two problems. More of them can

be found at the end of the final section 13.

0.1 Problem. Study special values of Picard modular functions of

higher level in connection with non-abelian class field theory.

0.2 Problem. Generate more {if possible all) abelian extensions
of reflex fields of cubic extensions of the Eisenstein numbers
by means of special values of some additional transcendent func-

tions.

1. Formulation of the Main Theorem
First we present roughly the basic objects we need in the
Main Theorem. More precise definitions are given in the later

sections.

0. Basic field: X = Q{(y=3) the field of Eisenstein numbers;



1.

1

Geometric object: the ball B ¥ (K-linear equivalent in P* to)

—_ e - L' L L
8" = {v= (T, r)ec; jr, | + g |7 <1},

embedded iniHl (Siegel domain, see 10.);

2.

8.

. Function field K(th) = K(tha/thz,thd/th

Analytic functions: thh,thl,ths,thaz B — € (restricted
theta constants);
Special arguments (CM-modules): ¢ e B()) (dense in B);
Correspondences: ¢ —> F_/K (relative cubic number fields)
—> A, 2-lattice in F,
— Q= -%\?E ) g P s T (field em-
beddings); ¢, #9; LK), g R
— F;, the reflex field of (Fc,(pcj;

37 ,th3/thq);

. Number fields X(th(s)) = K(th)(¢) = RK(f(g); f ¢ K(th)), where

we neglect to adjoint fle), 1if flc) = o0 ;
Symmetric group SL*acting on K(th) via permutation of indices

at the generators thi/thj,

5, () = S, aGal(K(th(s))/) acting on K(th(e))

Shimura class fields Sh( @U,uo,).

Now we can formulate the

MAIN THEOREM (Construction of Shimura class fields for cubic ex-

tensions of Eisenstein numbers via special values of Theta con-

stants) .

With the above notations one has for each CM-module ¢ ¢ 1B field

towers as described in diagram {1.1):



function fields number fields
K(th) Kith(a))
“ L abelian;
5
K(th)™1 K(th! o’))

{unramified, if

@, is an F:r—ldeal)

N/

X

2. ' Shimura Class Fields.

We follow the book {201 of S.Lang. First we have to introduce
the reflex fields. Fixing notations we let F he a totally imagi-
nary number field of absolute degrée 2g and 47 a choice of g em-
bzddings gi: F «——> € pairwise not cojugated to ecach other. We
write q) = CPF = Z_ ¥; and call the pair (F,q>} a CM-type.

L4
If M/F is a finite field extension, then we can lift ¢F to

q) % 2. {all extensions of 9. to M}

l A

30 we get a CM-type lifting (F,Qp) ——> Ud,¢ﬂ). We 3t

(2.1) stab(§) = (e mut(e); pob = ¢ 3,

where Aut(f) denotes the group of all field automorphisms of €.
Now assume that M/F a3 above is a Galois extension. Then we de-
fine the reflex field F' of (F,¢ ) as fixed field

(2.2} Fl = IqSt-ab(b = D(Tr® (F)):
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where Trd): F > F' denotes the type trace defined by

Tr, (£) = ﬁt ¢.{f). With ¢M::Z:W' , Y. understood as automor-
® ‘L:ﬂ L 3 J J
phisms of M, we sct Qh = Zi\*f4 . One can show that the type
NI

(M, @é) is the 1ift of a uniguly determined primitive type

(F', ¢ "), which is called the re flex type of (F,$).
A type is called pr imdi tive, if it is not lifted fraom
a lower field. If the starting type (F,¢ ) is primitive, then
the reflex (F”,¢") of its reflex (F', §') coincides

with (F, § ). In general, the double reflex ficld F'' is con-
tained in F. Altogether we describe the situation ir the follo-

ving diagram (2.3):

(2.3) q>n — .

NN

’ q) :¢F' q).F‘ =

it
c:-\N
et

\
=

Fixing F,¢ , The ty pe norn N¢ or the r e £ 1c¢ X

norm N = Ng¢ 2re respectively defined hy

N¢:F———-'7F’ , H’:N@l . F! >F''c F
F
£f— ji ?i(fj

Bothr, N¢ and N', can be extended to the idele groups of the

fields F or F', respectively:
* ¥ ' * x
A 3 Y
N(D A 7 B , N L
Now we are well-prepared to define the 3himura class fields men-

ticned several times above. For this purpose we let Q4 a Z-lat-

tice in F. The absolute norm of ideles s is denoted by IN(s). Now
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we define the idele group U($ , &) < AX, of an (extended) type

(F,¢ &) by
- . ST | _ I R
(2.4) UG &) = (se A5 N (s )a.-§a, pp=mis™) e g
for a suitable pe F}

We remark that the multiplication of an idele t & m: with % 1is

*

= (tP) € ,AF‘{‘iVl

defined componentwise on the finite part tfm

There is a unique ¥-lattice t& in F with local components

(L), = tyf, for all p € Spec 7, A, = 2,8 0 .

4 P

Now we apply global abelian class field theory in order to
define Sh( ¢ faJ as class field of the reflex field F'. For de-
tails we refer to the monograph (1% ) of Neukirch.

Let M be a finite abelian field extension of F’. Then there
is an exact sequence
(2.5)
1 — u/F'™ ——wA"::‘ JF'% ————— Gal(M/F') —> 1

where (t£,M/F'), t € A?,, is the global norm rest symbol locally

defined by Frobenius automorphisms. The idele group U = UM is

F

*)'F

equal to the extended norm group N "

(A Conversely, if

M/E!
U is a cofinite subgroup of the idele group A of F' containing
F'¥, then there exists a unique finite abelian extension My = M,
the class field of F belonging to U, such that the above se-
guence (2.5) is exact. So there is a biunivogue correspondence
UPIZ Ué&~—3 M = Mu {(reciprocity).

Now we take the projective limit of our finite abelian groups

Gal(M/F') along all finite abelian extensions M of F'. On this

way we obtain the Galoils group Gal(F'®b /F') of the maximal abe-
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lian extension F'®% of F'. The norm rest maps in (2.5) yields
an injective map (.,F'): fA:, JE —> Gal(F'ab /JE'). Via the
norm rest symbols (s,F’) the idele group @\E, acts on F, and
the finite abelian extension fields M appear as fixed fields
of the corresponding subgroups U of A?.‘ So we can write

(U,F*) (G
(2.6) M, = (Fleb) = ¢ :

where ('L?,-I*:"J denotes the group of all extensions of elements
(s,F') € Gal(r'eb /F'), s € U, to automorphisms of €.

2.7 Definition. The S himur a class field
Sh(® @) of the type (F,{ . f¢) is the class field of F'corres-
ponding to U{¢ ,& ) defined in (2.4):

(uto,0) F')  (Glo.n) F')
Sh(@)ﬁ;] =(Ffdb) 1 = ¢ TR

3. Complex multiplication.

lLet A be an abelian variety over the complex numbers and F a
finite field extension of Q. We say that A has F -mul t i -
plication, if there is an embedding : F<“—> 0®End A
into the endomorphism algebra U@ End A of A. In this case the de-
gree [F:Q] 1s not greater than 2q, g = dim A. If [F:9] = 2g,
then we say that A has complex mul¢tipldica-
t 1 on . In this case F acts on the tangent space TA of A (at O).
So we have an embedding F* &——y Gl(TA) = 61 (€). This represen-

tation splits into g one-dimensional representations. The corres-

ponding characters are understood as embeddings ? ¢ Fe—(,

‘

i=1, ... ,g. Setting § = gﬁ?i we get a type (F, § ). Then
134

Alscalledan abelian variety of type
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(F, D).

One can prove that an abelian variety with complex multipli-
cation of type (F,® , Q) is isomorphic to CB'/(D (&), where
® (Q) is the Z-lattice in ¢ generated by the vectors

¢ (aj) = %( ?4(aiJ' cee 9%(35))’ j=1, ..., 29

and A e aiﬁ is a 7Z-basis of Ay . For f ¢ F we lst DQ (f)
the diagonal matrix with the elements §; (£) in the diagonal. The
representation D(P : FY —— Gl%(t) defines a complex multiplica-
tion on c?/<p(om1. Under the isomorphism with A both multiplica-
tions are compatible. The mul tiplication ring
is:

0=FnanEnd A = [O.:»OL]F = {fe F;, £-ACH}.
Refining our language we will say that A is of type (J,F , )
and we will call G%/IQ(CW) together with the complex multiplica-
tion defined by.D¢ the standard torus mo -
del of A or of the types (F,¢ ,&),(J, ¢,&4). Tvo standard
models of type (0, @ ) are isomorphic (with compatibility of mul-
tiplication) if and only if the correspending O-modules O, o'
are isomcrphic. The standard torus E%/QJ(th) of given multiplica-
tion type (F, §,Q) is an abelian variety iff @ is lifted from
a primitive type. For proofs we refer to [Z0] again.

Let F be a number field and 0 an order in F (multiplicatively
closed Z-lattice in F). We denote by L{J) the set of O-lattices
A in F (Z-lattices in F which are O~modules) with factor ring
La,wa]F.: 0. The set cl(U) of O~isomorphy classes of L(0O) is fi-

nite (see e.g. [3], II.6, Th.3). Its number 1is denoted by h(J).
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For instance, 1f O = U? is the ring of integers in F, then L(Q)
is the ideal group of F, cl(d) the ideal class group and h(T) co-
incides with the class number h(F) of F. Altogether we can count

now the isomorphy classes of abelian CM-varieties of given types:

3.1 Propositon. Let (F,$ ) be a complex multiplication type,
d an order in F. The number of isomorphy classes of abelian va-
rieties with complex multiplication of type (U,¢ ) i1s equal to
hid), if (F,¢ ) 1s a lifted type, or equal to 0, otherwise.

The number of isomorphy classes of abelian CM-varieties A with
CM-ring 0 = FnEnd A is equal to h(0)1l(F), where 1(F) denotes
the number of lifted types (F,Q ). It cannot be greater than

2n(d), g = [F:01/2 = rank,(0)/2 = dim A.

3.2 Remarks. "Lifted type" means: lifted from a primitive type.
Especilally, primitive types are understood as special cases of
lifted types. The number fields E of primitive types are well-un-
derstood. These are the so-called CM-fields characte-
rized as imaginary guadratic extensions of totally real number
fields. So the set of multiplication fields of complex CM-varie-
ties coincides with the set of extensions of CM-fields. Namely,
each CM-type {(E,Y) of a CM-field E is lifted from a primitive
type (see [20 1, I.2, Lemma 2.2), hence E is a multiplication
field of an abelian CM-variety by the above torus construction.
This is true for any lifted type. Especially, each cubic exten-

sion F of K = D((:§J appears as multiplication field of a sui-



table abelian CM-threefold.

Each abelian variety A can be decomposed up to isogeny into a
product of simple abelian varieties. S impl e abelilian
varieties are defined as indecomposable ones in this
sense. If A is an abelian CM-variety, then the iscgeny decompo-
sition of A into simple abelian varieties 1s a power A »~ B ... B.
The multiplication type (F,¢ ) of A is lifted from a (uniguely
determined) multiplication type (E,Y ) of B. Especially, the
simple factor B of A is a CM-variety. The corresponding CM-alge-
bra §@End B is isomorphic te E. Looking back to A one checks ea-
sily that the CM-algebra §® End A 1s isomorphic to the matrix al-

gebra Mat.(E), where s denotes the number of the decomposing fac-

tors B of A.

4. Moduli fields.
Let X be a complex projective variety (subvariety of PN, say),
M € Aut(C) a field automorphism of €. Applying M to point coordi-

nates we obtaln the’ﬁ—transform x* of X embedded also in F". If

X is defined by the homogeneous egquation system F, = ... = F, =0
Mo . ol - - M . # s
then X is defined by F, = ... = F_ = 0, where Fi arises from F;

by applying u to all the coefficients of the polynomial F. . We
denote by cl(X) the the class of models X' of X. The projective
variety X' is a model (or €-model) of X, if it is isomorphic to
X in the analytic category (that means over €). If the model X'
of X is defined over the subfield k of €, then we call X' a

k-model of X. This means that X' is defined by eguations
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with coefficisnts in k. In this case k is called a de f in 1 -
tion field of cl(X) (or of X, if X i1s understood as
scheme without specification of embedding). In arithmetic geome-
try one looks for small fields of definition.

The correspondence X ——> X* 1s functorial: For each rational
map £f: X —9 Y of complex projective varieties the transform
0 x* ——5 v ig well-defined via M -transformation of con-
stantg. On this way we can correctly define cl(X)ﬂ by represen-
tants. We set

Stab cl(X) = { x € Aut(C); X© = X}.
4.1 Definition. The fixed field of Stab cl(X) in € is called
the moduli field of X (cr cl(X)). It is denoted by
Mix) = M(el(x) = ¢ttt ®)

We come back now to complex abelian varieties A with complex
multiplication of type (F, @), say. For M € But(C] the p-trans-
form A of A is also an abelian variety. The endomorphism rings
of A and A” are isomorphic by functoriality of #. The isomorphism
extends to the algebras of complex multiplication. Therefore At
has F-multiplication, too. Looking at the representations on the
tangent spaces it is easy to see that A® is of type (F,/uc¢}. S0
the type doesn't change if and only if/A belongs to Aut{€/F'} by
definition (2.2} of the reflex field F'. We come to the first

comparision playing a role in the Main Diagram (1.1).

4.2 Lemma. For a complex CM-variety of type (F, & ) with reflex

field F' and moduli field M{A) it holds that F' < M(A).
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Proof. It suffices to check that Stab cl(A) ¢ Stab(@). If A
stabilizes clf{A), then the representations of F in the tangent
spaces TA or TA& , respectively, are equivalent. Therefore AY has
the same type (F,® ) as A, hence /*e Stab( Q ), which was to be
proved.

In the theory of abelian varieties it 1s useful to specify
classes of projective embeddings translated to the internal geome-
try of A, A polacri1zed abelian variety is a pair (A, ¥€)
consisting of an abelian variety A and a §-line in Q&®Pic®(A)
containing an ample divisor class; Pic®(A) denotes the group of
algebraic equivalence classes of divisors on A. We say that
(A, ) is defined over k, if A is and if € can be represented
by an ample divisor C defined over k by the k-embedding of A used
just before. If A 1s defined over k, then we can find a polariza-
tion € of A also defined over k. Namely, choose an ample divi-
sor D on A defined over the algebraic closure k of k. It is real-
ly defined already over a finite Galols extension of k. The sum
of all Galols conjugates of D represents obviously a polarization
€ defined over k.

In obvious manner one introduces the m-transforms (A, ¥ # for
M € Aut(T), cl(a,® ), Stab cl(a, €) and the mo du l i -
fi1eld of apolarized abelian variety

+ 1{(A €
M(A,€) = M(cl(a, €)) = g et )

4.3 Lemma. Let k be a definition field of the polarized abelian

variety (A, € ). Then it holds that M(A, ¢ ) ¢ k.
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Proof (see [36 ], I.4.2, Prop.l14). For pme Aut(t/k) we have
an obvious isomorphism (A, € )" (A, €, hencelﬂ.eStab(A,e). The
rest is clear. ' =]
The next result prepares the drawing-up of the field tower on

the right-hand side of the main diagram (1.1).

4.4 Proposition. Let A be a complex CM-variety. Then we can
choose algebraic numher fields k as definition fields of A or
(A, € ), respectively. For each such field one has the field tower
(4.5) F' & M(A) € M(A,€) £ k€&

0,
where F' is the reflex field of the type (F,® ) of A.

Proof. The existence of a small definition field k¢ @ has
been verified by Shimura-Taniyama in [ 3£ ]. The seccond inclusion
follows from Stab cl(A) 2 Stab cl(A, €). The remaining inclusions

come from the Lemmas 4.2 and 4.3. m

5. Main theorem of complex multiplication.

We want to connect the moduli field of a polarized CM-variety
(A,€), A of type (F,® ,f) with the Shimura class field of the
same type introduced in 2. For this purpose we refine the notion
of types again taking into account the polarization. Via projec-
tively embedding Theta functions one corresponds to the polari-
zation ¥ a (unique, up to 9§ -multiplication,) Riemann form
E: T, T, -~--» € (R~bilinear, scew-symmetric, non-degenerate

A A

with rational values on Q(1xf4 ). It is useful to choose a basic
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form E of this class. It takes integral values on §(@x@) and is
not an integral multiple of a form of the same kind. With these
notations the polarized abelian CM-variety (A,¥€ ) is said to be
of type (F,® , 0 ,E). If there is no danger of misunder-
standings, then we identify A with its gtandard torus model
c?/cp (M), see 3. Since F = Q@& the embedding § of F into c¥
induces an embedding F/&4 ——> A, =~ into the torsion points of
A(T). We will denote this embedding shortly also by § .

The Riemann form E i3 said tobe ¢ -admissible |,
1f E(D

(f)z,w) = E(z,D,(f)w) for all f€ F, z,w ¢ c¥ = ?A‘ In this

® ¢
case also the polarization € corresponding to E 13 called ad-
missible. From now on we assume that the multiplication field F
is a CM-field; A needs not to be simple. Then there exists an ad-
missilble polarization on A (see [20 ], I.4, Thm. 4.5). We will
work only with polarized abelian CM-varieties of admissible type

(F,$ , O,E). The following Main Theorem o f

complex multiplicatdiion holds for them:

5.1 Theorem ([20], III.6). With the above assumptions and no-
tations let we Aut(€/F’) with restriction /u|F'°b = (s,F') for

a suitable s ¢ A7,. Then it holds that:

(1) (A, 9 )" is of type (F, ¢ N'(s* ), N(s)E).

(i1) With the componentwise action of the finite part of the idele
N'(s™) € Mz.on F/v € %>§,/a? the following diagram is commu-

tative:
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—_—7
F/A Jh\'tcr

-4 /‘*-_{
(5.2} N'(s ") ;e (s,F')

F/N' (s™") O ———-—-———*»Afw =)

As an immediate consequence we get the relation with moduli

fields.

5.3 Theorem (Shimura [36]; [36], V.5.5; see also [L0], V.4).
Let (A,'¥) be a polarized abelian variety of admissible CM-type

(F, 9 , A EY. Then the corresponding Shimura class field and modu-

11 field coincide:
sn(®,®) = M, €).

(u,F')

Proof. We remember that Sh = Sh(@ , &) = ¢ , U =U(d, ),

see (2.6). For M = M(A,€ ) we first show that M £ Sh. This fol-

lows immediately from
S
(5.4) (U,F') € Stab cl(A,€).
R T —

So we take an automorphism M€ (s,F') for s € U. By the Main Theo-
rem of complex multiplication 5.1 (i) the /«-transform (A, €))7
is of type (F,®,N'(s )M ,W(s)E). By definition of U in (2.4)
there 1s a {5 ¢ F such that N'(s™")& = r;ﬁl and N(s™) = f’fg ¢ g.
Comparing the standard torus models of (A, €) and (A% " e get

~ ~ 5~

AT C/d ) T e/0 @A) = A N = (Fp)-E € ghE.

Therefore (A,¥ ) ¥ (A, )", hence ME Stab cl(a,¥€).
Conversely, take /« € Stab cl(A, €); then we dispose on an isomor—

phism (A, € ) —-Z=% (A, ¢ )*. On the torsion level it has been made
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, , , -4 P, .
precise multiplying F/4& by N'(s J:/M ¢ (s,F'), see 5.1 (ii).

On the other hand A and A" have equivalent standard torus models.
More precisely, the isomorphism A —=> AMcorresponds to a P%mul~
tiplication E%/@ () = I3/¢ (ﬁ&) for a suitable ﬁ € F*. Rut
(A, € is of type (F,¢),N'(5W‘J31,W(S)E) by 5.1 (i1). Comparing

both presentations we get

N (sTY) A :[’:m, N(s™1) = H% e 0~ ,
/‘-__/
Therefore s belongs to U and /A € (s,F'), hence
(5.5) Stab cl(a,¥€) & (U,F')

in contrast to (5.4). It follows that Sh € M. The identity we

looked for is proved. |
6. The geometric starting point, the projective plane covered
by the ball.

In order to generate Shimura class fields of cubic extensions
F of the Eisenstein numbers by special values of transcendent
functions we need special Theta constants essentially defined by
certain special functional equations. In‘order to find and under-
stand them deeply we enclose them into the most general and ac-
tual framework hoping for similar applications to other interes-
ting cases in the future. We want also justify Hilbert's imagina-

tion about the "innigste Beruehrung”. Consider the picture/diagram

H
I
ils1 (4) i
(6.1) 128 P
branch locus: o 5o
b3 3 o



- 22 -

The left-hand side is well-known from the theory of elliptic cur-

ves. It describes the quotient map of the modular group from Poin-
caré’'s upper half plane H: Im z > 0 to the projective line P ().

There are three branch points: two in the ordinary sense with ra-

mification indices 2 or 3, respectively. The third is a cusp

point coming from the boundary of H. therefore it has been weigh-

ted by ® . The guotient map can be realized by the elliptic modu-

lar function

eln{f

oQ
jle) = g + 744g° + 196884g + nzl a,a", 9=

We are well-prepared for the understanding of the right-hand

, a, € 7.
side of (6.1) by the previous sections and chapters: We looked

for a ball covering of the projective plane Pi with discrete cove-
ring group ['¢€ AuthGI(B) = PUL(2,1),€) branched précisely along
the six lines of the complete quadrilateral with triple points as
cusp points. We dencte by W the corresponding {(analytic) guotient

map .

6.2 Theorem. Up to linear isomorphy (PUI((2,1),€C)-conjugation

for ') there exists one and only one such covering.

The unigueness has been proved in [A#], IV.1l1 via orbital heights,
the proportionality conditions and their translation into a sol-
vable system of diophantine equations. Moreover, the proportiona-—
lity test is positive: The only solution of the diophantine equa-
tion system yields the ramification index 3 for all six lines.

The most general result providing the existence of the covering
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is due to R.Kobayashi [A8 1. He proved under geometric conditions
including the wights found in our proportionality test the exi-
stence of a ball covering over a given surface with prescribed
branch locus. This general result can be applied to our situation
described in (6.1). We will not use Kobayashi's result because
the existence of ¥ has been proved by another more arithmetic me-
thod in the framework of classification of Picard modular surfa-
ces, see Prop.v.1.3 in [a% ] or [4L ] , where we started from the
arithmetic group (congruence Eisenstein lattice) f' = T ({73),
r = UK(Z,l),UkJ. The proof involved orbital hights calculated as
volumes of a fundamental domain by means of a special L-series va-
lue (see [ 49 ]¢). The advantage is to dispose explicitly on the
discrete group of the covering W. This will be important for fin-
ding the functional eguations for Theta constants we look for.
6.3 Remark. The covering problem is related with Hilbert's 22-th
problem "Uniformisierung analytischer Beziehungen mittels automor-
pher Funktionen". Looking for uniformizations of two-dimensional
analytic varieties ("Gebilde"”) Hilbert says: "Vielmehr scheinen
., abgesehen von den Verzweigungspunkten, noch gewisse ande-
re, im allgemeinen unendlich viele diskrete Stellen des vorgeleg-
ten analytischen Gehildes ausgenommen zu sein, zu denen man nur
gelangt, indem man die neue Variable gewissen Grenzstellen der
Funktionen naehert. Eine Xlaerung und Loesung dieser Schwierig-
keit scheint mir in Anbetracht der fundamentalen Bedeutung der
Poincareschen Fragestellung aeusserst wuenschenswert”. At the end

Hilbert refers to: ... "die neueren Untersuchungen von Picard



- 24 -

ueber algebraische Funktionen von zwei Variablen als willkommene

und bedeutsame Veorarbeiten ..."

7. Differential eguations.

In [38 ] M.Yoshida succeeded to solve a higher-dimensional
version of the Riemann-Hilbert problem. The background is Hil-
bert's 21-st problem "Beweis der Existenz linearer Differential-
gleichungen mit vorgeschriebener Monodromiegruppe” set up for
functiong of one variable, "...welches darin besteht zu zeigen,
dass es stets eine lineare Differentialgleichung der Fuchsschen
Xlasse mit gegebenen singulaeren Stellen und einer gegebenen Mo-
nodromliegruppe gibt™. It should be remarked that the final solu-
tion of this Hilbert problem has been given by H. Roehrl [2§ ] in

1957.

7.1 Theorem (M.Yoshida). let X be an orbifold (complex manifold
with prescribed wighted branch locus) with realizing guotient map
p:an —— X, B" the n-dimensional complex ball, and covering
group A € U((n,1),C). Then the inverse p’4 of p i1s a (multiva-
lued) developing map of a Fuchsian system of linear partial diffe-

rential equations. B

This means that there is locally a fundamental system of solu-

tions I,,I . I.. extending analytically to X~ B, B the branch

Al n

locus of p, such that the multivalued map

(I :I.: ... :1I X~B -3 8" cp”

PR NOR
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P t-—-3 (IO(P): . :Ih(P)J, colncides with p-4 on X~B. The

Fuchsian system 1s called the uniformizing e qua -
£t 1ion of the orbifold and A is the monodromy

gr oup of the system not depending on the special choice of
solutions of the system. Especially in our situation described in
(6.1) with n=2, B = é&sg(quadrilateral), it is important to re-
mark that there 1s a surjective group homomorphism

(7.2) T, B ——

describing the unitary monodromy representation of the fundamental
group TQ{PLS é%;). Yoshida found also an effective method in or-
der to determine a corresponding Fuchsian system (see [38&], ch.s
10, 12). It turns out that these eguations and alsc thelr analy-
tic solutions (Appell series) are well-known long time ago. Wor-

king with affine coordinates u,v one can take the following sy-

stem (7.3) of differential equations:

(7.3) DESF(U’V} = 0 on gt Iﬂi: SN A with

qu = S%; + [S(u—lJu(v—TJ]—d{3[—5u +4uv+3u—2ngi+3(v—l)v§%+(u—vJ},
Dy = 5oy ¢ 1) - B

D,y = E)%T + 19 (v=-1)v(u-v)]1" {3(u—1}u%+3(-5v +4uv+3v—2u)§7+(u-v)}.

7.4 Remark. Yoshida's general approach lifting the Gauss-Schwarz
theory of Fuchsian equations to higher dimensions has a classical
origin in the work of Picard and Appell. Especially for the situa-
ion of (6.1) a more immediate extension of explicit classical

results known as PTDM-Theorem (due to Picard, Terada, Mcstow, De-
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ligne) would be sufficient for our purposes. We refer to [3§ ],

[ 2 ] and further literature given there.

8. Gauss-Manin connection.

The analytic theory presents analytic solutions of the system
{7.3) of partial differential eguations. We look for "algebraic
solutions'" represented by integrals on algebraic curves along cy-
cles depending on parameters u,v. The general framework of the
corresponding algebraic theory is known as Gaus s -Manin
connectilon of algebraic families of algebraic mani-
folds. We refer to [4A2] in order to understand the rather expli-
cit approach for algebraic families of curves inveolving differen-
tial eguations.

lLet €/T be a smooth algebraic family of smcooth algebraic va-
rieties all defined over the complex numbers, say. The relative

de Rham complex is a sequence

: e 1 d T d
Qg O Ngyr = Qyyr —

Using open (affine, say) coverings one defines the éech complexes
'D‘YEIT LoC (‘Q'WT ) L5 ¢! .O_f”_ <4, ct.n?,

in the usual manner. Taking the limit along refinements of open

coverings one gets the Eech - de Rham bicomplex C"(dDLthJ

de Rham cohomology groupslH fqﬂn of the family ¥/T are the

hypercohomology groups of C™° ( *€fH defined as cohomology groups

of the corresponding total Cech - de Rham complex C “O‘fITJ

The construction applies to all restricted families ‘eu/U, U an

open part of T. On this way one gets the de Rham coho-
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homology sheaves 3’25:2(\5/33) on T.

We restrict ourselves now to curve families ¥ /T. For our pur-
poses it suffices to assume that T is an affine part of a projec—
tive space eV, Let ﬂT.be the sheaf of differential operators on T.
Then the de Rham cohomology sheaf Hﬂ;a(*i/T) is not only an C%—
module but alsc a QT_—module sheaf. Looking for a family with a
gection @ in ‘X;R(‘E/T) satisfying the differential eguations
(7.3) with & instead of F one can take the Picard cur -
v e family

e RN A v = x(x-1) (X-u) (X-v)
and §© represented by the differential form w = dx/y depending

on u,v. For details we refer to [ 42}, IT, 1.5. Taking integrals

over cycles one gets an "algebralc" fundamental system of solu-

tions
(8.1)
3
I () = [ wit), k=1,2,3, t = (u,v) EP~A , = dx/y
)
¥e refer to | ], II.2.5, Theorem 2.5.2. Altogether we found the

developing map of the Fuchsian system {7.3) in an explicit and
algebraic manner. Looking back to the geometric starting point

{6.1) and to the theorems 6.2 and 7.1 we recelve

8.2 Theorem. The guotient map w: B —> P¥ with covering grbup
' = ({-3) is inverted by (I1 :IL:I3): lP"\A ---=3 B on IP"\A
with cycloelliptic integrals Ik(t) described in (8.1) along in-

dependent cycle families & (t), o(l(t), 0(3(tJ. B
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Another proof based on the PTDM-theorem can be found in [(aAL ],
I.6.3. There has been used also a finer analysis of the Picard
curve family, which is useful for our number theoretic ambitions.

The next three sections are devoted to this thems.

3. Moduli space for Picard curves.

We investigate the Picard curve family in more detail. A cur-
ve C (algebraic, complex, compact) 13 calleda P icard
curve , if it is isomorphic to a plane projective curve C’ of

affine eguation type C': Y3 = p (X), where pH.(X) is a polynomial

l.t
of degree 4 in X. We exclude suhseqguently curves C with model
cr:oy?d = X% because they will get lost in our modull space helow.

Via projective Tschirnhaus transformation any Picard curve has a

model of equation type >
(3.1)
- A Y4 1 3
v = W (X - e.) = X +G,X + G X+ 6 (affine),
i=4 v 1 3 &
Ll
wy? = N (X - e.W) = x4 G‘Lw‘?’x" +_G3W3X + quq (projective),

-
(1}

" i
Ze. = 0.
=7 B
The corresponding equations are called normal forms
of Picard curves. A Picard curve is smooth if and only i1f for one
(each) of its normal forms (9.1) it holds that e. ¢ e; for
1 # 3. We correspond to the normal form (9.1) the point
Y
b 3 3
: : 4 = = : : : (= . . = .
(qi-el-es.eq)e % Ey '{(z4 z,t2, ZHJ F; Eg z; 0}

The following result is do to the author. We refer again to the

monograph [1L1, c¢ch.I, 5.2. It asserts that the correspondence

Picard curve C t+—-———> (edzgl:e ce,. ) via normal form (9.1)

3Y
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is correctly defined (at least for smooth curves) up to symmetry
interchanging zercs of the normal form polynomial pq(x) and that
non-isomorphic (smooth) curves cannot he represented by the same
point in pt. Obvicusly, the smooth Picard curves are répresented
by points not helonging te the six lines e, = ¢e

3 14 ).

f

9.2 Proposition. The above correspondence induces a bijective map

{cl(C);C smooth Picard curve} &—S> (!Pi\ A J/S'_I ,
where the symmetric group SH acts via natural permutations of the
Ef—coordinates. B
We remark that the proof given in [A4L] uses geometric inva-
riants, for instance the Hessean of a homogeneous nomal form po-
lynomial. We call the surface Pi/Sq the (compactified) m o d u -
1i s pace of Picard curves and ({P"\AJ/S the modull space

4
of smooth Picard curves by a slight abuse of language.

i0. The relative Schottky problem for Picard curves.

A smooth Picard curve C has genus 3. Therefore 1ts Jacobian
varlety J(C) 1s an abellan threefold. We want to determine in an
effective manner the polarized abelian threefolds, which are Ja-
cobian varieties of Picard curves. The period lattice A of an
abelian varlety A 1s abstractly defined by the exact sequence
(1‘0.1J 0 ~~--92 A —— ¢, ——a A —> 0,

A
TA the tangent space of A (at 0). Choosing coordinates and a ba-

b}
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sis of A we identify T, with C&, and A 1is generated by the co-

A

lumns of a g=2g-matrix T calleda period matrix of

A. Taking into consideration all possible base changes in TA and

N\ we see that a period matrix of A is unigue up to 11313 (C)-multi-
plication from the left and Glia(ﬂ)—multiplication from the right-
hand side. Let E be a primitive Riemann form on T

A

a polarization of A. By a theorem of Frobenius there exists a Z-

representing

basis A, ., ... D of A such that
1 1&
(10.2)
d
(E(2,2)) = O'D) D = “lto d. ¢ W, 1=d |d,} ... |d,.
V0 —]);O ' O Ol T ! LRI 1 b

¥

If the above diagonal matrix D 1s the unit matrix E%, then the
corresponding polarization is called pr incipal . We will
cnly consider principally polarized abelian varieties in this sec-

tion. A basis of A satisfying (10.2) with

is calleda normal basis . A period matrix of a prin-
cipally polarized abelian variety is always constrﬁcted by use of
a normal basis of A . For a fixed basis of TA it is uniquely de-
termined up to right-multiplication with elements of the s y m -
plectic (modular) gr oup

Sp(2g,2) = {S ¢ Glié (7); sIts = I}.

The lattice in 9 generated by the the colums of T is denoted

by ATT' The coordinate version of (10.1) 1s the exact sequence

(10.3) 0 — Ay > c? > A » 0.
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A matrix T eMatgxla(mJ is called a Riemann matrilx
(of principal type), if it satisfies the following two conditions
known as Ri1 emann's first or second rela-

t 1 on , respectively:

(10.4) (R 1) 15 = o,

(R 2) iMI > 0 (positive definit) , 1 = {-1.

For a proof we raefer to [A% ], IV, App.I.
Now we turn our attention to (smooth) Picard curves and their
(principally polarized) Jacobian thresfolds. A period matrix of

a Picard curve can be written as

(10.5)
‘\\'=[Tb°:(ffw'LJ= By By B, By BB
b b3 e
Ca Cch C3 CS'CS
. 2.t . , 0 ~ oA
where W = (uu 9y Wy ) 1s a basis of H (C,Jlt) = H (C, OC) and

L o= F“ ,Fi 'FH ,Fg ,Fg ,Pa ) 18 a Z-basis of the homology group
HA(C,Z). The relative Schottky proplem for Picard curves asks for
an effective criterion characterizing period matrices of Picard
curves among all period matrices of (principally polarized) abe-

lian threefolds. The idea of constructing t y p i1 ¢ a l period

matrices described bslow goss back to Picard (26 ]. In order to
formulate the thesorem we nesd a linear embedding .
3 b

x: 7 fm——— §

LE(/3
(A,B,C) ——> (A,B,-gA,C,§B,5C) , 9 =e ,
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and the hermitian form < , > of signature (2,1) on @3 represented

6 0§
by the anti-diagonal matrix R = 0 0 It defines at the
9 0
same time explicitly a ball B iniPL and a disc D = DR ¢ B:
3
B={PoelP; <a,u> <0},
D =D, = {v=Pa € B, RT =71}.

R

10.6 Theorem {relative Schottky for Picard curves).
The matrix T in (10.5) is a period matrix of a smcoth Picard

curve 1f and only if the following conditions are satisfied:

*
big

l

*
&

T belongs to 813{CJ- “Sp(6,T); <& ,&> < 0 (ball condition);

!

Fv
<t

b, 4 1s a basis of a}'(orthogonal condition); « = Pa does
not belong to 6? = THbg ("non-degenerate -condition), where [

denotes the full Eisenstein lattice

= U<, > Q) = U(2,1),00) , O =7+ I <K = 0({-3).

Proof (sketch). Let C be a smooth Picard curve with normal
form (9.1). The projection (x,y) ~-= x defines a cubic Galois
covering C —5 ' with Galois group G = 3, = /3% generated by
g, say. The homology group H4[C,Z) is a 2[G)-moduls. A normal ba-
sis k = ( f" s 'F‘ ) of H (C,2) is a Z-basis satisfying

( on Pj) = I, o the intersection product of cycles. &4 t y p 1 -

cal basis of Hq(C,Z) is a normal basis of the form



- 33 -

* X = x( o

A I T AN A A A AR P

The existence of at least one typical homology basis on a smooth
Picard curve has bheen proved by Picard himself in [ 26], see also
Alezais [ 7 ]. A reproduced version can be found in Picture 6.3.A
of ch.I in [A%].

AG-(iso)typilcal basis of #' E{ H°(C,£lc), £ . the
sheaf of regular (holomorphic) differential forms (of degree 1)
on C, is a basis consisting of G-eigenvectors of 87, One can take
simultaneously for all Picard curves with normal form equation
(9.1) the differential forms of first kind ©, = dx/y, dx/y?%,

e 4
xdx/y . The use of a typical basis x &« of H,(C,7) and a isotypical

) ! 03) has the advantags that the correspon-

basis w =t(ww,w
dinghperiod matrix (10.5) 1is essentially determined by the thres
entries A1,A1,A3. With & = (A4,AL,A3J ahd the above notatilaons
one obtains typical period matrilices

*

(10.7) T o= o = |x¢&

f
*0

Y

We check now the conditions of Theorsm 10.6. The first of them
is satisfied because we can choose a typical period matrix. The
second and third conditions are translations of Riemann's period
relations (R 1), (R 2) in (10.4). The "non-degenerate’-condition
is delegated to the if-part of proof below.

Conversely, we assume that a smooth curve C has a typical pe-
riod matrix as describsed on the right-hand side of (10.7). We

have to show that this can only happen for a Picard curve. For
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this purpose we look at the moduli space of smooth Picard curves

(lPL‘ A)/Sq, see Prop. 9.2. We construct a commutative diagram

¥
B~ & L
(10.8) r A Splb,z)
Sy
(m‘\m/sqc——aﬂs — &,

where Jt's or ‘,43 are the modull spaces of smooth curves of genus
3 or principally polarized abelian threefolds, respectively. The
Torelli embedding «4{?‘—-——%./43 is represented by the correspon-
dence cl(C) +-> ¢cl(J(C)), C a curve of genus 3 and J(C) its Jaco-
bian threefold. The uppsr row 1s correctly explained by the chain

of the following (partly multivalued) correspondences:

(10.9) * f
T =P ;E =(TT1|TTLJI-74-—‘? (EspTJt——)T.
_— AL
iy *

The point *'UE{U belongs to the generaliz'ed Sisgel uppsr half
plane of polarized abelian threefolds
Hy= (T esl(0); *T=T, InT> 0},

The vertical arrows in diagram (10.8) represent analytic guo-
tient maps: The Eisenstein lattice I = U((2,1) ,[TK) acts on B,
This action can be extended to an action on lHB along the geome-
tric embedding *:8 &« [H3 by the following s ymp l e c t ic
reprepresentation of [ also denoted by *:

*

(10.10) i =Ul((2,1J,U’K) ——2 Sp(6,7)
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For an explicit definition we refer to [4Y ]. More intrinsically

6

one endows £V with the hermitian product { , ] of signature (3,3)
represented by J = I/{-3. Its restriction to c? along the *-em-
bedding coincides with < , > introduced above, that means:
(ko ,% k) = <&, b> for all &k € .
The modular symplectic group Sp(6,7) consists of all linear trans-
formations of C‘, which are compatible with [ , ] and preserve 26.
All those elements of Sp(6,%) preserving additionally *63 are col-
lected in a group Sp'(6,d). Thelir pull backs to c® are compatible
with < , > and preserve Og. One can check that the homomorphism
Sp'(6,%) ——> [ defined on this way 1s an isomorphism. Its in-
verse map yields the embedding (10.10). Changing over from the
right-action on vector rows to the transposed left-action on the

the columns we notice that

(10.11) *(¢ (a)) = (xy)Gka) ,a;ecg, \{er ;
*("(T)E = (g ) (x7) , T=P0 € B
Since q43-=1H3/Sp(6,ﬂ) it follows that the diagram (10.8) i1s com-

mutative.

We are now able to verify the if-part of Theorem 10.6. Let
C be a smmoth curve of genus 3 with a typical period matrix. The
preimage of cl(J(C)) € .43 in m3 is representsd by an element
uniquely determined up td Sp{6,7)-multiplication. Without loss
of generality we can assume that T = *T because of the corres-

pondence (10.8) going through all typical period matrices. Thus
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J(C) must be the (generalized) Jacobian threefold of a pOssibly'
degenerate (non-smooth) Picard curve. But C is smooth of geﬁus 3.
Therefore C has to be a smdoth Picard curve. It remains to check
that © does not belong to €. In 9. we proved. that P A is

the complete S -preimage of the moduli space of smooth Picard

L‘.
curves. The symmetiic group S, appears as factor group [ /(' in
diagram'(10.8). For the coincidence proof of the symmetric ac-
tion of Sq oan% and the arithmetic action of [/ {' on PL we Te-
fer to‘[dz,]. We dispose also‘on the knoﬁledge of the preimage of
A in B. This is the branch locus of the covering T: B —> 8/’
we started with in (6.1), see also Theorem 6.2 and the'explana—
tion thereafter. The ramification locus of W has been carefully
analyzéd in [12], I.3., especially diagram 3.3.5. It consists of
all (infiﬁitely many) f((zg)-reflection discs. This set coinci-

des with the U -transforms of ons.of them, say of O,.. So, if T be-

R

longs to a smooth Picard curve, then it cannot belong to é? . The

‘Theorem. 10.6 is proved. ' ' =

11; -'Effectiﬁa Torelli theorem for-Picard curves via Picard
modﬁlar forms. |
Tacitly we used already Torelli's theorem. It appsars in dia-
gram (10.85 assérting that 043 —-——ptﬂs is an embedding or,
more generally, the isomorphy class of a smooth EuIVG is uniqualé
determined by its (polarizeﬁ) Jacobian variety. We look for a pre-
cise pointwise version of this theorem in the case of Picard cur-

ves:
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'11.1 Find for given T ¢ B (or *xT ¢ *B ¢ (H3] the nermal form of

a Picard curve Cr corresponding to the moduli point 1 (g) é wt.

In analogy to the Welerstrass normal form of elliptic curves
we can find holomorphic functions,tﬁ,tL,tB,tq: B ~——% ¢ such

that the -normal forms we look for can be writ,‘ten as

3 4
(11.2) c :Y¥’= T(X - £ (1))

't' .
. : L=1
simultaneously for all T € B. In other words we try to describe
the quotient map T we started with in (6.1) in terms of holo-
morphic functions identifying the quotient map W with
1

(11.3) - (t4:t1_:t‘3:ttq) : B ————— P

T = (t1(7):t (r):tz(f):t“(c)J.

L
The existence proof for these holomorphic functions was the main
result of chapter I in- [‘41/] . We refer the reader to seétion 6.3
there entitled 'Inversion of the Picard integral map by means of
automorphic forms', especially to Theorem 6.3.12.

Since we need the quality of the functions t. for finding ex-
'plicit Fourler series of them, we repeat the.Way of their con-
struction in [ A1 ] without proofs.

11.4 Definition. A holomorphic :Eunction' f: 8 —»Cisa P 1i-
card modul 'a T f orm of the imaginary gquadratic

number field K and of we i gh t m, if there exists a sublat-
tice ['' of U((2,1),0,) such that the following func tio -

nal eguationsg are satisfied:
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(11.5) ghe) = jef  forall ge (",

where Y (f)(g) = flyg (&)) and'jrjr) is the Jacobi determinant of
F:B~1?Batf.

If (11.5) is satisfied, theﬁ we shortly céll f a r” - m:o -
dular form (of weight m). These functions'form a fi-
‘nite-dimensional vector space denoted by [[",m]. We come ba0£
now to the Eisenstein numbers, sspecially ﬁoi = UK(Z,l),O&),

T' = T({73) and define the =& p e cial modular groups by
$T = Tasl (© , $THTD = T({DHnsle) , |

We have three exact seguences

1 —% 5T ({3) — 7 ({3) —>1, —>1 '
'al n fal
(11.6) ] —3 [ (§23) =——> T 9§ xf ~—> 1
v v v .
1 ——»§ 7 ({73) — s0 > S —> 1

W WH'
¥ > ¥

, (ZJ. t ZL).

satisfying the

The group Zi = 3/2% comes from the element--ide T

We look for Picard mocdular forms t1,t b

A R

following conditions (11.7) and 11.8:

(11.7) Bg ¥ Ey+Ead b =0,

tq;t;,bl are linearly independent.

11.8 Special Functional Eguations .

(1) yie) =gty fori=1,2,3,4, ¢ esT (=)

.. hed _ - = U
(ii) LY (t;/ti) = t?li)/trlj) for i 1'2"3’4" ¥ e st .
(ii1)  d¥e)

for i = 1,2,3,4, representing r(i—SJ/S'F({~3J.

I

(det d )LJJtt
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11;9‘ .Theorem {Holzapfel [4l}). There exist four Picard modular
forms t1 'tL’t’s‘t‘i satisfying t;il_e properties (11.7) and 11.8.

They are uniguely detes:minéd up to the numeration and a common
constant féctor. The condition (iii}) is a conseguence of all the

previos conditions (11.7), 11.8 (i), (dii).

11.10 Remark. The last statemént has been proved first by‘Feu—
stel { & ] by an analytic arg@ent usi.ng the Theta presentation
of the modular functions t1 we look for. An algebraic proof has
been found by the author [43) by means of the dimsnsion formulas
for cusﬁ forms of ball lat_:t;ices {41 1. We can give a more _g;racise'
version of Theorem 11.9 whiﬁh brings the three éonditions (i),
(ii), (iii) of 11.8 together. Denoting the image of g¢¢{ along
_f _‘__.,quzc ———9 Sq (see diagram (11.65} by ? we get

11.11 Corollary. The fouf Picard modular funct.ions't1 ’t1 ,.tg,tq
are characterized (up to a constant factbr) by (11.7} .and the |
functional equations

Yoy o Lo N
y (b)) = (dety) Sgn(TJ-J‘t?u)J for i =1,2,3,4, el

Main idea of proof (sees [AL]). Easically one has to oiassify<
thé surface 3? = m i‘he group § IM({=3) acts almosﬁ freely
on B, that means that the non-trivially adting elements have at
mast isolatad fixed points on 18. It turns out.t:hat

e B Ny

1s the unigue (cyclic) Z,-covering of [P,' branched along A (ses-

3
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the diagrams (11.6) and (6.1). It is not difficult to describs

the surface &lby an equation (ses (4247, T.4.3).

o~ 3 P AN 3 i )3 L L
(11.12) X L = (Yi - YAJ(YI - YDJ(Y4 - YD}
This is a weighted equation with % of weight 2 and Y ,Y¥ Y of

c ! 4!
welght 1. More precisely, this means that % is the projective
spectrum of theé ¢crresponding graded ring
P
ely,, v,y ,21/a% - TT v - vl
D‘t‘]‘l -4 L

11.13 Remark. On thlS place wa. remember ‘again to the 22-nd Hil-
bert problem mentioned in 6.3. It turns out that the'algebraic
relation in (11.12) is satisfied by Picard modular forms Yy 1Y,
. yL,z substltutlng the variables Y, 4'YL or &, respeetively. The
knowledge of the uniformization B ————> g together with the cor-
responding arithmetic uniformizing lattice § (" (¥-3) becomes im-
portant for this purpose as it has been predicted by Hilbert in
general.

The key point i1s to understand automorphic forms as sections
of logarithmic pluricanonical sheaves. In {42], I.4.3 we proved

oD o9 —
(11.14) @ (87 ({=3),n] = @H(X,0(mK_ + mT)),
mz0 ) . wz{ _ K

where X is the minimal resalution of sinqularities of ?} T the
compactification divisor resolving the cusp singularities of_g.
It consists of four disjoint elliptic curves. As usual Ke denotes
a canonical divisor and G(D) is the sheaf corresponding to the
divisor D. A careful geometric analysis (explicit knowledge of a
canonical divisor, vanishing theorem on surfaces) accomplished in
(42] yields the ring structure

. oo — )
(11.15) @HO(X,G(mKi 4+ mT)) = ﬂ:[so,s .S
m={
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s, of weight 1, s of weight 2 and the generating rela-

with 50 ,54, N

tion

(11.16) <3 = (f o byt - oglyst - Y
: "1 PR 0 4 )

Together with'(11.14J we found generators 70{ 74 ,%& of |
[$7 (V=3),1] and a f'(m}—modular form m of weight 2 such that

&9 .
% "M, 7, and # generate the ring @ (sT(=3).m) of $(({=3)-mo-
wmz) :
dular forms satisfying the relation

(11.17) qz = (qi'—qz ) (o
A

wg looked fo:.

z-—
t

I3 1 2
) ( - )
9,00, -~
If [" is an arbiﬁ:ary ball lattice, then it acts on the spacs

of holomorphic functions on the ball B via

(11.18) f F——-*?j;;’~ T*tf], fe HD(B,OBJ, Y€ fr.
The | "-invariant ﬁunctions are tha r"—modula; forms (compare
with (11.5)). Especially the lattice $T acts on [Sr.(F?J,i]
with ineffective kernel' S (y<3). With the last réw of (11.‘6J we
get a threehdimensionai reprasentation of 84' In [?fL]‘we proved

that this representation is irreducible. It induces a projective

representation of S, on P[$ r((:§J,1] = p%. There is only one

4
such representation. Explicitly it can-be described by
(X{iX1:X3:XH) —_ (X610:XFQ) e 3) :xrtq))'
TeS , x-€ €, Z_x. = 0.
_ . 4 L L

Looking back to [$ f(le),l] one finds four Picard modular forms
£ ,t ,t_,t satisfying (11.7) and 11.8 (i), (ii).
1° 4 3 4 -

It remains to verify the property (iii) of 11.3. This is much

mere difficult than it looks like at the first glance. There

exist two proofs of different kind. The first has been found by
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Feustel in [ ® ). He used a transcendental method: The modular
forms t; can be understood as restricticns of explicitly known
theta constants on HE to B (see below and also Shiga's article
{32]). Then the transformation behaviour described in 11.8 (iii)
" can be checked directly. An algebraic~geometric procf of thé
functional equatiaons (ii%) can be found in the .author's paper

(43 1.

In order to solve the relative Torelli problem 11.1 in an gf—
fective manner'by'means of our modulgr forms p4’FL'£3’tH weAgo
back to the quotient map (11.3). It is realized by the modular
forms of Theorem 11.9 for the following reasons (see [ A11] for

more details). From the third row of (11.6) one gets a commuta-

tive guotient diagram

&

5c({3)

(11.19)

' A
The logarithmic canonical map 9k +T does down to X ~———9ELand
o Ex

coincides with the Z3—q0utient map on the bottom of diagram
(11.19) as has been proved in [41]. Using generators s; of
§°(§:0(KX ; T)- it can be realized as the projective morphism
(sczsdzsiJ. The sections s, have been lifted to § T ({-3)-modular

forms 7‘ , 1 =20,1,2 via (11.14). Wwithout loss of generality we
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t

can assume that bi = 7?'4 , 1 =1,2,3. We can identify the big
guotient map of (11.19) with the map of (11.3), where t,_f is de-

fined by (11.7).

11.20 | Theorem (effective Torelli for Picard curves via modular
forms). Let J(C) be the Jacobi threefold of a smooth Picard curve
C éorresponding to the boint, T = x7e iy . Thenlthe Picard modular
.farms t1’tL' t;’tq defined in theorem 11.9 (ﬁp to a common con-
stant factor) yield a normal form of C in the following manner:

3 .
(11.21) Y’ = (X - td(r)J(x - tL(T)J(X = by lr)) (X - tk(cJJ

Proof.. By the relative Schottky theorem 10.6 for Picard cur-
ves we have J(C) = C;/A1T , whére T is given as (TQ Fﬁz) in
(10.9) connecting T ¢ B with T = *T. The diagram (iG.8) with
(' = 7 ({73) yields the moduli point of ¢ on ¥ as image oi T
along the T({=3)-quotient map. By (11.3) this image is equal to
(t1(T):tllq):tsng:tq(rJ).vBu£ the normal form of a corresponding
Picard curve is given in (11.21), see Prop. 9.2. For the conve-
nience of the reader we present a diagraﬁ 0T corcespondences

used above in close conneciion with diagram (10.8).

. i
ﬂ} ,317=le.{ {-n.= *fr
? x4
i
|
; -
c: v? = WX -t () e~ - Jac(C)
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The theorem is proved. &

12. Picard modular forms as theta cantants.
Theta functions—ﬁ’[%] with characteristics a,b ¢ Q?'are holo-
morphic functions on E%xtH%,
le = {’f’é Glta(ﬂl); t’t":’l‘.", m T > 0}
the generalized Siegel upper halprlane uniformizing'the muduli
space of (principally) polarized abelian varieties of.dimension é
(sze e.g. | 19. Explicitly the theta functiqﬁs
| Fe]: c¥x iy ¢
are-defined by
&[E](Z,T) = Z exp{‘ﬂ"i%(n-ka)"r(n#a) + .21'ri t(n+aj(z.+,b)}
ne2d :
The ﬁésgriétions '3!0“IH% :
o[e](T) =[]0, T)
are called theta constants (with characteristics).
We restrict our attentidn to tne case g = 3 and look for exten-
sions of the‘Picard modulat forms tq'tl’t;’tq
vicus section in M3 along the embedding x:lB‘-—-§ﬂ{3 defined in

defined in the pre-

(10.9) and hope to express them in termsAof tneta Constants.
very important for this purpose are the functional equatipns deg-
cribed in 11.8. So we lock for elementary comb;nations Th of the-
ta constants whose restrictions,

thie) = Th(*T), T €B
satisfy the speciﬁl functional equatipns 8.11 (i), (1iii):

(12.1) Th (xy) = detlﬁ-.j{-Th on B ¢ Wy 5¢€ (y=3).
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For the convenience of the reader we summerize the restrictions

(or extensions) used above and below in the following diagram.

2.2 B > H,
f{3)2 ¢ | 11*665?(67)
;E;L —1H, < >a33><tH3
t-18g - ?")*Hs _ Lﬁ"
f —FF—> ¢ —=3 ¢

12.3 Theorem (Feustel, Shiga).

Let GL(T) = '3‘1(0,"(':), i =0,1,2, be the theta constants on IH3

restricting the theta functions

Al ~ . , 3
'3.’ J’[kl} Yt k/} l.) , k="0,1,2, z € €.

Set ‘

(12.4) Th, = 0.+ 0 +0) -, m, = 304 b, + h
' thy = 636740}, = 6]+ 0] 30

and

(12.5) thi("') = T,h{(*tJ, i=1,2,3,4, Te 1B..

Then the functions thi({) are the (normalized) Picard modular
forms satisfying (11.7) and all the functional eguacions (i),

(1i),(111) of 11.8 or, equivalently, those of Corollary 11.11.:

"Proof (main steps). We folliow Feustel's proof and cerier Ior
explicit calculations to his paper [ & ) and the related litera-
ture given there. The prooi summerizes prepecatory worx of Rie-

mann, Picard [l6], [27], Alezals [ 1 ], Mumfora [ 24], H.Shiga
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{32} and Holzapfel [4%2] (the functional equations apove).‘

Step 1 (restriction to six functional equations).
Here we go ‘back to the fundamental group 1!" [[PJ'\ & ) of the
Fuchsian system (7.3) of partial differential equations and the
surjective monodromy representation m;GPL\ A) —» (=3,
see (7.2). But the fundamental group ﬁ;(w1w~£g;).has obviously
six generators coming from simple‘;oops in B! around each one of
the six omitted lines. Therefore also | ({=3) has six generators,
say. gar v oo ,gLu They have been expliciély described already by
Picard {26 ]_(wiﬁh corrécturé in [271]) and Alezais. fheir symp-
lectic lifts G& = *g. € Sp(6,%), 1 =1,...,6, can be found expli-
citly in Feustels'paper [ € 1. In order to check the functional
equations 8.11 (i), (iii) for suitable ﬁoiomdrphic functions th
on B it is sufficient to check them for the generators Gyreer 9y
of f-({ré) . According to our claim th = Th|B we have now only to

look for holomorphic functions Th on IH, satisfying the six r e -

3

stricted functional eguations

, 1 =1,...,6,

A : L
(12.6) Thefe,) = (det g,)-ja-Th onig ¢ MS
- i .

implying (12.1). L

Step 2 (Riemann's theorem).
It is a general problem in the theory of algebraic curves to des-
cribe a given meromorphib function on a curve C in terms of theta
functions on its Jacobian variety by restriction along thé Jaco-

bi embedding C‘*—-‘?iMC).IThis problem has been solved essential-

~ly by Riemann. We-refer to Mumford's book [2Y].
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12.7 Theorem (Riemann). Let C be a (smooth, compact, complex)
curve of positive genus g, f.-.' . ) ﬂ a normal basis of.H,‘(C,Z)
and j = t( By 1 e w%) a basis of H°(C,_D.C) such that the cor-
responding period matrix has the normalized form |
( [&J- ) = (E}'T) Te lFl?}Efg_ the unit matrix.
%

If £: C ——-—7 P! is a meromorphlc function with d:LV:Lsor

(fJ=Za —Zb,a,b e C,
. D ke k o K K"k
then it holds that
3 . | N
(12'8.) Z P Oy ZP{ bk
. A L2A . A
_'H'f(P:) cconst TP | B - [3-awdc| 2 - f':.?~ M}
= ke 1 Fe A 1S

as meromorphic function on C%/S . One has to use the same pathes

¥

in the first integrals of the denominator and numerator.

Notationg. Here the Riemann theta function 49’ is considered as
holomorphic function on @%. It coincides with the restriction of
3’[ ] to C?x T, T the fixed period matrix defined above, with
the notations introduced at the beglnnlng of this section. The
auxiliary point P e C is usped to fix the Jacobi embeddlng

C&~—% J(C), P t—> I W mod /\ /\,t,’z 2'? +’C/'Z'7.
Po ’

A denotes the Riemann constant. This is a special well-defined

2-torsion point on J(C) (see [24 ], ch.II, 3). Both sides are con-
Y .

sidered as functions on C?- or C%/S%, namely _Z P. is understood as
Vo

point on C?/S ..On the right-hand-side of (12.8) appears a con-

&

stant denoted by const. In general one knows only its existence
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but not its explicit value. Finally, we used the notation

p-

D S 4

.o
[ 3-Z
?, 5

)

o-q‘-—s
Hh
0

) >
w
Il
as)
A3

Remark. For the proof of Riemann's theorem one compares zerosl
and poles of both sides of "(12.8). The key point is the ul\nder-
standing of Riemann's constant 4. On ¢¥ it is defined mod /\,L, b

=
iza
A A / 3 mod f\feG'; P: € C,
o |
~where @ c J(C) denotes the theta divisor defined by ﬂj‘(_z) = 0.
Setting e.qg. E; = a, in (12.8) opens the way of proof of Rie-
mann's theorem in an obvious manner.

Now we apply Riemann's theorem for finding two generators .of.
the field of [ ({-3)-automorphic fuﬁctions in theta terms. This
ha.xs been done already by Picard and Alezais. We write a smooth.
Picard curve C in the modified normal form

C: ¥ = X(X - 1)(X - WX - v)
Then u = ulr), v = v{g), T& IB, generate the field of l'(\r-—é)—mo-
dular functions. The.ramification locus of the Z -Galois covering
C —-——-Plf’1 consists of the following five-points on C:

0=9, = (0,0.), Q, = (1,6), Q, = (u,0), Qvl= (v,0), e
We apply (12.8) to the function f'= x: C -—>P' at the points

P4=Q1’PL:Q ?3=Qu
and ét the points

P, =0, P =Q,P =0,
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With (x) = 30 - 3@ , P, =00 we get with the same constant c

, mmw S0 26,44,
.u:c‘lT{O‘( J A)/D‘(? 3 - A
e+2@ 0 Q*’llﬂ | _
uchTr{fa'( 13- /2 - /47’(] e - o)
o0 0o

t 1— I' 1 ] J .
Since u = u /u we get by division of both expressions above a

theta formula for u(r) without the unknown constant c:

3
=,T4\'{0‘(.—.)—%( L WA= AP =~ )

In the same manner using 0, instead of Qu we can express v, vL

1}

and finally v(g) v*/v in terms of the theta‘function beldnging
té T = x1. ‘

Step 3 (Theta constants).
This step is due to Shiga [33y]. He calculated explicitly the
Riemann constant A above using special values. Furthermore he

used standard pransformation laws to prove that

~ 3 3 3 3
(12.9) ) = &, 0,50/ (0,57, viz) = W, (0,%x0/7, (0,%0)

with the noﬁations of Theorem 12.3. The denominator does not:va—
nish identically on B (Shiga [31]) | 1

Step 4 fautomofphic forms).
This last step is due to Feustel [ ¢ }. He checked that the domi-

nator and the numerators in (12.9) satisfy the six functional

equations (12.6). By step 1 we dispose on three linearly indepen-
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dent S(;({r§)~modular forms 9;(*rﬂ, 9:(*%0, 93*13 on B of wight 1
with the notations of Theorem 12.3. Since dim (s T ({C3)] = 3 by
the considerations around (11.16) we found up Eo linear gombina~
tions all Si‘({:gJ—modular forms of wight 1. So Qz,ef,gzcmn be
identified with 70’75'7; in (11.17). Now we remember to the S* =
Sl‘/Si‘((;g)—actidn on [T ({=3),1]. There must be linear combi-
nations th‘,tﬁl,th3,thq of 9:,6:,9: satisfying the relation
(11.7) and the functional equations 11.8 uniguely defined up to
a common factor, see Theorem 11.3. The Symmet;ic group.S“ is ge-
nerated by three traﬁpositions. It is not difficult to find re~‘
presentants of them in $7T and alsc their symplectic representa-
tions acting on H,y explicitly. This has been done in [ § ]. With
the definitions (12.4) and (6.12.5) Feustel proved that th;,thz,

th;,th(1 are functions with the correct tranformation behaviour

we look for. The Theoerem 12.3 is proved. |

13. ' " Proof of the Main Theorem.

Now we are able to prove the Main Theorem formulated at ‘the
end of 1. We have to concentrate our attention to the verifica-
-tion of the field tower on tﬁg right-hand side of diagram (1.1).
First we check the list t.,...,8. of definitions in 1. and fill
the gaps. The ball B is understood as subball of Hs via the em-
bedding * defined in (10.9). The restricted theta constants th[f

1=1,2,3,4, have been defined in the previous section.
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Next we have to give a precise
guments used in the Main Theorem.

on M

i

point is a point of

in le n

arithmetic ball

@ =
An

B(D) =1BaH, (D)
A (princi;;ally) polarized abelian

complex multiplication determines

Namely we know from section 3 that A = G?/Q)(CNI,

On the other hand A is isomorphic

and (E%IQTJ must belong to the same double coset of Mat

with respect to Gl?(c) or 6l

Yy

elements G € 61 (C) and Z € Gl1
¥ §

Now it i1s clear that G,

definition for the special ar-

An arilithmetilc

61, (D).
?
poilnt is a point of

<@

variety A of dimension g with
an arithmetic point T GIH%(ﬁ).
D€ l\liat‘r‘i3 (7).

to C%/A(Eil"t') Therefore 4

C
1<iq ( .J

(%), respectively. Hence there exist
(7) such that @AZ = (6)6-T).
G and finélly T =c¢""c7T) belong to

%(ij). Especially we dispose on the following well-known

13.1 Lemma. If C is a (smooth) curve of gernus g and its Jacbian

variety J(C) corresponding to T

then T is an arithmetic point of H

¢ H has complex multiplication,

.

13.2 Definition. A point ¢ € B 1s called a CM-module (with re-
spect te Picard curves), if there exists a (smooth) Picard curve
C such that ¢ belongs to the Jacobian threefold J(C) of C [t.wm.

C‘l'C‘),J(C) is simple and has complex multiplication.
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From the above considerations it is clear that a CM~module.ole
is an arithmetic ball point. There is a dense set of very expli-
cit examples called s tationary mo dul e s . They
are defined as isclated fixed péints ge BN A of elements‘
¥ e W(2,1),K) with [K(S'):K] = 3. For details we re?er Lo (447,
Now we are able to define F,, Q. and ﬁ%_appearing in the Main
Thenrem. We have conly to connect the above definition with those
of section 3. Let & ¢ B(®) be a CM-mndule corresponding to the
Picard curve C wiﬁh Jacobian threefold J(C). 1t has a CM-type
(F_., QE..&J) and this is all we need. The corresponding Shimuta
class field Sh( 4)6'"&6"] has been defiﬁed at the end of sectiocn 2.
We come to ﬁhe proof of the Main Theorm. For this purpose we
let ¢ ¢ B{(f) be a CM-module corresponding to the Picard Eu;ve Ce

with Jacobian threefold J. of type (F_, (PF’AG)'

.3 _
(13.3) Cg T2 Y = .TL\'(X - th. (¢))
=4 ¢
This comes from the effective Torelli Thecorem 11.20 for Pi-
card curves in combination with the theta representation of the

Picard modulaz forms ti found in section 12, see Theorem 12.3.

13.4 ke = K(th{¢)) is a definition field of cl(Cg) and of

cl(qy) in the sense of section 4.

For the curve Cg this is an immediate consequence of 13.3. If

“k is a definition field of a curve C, then it is also a definition
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<field of the Jacobién manifold J(C). For this well-known fact we
refer the reader to Milne's article [23] in [5]. Consequently,
ky is a definition field of cl{J,) or of J; itself wiphout loss
of generality. The same is true for (Jy,f%,),‘f; a suitable pola-

rization of J&‘

(13.5) M(3. €)= Sh . At,)

‘This was (the consequence 5.3 of) Shimura's Main Thecrem 5.1 of

complex multiplication.

: o 6
(13.6) M(J ) € M(C,) = Ktth(c,-ns“ )

Proof. We remember that
(th, (g) :thy (o)t (¢) th, ())/S, € B /5,
is the moduli point of the Picard curve C_ by (13.3) and Proposi-
tion 9.2. So for M € Aut(C) one has the following egquivalent
conditions:
2 € Stab clkch —s ¥ e—>cl(cH = ci(C) 4___5
(o))

4

mod SLI

(thh‘ (¢) :th'b(c*) ’th;(V) :thq('s') et (thﬂ (¢) :t:h1 (o) :t:h3 {g-) : th

> th (@ /th (K = thy (@)/thg) (0)

™)
for all i,jJ e {1,2,3,4} and a suitable T e S,_|

. Sal
&> € B(Er(e)) W)

On the other hand we have Stab cl(CGJ < Stab cl(JGJ, hernce

M(CGJ 2 M(JgJ by the definition 4.1 of moduli fields. It remains
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to show that K is a subfield of the fields appearing in (13.6).

The curve Cgiin (13.3) has an obvious automorphism of ordsr 3.
Therefore the field K = @(g) is a subfield-of the endomorphism
algebra Qe>EnQ(J‘). Since J, is simple, the field Fg coincides

with this algebra (up tb isomorphy). Therefore X is a subfie;d of
Fg. This is also true if J. is not simple and has complex multi-
plication in the gsneralized sense of section 3 (DCM = decomposed
complex multiplication): Then Js is isogeneous to T*TxT, T an
elliptic CM-curve with imaginary gquadratic multiplication field E,
say. As already mentioned at the end of section 3, the endomorphism

algebra'of J- is isomorphic to Mat,(E). The diagonally embedded

3
field E commutes with any other subfieid of ®End(J;), especially
with X. Thus the endomorphism a%gebfa contains the subfield X(E).
The ébsolute degree of a gsubfield of the Q-algebra D® End(A) of

an abelian variety A divides 2+dim A, see [20], I.1, Th.3.1.
Therefore [K(E):Q] divides 6 = 2:dim J,. This i; only possible for
K = E. Consequently, K is central in Q®End(J.), and K-Fg is a
subfield. Since [%_:@] = 2-dim JV = 6 by definition of complex
multiplication it.cannot happen that K-F_ > F_. because Fg is ob-

" viously a maximal subfield of @ End(J.). So we have K ¢F_, that
means that in any case the multiplication fiela F of a CM-Picard
curve is a cubic extension of K. It follows immediately from the
trace definition (2.2) of the reflex field F' that K & F'. Now we
apply (4.5) to obtain F_ € M(Jz). Togsther with (13.6) and the |
equivalence considsrations above we get

S, o)
K € M(Cg) = Blthie)) ' .
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The identity on the right-hand side of (13.6) is verified. By the

way we established also the bottom part of diagram (1.1).

13.7 The definition field ks = K(th(g)) of the CM(or DCM)-Picard

curve Cgis an-algebraic number field.

Proof. Let ¥ be a principal polarization of Jg. The.polarized

Jacobian variety Jac(C.) (J‘,f ) has an algebraic definition

field k by Froposition 4.4. From Lemma 4.3 we know that
M(Jac(Cg)) € k € § .

Obviously, the moduli field M(C,.) coincides with M(Jac(Cgl)). To-

Sl
gether with the identity in (13.6) we see that K(th(e)) )

18 a
number field. Since k. = X{th{s)) is a finite extension, it is a
number field, too. _ m

Altogether we have the following inclusions:

(13.8)  M(Jg, € ) = Shie . fg)
ui

Ke F_ €M) € MCq) = M(Clr'ac(co,))

x(ehte)? ¢ ko= xitae)) € @

We restrict ourselves from now on to the case of simple Jacobian
threefolds J;. For the sake of clear distinction we call & some-

times in this case a s imp l e CM-module (SCM).

13.10 Lemma. 1f A is a simple abelian variety with complex multi-
plication, then each polarization € of A i1s admissible and the

moduli field M(A, €) does not depend on the choice of e.
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For the proof we refer to lang's book [40] again. The first
statement comes from [tp], I.4, Thm. 4.5 {(iii) and the condition
ADM 2, p. 20. According to the remark in [40], p. 135, the moduli
fiseld M(A,¥ ) does not depend on the embedding L: Fe<-2 Q®End(A)},
F the CM-field of A. The last statement of the lemma is Proposi-
tion 1.7 (i) of [L0], ch.V. , ®

lLet 6¢ 1B be a simple CM-module and € a principal polariza-
tion of Jg. By lemma 13.10 € is admissible and M(Jg, €) coinci-
des with the moduli field M(J_, €¢) for any other admissible po-

larization fd, of J,. Cosequently the inclusions of (13.8) become

sharper:

13.11. For simple CM-modules e¢e€B it holds that

' Syl5) -
K €F' ¢ MJg, e ) = Sh(§ . A) = XK(th(e)) " ¢ Klen(g)) € §.

We established the diagram (1.1) of field towers in.the Main
Theotem. By the definition 2.7 Sh( ¢¢"9'~0'J (Shimura class field)
1s an abelian exteﬁsion of the reflex field E;. It remains to
prove that this extension is unramified, if ﬂq. 18 a (fractional)"
ideal oflﬁr. This follows easily from the construction of Shimura

blass fields:

13.12 Lemma (see [(20), V.4, Thm. 4.1 (ii}). Let A be an abelian
CM-variety of type (F, . f) such that O is a fractional ideal

of F. Then the abelian extension Sh(§ ,A)/F' is unramified.
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Proof. We go back to the construction of the Shimura class
field Sh(¢>,£NJ in section 2. Via reciprocity it corresﬁonds to
the idele group.U(d>,ﬂl) defined in (2.4). It suffices to verify
that U(q:) , &) contains tﬂe who’le unit group O':,of F'. Tﬁis is a
well-known necessary and sufficient criterion for the correspon.
ding class field to be unramified (see e.g. 115‘]); So let ¢ be
a unit of f'. fhen, with the notation of (2.4), also N'(¢g) &€ F
is a unit. Since fi is a fractional ideal it holds that

N A= o= 1A
Thus the relations of the.right—hand side of ' (2.4) are satisfied
for s = £ , | Fv= 1. Hence ¢ belongs to U(CP,,&J. The lemma 1s
proved, and at the same time we finish the pfoof of the Main

Theorem. : =

The field of Picard modular functions (of level i ) is defined
to be the field d:(Gq/G:,G:'/Gi) of I -automorphic functions,
where 61 = 0, G)._'GB'GH are the elementary symmetric functions of
tha,thl,thz',thq. The subfield of X-modular functions (of the. full
level [ ) is defined to be K(GH/G:’Gi/'Gi}' It is the subfield of
Sq—invariant functions of K(th). For T4 1B we define the field of
values of Picard K-modular functions (of full level { ) at ¥ by

K(G%/G;,Gi/Gi)(T) = {£(7)3€ & K(5, /6},67/6}), £ oo )

13.13. Definition. Let ¢ ¢ B be a simple CM-module with J_ of type

-
(FG' (b,’_ "&6‘) such that ‘&6 is a fractional ideal of Fs. Then o is

called an ideal simple CM-module
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13.14. Corollary. Let €6 |B be an (ideal) simple CM-module. Then

3
flex field F} of the type (Fg, §q).

L ' o | . .
K(GH/GL,GI/GEJ(U) is an {(unramified) abelian extension of the re-

Proof. Looking at the action of Sq(gd we have the obvious re-
lation .
- S4(6)

L 1,3 Y
K(GH/GL,G3/G1)(67 <€ K(th(g))

Now we can apply the Main Theorem concentrated in diagram (1.1).

13.14. Remark. The celebrated H i lbert cla é s fiel
of a basic number field F' is defined as the maximal abelian ex-
tension of F'. It is a finite Galois extension with Galois group
isomorphic to the ideal class group of F' (see e.g. [L§]). Hile
bert class fields play an imﬁortant role in number theory. The
explicit construction by means of special values of transcendent
functions can be considered as the essential part of Hilbert's
twelvth problem. With our Main Theorem we succeded to construct
at least a part of the Hilbert class field of F!, if ¢ &€B is an
ideal simple CM-module. Feustel observed that the very explicit
stationary modules of elements ¢ € U((2,1).K) are simple (CM-mo-
dules, if K(X) is a cubic extension of X. So we dispose on abe-
lian extensions M(JaC(C¢)5 = K(th(c)f“h? at all these stationa-
ry CM-modules &2 We can produce more abelian extensions of our
The

reflex fields by means of torsion points g : ++. . L, 0OnJ

' g

moduli field M(Jc,f;,;Td,...,T(} has béen defined by Shimura (see

[3§] or [L0]). For any CM-module ¢ it is an abelian extension of
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FL extend%ng M(Jc,f%.). The corresponding idels group in the
sense of class field theory is also well-known. We refer the rea-
der who is interested on these extensions to (L0), Ch.V.,Thm.4.2.
Unfortunately, until now there exists no description of these ex-
tended class fields in terms of special values of analytic func-
tions except for the case of elliptic curves.

sqwﬁ

3.15. Problem. For which ideal CM-modules is K{th(s¢)) the

whole Hilbert class field of FG’_ ?

L ]
.13.16. Problem. Is the maximal abelian extension Fé?b for fixed
CM-module ¢ generated by all the generalized moduli fields of

type M(J-, € _;T

2
Ty T

g

It seems to be that the field K(th(g)) of K-modular functions
of level T (F-C’TJ is not in general an abelian extension of the
reflex field F%. This happens certainly, if the subgroup SH(GJ of

the symmetric group Sli is not abelian.

13.17 Problem. For which CM-modules ¢ 18 -(th(c))/F; an abelian

(or non-abelian) field extension ?

‘Let us change over from the big level groups [ and F(J:§3 to

smaller ones, say to normal subgroups (" of finite index of [ .

2

We denote by '};( (") the algebraic closure of K[GH/G:,G3

/G%) in
1

the field TC (FT") = c¢cB/7") of ("-automorphic functions. With .
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ohvious notations we obtain at each CM-module ¢ an infinite tres

7~

{
K
of field extensions of F_.. The analogue construction in the theo-

(r "){¢); 1" normal subgroup of [ of finite index}

ry of elliptic curves ylelds a generating system of the maximal
abelian extension of an imaginaf§ quadraﬁic number fields. It
would be interesting to understand our construction in a suitable
framework of (non-abelian) class field theory. éspecially, one
has to ihvestigate the action of (subgroups of) the factor groups

[ /7" in the towers F,(T")(s) 2 T (T)e) 2 EL of numbe;

fields at special CM-values g¢.

13.18. Remark. Let Tg B(D) be an arithmetic point of the ball.
We proved that
th(T) = (th (¢):th,(g):th, (¢):th (g)) € b
is arithmetic, if T is a CM (or DCM)-module. The converse impli-
cation seems to be true. Very recently Shiga [3%] succeeded to
prove that at least at simple (simple J-) arithmetic modules T
the point th(y) is transcendent, that means a non-algebraic point

of EL, if € 18 not a CM-module.

13.19. Problem. What happens precisely at non-simple arithmetic
modules in hoth cases, the case of CM-modules and the opposite

case ?
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UEBERSICHT

- Shimura's Class Fields
- Complex Multiplication

- Moduli Fields

- Main Theorem of Complex Multiplication

- The Geometric Starting Point, the Projective Plane
Covered by the Ball

- Differential Operators

~ Gauss-Manin Connection

- Moduli Space for Picard Curves Y5= Pqu)

- The Relative Schottky Problem for Picard Curves

- Effective Torelli Theorem for Picard Curves via Picard
Modular Forms

- Picard Modular forms as Theta Constants

- Number fields generated by special values

Definition:

A solution model for Hilbert's twelvth problem
is a triple (V,Vﬁng ,f) consisting of
(1) a (non-compact) complex manifold V with fixed analytic em-

bedding into a complex projective space @f(m);
(1i) a subset V’“& of the algebraic points V(J) = Va PM(@J lying
dense in V;
(1ii) A transcendent holomorphic map
£= (fpify: ... ify): V ——3 PN (0);
satisfying the postulates I.,II.,III. below. :

We call f transcendent if f is not the restric-
tion of a rational map in the sense of algebraic geometry. The
elements of V¢., are called the s ingular points
(belcw: singular moduli) of V.

1. fe) = (f5(¢): ... :fN(r)) is algebraic, that means
fle) € PN(D), for e Vsing ;
II. f(¢) is transcendent, that means f(r) & P”(Q), for
Te V() - Vs}ns ’ )
III. one has a number-theoretic construction / guality / meaning
of field extensions
FLlf(e)) = FL{... £ (e) /£ (), ...)
for suitable well-defired "elementary” number fields F.,
GevS]u& N .

A (twodimensional) b all mode 1l for Hilbert's twelvth
problem is a solution model IB,thj ,£), where B 1s the complex
two~dimensional unit ball.
ad II. Recently Shiga (1990) proved that II. is essentially sa-
tisfied for our model below (see Main Theorem)



ARBEITSPROBLEME

1. Problem. Study special values of Picard modular functions of
higher level in connection with non-abelian class field theory.
2. Problem. Generate more (if possible all) abelian extensions

of reflex fields of cubic extensions of the Eisenstein numbers

by means of special values of some additional transcendent func-
tions.

3. Problem. What happens at DCM-points (ball points where the Ja-
cobian threefolds of the corresponding Picard curves have "decom-
posed complex multiplication"”) ?

4. Problem. Check Vojta's conjectures for Picard curves (conse-
guences: either disproof of Parshin conjecture a la Miyaoka-Yau
for arithmetic surfaces, or asymptotic Fermat).

5. Problem. Find more solution models for Hijbert's twelvth pro-
blem (along: uniformizations of Picard modular surfaces, Hilbert
modular surfaces, Siegel modular threefold; Hecke's thesis).

6. Arithmetic of Picard curves (more general: cyclic curves y"=
p,(x)): Effective proof of Shafarevich conjecture; number of k-
rational points of such curves defined over finite fields k (J.
Estrada-Sarlabous).



