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GLOBAL PROPERTIES OF THE MODULI OF CALABI-YAU MANIFOLDS 11.

(Teichmüller Theory)

ANDREY NIKOLOV TODOROV

#O.INTRODUCTION.

Thia ia the aecond part of the article "The Weil-Petersson Gcomctry of tbe moduli

space of SU(n>2)(Calabi-Yau manifolds 1." (See [T].) In this article we will study the global

propertiea of the Teichmüler space of Calabi-Yau manifold. The definition of the Teichmüller

space of any complex manifold is the following one:

Definition.

Let I(M) be the set of all integrable complex structures on 1\1, then by definition thc

Teichmüller space of M is ~(M):=I(M)/Diffo(M), where Diffo (r..1) is the group of

diffeomorphisms of 1\1 iaotopic to t he identi ty .

Remark. Up to now we have defined the Teichmüller space set theoretically.

The content of this article is the following one:

In Chapter 1 we make a review of the results of [Ti] and [T].

In Chapter 2 we prove that the Teichmüller spacc exists in the category of complex analytic

spaccs and even more using the results of [Ti] and [T] we prove that the Teichmüller space is a

non-singular complex analytic manifold of dimension equal to dimC1I1(r..1,nn-l). This is exactly

Theorem 2.2.2.

In Chapter 3 we prove the following Theorem:

THEOREM 3.

Ler 1\10 be a CaJabi-Yau manifold with a Kähler-Einstein metrie (ga/3)' Let

co
A(t)=L AntnECco(Mo,n~,10eo)

n=l

1-* 1·be such that a) A(t)="lt+~8 G[,\(t),A(t)], b) "I EH (M o ,80 ), l.e. Al ia a harmonie Dalbealt

form with respect to the Kähler-Einstein metrie (go:/3)' '8*is the conjugate to 8 with respect

to (gaP) and G is the Green operator.

Then for It I< f, A( t) defines in ~(Mo) a totally geodesie real two dimensional su bmanifold

with respect to the Wcil-Pctersson metric.

In #4. we prove that A(t) defined as in THEOREM 3 is defined for aB tEe. Using that fact

we define the extended TeichmüBer space fr(Mo) and then we prove:
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THEOREM 4.

The extended Teichmüller space fr(Mo) of a Calabi-Yau manifold Mo is complete with respect

to the Weil-Petersson metric.

Let me remind you how we define tbe Weil-Petersson metric on the Teichmüller space oi a

Calabi-Yau manifold. From [Ti] and [T] we know that the tangent space at a point tE~(M)

can be identified with H1(M t ,OrI). From Kodaira-Spcncer theory it follows that the tangent

space Tt,~(M)=Hl(Mt,et).On each Mt für tE~(M) we fix Wt(n,O) (holomorphic n-form on

the Calabi-Yau manifold Mt) such that:

fwt (n,O)l\ wt(O,n)=l, wt(O,n)=wt(,n,O)

M

then the map

tP E H1(Mt ,et )... tP..Lwt (2,O) E H1(M t ,Op-l)

gives tbe desired identification. Then the Weil-Pctcrsson metric is defined a.s follows:

n(n+1)

<tPl,tP2>W.P.=(-1) 2 (i)n-2 f (tP 1 -l wt(2,O»l\tP2 -l Wt(2,O»

M

In Chapter 5 we study the Torelli problem for Calabi-Yau manifolds. Namely let

p:~(M)-+ Gr

be the period map, where Gr is the Griffith's domain, Le. the space that classifies all Hodge

structures of weight n on the primitive part of Hß(M,Q) that have the same data as the

Bodge structure on M. The map

p:~(M)-+ Gr

ia defined as followa:

p( t ):=The Badge atructure on Hn (lvl t ,Q)o

In #5 the following Theorem is proved:

THEOREM 5.4. The map p:~(M)... Gr ia an embedding.

This ia the famous Torelli problem für Calabi-Yau manifolds. See [D].

In Chapter 6 we prove the following Theorem:

THEOREM 6.

Let l'l'*:..Ab*~D* a family of CALABI-YAU manifolds over the punctured disk

D*:={tECIO< Itl <1} such that the münodtromy operator T which acts on the middlie

homology group, i.e. on Hn(Mt,Z) is trivial, i.e. T=id, then there exists a family over

D:={tECI Itl<1} l'l':.A6~D of nonsingular complex manifolds such that on :Mo :=1r-1(O) there

exiats a holomorphic n-form wo(n,O) without zeroes.
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In Chapter 7 we prove the following Theorem:

THEOREM 7.l.

a) The Teiehmüller space ~(M) of a Calabi-Yau manifold M is C OO diffeomorphic to R2N ,

where N=diffiCHl(M,nn-l).

b) ~(M) is aStein manifold.

The proof of THEOREM 7.1. follows the lines of the proof of the analogous theorems in the

classical Teiehmüllcr theory given by Fisher and Tromba in ease of a) and Tromba in case of

b) .(See [F,Tr] and (TrI].) The main idea is to use the potential of the Wcil-Pctcrsson metrie

as a Morse function on The Teiehmüller spaee. This idea in the eontext of the Teiehmüller

theory was introdueed by A.Tromba.

There is an important difference between the method of Tromba and ours, namely Tromba

uses the energy functional of the harmonie maps between Riemann surfaces, while in the case

of Calabi-Yau manifolds we do not have a theory of harmonie maps. So we uBe the potential of

the Weil-PeterBson metric as a substitute for the energy funetional of the harmonie maps. This

potential is defined via deformation theory and uses the existence of a Calabi-Yau metric on

M. One can prove more general result about the potential of Wcil-Petersson metric on moduli

of manifolds for which cl is positive. Namely cach point of the moduli space define a 7i
operator. So we can define the determinant line bundle of these operators and this determinant

line bundle has the so ealled Quillen metrie. See [Q]. The eurvature of this metric is just the

Weil-Petersson mctric. See [T2].

In #8 we prove the analogue of the Nielson realization problem for Calabi-Yau manifolds.

See [Wo], {K] & [Tr2].
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#1. REVIEW OF SOME DEFINITIONS AND RESULTS FROM [T].

Definition 1.1.

Let M be a compaet Kähler manifold such that:

a) HO(M,ni)=O for O<i<dimCf\1=n~3.

b) HO(M,nn)~CwM(n,O),where wM(n,O) is a holomorphic n-form on M without zeroes

then M will be called a Calabi-Yau manifold.

Remark 1.2.

Condition 1.1.b. is equivelent to the fact that Kf\.(=A nn~O is a trivial bundle and so

c1(M)=O.

Definition 1.3.

A pai r (M, L) will be called a polarized Calabi-Yau man ifold if M is a Calabi-Y au manifold

where LEH
1
.
1
(M,R), L=[g' -ß] and (g' -ß) ia a Kähler mctric on M.

0', 0',

Definition 1.4.

A Kähler metric (g -ß) will be called a Calabi-Yau metric if
0',

Ricci(g -ß )=88 (log det(g -ß ))=0
0', 0',

THEOREM 1.5.(YAU).

Suppose that M is a compact manifold with cl(M)=O and (g' -ß) is a Kähler metric Oll M,
a,

then there exists a unique Calabi-Yau metric (g -ß) such that
a,

[Im(g' -ß)]=[Im(g -ß)]
a, a,

For the proof of this Theorem see [V].

1.6. BOCNER's principle.

Bochner proved that for every holomorphic tensor <jJ on a compact complex manifold we have

(1.6.1.) V<jJ=O

where V is the Levi-Chevita. connection of the Calabi-Vau metric (g -ß) on "f\1. So from this
0',

principle it follows that

(1.6.2.) VWf\1(n,O)=O

(For the proof of Bocncr principle see [B].)
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1.7. Review of loeal deformation theory of CALABI-YAU manifolds.See [T].

Definition 1.7.1.a.

Let M be a compact real even dimensional manifold. An almoat complex atructure on :M ia by

definition an element Ier(M,Hom(T* ,T*)::: r(M,T* 0T) such that IoI=-id. T ia the tangent

bundle of M and T* ia the cotangent bundle.

1.7.1.a. ia equivelent to the following definition.

Definition 1.7.1. b.

An almost complex structure on M ia a global splitting of the complexified cotangent bundle

Definition 1.7.2.

An almoat complex structure on :M we will call an almoat complex structure on :M with the

following propertiy: for every mE M t here exists an open neigh borhood mE Um an d C 00

functions zl , ... ,zn:U m -C such that

{dz1, ... ,dzn}

spann r(U m ,n1,Olu
m

). (Remember that dimRM=2n.)

Definition 1.7.3.

Suppoae that

n~'O+n~'Ö = n~'O +n~'O = T*0C

are two diiferent almoat complex structures on M such that at each point mEM we have:

Let

are projections with respect to n~,1 and n~,l. Let

be defined as folIows:

(p 0)-1 1)".("")1,0 r ("")1,0 Pr ("")0,1
'f'.HQ -+ H1 -+ HO

then we call cP the Beltrami differential.
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Remark 1.7.3.l.

Since r(M,Hom(O~'O,n~,l» ::::::r(M,8®og,1), where e:=(n~,1)*. Then rP can be written in the

following way:

If

n~'O+n~'O = T*0C

is an integrable complex structure, then

n~'O+n~'O = T*0C

is an integrable complex structure if and only if

lJrP=~[rP,rP]

Trivial lemma 1.7.5.

Let

{dz1, ... ,dzn }

be a basis of n~'O, then

where

OI=dzi+rP(dzi)=dzl+L cPk dz P
jj

is a basis for 0 1,0
1
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1.7.5. Tbe non-obstruction Theorem in [Ti] and [T] .

THEOREM.

Let (M,g) be a Calabi-Yau manifold with a" Rieci 'Oat metrie g. Let H1(M,0) be the harmonie

part of f(M,nO,1 08) and {1f'J1,... ,If'JN } be a basis of H1(M ,8), then there exist

and f>O such that if far each i=l,.. ,N [ti J <[ lf'J(t1, .. ,tN ) is a convcrgent power series and

lf'J(t1,.. ,tN)Ef(M,nO,1®8) has the following properties:

- 1
a) 84'( t 1,·· ,tN)= ~ [4'( t 1,··, t N ) ,4'(t 1,·· ,tN )]

b) a*4'(t 1 , •• ,tN )=O

c) 4'. ..1wM(n,O)=8\1f. . for aU tjJ. • for which i1+ ..+iN ~2.
11,···,IN 11,· .. ,IN 11,· .. ,IN

1.7.7. Let

U[ C CN:= {( t 1 , .• , t N) I [t i [< [}

Then the Kuranishi family 9; --+ U[ is defined as folIows:

Let {Wi} be a covering of ~1 and let

then on U[xM we will define the complex structure in the following way:

Let <f\t1, ... ,tN ) be solutions of the system of differential equations:

8(f 8(t'
---}; = L~~ ----iY (jl=l, ... ,oj O'=l, .. ,n)
8z 8z

By Newlander-Nirenberg TH EOREM (*) has solutions and so

{(f( (tl ,... ,tN ),··· ,(i (t1"" ,tN ) ,t }, ... ,tN }

will be holomorphic local coordinates in WixU[.(See [N-N].)
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1.8. Weil-Petersson metric on the moduli space of polarized CALABI-YAU manifolds.

Definition 1.8.1.

Let (M,L) be a polarized Calabi-Yau manifold and let $-+ U! be the Kuranishi family of M.

For each tED! for ! small enouph, L will define on I\1 t = 7I'"-I(t) a Kähler metric and so by [Y]

a Calabi-Yau metric g -ß(t) such that (Img -ß(t)]=L. So we can identify the tangent space
0', 0',

T t,U ! = H
1

( I\1 t ' 8 y )

(1.8.1.1.)

(1.8.2.)

In [T] the following formula is proved:

n(n+l)

<4't, tP t>W.P.=( -1) 2 (i)n-2f [4'tl..wt(n,O)]I\(tPtJ.wt(n,O))

M

where wt(n,O) is a holomorphic n-form on Mt such that

Wt(n,O)l\wt(n,O)=vol(g -ß)
0',

and [4't J.wt(n,O)] is a dass of cohomology of type (n-l,l).

(See also [Ti])

(1.8.3.a.) Let Mo be a Calabi-Yau manifold. We can

loeal coordinates (z~ ,... ,z!1) in such way that
I 1

wo(n,O)I.w· =dz~ 1\ ... l\dz~
'" • 1 I1

choose a covering {W.} of Mo and the
1

(1.8.3.b.) For each t=(tt, ... ,tN)EU! we define At er(Mo,Hom(T* ,T*)) in the following way:

.• 0'. -.-.0'.

At (dzl)=6t =dzl+L: ~ dZO' & At(dzl)=dzl+L: q,k dzCl'
0'=1 0'=1

Let At be the' matrix of this operator in the basis {dz1
, ... ,dzn,d;1,.. ,dzn}
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where

1.8.5. Trivia.l lemma..

If It is the complex strueture defined by the Bcltra.mi diferential ~(t), then

It=AtIoAt1

(1.8.5.) Important Lemma..

In [T] the following Lemma is proved:

Lemma: (See [Tl)

k(k-1)

1) ef A.. Aerlw. =dz[ A.. Adzi+t (-1) 2 Ak(q,(t)-L(dz[ A.. Adzi))
1 k=1

and

Ak ~(t)( u1A.. Aun):=q,(t)( u1) A". Aq,(t)(u k )

n k(k-1)

2) e; A.. AGilw. =dzf A.. Adzi+ 'E (-1) 2 Ak( q,(t).L(dzr A.. Adzi))
1 k=1

is a globally defined form of type (n,O) on ~1t.

3) Wt(n,O)l w.=el A .. A8rIW. is a c10sed form and so it is a holomorphic n-form on Mt.
1 1

DEFINITION 1.8.6.

Let n(n+1)

w(t1,· .. ,tn,t1, ... ,tn):=( -1) 2 (i)nJWt(n,O)Awt(n,O)

Mo

where wt(n,O) is defined in Lemma. (1.8.5.) 3).

THEOREM. 1.8.7. (Far the proof see [T].)

2
1) (h -ß )= - (; 10g'P) is the Weil- PetersBon met ric on U[ .

a, t a 8tß

4 n(n+1)

2) R -ß =- a log\lf ßtlt=o=( -1) 2 (i)n-1J [q,aAq,fJ-Lwt(n,O)]A[q,fJAq,v.Lwt(n,o)]
Q' ,IJv 8tQ'8t ß8t fJ v Mo
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n(n+1)

R -ß _=2(-1) 2 (i)n-1J [/\2,p0'-lwt (n,ü)}/\[,pJj/\,pv-l wt(n,o)]
0' ,av

Mo

n(n+1)

RO'ß,aß=4(-1) 2 (i)n-1J [/\2q,0'-lwtCn,O)]/\[/\2q,ß-lwtCn,O)}

~10

where [q,a/\q,ß-lwt(n,O)] means the dass of cohomology of Di(q,O'/\q,ß-lwt(n,O)).

1.8.7.1. Cor.

Weil-Petersson metric has a negative sectional curvature and moreover the holomorphic

sectional curvature is bounded away from zero.
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#2.CONSTRUCTION OF TUE TEICHMÜLLEIl SPACE OF CALABI-YAU MANIFOLDS.

Definition 2.1.

A pair (Mj/1"",/bn) will be ealled a marked Calabi-Yau manifold if

a) M is a Calabi-Yau manifold.

b) Ill.",/bn is a basis for Hn(M,Z)/TorHn(M,l).

Lemma 2.1.1. Let

MC$

1 1
oE%

be the Kuranishi family of marked Calabi-Yau manifold (t\.1j/l'''''/b ) then $--+% is the loeal
n

universal family of marked Calabi-Yau manifold (M ;'Yl""'/bn)'

Remark. Since as COO manifold $~MOX%, then if we fix a basis (/11''','Ybn) in

Hn(M,Z)/TorHn(M,l) it means that In a canonical way we fixed a basis in

Hn(M,Z)/TorHn(M,l) for every tE%. So we have a marked family $--+%.

Proof of 2.1.1. The proof is based on the following proposition.

Proposition 2.1.1.1. Let f:Mo--+M o be a holomorphic automorphism of Mo and suppose that

f*=id, where

-r*:Hn(Mo,Z) --+ Hn (Mo ,l)

then f induced the identity map on the Kuranishi space of Mo, Le. on %.

Proof of 2.1.1.1.: For the proof of this proposition see [B].

Q.E.D.

Thc end of the proof of lemma 2.1.1.

We need to prove that if

woE W

is a family oi marked Calabi-Yau manifolds, where \·V is a "small" polyeylinder, then there

exists a unique map of families:
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such that:

a) Jl(wo)=o and Jl:Mo-Mo is an isomorphism of marked Calabi-Yau rnanifolds.

b) The family q; - W is the pullback via Jl of the Kuranishi family.

Since there are no obstructions to deformations of Calabi-Yau manifodls, it follows that

the Kuranishi family is complete. This means that threre exists a holomorphic map Il

such that

a) Jl(wo)=0 ancl Jl: fvl o - Mo is an isomorp hism of marked Calabi-Y au man ifolds.

b) The family '\1- W is the pullback via Jl of the Kuranishi family.

(See [KJ, [KM} and [KNS].)

Let Jl' be another map that fulfills the conditions a) and b) as for the map Jl. From [K]

it follows that we have

Jl(W)=U(Jl'(w» for VwEW

where U is an isomorphism of the Kuranishi family such that

u:Mo-Mo

preserve the marking, i.e.

u*=id on Hn(Mo,Z)/TorHn(Mo,Z).

From (2.1.1.) it follows that O'=id on % and so Jl=Jl'.

Q.E.D.

2.2. The construction of TEICHMÜLLER SPACE of marked CALAßI-YAU manifold.

Definition 2.2.1.

Let I(Mo ) he the set of all integrable complex struetures on l\f o , then by definition the

Teichmüller 8pace of Mo is ~(~1o):=I(Mo)/Diffo(~1o), where Diffo (l\1 o ) is the group of

diffeomorphisms of Mo isotopic to the identity.

THEOREM 2.2.2.

a) ~(Mo) is a comlex analytic manifold of dimension equal to dim C H1(Mo ,0o ).

b) There exists a universal family ~-~(Mo) of marked Calabi-Yau manifolds.
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PRO0 F: Let {$ -+ CU} be aH possible Ku ran ish i farn i1ies of marked Calabi-Yau man ifolds.

From 2.1.1.1. it follows that we ean glue aH families {$-CU} by identifying all isomorphie

markcd Calabi-Yau manifolds. Take the component that contains (M O : f1 "",fb
n
)' In such a

way we will get t he u ni.versal family ~ - ~(M0) of m arked Calabi-Yau m anifolds t hat fuHills a.)

and b).

Q.E.D.

Remark 2.2.3.a.

Exactly III the same way will get the Teichmüller spaee of aH marked Calabi-Yau

manifolds, i.e. except the marking (fl '''''fb
n
)' we are fixing

LEH 2(Mo ,Z)n H1,1 (Mo,R)

aod L is the imaginary dass of a cohomology of the part imaginary of a Käler metrie on ~Io'

2.2.3.b:

Let ~(Mo)( ) be the Teichmüller spaee of aB marked polarized Calabi-Yau manifolds,
fl ""'fbn

then on ~(M ) we ean define the Wcil-Pctersson mctric.
O,fl,· .. ,rbn

2.2.3.e.

From now on we wH consider only marked polarized Calabi-Vau manifolds. The marking dass

L E H2 (!vl 0 ,Z)nH 1,1 (Mo ,H).
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#3. TOTALLY GEODESIC TWO DIMENSIONAL SUBMANIFOLDS IN fr(Mo ).

DEFINITION 3.1.

Let ~1 be aRiernan nian man ifold and let S be a eOD nected sub manifold of ~1. Let pE rvr. The

aubmanifold S ia said to be geodeaie at p if eaeh ~1-geodeaic whieh ia tangent to S at p ia a

eurve in S. The aubmanifold S is called totally geodesie if it is geodesie at eaeh of its point.

DEFINITION 3.2.

Let (Mo ,(gaj3)) be a Calabi-Yau manifold with a Ried flat matrie (gaß") such that

[Im(gaß )]= LEH 1, l(rvlo ,Z)

and L is a fixed dass of eohomology.

Let ,EH1CMo ,6o ). From 1.7.6. it follows that , defines an one-dimensional submanifold

,(t )C~(~1o)(8
1

, ••• ,8
bn

j L)

where (81,... ,ob ) ia a basis of Hn(Mo,Z)/Tor. The point ,(O)=oE~(Mo)(f: f:. L)
n uI"",ub n '

eorresponda to Mo. The eomplex structure for each tE,(t) ia defined by

(3.2.1.a.) ,(t)='1 t+'2t2+ ....+'ntn+ .. Ef(Mo,ng,100o) .

(3.2.1.b.)

(3.2.1.c.)

Since the Weil-Petersson metric is a Kähler one it implica that

(3.2.1.d.) ,. -lwM (n,o)=8,p. for i>l (See [Ti] and [Tl.)
10 1

From Kuranishi theory it followa that ,(t) ia uniquely defined. (See [KM].)

THEOREM 3.

,(t) ia a totally geodesie submanifold in ~(Mo)(81,... ,Obnj L)' where ,(t) ia defined as in

(3.2.1.a.), (3.2.1.b.), (3.2.1.c.) & (3.2.1.d.)

PROOF OF THEOREM 3:

Let D be the Levi-Chevita connection of thc Wcil-Pctcrsson mctric on ~(~1 )
o (o1 .... ,ob

n
; L)"

(3.3.)

where'8 ia the usual 8-operator.

REMARK 3.4.

n. (t)t(t)=O implies that ,(t) is a totally geodeaic aubmanifold in ~(Mo)(8 6. L)'
, 1'···· bn '
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REMARK 3.5.

Since ...,.(t) is a complex analytic suhmanifold in ~U'l'tO)(61,... ,6bnj L) it follows that

(3.5.1.) Dt(t) t(t )=0 <=> D~'(t) t( t )=0

LEMMA 3.6. D~'(t)t(t)=O for ...,.(t) defined as" above.

Proof of 3.6.:

The proof of LEMMA 3.6. is based on the following formula:

(3.6.1.) d~dt Ilt( t )11
2
= IIDt'(t).y( t) 11

2
- 2R-y(t) ..y(t), r(t),.y(t) I1 t( t) 11

2

where R· . is the holomorphic sctional curvature of the Weil-PetersBon metric.
.y(t),r (t), r(t),r (t)

(For the proof of (3.6.1.) see [G].)

If we prove that at each point tE...,.(t) we have

(3.6.2.)

then Lemma 3.6. follows and hence Theorem 3 will be provcd.

Proof of 3.6.2.:

The proof will he hased on Borne results proved in [Ti] and [T]. "Ve will remind that in [T] it

was proved that:

(3.6.2.1.)

where

(3.6.2.2.)
n(n+1)

,p(t;t"):=( -1)~ (i)n-lJ wt(n,o)Awt(n,o)

Mo

We need to remind the definition of wt(n,o). \Ve know that (1.8.5.) implies that we have a

family of Calabi-Yau manifolds $...,.(t) -+...,.(t). According to [T] we have also a family of

holomorphic n-forms wt(n,o)EHO($ (t),Offi / (t) and locally :
...,. ...,.( t) ...,.
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(3.6.2.3.)

where

Wt( n,o) Iv.=( .Ät dz 1) /\ ... /\( .Ätdz")=
1

TI k(k-l)

dz1/\ .. /\dz"+E (_1)-2-(/\ k,(t)..l(dz1/\ ... /\dz"»)
. k=1

00

wo(n,o)lu. =dz1/\ ... /\dz"j 'Y(t)=E '0 t O Er(~10,Hom(n~'0 ,Og,l))
I n=1

/\ k,(t) E r(M o ,Horn( /\ k o~'o, /\ kOg,l»

.At is defined as folIows: .Ät :=id+'Y(t)Er(Mo ,Hom(T*M0 0C,T*Mo 0C)).

PROPOSITION 3.6.2.4.(Sec [Tl).

Let ,( t) be defined as follows:

(3.2.1.a.) ,(t)='1 t+j2 t 2+ .... +'Yt"+.. E r(M o ,Og,10 8 0 )

(3.2.1.c.) 'Y(t)='1 t+~Gß*[,(t),'Y(t)] ; 'I EH1(M o ,0o )

Then

1) llt(t)1I 2 = d~~TtJ;(t;t) for all t for which 'Y(t) is defined.

2) d~dt llt(t )11
2

1t =0= -2Rt (0),-=; (0), t(0),7(0) Ilt(0) 11
2

•

REMARK.3.6.2.5.

A) It was proved in (Ti] and [T) that if ,(t)='Yl t+~Gß*[,(t),,(t)} ; 'Yl EH1(!\10 ,8o ) thcn

ßA(t)- ~(A(t),A(t)}=o

B) In [T} it is proved that

d~~ Ilt(t) 11
2

It=0= -2Rt (0),1(0), t(O).-=;(O) I1 t(o) 11
2

is equivalent to the following fact: In the Taylor expension of the cohomology class (wt(n,O)}:

(*) [Wt( n,O)]=[wo ( n,O )]+t[wo( n-l,1 )}+t2[wo( n-2,2)}+ ...

the coeficient in front of t 2 does not contain classes of cohomology of type (n-l,l).
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00 °1PROPOSITION I. Let ,(t)=L "'IktkEf(Mo,f2o' 000) bc such that:
k=l

- 1 -* 1 na) 8,(t)=::![,(t),,(t)], b) 8 ,(t)=O, c) Hr(t)="'Ilt. Let wt(n,o)=(.Atdz )A ... A(.Atdz ) be tbe

holomorphic n-form defined as in (3.6.2.1.). Then we have the following formulas:

n k(k-l)

[wt(n,o)]=[wo(n,o)]+L (-1)~ tk[A k'll- wO(n,o)]
k=a

where if w is a closed form on Mo, then [w] denote the class of cohomology of w.

Proof of Proposition I:

It was proved in [Ti] and [T] that if conditions a), b) and c) are fulfilled then for k~2 the

following formula is true:

(La)

On thc other hand from thc definition of .At it follows that we have on the leval of forms:

(I.b)

Sublemma.Suppose that among i1 , •.• ,i k there exists 1:SJ:5 k such that i·>2J- thcn

H«'i A.. A'j )l-wo(n,o»=O.
1 k

Proof of thc Bublemma:

\Ve know that if ij ~2 then 'i.l-wo(n,o)=cJ,h .. From here our sublemma follows directly.
J J

Q.E.D.

Proposition I follows directly from tbc sublemma, thc condition "'11 EHl(~10,eo) and formula

(Lb.).

The end of thc proof cf thc THEOREM:

Q.E.D.

PROPOSITION H. In the Taylor expension:
n (k)

(3.6.2.6.) [wt(n,O)]=[w t (n,O)]+ L (t-to)k[wt ]
o k=l 0

the coefficient [wi2
)] in front of (t-tO)2 does not contain classes of cohomology on l\1 t of type

o 0

(n-l,I), where wt(n,o) is defined as in (3.6.2.1.).

Ir we prove PROPOSITION II then THEOREM 3 will be proved.
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PROOF OF PROPOSITION II:

In order to prove PROPOSITION 11 we need to prove the following fact:

PROOF OF THE FACT:

Suppose that [wto]nHn-l,l(Mto,C)=;fO. Let [wr)=[wto(n-l,l)]+ ..on ~1to' Let

k " 1·i n-jH[wt (n-l,l)]lu=~1/J·· k t 8 t 1\ .. 1\0 t 1\ .. 1\0t 1\0 to .. IJ" 0 0 0 0 0
IJ

where eto=Ato dzi and wo(n,e)J U=dz11\ ... l\dzn. In the appendix of [T] the following Lemama

was proved:

LEMMA ([T].). Let wo(n-l,l)=LtPi .dz11\ .. l\dz i 1\ .. l\dz ll 1\;:rzJ be a harmonie form, then
.. J
IJ

" 1 ·i n ---1wt (n-l,l)=~tPi .(At dz )1\ .. I\(A t dz )1\ .. I\(A t dz )1\.At dz-
o ". J 0 0 0 0

IJ

represent a non-zero class of eohomology on M to ' (Here A to is defined as above.)

From this LEMMA it follows that if we consider the form H[wf
o

(n-l,l)] on Mo, then we

have

(s.3.2.) H[wf (n-l,l)]=wo(n-l,l)+ .... on Mo
o

where w to (n-l,l)=;fO. From (s.3.2.) it follows that on Mo we have:

(8.3.3.)
k

Lk[wt(n,o)]=[wt (n-l,l)]+O(t-to ), where [w t (n-l,l)]ji:O
dt 0 0

(s.3.3.) follows from the formula:

(s.3.4.) dk k---r: [wt ( ll,e )]=[wt (n-l,l )]+O(t -to).
dtK 0

Formula (s.3.3.) contradicts PROPOSITION I. So PROPOSITION n is proved.

Q.E.D.

Notice that from REMARK 3.6.2.5.B it follows that PROPOSITION 11 implies the following

formula:
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= - 2Rt (to ) .7 (to ) .t (t
O

) ,7 (to ) I1 i' (t o ) 11
2

and it was already pointed out (Sec (3.6.1.)) that (**) implies that for each point toE,(t) we

have

n1,O '( )-0
i'(to )' to = .

So ,(t) is a totally geodesie submanifold in ~(Mo)( C C 'L)'
ul,,,,ub n '

Q.E.D.

o
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Then denote

#4 TUE COMPLETENESS OF THE WEIL-PETERSSON METRIC.

4.1. LEMMA.

Let r(t) be defined as follows:

(3.2.1.a.) r(t)='Yl t+j2t2+....+rtn+.. E r(Mo ,ng· 1 ®8o )

(3.2.1.b.) 8r(t)=~['Y(t),'Y(t)]

1 -* I(3.2.1.e.) r(t)=rlt+~G(} [r(t),'Y(t)]; rlEH (Mo,eo )

Then r(t) is defined for all tEC if Mo is a Calabi-Yau manifold, i.e. r(t)Er(Mo ,ng,1®6o ) for

all tEC.

PROOF OF 4.1.:

The proof of this lemma is based on the proof of the eonvergence of the series:

r(t)='YI t+j2 t2 + ....+'Ytn + ..

in the Holder norm for Itl <€. We will recall that proof.

DEFINITION 4.1.1. Let {Uj } be a covering of !\10 Buch that {zJ ,.. ,zj} are loeal coordinates in

U. and wo(n,o)lu =dz~I\ .. l\z~. Let 4'Er(M o ,ng,1®6o ), Le.
J j J J

n >'( ()) >. n >.-0'
tP= L,p· A ' 1/1. = L 1/1. a dz

. 1 J (}z J 1 J,
J= j 0'=

2n
Let kEZ, k>O, O'ER, 0<0'<1. Let h=(h l ,· .. ,h n)EZ2n , hi ~O, L:hi=lhl, where n=dimC~'fo.

i=1

nh (() )h1 (() )hn 0' 20'-1 . 0'. = -1 "'"'O:'Jl: , x· =x· +IX.
J 8xj (}Xj J J J

Then the Hölder norm is defined as folIows:

sup
y,zEU ,ß,>'

h >. h >.ID. ,po -(y)-D. ,p. -(z)1
J J,ß J J,ß

page20



From the following apriori estimates:

11[4>,1/JJll k ,a 5CII4>ll k+1,a 111/Jllk+1,a

IIG4>llk a5CII4>llk-2 0', ,
1I8 *4>1I5 C II4>ll k+1,a

where C depenends only on k and 0' but not on 4> and t/J. Kuranishi obtained that if
00

,(t)~L: ,n tn , where 8,(t)=~[,(t),,(t)]and a*,(t)=O,
n=O

then ,(t) converges in the norm 11 Hk a' It is immediate that I(Z,t) is Ck since the series,
converge in the norm 1I Il k a' To obtain that I(Z,t) is a COO one refcrs to the regularity,
theorem for quasi-elliptic operator of Douglis and Nirenberg. (See [DN].). More precisely

Kuranishi proved that
ß ~ ).JJ JJ

111( t) 11 k,a < 16), L.,.. -:-:2 t
JJ= 1JJ

where the sign <: means that
ß ).n

(4.1.2.) 111nllk a:5m~
, n

6 and >. are same positive constants which depcnd in our case on the Calabi-Yau metric.

(4.1.3.)

Let

f() ß ~ ).n n
t =16>.L..,,"2t ,

n=1 n

then f(t) has an analytic continuation for all tEC\{s}, where S is a finite

set in C. (The continuation is as a multivalued complcx analytic function and it is univalent in

C\(1.00))

Proof of 4.1.3.:

Let x=>.t and let g(x)=&f: ~. Clearly
0=1 n

, _ ß ( x x2 xm-1 )g (x)-m 1+2+"3+"+111+"

, _ ß ( x 2 x 3 x m )On thc other hand we have xg (x)-16>' x+2 +;r+"+lli"'"+" ,
The last equality implies that

x2g"(x)+xg'(x)-1~>'(l":x -1)=0
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From the theory of differential equations of second order we get that g(x) is a complex

analytic funetion on C\{S}, where S is a finite set of complex numbers. So this is truc for

f(t)=g(At). (See (WW].) Q.E.D.

From (4.1.3.) and the fact that

it follows that:

4.3.1.1. Cor.. "'(t)EC OO (M o ,Og,1000 ) for tEC\{S} where S is the set of the singular points of

the equarion

. x(xg'(x)),_L(_I_)=O
16,,\ I-x

End of the proof of 4.1.:

From (*) it follows that the set of the singular points of the differential equation (*) consists of

at most two points x=O and x=1. When x=O then t=O since x=.,\t so A(t) is a weil defined

section of r(Mo,Hom(Og,l ,O~,o)) namely "'(0)=0. On the other hand we know that

and so "'( t) is weil dcfined at all points tE C. 4.1. is proved.

Q.E.D.

REMARK. From 4.1. it follows that "'(t) is defined for all tEC.

4.2. LEMMA.

Let $"'(t) .!.."'(t) be the family of the integrable structures on CxMo defined by "'(t). Then

on 1r-
1(t)=M t for aB tEC there exists a holomorphic n-form Wt(n,o) which has no zeroes.

PROOF OF 4.2.: In the proof of 3.6.2. we introduce an operator

.At=id+"'(t) ECCO(Mo,Hom(T* 0C,T* 0C)

and then according to [T] .At defines a family of holomorphic n-forms wt(n,o) where

wt (n,o) Iu=(.Atdz1
) /\ .•. /\ (.Atdz n)

It is easy to see that (Atdz1
) /\ .•• /\ (.Atdz n) is zero at some point z EU irf the vcctors {.At dzi ,

i=1, .. ,n} are linearly independent. But this is impossible since the operator .At=id+"'(t) has

rank 2n.
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(4.2.*.) So Wt(n,O) is different from zero für all tEe.

So in order to finish the proof of the LEM MA we need to prove the following

PROPOSITION: [ ]id 'j'(t)
PROPOSITION 4.3. Let At := _. , where ")'(t) is defined as in PROPOSITION I on p.

'j'(t) Id
17, then

a.) det At is areal analytic function of Ret and Imt, Le. it does not depend on zEi\1 0 ,

b) for each tEe detAt ;eo.

PROOF OF PROPOSITION 4.3.a.:

IDEA OF THE PROOF:

We will prove that

d(vol(g j3(t))
d~' 0, where (ga,ß(t)) is the CALABT-YA U metricB

such that Im(g -ß(t))=L. The proof of the above formula is based on same results proved in
0',

[S] and [N].

Next we will prove that for Ricd flat metrics we have

vol(g -ß(t))=Jlt(n,O)I\Jlt(n,O) , where Jlt(n,O) is some holomorphic n-form on i\1 t .
0',

Combining these two formulas we get that det(At ) does depcnds only on Ret and rmt.

Step 1. From the definitjion of detAt and since {e~ :=Atdzi} we get that:

(4.3.1.)

This formula is true since wt(n,O)=et 1\ ... 1\81;. Remember that wt(n,O) is a globaly defined

holomorphic n-form on I\1 t if wo(n,O)IU :=dZl A.. Adz ll
.

Step 2. Let {ga,j1(t)} be the Calabi-Yau mctric on Mt such that [Im gO',ß(t)]:=L, then

(4.3.1.)
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(4.3.2.a.)

PROOF OF STEP 2:

From the Bochener principle, Le. V tWt( n,O)=O, where V t is the Levi-Chevita conneetion of

the Calabi-Yau metric {ga,j3(t)} and from Vtvol(ga,ß(t))=O we get (4.3.1.).

Q.E.D.

Step 3.

{
'} 10For each t we can find a basis e1 of 0t I such that:

a) <si,eit >=c(t)8iJ , where < , > 18 thc scalar product delined by the Calabi-Yau metric

{go:,ß(t)}.

PROOF OF STEP 3: Step 3 follows directly from Step 2.

Q.E.D.

4.3.2. REMARK.

Since "'{(t)Er(I\10 ' Hom(n~'O, ng· 1
)) and "'{(t)="'{lt+"+'Yntn+...is such that a) a*'Y(t)=O & b)

H("'{(t))="'{lt we will suppose that

00 .. .

In = L "'{n~eJ 0(01)*
o J

4.3.3. DEFINITION. We will define Bt E r(i\10 ,Hom(T*(Mo ),T*(I\1o )) as folIows:

Bt(e~)=e~ for i=l,... ,TI

where e~ are defined as in Step 3.

Step 4.

PROOF OF STEP 4: In {TJ the following formula was proved:

Step 4 follows dircctly from (4.3.4.) and the fact that Bo=id.

Q.E.D.
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STEP 5: The followimg formula is true:

(4.3.5.) wt (n,O)=B t (86)A .. ABt(eg)=

=8t
1 A.. /\8t

n +(-l)i(t-to)("'..,.i-;-e{ A8t A.. /\8 t
i .. /\8t

n )+O(t 2
)

. 0 0 4-:' IJ 0 0 0 0

where ..,.iJ are the same as in (4.3.4.). IJ

PROOF OF STEP 5:

Wt(n,O)=Bt(Bi~efo)A .. /\Bt(Bt~ 8~o)

Elementary straitforward caculations show that in the basis (8t
o

,.. ,e~o ,eio ,.. ,e~lo) the matrix

of the operator Bt-to=Bt Bt~ is given by:

(4.3.5.a.) B t _t (e~ )=8~ +(t-to)(L..,.i -;-e{ )+higher order terms.
o 0 0 .. IJ 0

IJ

(4.3.5.) follows direetly from (4.3.5.a.) and (4.3.4.).

Q.E.D.

STEP 6.

The form

is a harmonie form of type (n-I,I) on Mto with respect to the Calabi-Yau metrie (ga,j3(to ».

PROOF OF STEP 6:

We need to prove that

a) d(w t (n-l,l»=O and
o

b) ato(wto(n-I,l»=ü, where 8to is the eonjugate of 8 to with respeet to the Calabi-Yau

metric (g -ß (to »·
a,

Proof of a:

Sinee Wt(n,O)=Wto(n,0)+(t-to)(wto(n-l,1»+O(t2) and Wto(n,O) are closed froms it follows

that d(wt (n-l,I»=O
o

Q.E.D.
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Proof of Step 6. b:

The proof of b) ia based on the following two facts:

Fact 1.(For the proof see [Tl)

8uppose that M is a Calabi- Yau manifold with a Calabi- Yau metric (g -ß)' Let reM ,n1
,0@s)

et',

and r(M,nn-1.1) be the Hilbert spaces with the induced L 2 norm by (g -ß)' .Let w(n,O)#O be
et',

the holomorphic form such that Ilw(n,0)1I 2 =1. Let

i:r(M ,01,0 09) --t r(tvl ,On-1,l)

be defined as followa i( rP) :=rP.L w( n ,0) l then i is an isometry of t he 11 ilbert spaces which

preserve the Hodge decompositions of both spaces, Le.

Fact 2.

The following formula holda on Kähler manifolds:

.-*lOt =Ot At - At 8 to 0 0 0 0

where At w:=L* .Lw and
o n

L*:= i "(Set')* A(Set' )*
C(to)~ t o t o

0'=1

where (Gf
o

)* are dual to e~o and {er
o

} are defined as in Step ?(Sce [KN].)

From the definition of ,(t) it follows that 'I ia a harmonie form with coefficients in e on .Mo .

From Fact 1 it follows that

wo(n-1,1):=r1 .Lwo(n,O)=2:(_l)i-l r i -:-~o Ae~ 1\ .•Ae~ .. Asg)
. . 1J
lJ

is a harmonie form of type (n-I,l). Moreover wo(n-I,O) is a primitive form on Mo. (See [TJ.)

This means that

(4.6.1.) Aowo(n-I,I)=O<:?L:( _l)i-
j
,i -;-+2:( _I)i-j -1,i -:-=O( for j fixed)

. . IJ . . 1J
I<J I>J

From the definition of At w t (n-1,1), the faet that
o 0

<St ,sf >=C(to )6 -ßo 0 Q,

page26



and the explicit formula in Step 5 for wt (n-l,I), i.e.
o

(4.6.2)

The last equality follows from Step 5 and (4.6.1.). (4.6.2.) Shows that ßtow to (n-l,I)=ü.

Q.E.D.

5tep 7.

Let (g -ß(t)) be the Calaby-Yau mctrics on 9,; (t)-+r(t) such that [Im(g -ß(t))}=L then
0', r 0',

vol( g -ß(t))=vol( g -ß(ü)=wo (n,ü)l\wo (n,ü)
0', 0',

Proof of 5tep 7:

In [N] it is provcd that if M is a Calabi-Yau manifold and (g -ß) is a Calabi-Yau metric on M
0',

and rl EH 1(M,8), then the following formulas hold;

(4.7.1.) r ....... =r .......
1,1 J 1,J 1

F rom (4.7.1.) it followB immediately t hat

(4.7.2.)

for each t o ' (See [N] or [5].). From here and using Step 1 we obtain that det(A t ) depcnds

only on t, Le. det(A t ) is a function only on t and t. Indecd from (4.7.2) it follows that

(4.7.3) vol( g -ß(t))=vol( g -ß(ü)=wo (n,ü)l\wo (n,ü)
0', 0',

and so since wt(n,ü)l\wt(ü,n)=C(t)vol( g -ß(t)), where C(t) depends only on t. From (4.7.3.)
0',

we see that C(t) is equal to det (At).

Q.E.D.

The end the proof of part a:

From Step 1 it foBows that det(At ) is a function only on t and t for ltl <f. Since as it was

proved that r(t) is defined for a11 tEe we get that det(At ) is defined for aB tEe. On the other
-* . -hand we know that & r(t)=O. From Olle of the definitions of 8*=( -i)(1\8-81\) and the
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4.5.2. Proposition.

The map exp:C--+,(t), where exp(t)=r(t) is an one to one map betwcen C

Proof of 4.5.2.:

We have already shown that for eaeh tEC ,(t)ECoo(Mo,Hom(n~'o,Og,l) and it defines a new

integrable eomplex structure on Mo. From the formula for the dass of thc eohomology of

wt(n,o) defined in 3.6.2.1.

n k k
. [wt(n,o)]=[wo(n,o)]+L t [/\ 'l-lwO(n,o)]

k=l

we get that if t l :;ft 2 , then [Wt (n,o)]:;f[[Wt (n,o)].
1 2

So the map exp is one to one an etale. Here we used the loeal ToreIli theorem.

Q.E.D.

4.5.2.1.

Sinee exp is an one to one complex analytie map between C and ,(t) we get from the

completeness of C that ,(t) is also eomplete. lIere we use (ii) of 4.5.1.. Let a be any real

tangent vector to fr(M o ) at the point 0 corresponding to Mo. Let 10 be thc eomplex structure

operator on fr(M o ), then we will have that

a+ila EH 1(1\1 0 ,eo )

Sinee Hl(~10,eo) ean be identified with the complex tangent space at oEfr(1\'lo ). Let '1=

a+iIO' and let

We proved that ,(t) is a totally geodesic complete submanifold in fr(M o ) so the geodesie a(t)

in fr(M o ) eorresponding to the direction a will be for all t in r(t). Since ,(t) is complete with

respect to the Weil-Petersson mctric we get that a(t) has an infinite length. This is condition

(iii) of 4.1..

Q.E.D.
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defines a new complex structure on Mo. All these complex structures we will denote by 1:'(l\1o )

and we will call it the extended Teichnüller space.

REMARK 4.4.1..

We have a family of marked complex analytic manifolds 1r:~--+fr(l\10) and each fibre has the

properties that it has a holomorphic n-form without zeroes. It is not very difficult to prove

that there exists an open and everywhere dense subset U in fr(l\1 0 ) such that for each tED

1r-1(t)=i\1 t is a Calabi-Yau manifold.

REMARK 4.4.2 ..

The function \11 ( t 1,.. ,tN;t1,.. ;tN) defined in (1.8.6.) is' defined on the whole fr(rvl o ) and

moreover it is real analytic in

(ltI12, ... ,ltNI2).

This follows from the definition of \II(t 1 , .• ,tN;t 1 , •. J N). From Theorem 1.8.7. it follows that the

Weil-Petersaon metric is defined on the whole fr(Mo), since from [TJ it followa that

log'lr(t1,··,t N;t1,··;tN)

ia the potential of the Weil-Petersaon metric.

THEOREM 4.5.

Thc extended Teichmüller space fr(i\1 o ) is complete with respect to the Wcil-Petersson metric.

PROOF OF THEOREM 4.5.:

The proof is based on the following theorem proved in [HJ:

THEOREM 4.5.1.:

Let l\1 be a Riemannian manifold. The following conditions are equivclent:

(i) l\1 is complete, (ii) Each bounded closed subset is compact, (iii) Each maximal geodesic in

M has the form I'M(t),-oo<t<oo. (Has an infinite length.)

We will USe condition (iii) of 4.5.1.. If we take any 1'1 EH 1(Mo ,0o ) and we define

00

r(t)=E I'n t n , where ,(t)=rlt+~ "8*G["Y(t),,(t)]
n=l

We know that r(t) ia a totally geodesic submanifold defined for all tEe. \Ve will prove that

,(t) is a complete with respect to the \Veil-Pctersson metric on r(t).
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THEOREM proved in [DK] which state that if (g -ß) is a Cala1.>i-Yau mctric thcn with
0',

respect to any local holomorphic coordinates (zl, ... ,zn) of an open subset U C!\10 g -ß is areal
0',

analytic functions with respect to (Rez1, Imz1
, •• ,Rezn

, Imzn
). So from this result and the

standart Caushy-Covalevskaya theorem we get that aIl the elements of r(t) are real analytic

functions of (Rez1, Imz 1
, •• ,Rezn, Imz n, Ret, Imt). So from here we get that dct(A t ) is areal

analytic function of (Rez1, Imz 1, .. ,Rezn, Imzn, Ret, Imt). This shows that on UxC det(At )

depends only of Ret and Imt since this is true in an open subset of UxC. So part a). is proved.

Q.E.D.

PROOF ofb:

The proof of b is based on the following trivial remark:

REMARK: Suppose that for each tEC we have:

(4.7.4.)

n(n-l)

<wt(n,O),wt(O,n»:=( -1)----y- (i)nJwt(n,O)/\wt(O,n»O

Mo

then we will have that det(At)~O.

PROOF of 4.7.4.: In order to prove (4.7.4.) we will deline

O:=.{uEPHn(Mo,C)1 <u,u>=O and <u,U> >O}

Then we can define a map 7T:r(t)-+O in the following manner: for each tEr(t) 7T(t) will be the

line in Hn(Mo,C) spanned by wt(n,O). \Ve already know that [wt(n,O)]#O. For example this

follows from the formula already proved in PROPOSITION I on page 17:

n k(k-l)

[wt(n ,0 )]=[wo(n,o)]+L (-1) 2 t k
[/\ k rl J..wo(n,o)]:

k=a

From this formula we get immediately that the map 11" is an injection and since ~ #0 for each

tEr(t) we get that 7r"(-y(t))CO. So this proves b.

Q.E.D.

4.4. DEFINITION.

Let {~i} for i=l, .. ,N be an orthonormal basis in H1 (Mo ,8o )' From LEMMA 4.2. it follows
Nthat for each (t1, ... ,tN)EC
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defines a new complex structure on Mo' All these complex structures we will denote by fr(~1o)

and we will call it the extended Teichnüller 8pace.

REMARK 4.4.1..

We have a family of marked complex analytic manifolds 7T:~-fr(~10) and each fibre has the

properties that it has a holomorphic n-form without zeroes. It is not very difficult to prove

that there exists an open and everywhere dense su bset U in fr(~10) such that for each tE U

7T- 1(t)=Mt is a Calabi-Yau manifold.

REMARK 4.4.2..

The function 'IT(t1,..,tN ;t1,..,t N ) defined in (1.8.6.) is defined on thc whole fr(M o ) and

moreover it is real analytic in

(lt l l2 , ..• ,ltN12 ).

This follows from the definition of \lf(t 1 , •• ,tN,t1,.. ;tN)' From Theorem 1.8.7. it follows that the

Wcil-Petersson metric is defined on thc whole freMo), since from [T] it follows that

log'IT(t1,.. ,tN;t1''',1:N)

is the potential of the Weil-Petersson metric.
I

THEOREM 4.5.

The extended Teichmüller space fr(~1o) is complete with respect to the vVeil- Petersson metric.

PROOF OF THEOREM 4.5.:

The proof ia bascd on the foHowing theorem proved in [ßJ:

THEOREM 4.5.1.:

Let M be a Riemannian manifold{ The following conditions are equivelent:

(i) M is complete, (ii) Each bounded closed subset is compact, (iii) Bach maximal geodesic in

M has the form 1'M(t),-oo<t<oo. (Has an infinite length.)

I
We will use condition (iii) of 4.5.1.. Ir we take any 1'1 EH1(M o ,8o ) and we definc

00

1'(t)=L: 1'n tn , where 1'(t)=1'lt+~8*G[;'(t),1'(t)]
n=l

We know that 1'(t) is a totally geodesic submanifold defined for aH tEe. vVe will prove that

1'( t) is a com plete with respect to t he \'Veil- P etersson metric on l'(t ).
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4.5.2. Proposition.

The map exp:C--+,(t), where exp(t)=,(t) is an one to one map between C

and ,(t)Ci(Mo ).

Proof of 4.5.2.:
I 00 10 01 .

We have already shown that for eaeh tEC ,(t)EC (Mo,Hom(Oo' ,00 ' ) and lt defines a new

integrable eomplex strueture on Mo. From the formula for the dass of the eohomology of

wt(n,o) defined in 3.6.2.1.

we get that if t 1 :;6t 2 , then [Wt (n,o)]:;6[[Wt (n,a)].
1 2

So tbe map exp is Olle to one an etale. Here we used the local Torelli theorem.

Q.E.D.

4.5.2.1.

Sinee exp is an one to one eomplex analytie map between C and ,(t) we get from the

eompleteness of C that ,(t) is also eomplete. Here we use (ii) of 4.5.1.. Let a be any real

tangent veetor to fr(M o ) at the I,>0int ° eorresponding to ~10. Let 10 be the eomplex structure

operator on fr(M o ), then we will have that

a+iIa EH1(Mo ,80 )

Sinee H1(Mo ,8o ) ean be identified with the eomplcx tangent spaec at oefr(Mo ). Let '1 =

a+ila and let

We proved that ,(t) is a totally geodcsie eomplete submanifold in fr(~1o) so thc geodesie a(t)

in fr(M o ) eorresponding to the direction a will be for aH t in ,(t). Since ,(t) is complete with

respeet to the Weil-Pctersson metrie we get that a(t) has an infinite length. This is eondition

(iii) of 4.1..

Q.E.D.
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#5. TORELLI PROBLEM FOR CALABI-YAU MANIFOLDS.

5.1. Variations of HODGE structures. (See [G].)

Let X and S be complex manifolds and let f:X -+ S be a complex analyric map between

those two manifolds. We will consider both f:X-+S aB analytic fibre bundle and as topological

fibre bundle. Fix a base point So ES and consider the action of 11"1 (S) on the cohomology

Hn(S,Q). If LEH2CMso,Q) is the cohomology class of the hyperplane section relative to the

given projective embedding:

XCpNxX

1 1
S S

then L will be invariant under 1I"1(S), Thus for n:5m=dimCf\.1so we may define the primitive

cohomology pn(Mao,Q) to be the kernal of

Lr+1 'H m- r (M C)-+H m+r+2(M C). So' So'

Becanse of Lefschctz decom posi tion :

(4.1.1. )

which ia 7r1(S)-invariarit direct surn decomposition we need to consider only the primitive

cohomology.

Let E=pn(I\1so 'C) and let IE-+S be the complex vector bundle, \vith constant transition

functions, associated with the action of 11"1 (S) on E. There is the usual flat, holomorphic

connection:

D:O(E) -+ n§(E)

which olle has on any such vector bundle associated to a representation of the fundamental

group. In fact we have a ahort exact aheaf sequence:

(5.1.2.) 0 -+ ~(lE)-+ 0S(lE)En§(lE)

where the sheaf e(lE) ia just the aheaf of locally constant aectious of IE and it has the following

interp ret ation:

Let Rnf*(C) be the usual Leray cohomology sheaf of

f:X-+S,

which is the sheaf arrising from the presheaf:

U -+ lIner l(U),C)
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where U runs through the family of all open sets of S. \Ve will define the Leray primitive

eohomology sheaf to be" Pf*(e) to be the kernal of:

Lr+1:Rn_r f*C -+ R m+r+2f*C

Then e(E) is just Pt (C).

The fibre of ES ia the veetor spaee pn(Ms,Q) and as such has thc structure of the primitive

eohomology spaee of a Kähler manifold. (Sec [G].) Translating this structure into on the flat

bundle E-S, we find the following:

I) A flat eonjugation e-e (eEIE)

11) A flat non-degenerate bilinear form

(5.1.3.) Q:E0E-C, Q(e,e')=( -l)nQ(e',e)=JLm -n I\cl\e'

ealled the Bodge bilinear form. M 8

III) A filtration of E by holomorphie aubbundles

(5.1.4. ) F O
( M s ) CF1( 1\1 5 ) C .. ;CFn ( 1\1 s )=E

where

F q
(1\1 5)=p TI ,0 (M5)+"'+ pn-q ,q (M s )

and

(IV)

(5.1.5.)

where

pn-q,q(Ms)=Hn-q,q(Ms)npn(Ms,Q)

Thc Bodge filtration i5 isotropie, Le.

(Fq ) ..l=Fn-q-1

(F
q

) ..l={eElEj Q(e,F
q

)=O}

(V) Thc bilinear form (5.1.3.) ia real (i.e., Q=Q) and if we let

r n
-
q,q =Fqn~=rqn(lFq-1)..L

then we have the Hodge decomposition, which is a COO direet sum decomposition:

(5.1.6.) E=~ rq,n- q

q=O

(VI) The Riemann-Hodge bilinear relations:

Q\Fn-q,q ,flR7)=O(q :;fr)

(5.1.7.)

are valid.
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(VII) The infinitesimal period relations. (See [G).)

(5.1.8.) D:OS(Fq)....O§(lF
q+1

)

holds.

Definition. 5.1.8.

We shall call a data given by E=(E,D,Q,{F
q

}) and by I-VII a variation of Bodge structure.

# 5.2. Classifying spaces for HODGE STRUCTURES.

Let E be a complex vector space and let

O<ho~hl~····~hn_l<hn=dimc

be an increasing sequence of integers which is self-dual in the sence that

h 1=hn -hqn-q-
We also have a non-singular bilinear form

Q:E0E-C Q(e,e')=( -1)nQ(e',e)

Consider the set D of all filtrations

FOCFICF2C ... CFn-1CFn=E, dimC=h q

which satisfy the first Riemann-Hodge bilinear relation

(Fq ) 1.=Fn-q-1

or equivelently

Q(Fq ,Fo-q-1)=O

We say that such filtrations are isotopic or self-dual. In [G] the following proposition is

proved:

Proposition.

:ö is in a natural way a projective and smooth complete algebraic variety which is a

homogeneous space

D=G/B
of complex Lie group G divided by a parabolic subgroup B.

Suppose that E=ER 0C and Q is real on the real space ER' Define the Hermitian inner

product < , > on E by

<e,e'>=( -l)nQ(e,e') (e,e'EE)
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(5.2.1.) Definition.

Den will be ealled the period domain if D eonsists of aU isotropie filtrations:

FOe ... eFll=E

whieh satiafy the seeond Riemann-Hodge bilinear relation:

(_1)n< , >:EqxE
q

-+ C ia positive definite, where

Eq :={eE F
q I <e,Fq-1>=O}

In [G] the following Proposition is proved:

Proposition. D ia an open eomplex aubmanifold of Ö whieh ia a homogeneoua complex manifold

D=G/H

of a real, simple non-eompaet Lie group G divided by a eompaet subgroup H.

5.3. Notation.

The period domain of a Calabi-Yau manifold Mo will be denoted by D(rvlo ).

5.3.1. Definition.

Let

be the universal family of marked, polarized Calabi-Yau manifolds. Let

p:~(Mo)~D(Mo)

be thc map whieh is defined as folIows:

p(t):=(Hn,O (Mt)) e(Hn,O(Mt)+Hn-1,1 (Mt))npn (r..1 0 ,e) e ... e pn(Mo,C)

Le. pet) is just the Hadge struerture on pn(Mo,C) defined by the complex structure on :M t . p

will be ealled the period map.

5.4. THEOREM. p:~(Mo)~D(Mo)is an incluaion.

Proof: Suppose that the period map

is not an inclusion, then we ean find two points So and sI such that:

B) So :;eSI E~(Mo)

b) p(so)=p(sd

We must get a eontradietion. From THEOREM 3.1. we know that ~(Mo) ean be

embedded in fr(r..1 0 ), where the Weil-Pctersson metrie ia a eomplete one. Sinee the eurvature

operator of the Weil-Petersson metrie is a non-positive one we ean joint So and SI by a unique
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geodesie. (See [T] and [H].) Call this geodesie t-t(s).

Let

Let

t (0)= jJ (O)+iI jJ (0)

(I is the eomplex strueture operator on ~(Mo)

Since

I( t(O»=it(O)

we get that

Let ,(t) be the totally geodesie one-dimensional eomplex submanifold defined in #3. From

the definition of totally geodesie submanifold it follows that Il(S) c)'( t). From [Tl

we get the following formula for wt(n,O) on Mt along r(t):

(Remember that we have a family along )'(t»

(5.4.1.)

k(k-1)

wt(n,O)=wso(n,O)+t t k ( _1)----z- ((Aki'(O).lwso(n,O»
k=1

From (5.4.1.) we get that if So and SI are two differnt points on ,(t) then

[wso(n,O)];;f[ws/n,O)} in Hn(Mo,C)

This is so sinee we proved that all forms {(Aki'(O).lwso(n,O)} for k=1, ... ,n are harmonie

forms with respeet to the Calabi-Yau metrie (g -ß (0» on r..1 0 ' So from the definition of the
0',

period map it follows that p(so):;fp(sd.

Q.E.D.

5.5. The seeond version of TORELLI THEOREM.

5.5.1. Definition.

Let E=pn(Mo,C) be the primitive classes of eohomology on Mo, where n=dimCMo . Let

D'(r..1 0 ) c P(E) be defined as folIows:

D'(r..1 0 ):={t-tEP(E)1 Q(t-t,JI»O and Q(J-l,t-t)=O}

where

0(0+1)

Q(J-l,lI):=( -1) 2 (i)llf J-l/\TJ

Mo
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5.5.1. Definition.

The period map

p:~(Mo)-D'(Mo )

is defined in the following way:

t-p(t)=C... ,J wt(n,ü), ..... )ep(E)

rj

(Since each point tE~(Mo) correaponds to a marked Calabi-Yau manifold and wt(n,O) is

defined up to a constant it follows that p is correctly defined.)

In [G] it ia proved that p haa a maximal rank and that p is a holomorphic map.

5.7. THEOREM. p:~(Mo)-D'(Mo)is an embedding.

Proof: The proof is exactly the same as the pfoof of THEOREM 5.4.

Q.E.D.
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#6 THE FILLING IN PROBLEM FOR CALABI-YAU MANIFOLDS.

THEOREM 6.

Let 1r*:A* - D* a family of CALABI-Y AU manifolds over the punctured disk

D*:={tECIO<ltl<l} such that the monodtromy operator T which acts on the middlie

homology group, Le. on Hn(Mt,Z) is trivial, Le. T=id, then there exists a family over

D:={tECj Itl <I} 7I":..Ab-D of nonsingular complex manifolds such that on I\10 :=7T- 1(O) there

exists a holomorphie n-form wo(n,O) without zeroes.

PROOF OF THEOREM 5:

vVe have assumed that the family 7I"*:A* - D* has a trivial monodromy. Using the fact that

there exists an universal family ~-~O\'lo) of marked Calabi-Yau manifolds over the

Teichmüller spaee we get that there exists a map f:D* -~(Mo)' Indeed since the monodromy

operator T of the family is trivial, we see immediately that if we marked one fihre :M t , i.e.

ehoose a basis {ol, .. ,on} of Hn(Mt,Z), then we.have marked all fihres. So [rom this trivial

remark we get the existence of f:D* -~(Mo)' Using the fact that Global Torelli Theorem

hold s for Calabi-Yau manifolds, Le. t he period map p:~( Mo) - D (Mo) is an incl usion (See

THEOREM 6.1.) and the fact that in our case the period map p:D* -D(Mo ) can be prolonged

to a map p:D-D(Mo)(Sce [G].) we get that f ean be prolonged to a map f:D-~(rvlo)' Now

our theorem follows THEOREM 4.1..

Q.E.D.
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#7. THE TEICHMULLER SPACE i(Mo ) IS ASTEIN MANIFOLD.

7.1. THEOREM.

a) The Teichmüller space i(Mo ) is diffeomorphic to R2N , where N=dimH 1(Mo ,8o ).

b) fr(Mo) is aStein manifold.

PROOF: Let w(t1, .. ,tN;t l, .. ;t N) be the function defined in (1.8.6.). As it was shown in #3.

W(t1, .. ,tN;t1,.·,1: N) ia globally defined positive funetion on fr(M o ).

7.1.1. LEMMA.

a) logW(t1, .. ,tN;t l, .. ;tN):fr -R is a proper map.

b) logw(t 1,..,tN;t1,.. ;tN) is a non-degenerate Morse function and has a unique critical point in

fr(Mo) and this eritieal point is aminimum.

c) loglJr(t1, .. ,tN;tl,..,t" N) is a holomorphically convex.

7.1.1.1. REMA RK.

From Lemma 7.1.1. THEOREM 7.1. follows directl)" from well-known gradient deformations

of Morse theory ([M]) and the results in [He].

Proof cf a):

It is enouph to prove that lJI is a proper funetion, then logw will be proper too. vVe nced to

prove that praimage of a compact set in R1 is a compaet set in freMo ). Notice that for eaeh

tEfr(~1o) w(t)#O. So from this remark we may suppose that K is a compact set in R1 that

does not cootaios the point 0, Le. we may suppose that K=[a,b] and O~[a,b]. So we neecl to

prove the following Proposition:

7.1.1.&. Proposition.

If {tn } is any sequence of points in fr(I\1o ) such that

a::; W( t n ) ::; b 'V t ° an cl 0 ~ [a,b]

then t here exists a su bsequenee {tnk} of {tn} 5 ueh t hat there exists

lim tnk=tEfr(Mo )
k-oo

Proof of 7.1.1.a.:

vVe know from #4 that fr(Mo)CD'(tvlo)C QCP(E), where E=pn (I\10 ,C)(primitive 0­

cohomology) and Q is defined as folIows:

Q:={wEECHo(Mo,C)1 Jwl\w=O}

Mo
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D'(Mo ) ia eontained in an open in 0 and D'(Mo ) is defincd as folIows:

n(n+1)

D'(~10):={WE01 (-1) 2 (i)n Jwl\w>O)

~llo

Sinee {tnlefr(Mo)CD'(Mo)C 0 and 0 is a eompaet manifold, ;t follows that there ex;sts a

subsequence {tnk } such that

(*) lim tnk=t exists and tEOCP(Hn(Mo,C))
nk --+ 00

So sinee teQcP(Hn(Mo,C)) t ean be represented by some harmonie form wteHn(~10'C)

on Mo. From the conditions:

n(n+1)

a < W(t n )=( -1) 2 (i)n-2 Jw tn I\Wtn < b, O~[a,b] and

Mo

we get that

so

lim [wt (n,O)]=[Wt]
nk--+oo k

n(n+1)

(-1) 2 (i)n JWtI\Wt>O

Mo

tEO

Next we must prove that tEfr(Mo ). vVe know that D'(1\10 )=G/K, where G is a semi­

simple Lie group and K ia a maximal eompact subgroup in G. So on D'(~10) there exists a

unique G-invariant metric h. D'(1\1o ) is a complete Riemannian manifold with respeet to h.

Tian proved in [Ti] that the Weil-PetcrsBon metric on fr(M o ) is just the restrietion of h on

fr(Mo)' Since {tnk } is Cauchy scquence on D'(1\1o ) and BO it is a Caushy sequencc on fr(M o )'

Because t nk efr(Mo ) the definition of a complcte Riemannian manifold and according to the

results of #3., i.e fr(M o ) ia complete Ricmannian manifold with respect to the Weil-Petersson

metric it follows that

So 7.1.1.a. is proved.

Q.E.D.
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Proof of 7.1.1.b. and c:

From the definition of 'I1(t 1,. .. ,t N;t l,. ... ;t N) it follows that

at the point to Efr(Mo ) that corresponds to Mo.(See [T).) For any othcr point t#to we have

8log'l1 = ~#O
8t j 8t i

2
In [Tl it was proved that (8 1~'I') is the Weil-Petcrason metric. So to is a uniqueat.at.

I J

non-degenerate minimum of log\lf(t1, ... ,tN;t 1,. ... 'tN) anej. it ia holomorphica.Ily convex.

Q.E.D.

So THEOREM 7.1. is proved.

Q.E.D.
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#8. NIELSON REALIZATION PROBLEM.

8.1. Definition.

Let Diff+ (Mo) be the group of diffeomorphisms of Mo that preserve thc orientation. Let

Difft (Mo) be the group of diffeomorphisms isotopic to thc idcntity. It is easy to prove that

Difft (Mo) is anormal subgrou p in Di ff+ (~1o)' Let

r:=Diffd (Mo)/Diff+ (~1o)

8.2. Proposition.

r acta discretely on the Teichmüller 8pace fr(Mo) and preserve the Weil-Pctersson

metric.

Proof: If gEr and tEfr(M o ) and t corresponds to Mt with a complex strueture operator It
then g*(t) corresponds to the manifold with an complcx structure operator g*(It). So

g*(t)Efr(Mo ). If tEfr(Mo ) then we know that tE%, wherc 3G is the Kuranishi 8pacc of Mt.

From [KM] it follows that aB the points tEX eorresponds to non-isomorphie complex manifold.

From here it follows that r aets dicretely on fr(Mo).

Next we must prove that r preserve the Weil-Peters8on metric. We know that we ean

identify the tangent space T 50 at a point tEfr(Mo ) with H1(Mo ,8o ), i.e.
t,...L(Mo )

and the last identification is given by

qS-+qSJ..wt(n,O)

where wt(n,O)Awt(O,n)=vol(g -ß) and [Im(g -ß)]=L.
0', 0',

On the other hand we know that

. n(n+l)

<4J t ,4J2 >=(-1) 2 (i)0-2J [(4J 1 .!..w t (n,O))]A[qS2 J..wt (n,O)]=

Mo

<[(qSl J..wt (n,O) »),[(1'2 ..LWt(n,O) )]>

where [(4Jj.lWt(n,O»]EHn(Mo,C) for i=1,2. (See [T].) From this formula we get immediately

that

Q.E.D.
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THEOREM 8.3.

If G is a finite subgroup of r, then there exists a point Xo Efr(M o ) such that g(xo)=xo V gEG.

Proof: \·Ve know from Lemma 5.1.1. that

'1'( t 1,... ,tNjt 1,.... ,1" N):fr(M o )~R

is a proper C co fUllctioll, which is holomorphically convex and has a unique non-degenerate

minimum. Let us define

From the way we define WG it follows that it is a proper Cco function. "vVe mnst prove

that 'li G has a unique nondgenerate critical point. This fact will follow from tbe following

Proposition.

8.3.1.Proposi tion.

'li(t1, ... ,tNit l' .... ;tN) is a convex function when it ia restricted on areal geodesic v(t) with

reapect to the Weil-PetersSoD metric.

Proof: We must prove .that

2
~>O on v(t)
dt

From the definition of 'li:=<wt,wt >, where Wt ia defined in (1.8.5.) it follows that

From tbe definition of w t it followa that

ia a tangent to the geodesie v(t). (See [T]). From the definition of a geodesie with respect to

the Weil-Petersson metric it followa that

d2w---.f=w is a form of type (n-2,2)
dt

This was proved in #3. This yields

<Wto'Wto>=O
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So from (*) we obtain that

Q.E.D.

From the Proposition 8.3.1. it follows that WG has a unique non-degenerate minimum Xo. Since

'V G is Ginvariant it follows that g(xo)=xo VgEG.

Q.E.D.
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