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AN EXPLICIT CONDUCTOR FORMULA FOR GL(n)×GL(1) AND
FUNCTORIAL DEPTH PRESERVATION

ANDREW CORBETT

ABSTRACT. We prove an explicit formula for the conductor of an irreducible,
admissible representation of GL(n, F ) twisted by a character of F× where the
field F is local and non-archimedean. The components of our formula are anal-
ysed, both explicitly and on average, for application to the analytic study of au-
tomorphic forms on GL(n). We also demonstrate that “functoriality preserves
depth” for such Rankin–Selberg convolutions and give a precise conjecture in
the GL(n)×GL(m) case.

1. THE TWISTED CONDUCTOR PROBLEM

Let F denote a non-archimedean local field of characteristic zero and let n ≥ 2.
For an irreducible, admissible representation π of GL(n, F ) and a quasi-character
χ of F×, form the twist χπ = (χ ◦ det) ⊗ π. Our main result (Theorem 1.6) is
an explicit formula for the conductor a(χπ), c.f. the Artin conductor, as defined
in §2.1. This formula is given by

a(χπ) = a(π) + ∆χ(π)− δχ(π) (1)
where ∆χ(π) and δχ(π) are non-negative integers as defined in Theorem 1.6; they
denote a dominant and a non-twist-minimal interference term, respectively. We
give detailed analysis of these terms in §2.3, answering questions such as “for
how many χ is there interference?”

Our primary motivation was originally to formulate a tactile formula for a(χπ),
sensitive to fluctuations in the analytic behaviour of automorphic forms on GL(n).
A second objective soon became to prove an explicit formula for the depth of any
irreducible, admissible representation of GL(n, F ).

The depth ρ(π) is a rational number defined analogously the integer a(π),
when considered from the point of view of newform theory (see §2.1). In fact
in Theorem 3.3 we prove a formula explicitly relating the two. However, unlike
the conductor, the depth is widely expected to be preserved under Langland’s
functoriality conjecture and in particular the transfers of representations therein
(see [15–17, 19]).

In the case at hand, the Rankin–Selberg transfer from GL(n) × GL(1) to
GL(n), we provide an affirmative answer to this question: the depth ρ(π � χ) =
ρ(χπ) is preserved (see Theorem 3.6). Moreover, our results encourage us to pre-
dict an explicit formula asserting depth preservation under the GL(n) × GL(m)
to GL(mn) Rankin–Selberg transfer for all m ≥ 1 (see Conjecture 3.7).

Date: 14th June 2017.
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As an example, computing a(χπ) in the limit a(χ) → ∞ is straightforward:
from Proposition 1.2 and Equation (5) we deduce

a(χπ) = na(χ) (2)

whenever a(χ) > a(π). In this case ∆χ(π) = na(χ) − a(π) and δχ(π) = 0.
Bushnell–Henniart extend (2) by proving the upper bound

a(χπ) ≤ max{a(π), a(χ)}+ (n− 1)a(χ), (3)

permitting extra summands in the presence of smaller values of a(χ). This is a
special case1 of [4, Theorem 1], and indeed our own Theorem 1.6. In fact this
bound is sharp in that it is attained for some π and χ; as in (2) for example.

However, in general such examples become sparse, rendering (3) as rather
coarse as one averages over χ for large a(π) → ∞. In such cases, understand-
ing the integers ∆χ(π) and δχ(π) exactly is of crucial importance for numerous
problems in analytic number theory. For instance, when investigating the ana-
lytic behaviour of automorphic forms and their L-functions, such a formula is the
unavoidable consequence of two techniques: taking harmonic GL(1)-averages
combined with the use of the functional equation for GL(n)×GL(1)-L-functions.

Such character twists arise in the work of Nelson–Pitale–Saha [18], who ad-
dress the quantum unique ergodicity conjecture for holomorphic cusp forms with
“powerful” level (see [18, Remarks 1.9 & 3.16]).

The current record for upper and lower bounds for the sup-norm of a Maaß-
newform on GL(2) in the level aspect [24–26] depends crucially on the n = 2
case of Theorem 1.6. An advantage of working locally there is that such conduc-
tor formulae automatically hold in the number field setting, where the strongest
bounds for the sup-norm are proved in a forthcoming work of Edgar Assing.

Of a more constructive flavour, in [1], Brunault computed the value of rami-
fication indeces of modular parameterisation maps of various elliptic curves (of
conductor N ) over Q. Whenever a newform attached to E is “twist minimal”,
Brunault could prove that this index was trivial (equal to 1), holding in particular
whenever N is square-free. This problem was recently solved by Saha and the
present author [6] in full generality. In our solution, the subtleties behind evalu-
ating conductors of twists explicitly gives rise to the few examples of non-trivial
ramification indices.

These results all concern the case n = 2, where the conductor formula for
twists of supercuspidal representations was given by Tunnell [30, Proposition 3.4]
in his thesis; see [6, Lemma 2.7] for the general case. Tunnell himself applied his
formula to count isomorphism classes of supercuspidal representations of fixed
(odd) conductor (see [30, Theorem 3.9]). He used this observation to prove the
local Langlands correspondence for GL(2, F ) in the majority of cases.

The present result is suggestive of similar applications: a bound for local Whit-
taker newforms (and a corresponding global sup-norm bound) in the level aspect;

1The purpose of [4] is to establish a variant of (3) for GL(n) × GL(m)-conductors where,
more generally, n,m ≥ 1.
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bounds for matrix coefficients of local representations, and estimates relating to
the Voronoı̆ summation problem for GL(n), to name a few.

Here, in §3, we give an application of our formula to the study of depth of irre-
ducible, admissible representations of GL(n, F )×GL(1, F ). In §2 we provide a
detailed analysis of the terms ∆χ(π) and δχ(π) in (1). Lastly, in §4, we give a uni-
form proof of (1) for all quasi-square-integrable representations (see Proposition
1.2); we use such representations as building blocks in the general case, which
we now establish in §1.1.

1.1. A minimal classification and the explicit conductor formula.

1.1.1. The Langlands classification for GL(n, F ). Let AF (n) denote the set of
(equivalence classes of) the irreducible, admissible representations of GL(n, F ).
The natural building blocks that describe AF (n) are the quasi-square-integrable
representations; that is, the π ∈ AF (n) for which there exists an α ∈ R such
that the matrix coefficients of | · |απ are square-integrable on GL(n, F ) modulo
its centre.

The so-called ‘Langlands classification’ (due to Berstein–Zelevinsky) describes
the structure of each representation in the graded ring AF = ⊕n≥1AF (n) in terms
of the subset S G F of quasi-square-integrable representations. By [33, Theorems
9.3 & 9.7], one deduces an addition law � on S G F , by which S G F generates
a free commutative monoid Λ. The classification is then the assertion that there
is a bijection between AF and the semi-group of non-identity elements in Λ, thus
endowing AF with the addition law �. Crucially, the maps (AF ,� ) → (C, · )
given by applying L- or ε-factors are homomorphisms of semi-groups (see [31,
§2.5] for their definitions). Both expositions [20, 31] provide excellent back-
ground on this topic.

The upshot of this classification being that for any π ∈ AF (n) there exists
a unique partition n1 + · · · + nr = n alongside a collection of quasi-square-
integrable representations πi ∈ S G F ∩AF (ni) for 1 ≤ i ≤ r such that

π = π1 � · · ·� πr (4)

and, for any quasi-character χ of F×,

a(χπ) = a(χπ1) + · · ·+ a(χπr). (5)

Equation (5) follows from the definition of the ε-factor and formula (11) in §2.1.

1.1.2. Minimality and the formula for quasi-square-integrable representations.

Definition 1.1. An irreducible, admissible representation π of GL(n, F ) is called
twist minimal if a(π) is the least integer amongst the conductors a(χπ), ranging
over all quasi-characters χ of F×.

In particular, if a quasi-square-integrable representation π ∈ S G F is not twist
minimal then n | a(π). For these representations, the notion of twist-minimality
is sufficient to give an exact formula.
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Proposition 1.2. Let π be an irreducible, admissible, square-integrable represen-
tation of GL(n, F ) and let χ be a quasi-character of F×. Then

a(χπ) ≤ max{a(π), na(χ)} (6)

with equality in (6) whenever π is twist minimal or a(π) 6= na(χ).

Remark 1.3. In practice, one handles those π which are not twist minimal as fol-
lows: tautologically, write π = µπmin where µ is a quasi-character of F× and πmin

is twist minimal. Then Proposition 1.2 implies a(χπ) = max{a(πmin), na(χµ)}.
It is the collusion of the characters χ and µ that give rise to any degeneracies.

Let us draw attention to the conductor formula of Bushnell–Henniart–Kutzko
[5, Theorem 6.5] for the (more general) GL(n) × GL(m)-pairs of supercuspi-
dal representations. There they deploy the full structure theory of supercuspidal
representations to proving an outstanding identity, relating the conductor to the
respective inducing data. Proposition 1.2 may indeed be derived from their work.

However, in our case with m = 1, the formula is more simple and holds uni-
formly for the larger set S G F , which contains the supercuspidals (c.f. the known
formula for the Steinberg representation [23, p. 18]). Indeed, we are able to give
an elementary proof of Proposition 1.2. This promotes our philosophy that, as far
as the conductor is concerned, the set S G F (and in particular the subset of twist
minimal elements) contains sufficient and necessary information to explicitly de-
termine the conductor via the decomposition given in (4).

We defer our proof of Proposition 1.2 until §4.4. The arguments made there
are also used determine a result on the central character.

Proposition 1.4. Let π be an irreducible, admissible, square-integrable represen-
tation of GL(n, F ) with central character π|F× = ωπ. Then

a(ωπ) ≤ a(π)

n
. (7)

Remark 1.5. As a rule of thumb, problems arising in the “highly ramified central
character aspect” come from interactions between the components in π1�· · ·�πr
for r ≥ 2. We mean this in the sense that otherwise a(ωπ) does not influence a(π).
As such it should be handled in a separate fashion, as we do in the present work.

1.1.3. The general formula. We arrive at our main result, having defined a suffi-
cient and necessary set of properties of representations π ∈ AF in order to give a
fully explicit formula for the conductor.

Theorem 1.6. Let π be an irreducible, admissible representation of GL(n, F )
given in terms of quasi–square–integrable representations πi of GL(ni, F ), as
described in (4), where n = n1 + · · · + nr; write π = π1 � · · · � πr. Let χ be a
quasi-character of F×. Then

a(χπ) = a(π) + ∆χ(π)− δχ(π)
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where ∆χ and δχ are defined by the semi-group homomorphisms (AF ,� ) →
(Z≥0,+) given by their values on the representations πi = µiπ

min
i , the twist of a

minimal representation πmin
i and a quasi-character µ of F×, as follows:

∆χ(πi) =

{
max{nia(χ)− a(πi), 0} if a(χ) 6= a(µi)

0 if a(χ) = a(µi)

and

δχ(πi) =

{
a(πi)−max{a(πmin

i ), nia(χµi)} if a(χ) = a(µi)

0 if a(χ) 6= a(µi).

Both terms are non-negative for any π and χ.

Proof. By applying Proposition 1.2 to Equation (4) we have

a(χπ) =
r∑
i=1

max{a(πmin
i ), nia(χµi)}. (8)

In particular, if a(χ) 6= a(µi) for a given 1 ≤ i ≤ r then the respective summand
in (8) is equal to max{a(πmin

i ), nia(χµi)} = max{a(πi), nia(χ)}. Whenever
we have a(χ) 6= a(µi) we also have a(πi) ≥ max{a(πmin

i ), nia(χµi)}. �

Remark 1.7. In the special case n = 2, we prove Theorem 1.6 in [6, Lemma 2.7].
In general, one should understand the non-vanishing of δχ(π) as occurring rarely.
Whereas, ∆χ(π) describes the dominant or “usual” behaviour of a(χπ). We make
these statements explicit and quantitative in §2.3.

Corollary 1.8. Let π = π1�· · ·�πr and χ be as in Theorem 1.6 with πi = µiπ
min
i

for twist minimal representations πmin
i . Form the “totally minimal” representa-

tion πtot = πmin
1 � · · · � πmin

r and let Ωχ(π) = {1 ≤ i ≤ r : a(πi) > nia(χ)}.
Then

a(πmin) ≤ a(χπ) ≤ a(π) + a(χ)

(
n−

∑
i∈Ωχ(π)

ni

)
. (9)

Proof. The lower bound of (9) follows immediately from (8). For i ∈ Ωχ(π) we
have ∆χ(πi) = δχ(πi) = 0. The upper bound is then obtained by estimating
∆χ(πi) and δχ(πi) respectively by a(πi) + nia(χ) for i 6∈ Ωχ(π).

�

Proof of Inequality (3). We recover Bushnell–Henniart’s bound (3) using Corol-
lary 1.8. If a(χ) > a(π) then a(π) = na(χ) by (8), whilst if a(χ) ≤ a(π) then
(3) is a special case of (9) since Ωχ(π) 6= ∅ in this case and each ni ≥ 1. �

Remark 1.9 (Generic representations). Legibility permitting, the letter G indi-
cates that all representations in S G F are generic. By showing so for the regular
representation of GL(n, F ), of a given central character, Jacquet shows that all
discrete series representations are generic [11, Theorem 2.1, (3)]. By the Lang-
lands classification (denoting as in (4)), any π ∈ AF (n) as is generic (a.k.a.
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“non-degenerate”) if and only if π is equivalent to the (irreducible) representation
induced from the external tensor product π1 � · · ·�πr on the parabolic subgroup
associated to n1 + · · · + nr (by [33, Theorem 9.7, (a)]). The elements of S G F

correspond to those irreducible representations with r = 1.

2. THE SIZE OF SPACES OF TWIST-FIXING CHARACTERS

The goal of this section is twofold: in §2.2 we count the number of characters χ
that fix the conductor a(χπ) at a given value. Then, in §3.3, we explicitly analyse
the behaviour of the dominant and interference terms in Theorem 1.6. These
questions are motivated by their applications to analytic number theory.

2.1. Basic notations: characters and conductors. Let π denote an irreducible,
admissible representation of GL(n, F ) and χ a quasi-character of F×. Let π̃ be
the contragredient representation and ωπ the central character of π, respectively.

2.1.1. The non-archimedean local field. We denote by o the ring of integers of F ;
p the maximal ideal of o;$ a choice of uniformising parameter, that is a generator
of p, and q = #(o/p). Let | · | denote the absolute value on F , normalised so that
|$| = q−1 and vF the valuation on F defined via |x| = q−vF (x) for x ∈ F . We
define open neighbourhoodsUF (m) of 1 inUF (0) = o× byUF (m) = 1+$mo for
m > 0. Define the integer a(χ) to be the least m ≥ 0 such that χ(UF (m)) = {1}.
Let K = GL(n, o) and for each m ≥ 0 let K1(m) be the subgroup of K that
stabilises the row vector (0, . . . , 0, 1), from the right, modulo pm.

2.1.2. The floor and ceiling functions. For each α ∈ R let bαc denote the floor
of α, defined via bαc = m if and only if m ∈ Z and m ≤ α < m + 1. Similarly,
let dαe denote the ceiling of α if dαe ∈ Z such that dαe − 1 < α ≤ dαe.

2.1.3. Epsilon constants and the conductor. Here we define the integer a(π), the
conductor of π. This subsumes the definition of a(χ) when n = 1, for which the
following notions were originally founded in Tate’s thesis [27].

Let ψ be an additive character of F of exponent n(ψ) = min{m : ψ|pm = 1}.
Godement–Jacquet prove the existence of ε-factors ε(s, π, ψ) ∈ C[q−s, qs] in [9,
Theorem 3.3, (4)]. Applying the functional equation there twice one obtains

ε(s, π, ψ)ε(1− s, π̃, ψ) = ωπ(−1). (10)
Hence ε(s, π, ψ) is a unit in C[q−s, qs]; that is, a C×-constant multiple of an inte-
gral power of q−s. Explicitly, using [9, (3.3.5)] we prove

ε(s, π, ψ) = ε(1/2, π, ψ) q(a(π)−n(ψ)n)( 1
2
−s), (11)

in which we implicitly define the conductor a(π). After the proof of the local
Langlands corresponds for GL(n, F ) [10], the conductor a(π) coincides with
the Artin conductor of an n-dimensional Weil–Deligne representation. A fun-
damental property of ε-factors is that ε(s, χπ, ψ) =

∏r
i=1 ε(s, χπi, ψ) for π =

π1 � · · · � πr, as in (4) (see [9, Theorem 3.4]). This observation proves (5) by
applying (11). Moreover, if π is generic, the conductor a(π) may be interpreted
in terms of newform theory as we immanently explain.
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2.1.4. Conductors of generic representations and newform theory. Now assume
that π is generic (see Remark 1.9). Then the conductor a(π) may be equivalently
constructed in a language more familiar to the theory of automorphic forms: let
us re-define the conductor a(π) of π to be the least non-negative integer m such
that π contains a non-zero K1(m)-fixed vector.

The fundamental theorem of newform theory is that the space of K1(a(π))-
fixed vectors is one-dimensional. This theorem is due to Gelfand–Každan [8]
in the present context. Moreover, in the generic case, the coincidence of the
definitions for a(π) we give in §2.1.3 and §2.1.4 is an important result due to
Jacquet–Piatetski-Shapiro–Shalika [13, Théorème (5)].

2.2. Spaces of twist-fixing characters.

2.2.1. Characters of a given conductor. The valuation vF defines a split exact
sequence 1 −→ o× −→ F×

vF−→Z −→ 1. We thus write any quasi-character χ
on F× as χ(x) = χ′(x)q−vF (x)m for some m ∈ Z and a character χ′ of F× such
that χ′($) = 1, denoting the space of such χ′ by X so that the unitary dual of o×

satisfies ô× ∼= X. With interest in characters that fix the conductor under twisting,
we define the following X-subsets:

X(k) = {χ ∈ X : a(χ) ≤ k}; X′(k) = {χ ∈ X : a(χ) = k}; (12)
and

X′π(k, j) = {χ ∈ X : a(χ) = k and a(χπ) = j}. (13)
Our present point of departure shall be to give sharp upper bounds for the set

X′π(k, j) via Corollary 1.8. In contrast, the cardinalities of X(k) and X′(k) are
straightforward to compute.

Lemma 2.1. For each k ≥ 1, #X(k) = qk−1(q − 1), #X′(1) = q − 2, and for
k ≥ 2, #X′k = qk−2(q − 1)2.

Proof. Consider the subgroup series {1} = X(0) ≤ X(1) ≤ · · · ≤ X(k) ≤ X.
For k ≥ l ≥ k/2 ≥ 1, we have X(k)/X(l) ∼= UF (l)/UF (k) ∼= o/pk−l. In
particular, taking l = k − 1 and noting X(1) ∼= (o/p)×, one counts the given
cardinalities inductively. The number #X′ is obtained by subtraction. �

We remark that in [6, Lemmas 2.1 & 2.2] we considered elements of X′(k)
which fix, or almost fix, the conductor of a given character χ, essentially char-
acterising the existence of elements in X′χ(a(χ), j) as q becomes small. Now we
consider a “non-Arbelian” variant of this result for the set X′π(k, j).

2.2.2. The quasi-square-integrable case. First consider those π ∈ S G F∩AF (n)
so that Proposition 1.2 applies. For integers an k, j ≥ 0, if either π is minimal or
k 6= a(π)/n then

X′π(k, j) =

{
X′π(k) if j = max{a(π), nk}
∅ if j 6= max{a(π), nk}. (14)

These cases correspond to ` = 0 in the following lemma.
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Lemma 2.2. For each π ∈ S G F ∩ AF (n) write π = µπmin for a twist min-
imal representation πmin. For integers j, k ≥ 0 we have X′π(k, j) = ∅ unless
a(πmin) ≤ j ≤ max{a(π), nk}, in which case there exists an ` ≥ 0 such that
j = max{a(π), nk} − ` and

#X′π(k, j) ≤ #X
(
k −

⌊
`
n

⌋)
. (15)

Proof. If either π is minimal or k 6= a(π)/n then the lemma follows by (14).
Hence assume a(π) = kn and π = µπmin where πmin is twist minimal with
a(πmin) < a(π) and µ ∈ X′(k). Then X′π(k, j) = ∅ unless a(πmin) ≤ j ≤ nk. In
this case, if there exists a χ ∈ X′(k) such that max{a(πmin), na(χµ)} = j then
there are #X(bj/nc) of them as we must have χ ∈ µ−1X(bj/nc).

�

2.2.3. The general case. Lemma 2.2 may be assembled to describe all of AF (n).

Proposition 2.3. Let π be an irreducible, admissible representation of GL(n, F )
and πtot a totally minimal representation attached to π as in Corollary 1.8. For
integers j, k ≥ 0 we have X′π(k, j) = ∅ unless j satisfies inequality (9), in which
case

#X′π(k, j) ≤ #X
(⌊

j
n

⌋)
. (16)

Proof. Write π = π1 � · · · � πr as in (4). Set j′ = l −
∑

i 6∈Φ a(χπi) where
Φ = {1 ≤ i ≤ r : a(πi) = nia(χ) and πi = µiπ

min
i for a(πmin) < a(πi)}.

Then (14) applies when i 6∈ Φ. We are left answering the question of how many
χ ∈ X′(k) satisfy

j′ =
∑
i∈Φ

max{a(πmin
i ), nia(χµi)}.

For each summand, this is answered by Lemma 2.2. We conclude that j′ satisfies∑
i∈Φ a(πmin

i ) ≤ j′ ≤
∑

i∈Φ max{a(πi), nk}, as per (9), and for some i ∈ Φ we
have

#X′π(k, j) ≤ #X
(

max

{⌊
a(πmin

i )

ni

⌋
, a(χµi)

})
. (17)

�

Remark 2.4. In practice, the estimate qj/n for (16) often occurs elsewhere, often
working against upper bounds for a given summation problem. Proposition 2.3
acts to counteract such trivially bounded terms. The bound (16) may be improved
to (17) with the general notation of π = π1 � · · ·� πr.

2.3. The leading and interference terms. Here we detail the asymptotic be-
haviour of ∆χ(π) and δχ(π). Our first port of call is to describe the rarity with
which the interference term satisfies δχ(π) 6= 0. The following lemma follows
directly from the definition of δχ(π) in Theorem 1.6.
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Lemma 2.5 (Absence of interference). Let π be an irreducible, admissible rep-
resentation of GL(n, F ) written, as in (4), in terms of irreducible, quasi-square-
integrable representations, π = π1 � · · · � πr. Recall that πi ∈ S G F is a
representation of GL(ni, F ) for 1 ≤ i ≤ r. Let χ be a quasi-character of F×.

(1) We have δχ(π) = 0 if ni - a(πi) for each 1 ≤ i ≤ r.

(2) If there exists an 1 ≤ i ≤ r such that ni | a(π) then δχ(πi) = 0 if
a(πi) 6= nia(χ).

(3) Suppose there exists an 1 ≤ i ≤ r such that a(πi) = nia(χ), then
δχ(πi) = 0 if and only if a(χµi) = a(χ) where πi = µiπ

min
i is written

as the µi-twist of a twist minimal representation πmin
i .

Our second port of call is to quantify the rarity described in Lemma 2.5.

Lemma 2.6 (Quantitative interference). Let π = π1 � · · · � πr as in Lemma
2.5. Suppose χ ∈ X and that for some 1 ≤ i ≤ r we have δχ(πi) 6= 0. Write
πi = µiπ

min
i as per part (3) of Lemma 2.5. Then, for each 0 < j ≤ a(πi)−a(πmin

i )
satisfying j ≡ a(πi) (mod ni), there are precisely

#X

(
a(πi)− j

n

)
(18)

characters χ ∈ X such that δχ(πi) = a(πi) − j. The number of χ ∈ X(a(πi)/n)
satisfying δχ(πi) = a(πi) is

(q − 2) ·#X

(
a(πi)

n
− 1

)
. (19)

Proof. The number in (18) is determined by the necessity that

χ ∈ µ−1
i X

(
a(πi)− j

n

)
.

Similarly, we count to the number in (19) by observing that χ ∈ X(a(πi)/ni)
such that χ is an element of neither X((a(πi)/ni)− 1) nor µ−1

i X((a(πi)/ni)− 1).
�

Proposition 2.7 (Dominant behaviour). In each case of Lemma 2.5 for which χ
and π = π1 � · · · � πr satisfy δχ(π) = 0, we have the “dominant” conductor
formula

a(χπ) =
r∑
i=1

max{a(πi), nia(χ)}. (20)

3. THE DEPTH OF TWISTS OF GENERIC REPRESENTATIONS

A corollary of our conductor formula is an explicit formula for the depth of
any twist of an irreducible, admissible representation of GL(n, F ). We give this
formula in Theorem 3.3, expanding the generality vastly over previous known
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cases. In particular we include the non-generic representations of GL(n, F ), on
which the traditional results of newform theory cannot comment.

For an irreducible, admissible representation π, Moy–Prasad [16, Theorem 5.2]
prove the existence of a fraction ρ(π) ∈ Q≥0, the depth of π ∈ AF (n), which
essentially detects the smallest parahoric subgroup on which certain characters
are sufficient to determine π. This is formulated and proved in the context of more
general reductive groups and beckons the popular question: ‘To what extent does
depth preserve functorial transfer?’ We may consider our twisted representations
χπ as transfers from (π, χ) on GL(n, F )×GL(1, F ) to GL(n× 1, F ).

In §3.1 we give a short description of Moy–Prasad’s construction of ρ(π) before
proving our formula for ρ(χπ) in §3.2 and exploring its consequences in §3.3.

3.1. Depth and parahoric subgroups. For GL(n, F ), the structure theory of
supercuspidal representations is best described by the theory of hereditary orders
(see [3, §1] or [2, §1]). However, this structure may also be gleaned from unrav-
elling the definition of an unrefined minimal K-type, as given in [16, Definition
5.1], in the context of GL(n, F ).

Let B = B(GL(n), F ) denote the Bruhat–Tit’s building of GL(n, F ) (see
[29, §2.9]). The elements of B may be realised as (projective) lattice sequences
L = (Lα)α∈R; these are o-lattice filtrations satisfying Lα+1 = $Lα for α ∈ R.

Bruhat–Tits considered the stabilisers of such lattice sequences L = (Lα)α∈R,
referring to them as parahoric subgroups2 (see [29, §3.1.1]); these are given by
P(L, α) = {g ∈ GL(n, o/p) : g · λ = λ (mod p) for all λ ∈ Lα}. In fact
we have already seen an example of such a (filtration of) parahoric subgroups:
the o-lattices Lα generated by 〈$−dαee1, . . . , $

−dαeen−1, en〉 determine the lattice
sequence L = (Lα)α∈R where {ei}i denotes the canonical basis of F n. Then we
recover the subgroup series P(L, α) = K1(dαe) as defined §2.1.

Define P(L, α)+ =
⋃
β>α P(L, β). Referring to [17, Theorem 3.5], Moy–

Prasad prove that, for each π ∈ AF (n), there exists a minimal α = ρ(π) ∈ Q≥0

such that:
• the space of P(L, ρ(π))+-fixed vectors is non-zero for some L ∈ B;
• if, for any L ∈ B, the space of P(L, ρ(π))+-fixed vectors is non-zero

then P(L, ρ(π))+ 6= P(L, ρ(π)) and each of its irreducible constituents
is either a character, if ρ(π) > 0, or a cuspidal representation, if ρ(π) = 0,
of the quotient P(L, ρ(π))/P(L, ρ(π))+.

Such irreducible constituents of the spaces of P(L, ρ(π))+-fixed vectors, each
coupled with the respective parahoric subgroup P(L, ρ(π)), precisely constitute
the unrefined, minimal K-types of Moy–Prasad [17, §3.4].

Example 3.1. Let χ be a quasi-character of F× = GL(1, F ). We claim that
ρ(χ) = a(χ)−1. To see this, for each α ∈ R consider p−dαe as a one-dimensional
o/p-lattice and let L = (p−dαe)α∈R be the associated lattice sequence. One recov-
ers P(L, α) = UF (dαe). Then α = a(π) − 1 is the least such α ∈ R for which

2In the context of GL(n, F ), perhaps more intuitively, the parahoric subgroups P(L, α) occur
as inverse images of finite index subgroups contained in parabolic subgroups of GL(n, o/p).
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P(L, α) 6= P(L, α)+ and χ(P(L, α)) 6= {1}. The restriction of χ to UF (dαe)
defines a refined, minimal K-type.

Whilst we only introduced the notion of depth for the group GL(n, F ), the
construction of §3.1, and [17, Theorem 3.5], holds essentially verbatim for more
general reductive groups. This includes the Cartesian product which we consider
presently.

Proposition 3.2. For each 1 ≤ i ≤ r let πi be an irreducible, admissible rep-
resentation of GL(ni, F ) of depth ρ(πi). Let π1 � · · · � πr denote their external
tensor product, the natural representation of GL(n1, F ) × · · · × GL(nr, F ) on
each component. Then

ρ(π1 � · · ·� πr) = max{ρ(πi) : 1 ≤ i ≤ r}. (21)

Proof. For each 1 ≤ i ≤ r let L(i) = (L
(i)
αi )αi∈R be ni-dimensional lattice se-

quences such that πi contains a P(L(i), ρ(πi))
+-fixed vector. Construct the lat-

tice sequence L = (Lα)α∈R by Lα =
⊕r

i=1 L
(i)
α , diagonal in the α ∈ R variable.

By the minimality of each ρ(πi), the least α ∈ R such that there exists a non-zero
P(L, α)+-fixed vector in π1 � · · · � πr is α = max{ρ(πi) : 1 ≤ i ≤ r}. More-
over, each irreducible constituent of the space of such fixed vectors contains an
unrefined, minimal K-type, since each component part does.

�

This construction could be understood as a generalisation of newform theory
(see §2.1.4). Although contrastingly, when defining the depth of a representation
the lattice sequence L is included in the minimal choice ρ(π); in newform theory
the choice of congruence subgroup is fixed. (Nevertheless that fixed choice enjoys
the property of multiplicity one.) As in newform theory, one hopes to derive an
expression for ρ(π) directly from the ε-factors of (11). It is then no surprise that,
even for non-generic representations, the depth ρ(π) and the conductor a(π) are
intimately related.

3.2. The depth formula for twists. Here we deduce a formula for the depth
ρ(χπ) in terms of the conductors a(π) and a(χ) where χ is a quasi-character of
F× and π is an irreducible, admissible, representation of GL(n, F ).

We build on work of Bushnell– Fröhlich [3] and Bushnell [2], who prove an
explicit formula for the supercuspidal representations. It is there where the true
inner workings of the construction of §3.1 take place.

In [15, Theorem 3.1], Lansky–Raghuram extend the formula to the quasi-
square-integrable representations, and thus show that functoriality is preserved
under the Jacquet–Langlands transfer. For π ∈ S G F they establish

ρ(π) = max

{
a(π)− n

n
, 0

}
. (22)

The key lemma in their proof is due to Moy–Prasad [17, Theorem 5.2]; it says
that ‘depth preserves parabolic induction’. We can thus apply (22) to Proposition
3.2 and obtain a general formula for any element of AF .
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Theorem 3.3. Let π = π1 � · · ·�πr be an irreducible, admissible representation
of GL(n, F ) written, as in (4), in terms of irreducible, quasi-square-integrable
representations πi of GL(ni, F ) where n = n1 + · · ·nr. Then

ρ(π) = max

{
a(πi)− ni

ni
, 0 : 1 ≤ i ≤ r

}
. (23)

Proof. Under the Langlands classification, π corresponds to an irreducible sub-
quotient of the induced representation of the external tensor product π1 � · · ·�πr
on the parabolic subgroup with Levi component isomorphic to

∏r
i=1 GL(ni, F ).

By [17, Theorem 5.2] we have ρ(π) = ρ(π1�· · ·�πr). The depth of π1�· · ·�πr
is computed in Proposition 3.2. �

Remark 3.4. A interesting novelty of this formula is its application to the non-
generic representations of GL(n, F ): even outside the realm of newform theory,
we have united the exponent a(π), in the ε-factor, with the invariant ρ(π) associ-
ated to fixed-vectors in π. One might hope that a similar study applied to other
classical groups might help understand the (absence of) newform theories there.3

Corollary 3.5. Let π be an irreducible, admissible representation of GL(n, F )
and let χ be a quasi-character of F×.

(1) Applying the result of Theorem 1.6 to (23) we obtain an an explicit for-
mula for ρ(π) in terms of χ and a minimal decomposition for each πi.

(2) In addition, if π is quasi-square-integrable and twist minimal then

ρ(χπ) = max{ρ(π), ρ(χ)}. (24)

Proof. Firstly, (1) is apparent. To prove (2), we first have the identity ρ(χ) =
a(χ) − 1, which was the subject of Example 3.1. Then applying Theorem 1.6 to
Equation (22) we recover (24). �

3.3. The stability of depth under functorial transfer. There has been much
speculation over whether the depth of a representation is preserved under transfers
of representations occurring in Langlands’ functoriality conjecture. An example
of this is our present pursuit: consider the Rankin–Selberg transfer of ireducible,
admissible representations (π, χ) on GL(n, F )×GL(1, F ) to χπ on GL(n, F ).

A known case is due to Lansky–Raghuram [15], who prove that depth is pre-
served under the Jacquet–Langlands transfer (described in §4.3). Another inter-
esting result is one of Pan [19], who proves a remarkable result: depth is preserved
for representations lifted via the theta correspondence for any reductive dual pair.

A key lemma in both of these works, and our own, is that depth preserves
parabolic induction. We believe that this fundamentally supports the conjecture
that depth preserves all functorial liftings. In particular, it supports our explicit
conjecture on depth of Rankin–Selberg convolutions for GL(n, F )×GL(m,F ).

3The most noteworthy attempt at installing such a newform theory is that of Roberts–Schmidt
[21] who describe the (paramodular) ‘local newforms for GSp(4)’.
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Presently, we are able to provide an affirmative result for the Rankin–Selberg
transfer GL(n, F ) × GL(1, F ) to GL(n, F ). For ease of expression, we restrict
to twist minimal elements in S G F .

Theorem 3.6. Let π be an irreducible, admissible, quasi-square-integrable rep-
resentation of GL(n, F ) and, for simplicity, suppose π is twist minimal. Let χ be
a quasi-character of F× and consider both the external tensor product represen-
tation π � χ of GL(n, F )×GL(1, F ) and the twist χπ of GL(n, F ). Then

ρ(π � χ) = ρ(χπ) = max{ρ(π), ρ(χ)}. (25)

Proof. We derived ρ(χπ) = max{ρ(π), ρ(χ)} in Corollary 3.5. On the other
hand, we computed ρ(π � χ) in Proposition 3.2. �

Furthermore, Proposition 3.2 permits us to explicitly predict the depth of gen-
eral Rankin–Selberg convolutions.

Conjecture 3.7. For i = 1, 2, let πi be an irreducible, admissible representation
of GL(ni, F ) and consider the Rankin–Selberg convolution π1 × π2. Then, the
depth of the external tensor product π1�π2 is preserved upon transfer to π1×π2.
In particular, at least if each πi is quasi-square-integrable,

ρ(π1 × π2) = max{ρ(π1), ρ(π2)}. (26)

4. CONDUCTORS OF TWISTS VIA DIVISION ALGEBRAS

In this section we provide proofs for Propositions 1.2 and 1.4. These results
apply to all quasi-square-integrable representations uniformly; this is reflected in
our proof. In particular, our conductor formula bypasses many of the subtleties
occuring in the formula for supercuspidal representations in [5].

4.1. Central simple division algebras. Let D be a division algebra over F of
dimension [D : F ] = n2. Let Nrd = NrdD denote the reduced norm on D. (See
[14, §4.1] for a pleasant construction.) Any valuation on D may be obtained via
composing the reduced norm with a valuation on F (see [28, Theorem 1.4]); let
us normalise such a choice by vD = vF ◦ Nrd. Define a basis of neighbourhoods
of 1 ∈ D× by UD(m) = {x ∈ D× : vD(x−1) ≥ m} form > 0 and let UD(0) =
ker(vD). Note that if n = 1 (so that D = F ) we recover UD(m) = UF (m). It is
an important fact that the norm map Nrd: D× → F× is surjective (see [32, Prop.
6, Ch. X-2, p. 195] for instance). Upon restriction to the above neighbourhoods,
for each m ≥ 0 we have Nrd(UD(m)) = UD(m) ∩ F .

Lemma 4.1. For each m ≥ 0 we have UD(m) ∩ F× = UF (dm/ne).

Proof. For all a ∈ F× we have vD(a) = vF (Nrd(a)) = vF (an) = nvF (a); the
definition of UF (dm/ne) is then equivalent to that of the intersection. �

Lemma 4.2. For each m ≥ 0 we have Nrd(UD(m)) = UF (dm/ne).

Proof. This follows by applying Lemma 4.1 to Nrd(UD(m)) = UD(m)∩F . �
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4.2. Twisting and conductors in a division algebra. If χ is a quasi-character
of F× and π′ an irreducible, admissible representation of D×, analogous to the
unramified case we form the twist χπ′ = (χ ◦Nrd)⊗ π′. Define the level l(π′) of
π′ to be the least non-negative integer m such that π′(UD(m)) = {1}.

Lemma 4.3. Let π′ be an irreducible, admissible representation of D×. The
conductor a(π′) partaking in the Jacquet–Langlands correspondence (defined via
the ε-factor) is related to the level l(π) by the formula

a(π′) = l(π′) + n− 1.

Proof. This is proved in [14, §4.3] (and stated explicitly in [14, (4.3.4)]). To
assist (mathematical) translation, we remark on the following: their unit groups
Vj equal our UD(j) for j ≥ 0. Fix their character χ ∈ Hom(Vj/Vj+1,C×) by
defining χ = π′|Vj and choosing j = l(π′)− 1. Then their c ∈ D, der Kontrolleur
von χ, satisfies vD(c) = −a(χ) = −a(π′); it is constructed in [14, (4.3.1)] from
where we have vD(c) = −n− j, noting the non-triviality of χ on Vj . All together
this implies a(π′) = n+ j = n+ l(π′)− 1. �

Lemma 4.4. Let χ be a quasi-character of F×. Then

l(χ ◦ Nrd) = na(χ)− n+ 1.

Proof. By Lemma 4.2 we consider χ restricted to UF (dm/ne) for each m ≥ 0.
By the minimality of the a(χ), the character χ◦Nrd is trivial on UD(m) whenever

n(a(χ)− 1) ≤ m− 1. (27)

By the minimality of the level, we have equality in (27) whenm = l(χ◦Nrd). �

4.3. The Jacquet–Langlands correspondence for division algebras. This spe-
cial (and local) case of functoriality stipulates a bijection between the following:

• Equivalence classes of irreducible, admissible, unitary representations of
GL(n, F ) which are square-integrable modulo centre.
• Equivalence classes of irreducible, admissible, unitary representations of
D× where D is a central-simple F -algebra of dimension n2.

Remark 4.5. Discrete series representations of the above two types have unitary
central characters. In the stated bijection, if π corresponds to π′ then their central
characters agree; ωπ = ωπ′ . Moreover, χπ corresponds to χπ′ for any quasi-
character χ. As a consequence of the Peter–Weyl theorem, the representations of
D× are finite dimensional (since D× is compact modulo centre).

The correspondence as stated here is due to Rogawski [22, Theorem 5.8],
where the original case n = 2 was famously proved by Jacquet–Langlands [12].
The most general statement allows one to replace D× with GL(m,D) where D
has dimension d2 and m must satisfy n = md. This is established in [7].
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4.4. A proof of the formula in the quasi-square-integrable case. We now
prove Propositions 1.2 and 1.4. Assume the hypotheses and notations in these
propositions; in particular, π ∈ S G F . We first reduce the proof to the case
where π is just square-integrable.

Lemma 4.6. For all quasi-characters χ with a(χ) = 0 we have a(χπ) = a(π).

Proof. Each π ∈ S G F is generic (see Remark 1.9). Then, if m ≥ 0, the space
πK1(m) of K1(m)-fixed vectors in π is non-zero if and only if (χπ)K1(m) 6= {0}.

�

Henceforth we assume π to be square-integrable. The generalised Jacquet–
Langlands correspondence implies a(χπ) = a(χπ′) where π′ is the irreducible,
admissible, unitary representation of D× associated to π as determined by [22,
Theorem 5.8]. The proof of Propositions 1.2 now follows by applying Lemmas
4.3 and 4.4 to the following.

Lemma 4.7. Let π′ be an irreducible, admissible, unitary representation of D×

and χ a quasi-character of F×. Then

l(χπ′) ≤ max{l(π′), l(χ ◦ Nrd)} (28)
with equality in (28) whenever π′ is twist minimal or l(π′) 6= l(χ ◦ Nrd).

Proof. By definition, (χπ′)(x) = χ(Nrd(x))π′(x) for every x ∈ UD(m) with
m ≥ 0. One immediately obtains (28) by minimality. Equality also follows in the
given cases, noting that twist minimality in a(π′) is equivalent to twist minimality
in l(π′) since they are linearly related (by Lemma 4.3).

�

Proof of Proposition 1.4. Recall that π′|F× = ωπ. Taking m = l(π′) in Lemma
4.1 we deduce that

a(ωπ) ≤
⌈
l(π′)

n

⌉
<
a(π)− n+ 1

n
+ 1 =

a(π) + 1

n
,

implying na(ωπ) ≤ a(π). �
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