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GLOBAIL PROPERTIES OF THE MODULI OF CALABI-YAU MANIFOLDS II.
(Teichmiiller Theory)
ANDREY NIKOLOV TODOROV
4#0. INTRODUCTION.

This is the second part of the article ?The Weil-Petersson Geometry of the moduli
space of SU(n>2){(Calabi-Yau manifolds 1.” (See [T].) In this article we will study the global
properties of the Teichmiiler space of Calabi-Yau manifold. The definition of the Teichmiiller
space of any complex manifold is the following one:

Definition.
Let I(M) be the set of all integrable complex structures on M, then by definition the
Teichmiller space of M is I(M):=I(M)/Diff5(M), where Diff(M) is the group of
diffeomorphisms of M isotopic to the identity.
Remark. Up to now we have defined the Teichmilller space set theoretically.

The content of this article is the following one:

In Chapter 1 we make a review of the results of [Ti] and [T].

In Chapter 2 we prove that the Teichmiiller space exists in the category of complex analytic
spaces and even more using the results of [Ti] and [T] we prove that the Teichmiiller space is a
non-singular complex analytic manifold of dimension equal to dimCI-Il(M,Q"'l). This is exactly
Theorem 2.2.2.

In Chapter 3 we prove the following Theorem:
THEOREM 3.
Ler Mg be a Calabi-Yau manifold with a Kihler-Einstein metric (gaﬁ)' Let

AO=3 AntheCm(Mo,03 € 6,)
n=1

be such that a) A(t):Alt-f-%g*G[)«(t),A(t)], b) A, €H'(My,80), ie. A, is a harmonic Dalbealt
form with respect to the Kahler-Einstein metric (gaﬁ)’ B*is the conjugate to & with respect
to (gaﬁ) and G is the Green operator.

Then for [t|<e, A(t) defines in T(Mg) a totally geodesic real two dimensional submanifold
with respect to the Weil-Petersson metric.
In #4. we prove that A(t) defined as in THEOREM 3 is defined for all t€C. Using that fact

we define the extended Teichmiiller space (M) and then we prove:
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THEQREM 4.
The extended Teichmiiller space $(M;) of a Calabi-Yau manifold M, is complete with respect
to the Weil-Petersson metric.

Let me remind you how we define the Weil-Petersson metric on the Teichmiiller space of a
Calabi-Yau manifold. From [Ti] and [T] we know that the tangent space at a point t&T(M)
can be identified with Hl(Mt,Qg'l). From Kodaira-Spencer theory it follows that the tangent
t'I(M)=H1(Mt,et). On each M, for te¥T (M) we fix wy(n,0) (holomorphic n-form on
the Calabi-Yau manifold M) such that:

J wy(n,0)Awy(0,n)=1, w,(0,n)=w,(,n,0)
M

space T

then the map
$EH (M0, )~ ¢ Lw,(2,0)eHI (M, 0 1)

gives the desired identification. Then the Weil-Petcrsson metric is defined as follows:

<¢1,¢2>yw p =(— -2 J(¢1lwt(2,0))Am
M
In Chapter 5 we study the Torelli problem for Calabi-Yau manifolds. Namely let
p:E(M)- Gr
be the period map, where Gr is the Griffith’s domain, i.e. the space that classifies all Hodge
structures of weight n on the primitive part of H"(M,Q) that have the same data as the
Hodge structure on M. The map
p:E(M)~ Gr
is defined as follows:
p(t):=The Hodge structure on H"(M,,Q)o
In #5 the following Theorem is proved:
THEQREM 5.4. The map p:X(M)~ Gr is an embedding.
This is the famous Torelli problem for Calabi-Yau manifolds. See [D].

In Chapter 6 we prove the following Theorem:
THEOREM 6.
Let 7% M4*=D* a family of CALABI'YAU manifolds over the punctured disk
D*::{tEC|0<|t|<1} such that the monodtromy operator T which acts on the middlie
homology group, i.e. on Hn(Mt,Z) is trivial, i.e. T=id, then there exists a family over
D:={t€C| |t|<1} m:A—D of nonsingular complex manifolds such that on Mg:=7"1(0) there

exists a holomorphic n-form wg(n,0) without zeroes.
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In Chapter 7 we prove the following Theorem:
THEOREM 7.1.
a) The Teichmiiller space T(M) of a Calabi-Yau manifold M is C diffeomorphic to RZN,
where N=dimCHl(M,Qn'1).
b) T(M) is a Stein manifold.

The proof of THEQREM 7.1. follows the lines of the proof of the analogous theorems in the
classical Teichmiiller theory given by Fisher and Tromba in case of a} and Tromba in case of
b) .(See [F,Tr] and [Trl].) The main idea is to use the potential of the Weil-Petersson metric
as a Morse function on The Teichmiiller space. This idea in the context of the Teichmiiller
theory was introduced by A.Tromba.

There is an important difference between the method of Tromba and ours, namely Tromba
uses the energy functional of the harmonic maps between Riemann surfaces, while in the case
of Calabi-Yau manifolds we do not have a theory of harmonic maps. So we use the potential of
the Weil-Petersson metric as a substitute for the energy functional of the harmonic maps. This
potential is defined via deformation theory and uses the existence of a Calabi-Yau metric on
M. One can prove mor.e general result about the potential of Weil-Petersson metric on moduli
of manifolds for which c, is positive. Namely cach point of the moduli space define a 9
operator. So we can define the determinant line bundle of these operators and this determinant
line bundle has the so called Quillen metric. See [Q). The curvature of this metric is just the

Weil-Petersson metric. See [T2].

In #8 we prove the analogue of the Nielson realization problem for Calabi-Yau manifolds.

See [Wo], [K] & [Tr2].
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#1. REVIEW OF SOME DEFINITIONS AND RESULTS FROM [T].

Definition 1.1.

Let M be a compact Kahler manifold such that:

a) HO(M,})=0 for 0<i<dimeM=n>3.

b) HO(M,QD):CwM(n,O), where wy((n,0) is a holomorphic n-form on M without zeroes
then M will be called a Calabi-Yau manifold.

Remark 1.2,

Condition 1.1.b. is equivelent to the fact that KM:=AnQi&0 is a trivial bundle and so
CI(M)ZO.

Definition 1.3.
A pair (M,L) will be called a polarized Calabi-Yau manifold if M is a Calabi-Yau manifold
where LEHI'I(M,R), Lz[g’a —] and (g’a E) is a Kihler metric on M.

Definition 1.4.
A Kihler metric (ga B) will be called a Calabi-Yau metric if
"Ricci(g_ 5)=60 (log det(g_ —))=0
(8, 5)=00 (log det(g 7))

THEOREM 1.5.(YAU).

Suppose that M is a compact manifold with ¢,(M)=0 and (g’a —) is a Kédhler metric on M,
then there exists a unique Calabi-Yau metric (g& —ﬁ) such that
(e, )l=lIm(g, )]
For the proof of this Theorem see [Y].
1.6. BOCNER’s principle.

Bochner proved that for every holomorphic tensor ¢ on a compact complex manifold we have
(1.6.1.) Vé=0

where V is the Levi-Chevita connection of the Calabi-Yau metric (ga,ﬁ) on M. So from this
principle it follows that

(1.6.2.) Vuwp(n,0)=0

(For the proof of Bocner principle see [B].)
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1.7. Review of local deformation theory of CALABI-YAU manifolds.See [T].
Definition 1.7.1.a.

Let M be a compact real even dimensional manifold. An almost complex structure on M is by
definition an element I€N(M,Hom(T*,T*)~I'(M,T*®T) such that lol=—id. T is the tangent
bundle of M and T* is the cotangent bundle.

1.7.1.a. is equivelent to the following definition.

Definition 1.7.1.b.

An almost complex structure on M is a global splitting of the complexified cotangent bundle

ec =o'+ lm).

Definition 1.7.2.

An almost complex structure on M we will call an almost complex structure on M with the
following propertiy: for every me€M there exists an open neighborhood meU,, and C%®
functions z*,...,2":U;; —C such that

{dz!,...,dz"}
spann F(Um,Ql’0|Um). (Remember that dimRM=2n.)
Definition 1.7.3.

Suppose that

1,0 . 71,0
Qo +80

are two diiferent almost complex structures on M such that at each point meM we have:

= Qi’o-i-ﬂi’o = T*®C

1,0~ 10 1,0~ 1,0
Q%" =0 ()9 =0
Let

Pr: T*®C~Qg’0 and Prl: T*®C—rQ}’O

are projections with respect to Qg’l and Q?’l. Let

ser(M,Hom(25? 021y

be deﬁned as follows:

PI_O -1 1
‘mg,o( _’) Q},o Pr 92,1

then we call ¢ the Beltrami differential.
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Remark 1.7.3.1.

1,0 .01

Since T'(M,Hom(§l5" ,$%" }) :F(M,@@Qg’l), where @::(Qg’l)*. Then ¢ can be written in the

following way:

ly=>" ¢gdz_"®aa—ﬂ
oG h z

If L
ab0i0ll — rrgc
is an integrable complex structure, then
ol V50l = e
is an integrable complex structure if and only if

3¢=34(4.4]

Trivial lemma 1.7.5.
Let

{dz*,...,dz"}
. 1,0
be a basis of g’ ", then

{6%,..,6™}

where

0'=dzl+¢(dz)=dz'+3 " ¢ da”
7

is a basis for Qi’o.
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1.7.5. The non-obstruction Theorem in [Ti] and [T] .

THEOREM.
Let (M,g) be a Calabi-Yau manifold with a Ricci flat metric g. Let H'(M,0) be the harmonic
part of I‘(M,QO’1®G) and {¢,,....,4} be a basis of H'(M,0), then there exist

¢(t1""tN)=Z ¢iti + Z d’il""’iN(tl) 1...(t-lN) N
N gy >2

and ¢>0 such that if for each i=1,..,N |ti|<€ #(t;,..,ty) i8 a convergent power series and

$(b1,tn)ED(M,Q7" ®0) has the following properties:

8) B(trserstn)=5[6(t10nrtn)s$(b15mnstiy)]
b) 8*8(ty,..,t5)=0

c) ¢i1,...,iNJ'wM(n’U)=8Wil,...,iN for all ¢ilv

i for which ij4..4iy>2.

1.7.7. Let
U,e CCN:={(t11--stN)| |ti| <€}

Then the Kuranishi family %— U, is defined as follows:
Let {W.} be a covering of M and let
¢(t1,--,tN)=Z¢i(t1,--,tN)§dZ_a®5Q¢1
A
i

then on U,xM we will define the complex structure in the following way:

Let C{‘(tl,...,tN) be solutions of the system of differential equations:

ack ack
(*) 16..;&- = E.ﬁ% az—b (p=1,...,n; @=1,..,n)

By Newlander-Nirenberg THEOREM (%) has solutions and so

1
{¢ ((tl,...,tN),...,C;l(tl,...,tN),t,,...,tN}
will be holomorphic local coordinates in W;xU¢.(See [N-N].)
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1.8. Weil-Petersson metric on the moduli space of polarized CALABI-YAU manifolds.

Definition 1.8.1.
Let (M,L) be a polarized Calabi-Yau manifold and let $—~U, be the Kuranishi family of M.

For each t€U¢ for € small enouph, L will define on M; = -,-r'l(t) a Kéahler metric and so by [Y]
a Calabi-Yau metric 8, E(t) such that [Imga -B-(t)].—-L. So we can identify the tangent space
Tt’UczH‘(Mt,E)y)

where H'(M,,0y) is the harmonic part of r(xt,etmﬁ’o) with respect to ga,ﬁ(t)’ so if ¢
and ¢t€H1(Mt,ey)=Tt Uf’ then

(1.8.1.1.) <¢t,¢t>w_p_=J d){fa%gﬁa(t)gpp(t)vol(gmﬁ(t))
M

In [T] the following formula is proved:

n(n+1)

(1.8.2.) <¢p. ¥ >y p.=(-1) (i)n_gJ‘ [$¢ Lw(n,0)]A[he Lwy(n,0))
M

where w(n,0) is a holomorphic n-form on M; such that

wt(n,O)Awt(n,O)zvol(ga E)

and [¢; L w,(n,0)] is a class of cohomology of type (n—1,1).
(See also [Ti])

(1.8.3.a.) Let Mg be a Calabi-Yau manifold. We can choose a covering {‘Wi} of My and the

local coordinates (zil,...,z;l) in such way that
wo(n,O)[cwh=dzi1/\.../\dzin
i
(1.8.3.b.) For each t=(t;,...,t;,) €U we define A, €T (Mg, Hom(T*, T*)) in the following way:
) . o . —_— -— [0 4 N
Ay (dz')=0,=dz'+) _ ¢ dz¥ & A (dz')=dz'+) L dz®
a=1 a=]

Let A, be the matrix of this operator in the basis {dzl,...,dzn,a;i,..,a_zﬁ}
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1.8.5. Trivial lemma.,

If 1, is the complex structure defined by the Beltrami diferential ¢(t), then
-1

(1.8.5.) Important Lemma.

In [T] the following Lemma. is proved:

Lemma: (See [T])

k(k—1)
Il
1) O} A.AOP gy =dzlA. AdZl+) " (—1) 2 AR (g(t) L(dz} A Adel))
where ! k=1
Akq&(t)eI’(Mo,Hom(Akﬂé’o,/\kﬂg’l))
and

AR S AL AU := () (uD) AL AG(8) (1K)
] k(k—1)
2) e,}A..Aeﬁwi:dzilA../\dz?+k21(-1) 2 AK(g(t) L(dzl A AdaD))

is a globally defined form of type (n,0) on M.
3) wt(n,O)IW.zG)%A../\GEIW'is a closed form and so it is a holomorphic n-form on M,.
i i

DEFINITION 1.8.6.
Let n{n+1)

Wertadl B =(-1) 2 0] wy(n0)As (w0
Mo

where w;(n,0) is defined in Lemma (1.8.5.) 3).
THEOREM. 1.8.7. (For the proof see [T].)

3210g'11 . . .
Di(h =)=— the Weil-Pet t Ue.
) ( a,ﬂ) (Btaatﬁ) is the Weil-Petersson metric on U,
8%log¥ w
2) RQE,MF=_6_T___Ita tﬁagtﬂatult—_-oz(—l) (i)n—1J [¢a/\¢p—l—“"t(“’0)]/\[¢uA¢V-J-wt(n’0)]

Mo
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n(n+1)
Raﬁ a.‘_}.=2(“1) (i)n_lj [/‘29?50—]-“’1:(“,0)]/\[?6# Aéy Lwi(n,o0)]

Mo
n{n+1)
R\ 5.a5=2(=1) 2 (i)“‘iqj [A2¢’cx-L“’t(“,o)]/\[/\QqﬁﬁJ_wt(n,O)]
o

where [d)a/\d‘)ﬁLwt(n,O)] means the class of cohomology of H{¢, AqﬁﬁLwt(n,O)).

3) For each ¢a,¢ﬁ€Hl(Mo,Go), [qbaAqSﬁ_J_wt(n,O)] is a primitive class of cohomology.

1.8.7.1. Cor.

Weil-Petersson metric has a negative sectional curvature and moreover the holomorphic

sectional curvature is bounded away from zero.
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#2.CONSTRUCTION OF THE TEICHMULLER SPACE OF CALABI-YAU MANIFOLDS.
Definition 2.1.

A pair (M371v"v7bn) will be called a marked Calabi-Yau manifold if
a) M is a Calabi-Yau manifold.
b) YissTp, 1S & basis for Ho(M,Z)/TorHn(M,Z).

Lemma 2.1.1. Let

MCS

bl

oc%
be the Kuranishi family of marked Calabi-Yau manifold (M;‘yl,...,‘rbn) then $—% is the local
universal family of marked Calabi-Yau manifold (M;'rl,...,'ybn).
Remark. Since as C% manifold $~Myx%, then if we fix a basis (71,...,7bn) in
Hn(M,Z)/TorHy(M,Z) it means that in a canonical way we fixed a basis in
Hn(M,Z)/TorHy(M,Z) for every t€%. So we have a marked family B—%.

Proof of 2.1.1. The proof is based on the following proposition.

Proposition 2.1.1.1. Let :tMg—Mg be a holomorphic automorphism of My and suppose that
f¥*=id, where

*:HY(Mg,Z)—H"(Mg,Z)

then f induced the identity map on the Kuranishi space of Mg, i.e. on %.

Proof of 2.1.1.1.: For the proof of this proposition see [B].
Q.E.D.

The end of the proof of lemma 2.1.1.

We need to prove that if

MoCY

U

woE W
is a family of marked Calabi-Yau manifolds, where W is a “small” polycylinder, then there
exists a unique map of families:

Yy—%

pel |
W%
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such that:
a) pu(wo)=o and p:Mg—Mg is an isomorphism of marked Calabi-Yau manifolds.

b) The family Y —W is the pullback via g of the Kuranishi family.

Since there are no obstructions to deformations of Calabi-Yau manifodls, it follows that
the Kuranishi family is complete. This means that threre exists a holomorphic map p
Y-S5
wl ol
W%
such that

a) p{we)=o0 and u:Mg— Mg is an isomorphism of marked Calabi-Yau manifolds.

b) The family Y— W is the pullback via y of the Kuranishi family.
(See [K], [KM} and [KNS].)
Let yx’ be another map that fulfills the conditions a) and b) as for the map u. From [K]
it follows that we have
u(w)=o (' (w)) for Ywew
where o is an isomorphism of the Kuranishi family such that
o:Mg—Mp
preserve the marking, i.e.
c*=id on Hy(Mg,Z)/TorHy(Mg,2Z).
From (2.1.1.) it follows that o=id on ¥ and so pu=pg’.
Q.E.D.

2.2. The construction of TEICHMULLER. SPACE of marked CALABI-YAU manifold.

Definition 2.2.1.

Let I{My) be the set of all integrable complex structures on Mg, then by definition the
Teichmiiller space of Mg is T(Mg):=I(My)/Diffo(Mg), where Diffg(Mg) is the group of
diffeomorphisms of M isotopic to the identity.

THEOREM 2.2.2.

a) T(My) is a comiex analytic manifold of dimension equal to dimcHl(Mo,G)o).

b) There exists a universal family £ — T(Mg) of marked Calabi-Yau manifolds.
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PROOF: Let {$—9} be all possible Kuranishi families of marked Calabi-Yau manifolds.
From 2.1.1.1. it follows that we can glue all families {$—U} by identifying all isomorphic
marked Calabi-Yau manifolds. Take the component that contains (Moz-yl,...,ybn). In such a
way we will get the universal family ¥ —%(Mg) of marked Calabi-Yau manifolds that fulfills «)
and b).

Q.E.D.
Remark 2.2.3.a.

Exactly in the same way will get the Teichmiiller space of all marked Calabi-Yan
manifolds, i.e. except the marking (71,...,7bn), we are fixing
LeH2(Mg,Z)NH!" (Mg,R)
and L is the imaginary class of a cohomology of the part imaginary of a Kiler metric on M.
Let ‘I(MO)('J&,--
then on I

e ) be the Teichmiiller space of all marked polarized Calabi-Yau manifolds,
by .

(Mo,y 7s.) we can define the Weil-Petersson metric.
0371y Tby

From now on we wil consider only marked polarized Calabi-Yau manifolds. The marking class

LeH2(Mo,Z)NH' (Mo,R).
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#3. TOTALLY GEODESIC TWO DIMENSIONAL SUBMANIFOLDS IN T(M,).

DEFINITION 3.1.

Let M be a Riemannian manifold and let § be a connected submanifold of M. Let peM. The
submanifold S is said to be geodesic at p if each M-geodesic which is tangent to S at p is a
curve in 5. The submanifold § is called totally geodesic if it is geodesic at each of its point.
DEFINITION 3.2.
Let (MO’(gaﬁ)) be a Calabi-Yau manifold with a Ricci flat matric (ga-—ﬂ-) such that

[im(g,, z)}=LeH ™ (Mo,2)

and L is a fixed class of cohomology.

Let y€H!(My,8,). From 1.7.6. it follows that v defines an one-dimensional submanifold
tYCI(M
y(t)C( 0)(51"__’5%; L)

where (61,...,6bn) is a basis of Hy(Mg,Z)/Tor. The point ¥{0)=0€T (M)

(61yesby 5 L)

n
corresponds to Mg. The complex structure for each t€y(t) is defined by

(3.2.1.8.)  Y(t)=7,t+ 7ot 4o nt"+..€T(Mo,00 1 00,) -

(3:2.1.b.)  Fy(t)=3[(t),7(t)]

(32.1.c.)  Y(&)=7t4+3G0 " [7(1),7(1)] i 11 €H'(M0,00)

(3.2.1.d.) ‘yi_l_wMo(n,o)zat,bi for i>1 (See [Ti} and [T).)

From Kuranishi theory it follows that «(t) is uniquely defined. (See [KM].)

THEQREM 3.

by s L)’ where v(t) is defined as in
(3.2.1.a.), (3.2.1.b.), (3.2.1.c.) & (3.2.1.d.) "

PROOF OFF THEOREM 3:

Let D be the Levi-Chevita connection of the Weil-Pectersson metric on ‘I(Mo)(&
1

Since the Weil-Petersson metric is a Kahler one it implies that
(3.3.) D=D'°+3
where 8 is the usual §-operator.

REMARK 3.4.
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REMARK 3.5.
Since ¥(t) is a complex analytic submanifold in 511(]\'10)(ts § ;L) it follows that
e bn,

(3.5.1.) D‘y(t)?(t)=0¢>D;‘€t);f(t):0

LEMMA 3.6. Di{ﬂﬁ(t):() for y(t) defined as above.
Proof of 3.6.:
The proof of LEMMA 3.6. is based on the following formula:

1,0

(3.6.1.) L 5=}, 7Ol 2R 15 ()11

()5 (1), ¥ (1), F ()

where R, is the holomorphic sctional curvature of the Weil-Petersson metric.

{ORIORTORAQ)
(For the proof of (3.6.1.) see [G].)

If we prove that at each point t€v(t) we have

(3.6.2.) 4|15 (8)|2=—2 15 (6)]1?

audt Lwimimio
then Lemma 3.6. follows and hence Theorem 3 will be proved.

Proof of 3.6.2.:
The proof will be based on some results proved in [Ti] and [T]. We will remind that in [T] it

was proved that:

(3.6.2.1.) (O =Sz (s,3)
where
n{n+1)
(3.6.2.2.) Y(t,8):=(—1) 2 (i)n'lj wt(n,o)/\wt(n,oi

Mo
We need to remind the definition of w;(n,0). We know that (1.8.5.) implies that we have a

family of Calabi-Yau manifolds % —v(t). According to [T] we have also a family of
7(t)
holomorphic n-forms wt(n’o)E}IO(ST(t)’Q&,Y(t)/’Y(t)) and locally :
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(3.6.2.3.) wt(n,O)IUiZ(J{tdzl)A...A(J.tdz")=

n K(k-1)
dz' A AdZ"+Y " (=1) 2 (Ak‘r(t)_L(dzlA...Adzn))
where k=1

1 n &2 n 1,0 40,1
wo(n,0)|yy =dz’ A...Adz ;7(t)=z Ynt' €C(Mg,Hom(Q5 ,Q26 7))
! n=1
7(t)=71t+%5*G[7(t),7(t)] , H€H' (Mo,00)

ARy (t)eT (Mg, Hom(AKQL %, AkQd 1))
A, is defined as follows: A;:=id+7(t)€l(Mg,Hom(T*M,®C,T*Mo®C)).
PROPOSITION 3.6.2.4.(Sec [T]).
Let 7(t) be defined as follows:
(3.2.1.2.) y(t)=7t+igt2+oect 7" +.. €T (Mg, 00 @6,)

(3.2.1.b.)  By(t)=1[v(t),¥(t)]

(321.c) A=, t+3GT r(8)7(8)] 5 72 €HY(Mo,00)
Then
D) 1512 = a—%:?gb(t,f) for all t for which v(t) is defined.

d? 2 __ ) ) . 2

REMARK.3.6.2.5.
A) It was proved in [Ti] and [T] that if 7(t)=71t+%G§*[7(t),7(t)] i v, €HY(Mg,00) then
FAL)—5[A(4),M()]=0

B) In [T] it is proved that

L5812l emo=—2 1511

R (050,405 (0)

is equivalent to the following fact: In the Taylor expension of the cohomology class [w,(n,0)]:

(*) [w(n,0)]=[wo(n,0)]+t[wo(n-1,1)]+t*[wo(n-2,2)]+...

the coeficient in front of t? does not contain classes of cohomology of type (n-1,1).

pagel6



[0.9]
PROPOSITION L Let y(t)=)  7,t“€l(Mo,20 ' ®05) be such that:
k=1

a) 9y(t)=3[(t),7(t)], b) 8*¥(t)=0, c) Hy(t)=7,t. Let wi(n,0)=(A;dz')A...A(A;d2") be the
holomorphic n-form defined as in (3.6.2.1.). Then we have the following formulas:

' n k(k-1)
[we(n,0))=[wo(n,0)]+ 3" (=1) % t*[AKy, Lwo(n,0))

k=a

where if w is a closed form on Mg, then [w] denote the class of cohomology of w.

Proof of Proposition I:

It was proved in [Ti] and [T] that if conditions a), b) and c) are fulfilled then for k>2 the

following formula is true:

(La) Tk Lwo(n,0)=0v¢,

On the other hand from the definition of At it follows that we have on the leval of forms:

(Lb) wt(n,o)zwo(n,o)+itk( ) (—I)T(yilA..A'rik)J_wo(n,O))

k=a ij+..Fi=

Sublemma.Suppose that among i,...,i, there exists 1<j<k such that ij22 then
H(('ril/\../\'nk)J.wo(n,O)):O.

Proof of the sublemma;:

We know that if i;>2 then v; Lwo(n,0)=0%; . From here our sublemma follows directly.
J 4
Q.E.D.
Proposition 1 follows directly from the sublemma, the condition v, EH'(My,0,) and formula

(Lb.). Q.E.D.
The end of the proof of the THHEOREM:

PROPOSITION II In the Taylor expension:
n
K
(3.6.2.6.) [wt(n,on:[wto(n,m]+k;(t_t0)k[w§0>]

the coefficient [wgz)] in front of (t-to)? does not contain classes of cohomology on Mto of type

(n-1,1), where w;(n,0) is defined as in (3.6.2.1.).

If we prove PROPOSITION II then THEOREM 3 will be proved.
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PROOF OF PROPQSITION II:
In order to prove PROPOSITION II we need to prove the following fact:

FACT: For k>2 [u}fo]nH“'l'l(Mto,C)=o, where [wg ] is defined in (3.6.2.6.).

PROOF OF THE FACT:
Suppose that [u}fo]ﬂﬂn-l’l(Mto,C);éO. Let [w%fo]:[w%o(n-l,l)]+..0n Mto. Let

k _ 1 5i o
“[“’to(“'l’l)]|U—Z¢ij,k,toetoA"A@:ﬁo""Aego/\@to
J

where (—)lozitodzi and wo(n,0)|U=dzlA.../\dz". In the appendix of [T] the following Lemama
was proved:

LEMMA ([T].). Let wo(n-1,1)=z¢ijdzlA..AdiiA..Adzn/\a? be a harmonic form, then
1

uto(n-1,1)=Z¢m(,¢todz’)A..A(Atodzl)/\..,\(xtodz“)AT_‘todz’
1)
represent a non-zero class of cohomology on Mto. (Here Ato is defined as above.)

From this LEMMA it follows that if we consider the form H[w}fo(n-l,l)] on Mg, then we

have

(5.3.2.) H[wt‘o(n_1,1)]=wo(n-1,1)+.... on Mg
where wto(n—l,l);‘:O. From (8.3.2.) it follows that on My we have:
dk
(8.3.3.) aﬁ[”t(n’n)]ztwto(“’l’I)H-O(t_tO)! where [wto(n-l,l)];’:ﬂ
(8.3.3.) follows from the formula:
dX k
(8.3.4.) Eﬁ[wt(n,o)]z[wto(n—l,1)]+O(t——to).
Formula (8.3.3.) contradicts PROPOSITION 1. So PROPOSITION I is proved.
Q.E.D.

Notice that from REMARK 3.6.2.5.B it follows that PROPOSITION II implies the following

formula:

pagel8



-2 IFIF

Cer) -l (000 Tt lt=to

.
2 dd P(t,t) =(|wy (1,0)]]

£2dt2 1t=to

=— . ) Yt 2
2Ry (10).3 (to). 7 (to) F ety Tt l

and it was already pointed out (Sec (3.6.1.)) that (*x) implies that for each point to€(t) we

have

1,0

D"Y(to);"(tO):O'

So v(t) is a totally geodesic submanifold in ‘I(Mo)(al’“’ébn;L).

Q.E.D.
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#4 THE COMPLETENESS OF THE WEIL-PETERSSON METRIC.

4.1. LEMMA.

Let ¥(t) be defined as follows:

(3.2.1.2.)  Y(8)=7,b+iat 4 F 7t +.. €T (Mo,20 1 ©60)

(3.2.1.b.)  Fy(t)=3[7(t),7(t)]

(3-2.1.c)  y(t)=7,t+3GF*[¥(t),7(t)] 5 v, €H'(Mo,00)

Then v(t) is defined for all teC if My is a Calabi-Yau manifold, i.e. 7(t)€1"(Mo,Qg'1®90) for
all teC.

PROOF OF 4.1.:

The proof of this lemma is based on the proof of the convergence of the series:
Y(t) =7t it 4yt
in the Holder norm for [t| <¢. We will recall that proof.
DEFINITION 4.1.1. Let {U } be a covering of Mo such that {zjl,..,zj'} are local coordinates in
U and we(n O)IU —dz A. Az Let ¢€F(M0,Qo ®90), i.e.

2n
Let keZ, k>0, o€R, 0<a<l. Let h=(hj,...,h,)eZ?", h; >0, Zhi=|h|, where n=dimcMo,.
Then denote =1

...(5%) " =

h_( 8\
D; _(6le) :

Then the Hélder norm is defined as follows:

= u Dh A
11l 33&5’5&%(( 28 1) D} 80521 )+

1Dh¢*—(y) D"cﬁ"ﬁ(Z)l
sup iy
y,zeU,53,A |y —z
|h|=k
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From the following a priori estimates:
(8%l o SClSlIk 41 o llPlki1 a
1G4l o <Cli¢lly_g o
B*SICIOly 1 o

where C depenends only on k and a but not on ¢ and ¢. Kuranishi obtained that if

00 -
T(t)-._-z Ynt", where 57(t)=%[7(t),7(t)] and 8*v(t)=0,

n=0
then 7(t) converges in the norm || ||, . It is immediate that y(z,t) is cK since the series
y
converge in the norm | ||, ,. To obtain that ¥(z,t) is a C® one refers to the regularity
?

theorem for quasi-elliptic operator of Douglis and Nirenberg. (See [DN].). More precisely

Kuranishi proved that

o
10l 0 € 1oy 25t
u=1H

where the sign € means that

(4.1.2) ||7n||k,as£xi;

§ and A are some positive constants which depend in our case on the Calabi-Yau metric.

(4.1.3.)
Let

(o]
f(t) =—-ﬁ-x\; )‘—2 ,

then f(t) has an analytic continuation for all tEC\{S}, where S is a finite
set in C. (The continuation is as a multivalued complex analytic function and it is univalent in
C\(l.o0))
Proof of 4.1.3.:
B X XM
Let x=Xt and let g(x):mzl 3 Clearly
n=—

2 m-1
g’(x)=%(1+’§<+%+..+xm +.)

m

On the other hand we have xg’(x)— % 53— Xm—-{-..), so x(xg’ (x))’z—ﬁ—’\(ﬁ_l)_

The last equality implies that

x2g" (x)+xg’(x) - % L —1)=0
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From the theory of differential equations of second order we get that g(x) is a complex
analytic function on C\{S}, where S is a finite set of complex numbers. So this is true for
f(t)=g(At). (See [WW].} Q.E.D.

From (4.1.3.) and the fact that

< n
Z lrnlly ot <f(t)
n=1 ’

it follows that:
4.3.1.1. Cor.. 7(t)€C°°(M0,Qg'1®OO) for tGC\{S} where S is the set of the singular points of

the equarion

() x(x8(%)) oy (75)=0

End of the proof of 4.1.:

From (*) it follows that the set of the singular points of the differential equation (%) consists of
at most two points x=0 and x=1. When x=0 then t=0 since x=2Xt so A(t) is a well defined

section of F(MO,Hom(Qg’l,Qé'o)) namely 4{0}=0. On the other hand we know that

(e,
£(x) =%g L=

and so ¥(t) is well defined at all points t€C. 4.1. is proved.
Q.E.D.

REMARK. From 4.1. it follows that ¥(t) is defined for all t&C.
4.2. LEMMA.

Let %_Y(t)l‘r(t) be the family of the integrable structures on CxM defined by «(t). Then
on w'l(t)th for all t€C there exists a holomorphic n-form w(n,0) which has no zeroes.
PROOQOF OF 4.2.: In the proof of 3.6.2. we introduce an operator

A;=id+7(t) EC®(Mg,Hom(T*®C,T*®C)
and then according to [T] 4; defines a family of holomorphic n-forms w(n,0) where

wt(n,O)IUz(.Atdzl)A .../\(.Atdzn)

It is easy to see that (.Atdzl)/\.../\(.Atdz") is zero at some point z€U iff the vectors {.Atdzi,
i=1,..,n} are linearly independent. But this is impossible since the operator A =id+7y(t) has

rank 2n.
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(4.2.%.) So w(n,0) is different from zero for all t€C.

So in order to finish the proof of the LEMMA  we need to prove the following
PROPOSITION: 4 400

PROPOSITION 4.3. Let A := m_) I where ¥(t) is defined as in PROPQOSITION T on p.
17, then

a.) det A, is a real analytic function of Ret and Imt, i.e. it does not depend on z€M,

b) for each t€C detA, #0.

"PROOF OF PROPOSITION 4.3.a.:
IDEA OF THE PROOF:

We will prove that

d(vol(g  —=(t))
— 28 "0, where (8, 5(1)) is the CALABI-YAU metrics

such that lm(ga E(t)):L. The proof of the above formula is based on some results proved in
[S] and [N].

Next we will prove that for Ricci flat metrics we have

vol(ga ﬁ(t))=“t(n’0)/\"t(n’0) » where 41;(n,0) is some holomorphic n-form on M;.
b

Combining these two formulas we get that det(A;) does depends only on Ret and Imt.

Step 1. From the definition of detA; and since {GizzAtdzi} we get that:

(4.3.1.) wi(n,0)Awi(n,0)=det(A )wo(n,0) Aws(n,0)

This formula is true since wt(n,0)=0%/\.../\9g. Remember that w;(n,0) is a globaly defined
holomorphic n-form on M, if wo(n,O)tUzzdzlA../\dzn.

Step 2. Let {ga B(t)} be the Calabi-Yau metric on My such that [Im 8, B(t)]::L, then
b »

(4.3.1.) vol(ga’B(t))=M—nl,0)Fwt(n,0)Awt(n,O)
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PROOF OF STEP 2:

From the Bochener principle, i.e. Vtut(n,O)-—.O, where V, is the Levi-Chevita connection of

the Calabi-Yau metric {ga”@(t)} and from VtVOI(ga,B(t))=0 we get (4.3.1.).
Q.E.D.
Step 3.

For each t we can find a basis {@lt} of Q%'o such that:

a) <! ,ejt>=c(t)5i3, where < , > is the scalar product defined by the Calabi-Yau metric

{ga,a(t)}'

b) OfA...AO]=w,(n,0)

PROOQOF OF STEP 3: Step 3 follows directly from Step 2.

Q.E.D.
4.3.2. REMARK.

Since y(t)eT (Mo, Hom(Qé‘o, Qg'l)) and y(t)=7,t+..4+7nt"+...is such that a) §*v(t)=0 & b)
H(7(t))=7,t we will suppose that

(4.3.2.2.) Tn =)of-rn3'59'i ®(e")*
0

4.3.3. DEFINITION. We will define BteI"(MO,Hom(T*(MO),T*(MO)) as follows:
Bt(@ij)zelt for i=1,...;n
where ©} are defined as in Step 3.

id ty, )
Step4. B,= o)

ty; id

PROOF OF STEP 4: In {T] the following formula was proved:

(4.3.4.)w,(n,0)=B(05)A..AB(03)=03A..AO] +(—1)it(27i139‘1,AGCI,A..AC:)E)..AG)B)-}-O(tz)
i

Step 4 follows directly from (4.3.4.) and the fact that Bgo=id.
Q.E.D.
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STEP 5: The followimg formula is true:
(4.3.5.) wi (n,0)=B,(03)A..AB(03)=

_ Al n i 1 e 1 Al n 2
| =0f A-.ABL +(-1) (t——to)(Z*rl:j—@]toA@tOA..AGtO..AGtO)-f-O(t )
where 7}1J are the same as in (4.3.4.). ]

PROOF OF STEP 5:

= -1g1 -1
w(n,0)=B(B} 6; )A-.AB(B} ©OF )

Elementary straitforward caculations show that in the basis el ,.,o" el .o } the matrix
to tg’ " bo to

of the operator Bt_t0=BtB£10 is given by:

(4.3.5.a.) Bt_to(eio)zeio +(t—t0)(271139]to)+higher order terms.
L)

(4.3.5.) follows directly from (4.3.5.a.) and (4.3.4.).
Q.E.D.

STEP 6.
The form

IPIETVIR < VR S U TN e 5i n
wy (n 1,1)._iZJ( 1) -,ldejtertoA..A@to../\eto)
is a harmonic form of type (n—1,1) on Mto with respect to the Calabi-Yau metric (gar B(1;0)).

PROOF QOF STEP 6:
We need to prove that
a) d(wto(n—l,l))zo and

b) E:O(wto(n—l,l))zo, where 5;‘0 is the conjugate of 8t0 with respect to the Calabi-Yau
metric (ga E(to)).

Proof of a:
Since wt(n,O)zwto(n,O)-{-(t—to)(wto(n—l,l))-[-O(tz) and wto(n,O) are closed froms it follows
that d(wto(n—l,l))ZD

Q.E.D.
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Proof of Step 6. b:

The proof of b) is based on the following two facts:
Fact 1.(For the proof see [T])

Suppose that M is a Calabi- Yaeu manifold with a Calabi- Yau metric (ga B). Let I‘(M,Ql'0®9)

n_l'l) be the Hilbert spaces with the induced L? norm by (ga

and I'(M,Q2 . .Let w{n,0)#£0 be

=)
B
the holomorphic form such that ||w(n,0){|*=1. Let

i:T(M,0'%00) —r(m,a" )
be defined as follows i(¢):=¢Lw(n,0), then i is an isometry of the Hilbert spaces which

preserve the Hodge decompositions of both spaces, i.e.

i(HY(M,0))=H""1 (M), (3r(M,0%° @0))=aT(M,a™ ), i(F*T(M,2%%©6))=3*I(M,0" 12,

Fact 2.

The following formula holds on Ké&hler manifolds:
SR
lato—atoAto“Atoato

where AtowzzL*J.w and

. D _—
*, 1 @ vk Y Nk
L ._C—j(toaé_l(eto) A(©F )
where (G?O)* are dual to 9?’0 and {6?0} are defined as in Step 3.(Sce [KN].)

From the definition of y(t) it follows that v; is a harmonic form with coefficients in © on M,.

From Fact 1 it follows that
wo(n—l,l):z'yl.Lwo(n,0)=2(—1)1_1711—.-®']oA@é/\../\éio../\eg)
N )
is a harmonic form of type (n-1,1). Moreover wo(n—1,0) is a primitive form on Mg. (See [T).)

This means that

(4.6.1.) /\Owo(n—l,l):O@Z(—l)l.‘]'yil—.—}-z(—1)1_3'171—.20( for j fixed)
i<] LTS .

From the definition of Atowto(n—l,l), the fact that

B
<O O, >=C(to)6, 3
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and the explicit formula in Step 5 for wto(n-—l,l), Le.

- i—1i_ ol gl N n
wto_(n—l,l)._izj(—l) lee{ertoA../\eto..Aeto)
- i S R S -
(4.6.2) Atowto(n—l,l)—OQZ(—l) 71—.+z‘(—1) 713—0( for j fixed)
1<) 1>]

The last equality follows from Step 5 and (4.6.1.). (4.6.2.) Shows that 5zowt0(n-—l,l)=0.
Q.E.D.

Step 7.

Let (ga,—(t)) be the Calaby-Yau metrics on $y(t)—+7(t) such that [Im(ga,ﬁ(t))}zL then

vol( g, 5(1)=vel( g, 5(0)=wo(n,0)AuG(m0)
Proof of Step 7:

In [N] it is proved that if M is a Calabi-Yau manifold and (ga B) is a Calabi-Yau metric on M
and 7, €H'(M,0), then the following formulas hold;

(4.7.1.) 71’sz-yle

From (4.7.1.)it follows immediately that

(4.7.2.) fivollgg 5()lmy =0

for each tg. (See [N] or [S].). From here and using Step 1 we obtain that det(A;) depends
only on t, i.e. det(A;) is a function only on t and t. Indeed from (4.7.2) it follows that

(4.7.3) vol( ga,-(t))=vol( ga’B(O)zuo(n,O)/\wo(n,Oi

and so since w(n,0)Aw(0,n)=C(t)vol( g, E(t))’ where C(t) depends only on t. From (4.7.3.)
we see that C(t) is equal to det (A).

Q.E.D.
The end the proof of part a:

From Step 1 it follows that det(A;) is a function only on t and t for {t|<e. Since as it was
proved that y(t) is defined for all t€C we get that det(A;) is defined for all t€C. On the other
hand we know that 8*y(t)=0. From one of the definitions of 8*=(—i)(A8—8A) and the
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4.5.2. Proposition.

The map exp:C—v(t), where exp(t)=%{t) is an one to one map between C
and y(t)CE(Mp).

Proof of 4.5.2.:

We have already shown that for each teC 'y(t)ECOO(MO,Hom(Qé’O,Qg'l) and it defines a new

integrable complex structure on Mg. From the formula for the class of the cohomology of

w(n,0) defined in 3.6.2.1.
kA k
[w(n,0)]=[wo(n,0)]4 Y t[A y; Lwo(n,0)]
k=1
we get that if t; #t,, then [utl(n,o)]¢[[wt2(n,o)1.
So the map exp is one to one an etale. Here we used the local Torelli theorem.

Q.E.D.
4.5.2.1.

Since exp is an one to one complex analytic map between C and 7(t) we get from the
completeness of € that (t) is also complete. Here we use (ii) of 4.5.1.. Let o be any real
tangent vector to T(My) at the point o corresponding to M. Let Iy be the complex structure
operator on T(Mg), then we will have that

a+ilaeH! (Mg,00)
Since H'(Mg,0,) can be identified with the complex tangent space at o€T(Mg). Let v,=
a+ila and let

HO=3 70t 1O=7t+ 1T Gl 7(0).

n=1

We proved that +(t) is a totally geodesic complete submanifold in (M) so the geodesic a(t)
in £(Mg) corresponding to the direction « will be for all t in ¥(t). Since y(t)} is complete with
respect to the Weil-Petersson metric we get that «{t) has an infinite length. This is condition
(iii) of 4.1..

Q.E.D.
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defines a new complex structure on M. All these complex structures we will denote by T(Mg)
and we will call it the extended Teichniiller space.

REMARK 4.4.1..

We have a family of marked complex analytic manifolds 7:¥—T(Mg) and each fibre has the
properties that it has a holomorphic n-form without zeroes. It is not very difficult to prove
that there exists an open and everywhere dense subset U in (Mg) such that for each teU
ﬂ'l(t):Mt is a Calabi-Yau manifold.

REMARK 4.4.2..

The function W(t,,..tpnit1,ty) defined in (1.8.6.) is defined on the whole ¥(My) and

moreover it is real analytic in

(itllzr"ahN‘z)’
This follows from the definition of ¥(t,,..,ty,t,,...t ). From Theorem 1.8.7. it follows that the

Weil-Petersson metric is defined on the whole £(M,,), since from [T] it follows that
Iog W (g, sty 1henst )

is the potential of the Weil-Petersson metric.

THEOREM 4.5.

The extended Teichmiiller space I(My) is complete with respect to the Weil-Petersson metric.
PROQOF OF THEOREM 4.5.:

The proof is based on the following theorem proved in [H]:

THEOREM 4.5.1.:
Let M be a Riemannian manifold. The following conditions are equivelent:
(i) M is complete, (ii) Each bounded closed subset is compact, (iii) Fach maximal geodesic in

M has the form v),(t),—co<t<co. (Has an infinite length.)
We will use condition (iii) of 4.5.1.. If we take any v, €H'(Mgy,00) and we define

Y(t)=)_ ut", where y(t)=7,t+3 T*G[7(t),7(t)]

n=1

We know that ¥(t) is a totally geodesic submanifold defined for all teC. We will prove that

¥(t) is a complete with respect to the Weil-Petersson metric on y(t).
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THEOREM proved in [DK] which state that if (ga —ﬂ—) is a Calabi-Yau metric then with

respect to any local holomorphic coordinates (zl,...,z") of an open subset UCMgy g — is a real

@,

analytic functions with respect to (Rez', Imz',..,Re2", Imz"). So from this result and the
standart Caushy-Covalevskaya theorem we get that all the elements of y(t) are real analytic
functions of (Rez', Imz!,..,Rez", Im2", Ret, Imt). So from here we get that det(Ay) is a real
analytic function of (Rez!, Imz!,..,Rez", Imz", Ret, Imt). This shows that on UxC det(Ay)

depends only of Ret and Imt since this is true in an open subset of UxC. So part a). is proved.

Q.E.D.
PROOF of b:
The proof of b is based on the following trivial remark:
REMARK: Suppose that for each t&C we have: .
n(n-1)
(4.7.4.) <wt(n,0),wt(0,n)>:=(-I)T(i)"J wi(n,0)Aw(0,n)>0
Mo

then we will have that det(A;)#0.

PROOF of 4.7.4.: In order to prove (4.7.4.) we will deline
Q:z{uePI-I"(MO,C)| <u,u>=0 and <u,U>>0}

Then we can define a map m:y(t)—Q in the following manner: for each tey(t) n(t) will be the

line in H"(M4,C) spanned by w(n,0). We already know that [w(n,0)]#0. For example this
follows from the formula already proved in PROPOSITION I on page 17:

" k(k-1)
[wy(n,0)]=lwo(m0)]+) (=1) ? t*[A"y; Lwo(n,0)]:
k=a
From this formula we get immediately that the map 7 is an injection and since d—d%;&ﬁ for each
tey(t) we get that w(y(t))CQ. So this proves b.
Q.E.D.
4.4. DEFINITION.

Let {¢i} for i=1,..,N be an orthonormal basis in H!(Mg,0o). From LEMMA 4.2. it follows
that for each (tl,...,tN)ECN

N -
Bbrrntn)= it +%3*G[¢(t1,..,tN,¢(t1,..,tN)]
i=1
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defines a new complex structure on Mg. All these complex structures we will denote by ‘i’(Mo)
and we will call it the extended Teichniiller space.

REMARK 4.4.1..

We have a family of marked complex analytic manifolds m:¥—T(My) and each fibre has the
properties that it has a holomorphic n-form without zeroes. It is not very difficult to prove
that there exists an open and everywhere dense subset U in T(Mg) such that for each teU
‘n"l(t):Mt is a Calabi-Yau manifold.

REMARK 4.4.2..

The function W(ty,..,bnstq,.,6y) defined in (1.8.6.) is defined on the whole ¥(My) and

moreover it is real analytic in
(|t1|2y---s|tN|2)'
This follows from the definition of W(t,,..,tn,t1,..,t ). From Theorem 1.8.7. it follows that the

Weil-Petersson metric is defined on the whole ¥(Mg), since from [T] it follows that

fog W (t) 4.0, tnsb 150t )

is the potential of the Weil-Peters,son metric.

THEOREM 4.5.

The extended Teichmiiller space T(Mg) is complete with respect to the Weil-Petersson metric.

PROOF OF THEOREM 4.5.:

The proof is based on the followiﬁg theorem proved in [H]:

THEOREM 4.5.1.:

Let M be a Riemannian manifoldil The following conditions are equivelent:
(i) M is complete, (ii} Each bounded closed subset is compact, (iii) Each maximal geodesic in

M has the form v),(t),—co<t<co. (Has an infinite length.)

We will use condition (iii} of 4.5.1.. If we take any v, €H'(Mo,0,) and we define

=3 7nt?, where y(t)=7,6+3 T*Gly(8)7(8)

n=]1

We know that +(t) is a totally geodesic submanifold defined for all t€C. We will prove that

v(t) is a complete with respect to the Weil-Petersson metric on y(t).
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4.5.2. Proposition.

The map exp:C—+(t), where exp(t)=%(t) is an one to one map between C
and v(t)CT(Mo).
Proof of 4.5.2.;

|
We have already shown that for each t€C 7(t)ECOO(MO,Hom(ch,'O,Qg‘l) and it defines a new
integrable complex structure on Mg. From the formula for the class of the cohomology of

w¢(n,0) defined in 3.6.2.1. l

[wy(m,0)]=[wo(n.0)+3 " (AKX, Lug(n,0)]
k=1

n
we get that if t; #t,, then [wtl(n,o)];é[[wtz(n,o)].

So the map exp is one to one an etale. Here we used the local Torelli theorem.

Q.E.D.
4.5.2.1.

Since exp is an one to one complex analytic map between C and +(t) we get from the
completeness of C that (t) is also complete. Here we use (ii) of 4.5.1.. Let a be any real
tangent vector to ﬁZ(MO) at the point o corresponding to Mg. Let I be the complex structure
operator on T(My), then we will have that

atilacH (Mg,00)
Since H!(Mg,0,) can be identified with the complex tangent space at o€ (Mg). Let y,=
a+ila and let

v(t)=§ Tot", 7(O)=71t+1T* Gl (), 7(5)].
‘ n=1
We proved that v(t) is a totally geodesic complete submanifold in (Mg) so the geodesic aft)
in (M) corresponding to the direction « will be for all t in y(t). Since y(t) is complete with
respect to the Weil-Pctersson metric we get that a(t) has an infinite length. This is condition
(iii) of 4.1..
Q.E.D.
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#5. TORELLI PROBLEM FOR CALABI-YAU MANIFFOLDS.

5.1. Variations of HODGE structures. (See [G].)

Let X and S be complex manifolds and let {:X —S be a complex analyric map between
those two manifolds. We will consider both f:X—85 as analytic fibre bundle and as topological
fibre bundle. Fix a base point 8,€S and consider the action of 7,(S8) on the cohomology
H"(8,Q). If L€H2(MSO,Q) is the cohomology class of the hyperplane section relative to the

given projective embedding:

XcPNxx
1 i)
S = 8§

then L will be invariant under #,(S). Thus for n<m=dim-Mg we may define the primitive
cohomology Pn(Mso,Q) to be the kernal of

LHamer g 0™ (v €)
Because of Lefschetz decomposition:

n

(5]
(4.1.1.) I-I“(MSO,C)T{%ULkP"'Qk(MSO,C) (See [G].)

which is 7;(S)-invariant direct sum decomposition we need to consider only the primitive
cohomology.

Let E:PH(MSO,C) and let E—S be the complex vector bundle, with constant transition
functions, associated with the action of 7,(S) on E. There is the usual flat, holomorphic

connection:
D:0(E) - Q4(E)
which one has on any such vector bundle associated to a representation of the fundamental

group. In fact we have a short exact sheaf sequence:

(5.1.2.) 0+ &(E)~ Og(E)RQY(E)
where the sheaf C(E) is just the sheaf of locally constant sections of E and it has the following
interpretation:
Let R"f,(C) be the usual Leray cohomology sheaf of
f: XS,
which 1s the sheaf arrising from the presheaf:

U—HY1(U),0)
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where U runs through the family of all open sets of S. We will define the Leray primitive
cohomology sheaf to be P?*(C) to be the kernal of:

LR, 6.0 » R 21
Then C(E) is just P?*(C).

The fibre of ES is the vector space P"(Mg,Q) and as such has the structure of the primitive
cohomology space of a Kdhler manifold. (See [G].) Translating this structure into on the flat
bundle E—S, we find the following:

I} A flat conjugation e—¢ (e€lE)

II}) A flat non-degenerate bilinear form

(5.1.3.) Q:E®E-C, Q(e,e’):(—l)nQ(e’,e)=J L™ ™ AcAe’
called the Hodge bilinear form. Ms

1II) A filtration of E by holomorphic subbundles
(5.1.4.) FO(Mg)CFL(Mg)C...CFY(Mg)=E
where

FAUM)=P" O (M) 4.+ P 9 (My)

and .
P I Me)=H" T (MNP (M5,Q)
(1v) The Hodge filtration is isotropic, i.e.
(5.1.5.) (FOyL=pral
where

(F)t={eeE| Q(eF*)=0}
V) The bilinear form (5.1.3.) is real (i.e., Q=Q) and if we let

Fr09 _p g dnd Ty L

then we have the Hodge decomposition, which is a C® direct sura decomposition:

(5.1.6.) E=5 rdmd
q=0
(vVl) The Riemann-Hodge bilinear relations:
QF" M FT ) =0(qst1)
(5.1.7.)
(-1 FIQE™ 9 FTT)50
are valid.
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(VID) The infinitesimal period relations. (See [G].)

(5.1.8.) D:0g(F ) (FIT)
holds.

Definition. 5.1.8.

We shall call a data given by E=(E,D,Q,{Fq}) and by I-VII a variation of Hodge structure.
# 5.2. Classifying spaces for HODGE STRUCTURES.

Let E be a complex vector space and let
0<h0ghlg....ghn_ldln:dimc
be an increasing sequence of integers which is self-dual in the sence that
hn-q-1=hn_hcl
We also have a non-singular bilinear form
Q:E®E—C Q(e,e’)=(—-1)"Q(e’,e)
Consider the set D of all filtrations
FocFlcr?c...cF1cF =E, dime=hq
which satisfy the first Riemann-Hodge bilinear relation
(Fq)_L=Fn-q-1
or equivelently
Q(FY "9 =0
We say that such filtrations are isotopic or self-dual. In [G] the following proposition is
proved:
Proposition.
D is in a natural way a projective and smooth complete algebraic variety which is a

homogeneous space
D=G/B
of complex Lie group G divided by a parabolic subgroup B.

Suppose that E=ER®C and Q is real on the real space ER’ Define the Hermitian inner

product < , > on E by
<ee>=(-1)"Q(e,e’) (ee’€E)
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(5.2.1.) Definition.

DcD will be called the period domain if D consists of all isotropic filtrations:
FocC..cF"=E

which satisfy the second Riemann-Hodge bilinear relation:
(-D"<, >:E9xE? o C is positive definite, where
El:={eeFI| <e,Fq-1>=0}

In [G] the following Proposition is proved:
Proposition. D is an open complex submanifold of D which is a homogeneous complex manifold
D=G/H

of a real, simple non-compact Lie group G divided by a compact subgroup H.

5.3. Notation.
The period domain of a Calabi-Yau manifold Mg will be denoted by D{Mg).

5.3.1. Definition,
Let

be the universal family of marked, polarized Calabi-Yau manifolds. Let
p:E(Mo)—D(Mo)
be the map which is defined as follows:
n,0 n,0 n-1,1
p(t):=(H " (M ))C(H (M )+H (M )NP"(Mg,C)C...CP™(M,,C)
i.e. p(t) is just the Hodge strucrture on P"(M;,C) defined by the complex structure on M;.p
will be called the period map.

5.4. THEOREM. p:X(Mg)—D(My) is an inclusion.

Proof: Suppose that the period map
p:E(Mo)—D(Mp)
is not an inclusion, then we can find two points sg and s, such that:
a)so#8,€XT(Mgp)
b) p(s0)=p(s1)
We must get a contradiction. From THEOREM 3.1. we know that T(Mg) can be
embedded in (M), where the Weil-Pctersson metric is a complete one. Since the curvature

operator of the Weil-Petersson metric is a non-positive one we can joint sq and s; by a unique
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geodesic. (See [T] and [H].) Call this geodesic u(s).
Let
p(0)=s4, p(1)=s; and "‘(O)ETSO,X(MO)(""’J tangent space)
Let
7(0)=41(0)+il i (0)
(I is the complex structure operator on T(Mg)
Since
1(%(0))=1%(0)
we get that
7(0)€H! (Mo,00)
Let v(t) be the totally geodesic one-dimensional complex submanifold defined in #3. From
the definition of totally geodesic submanifold it follows that y(s)Cy(t). From [T]
we get the following formula for w(n,0) on M, along ¥(t):
(Remember that we have a family along ¥(t))
n k(k-1)
(54.1.) wt(n,0)=wso(n,0>+k21t“(—1)T((A“7<0)sto(n,on

From (5.4.1.) we get that if s; and s; are two differnt points on v(t) then
[wso(n,0)]#[ws, (n,0)] in H"(M,,C)
This is so since we proved that all forms {(/\kﬁ‘((O).l.wso(n,O)} for k=1,...,n are harmonic
forms with respect to the Calabi-Yau metric (ga,B(O)) on Mg. So from the definition of the
period map it follows that p(sg)#p(s,).
Q.E.D.

5.5. The second version of TORELLI THEQREM.
5.5.1. Definition.

Let E=P%(M,,C) be the primitive classes of cohomology on Mg, where n=dim-Mg. Let
D’(My) C P(E) be defined as follows:
D'(Mo):={#€P(E)| Q(u,)>0 and Q(u,4)=0}
where
n(n+1)
Quwk=(=1) T "] unv
Mo
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5.5.1. Definition,

The period map
P’i(Mo)*D’(Mo)

is defined in the following way:

7
(Since each point teX(Mg) corresponds to a marked Calabi-Yau manifold and w(n,0) is
defined up to a constant it follows that p is correctly defined.)
In [G] it is proved that p has a maximal rank and that p is a holomorphic map.

5.7. THEOREM. p:Z(My)—D’(My) is an embedding.

Proof: The proof is exactly the same as the proof of THEOQREM 5.4.
Q.E.D.
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#6 THE FILLING IN PROBLEM FOR CALABI-YAU MANIFOLDS.

THEOREM 6.

Let n*:M*—~D* a family of CALABI-YAU manifolds over the punctured disk
D*::{teC|0<|t[<1} such that the monodtromy operator T which acts on the middlie

homology group, i.e. on Hp(M,Z) is trivial, i.e. T=id, then there exists a family over
D::{tEC] |t|<1} m:M—D of nonsingular complex manifolds such that on Mg:=7"1(0) there
exists a holomorphic n-form wg(n,0) without zeroes.

PROOF OF THEOREM 5:

We have assumed that the family #*: #4* -D* has a trivial monodromy. Using the fact that
there exists an universal family ¥ —T(My) of marked Calabi-Yau manifolds over the
Teichmiiller space we get that there exists a map f:D* —I(My). Indeed since the monodromy
operator T of the family is trivial, we see immediately that if we marked one fibre M,, l.e,
choose a basis {6,,..,6n} of Hp(M,Z), then we.have marked all fibres. So from this trivial
remark we get the existence of f:D*—%(Mg). Using the fact that Global Torelli Theorem
holds for Calabi-Yau manifolds, i.e. the period map p:E(Mg)—D(My) is an inclusion (See
THEOREM 6.1.) and the fact that in our case the period map p:D* = D(M;) can be prolonged
to a map p:D—D(Mg){See [G].) we get that f can be prolonged to a map :D—T(My). Now
our theorem follows THEOREM 4.1..
Q.E.D.
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#7. THE TEICHMULLER SPACE £(M,) IS A STEIN MANIFOLD.

7.1. THEQREM.
a) The Teichmiiller space T (M) is diffeomorphic to RQN, where N=dimH'(M4,0,).
b) T(M,) is a Stein manifold.

PROOF: Let ¥(ty,.,tp,b;,..,tp) be the function defined in (1.8.6.). As it was shown in #3.
Uty 5estpgob 1508 py) 18 globally defined positive function on T(Mp).

7.1.1. LEMMA.

a) log\I'(tl,..,t.N,Tl,..,TN):‘i—rR is a proper map.
b) log\II(tl,..,tN,‘Fl,..,TN) is a non-degenerate Morse function and has a unique critical point in
¥ (M) and this critical point is a minimum.

c) log¥(t;,...tn,t 15..,t Ny) i8 & holomorphically convex.

7.1.1.1. REMARK,

From Lemma 7.1.1. THEOREM 7.1. follows directly from well-known gradient deformations
of Morse theory ([M]) and the results in [He].

Proof of a):

It is enouph to prove that ¥ is a proper function, then log¥ will be proper too. We need to
prove that praimage of a compact set in R' is a compact set in T(My). Notice that for each
teX(Mg) ¥(t)#0. So from this remark we may suppose that K is a compact set in R! that
does not contains the point 0, i.e. we may suppose that K=[a,b] and 0¢[a,b]. So we need to
prove the following Proposition:

7.1.1.a. Proposition.

If {t,} is any sequence of points in T(Mg) such that

a<¥(ty)<b Yty and 0¢[a,b)
then there exists a subsequence {tnk} of {tn} such that there exists

kimmtnkztei(Mo)
Proof of 7.1.1.a.;
We know from #4 that T(My)CD(Mo)CQCP(E), where E=P"(Mgy,C)(primitive n-
cochomology) and Q@ is defined as follows:

Q:={w€eECH"(Mo,C)] [ wAw=0}

Mo
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D’(Mg) is contained in an open in Q and D’(M,,) is defined as follows:
a(n+1)
D’(Mo ):={we Q| (—1)—5—0)“ J wAT >0}
Mo
Since {tn}€T(Mo)CD’(Mo)CQ and Q is a compact manifold, it follows that there exists a
subsequence {t”k} such that
(*) nkliﬂgmtnkzt exists and t€QCP(H"(M,C))

So since teQCP(H"(Mq,C)) t can be represented by some harmonic form wi €H"(M,,C)
on Mg. From the conditions:
n(n+41)
a < U(tg)=(=1) 2 (@)™2 I wy, AT, < b, 0g[ab] and
: Mo

it (n,0)]=(wy]

we get that n(n+1)
(-1 2 o I W AT >0
M,
SO
(%) teQ

Next we must prove that teT(My). We know that D’(My)=G/K, where G is a semi-
simple Lie group and K is a maximal compact subgroup in G. So on D’(Mg) there exists a
unique G-invariant metric h. D’(M,) is a complete Riemannian manifold with respect to h.
Tian proved in [Ti] that the Weil-Petcrsson metric on $(Mg) is just the restriction of h on
¥ (Mp). Since {t"k} is Cauchy sequence on D’(My) and so it is a Caushy sequence on T(M,).
Because tnkeZ(Mo) the definition of a complete Riemannian manifold and according to the
results of #3., i.e ‘.':."(MO) is complete Riemannian manifold with respect to the Weil-Petersson
metric it follows that

nklil]i]ootnk:tei(rﬂo)

So 7.1.1.a. is proved.
Q.E.D.
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Proof of 7.1.1.b. and c:

From the definition of W(t,,...,tp;t 1,e..58 ) it follows that

dlog¥ _ BloglI!_O
Ko

i

at the point to €T (M) that corresponds to Mo.(See [T].) For any other point t#t, we have

ANog¥ _ dlog¥
T

. 82log‘~I' . . . . .
In [T] it was proved that (—ur) is the Weil-Petersson metric. So tg is a unique

ot 01

non-degenerate minimum of log¥(t,,...,tn;t,....,t y) and it is holomorphically convex.

Q.E.D.
So THEQOREM 7.1. is proved.

Q.E.D.
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#8. NIELSON REALIZATION PROBLEM.

8.1. Definition.
Let Diff+(Mo) be the group of diffeomorphisms of Mg that preserve the orientation. Let
Diff,j-(Mo) be the group of diffeomorphisms isotopic to the identity. It is easy to prove that
Diffj—(Mo) is a normal subgroup in Diff+(Mo). Let

T:=Diffgd (Mo)/Ditf T (Mo)

8.2. Proposition.

' acts discretely on the Teichmiiller space $(Mg) and preserve the Weil-Petersson

metric.

Proof: If g€’ and tE‘i’(Mo) and t corresponds to M, with a complex structure operator I,
then g*(t) corresponds to the manifold with an complex structure operator g*([t). So
g*(t)€X(Mo). If teT(My) then we know that t€%, where % is the Kuranishi space of M,.
From [KM] it follows that all the points t€% corresponds to non-isomorphic complex manifold.
From here it follows that I' acts dicretely on T(Mg).

Next we must prove that T' preserve the Weil-Petersson metric. We know that we can

identify the tangent space T at a point tET (M) with H'(Mg,0,), i.e.

t, ¥ (Mg)

T ~H! (Mg,00)~H! (Mo,08))

T (Mo)

and the last identification is given by

¢—¢Lw(n,0)
where wt(n,O)/\wt(O,n)=vol(ga B) and [Im(ga E)]:L.
On the other hand we know that

n{n+1)
<bubp>=(=1) 2 @072 (41 Lu (0 OAF To (0=
M,

<[y Ly (0, 0)(B5 Ly (n0)]>
where [(¢; Lw(n,0))]e H"(M;,C) for i=1,2. (See [T].) From this formula we get immediately
that

<¢1,¢2>=<g*(¢1)1g*(¢2)>

Q.E.D.
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THEOREM 8.3.

If G is a finite subgroup of I', then there exists a point xo, €T (My) such that g(xg)=x, ¥ g€G.
Proof: We know from Lemma 5.1.1. that

‘I‘(tl”")tN;T15""7TN):§:(M0)_‘R
is a proper C® function, which is holomorphically convex and has a unique non-degenerate

minimum. Let us define

| * I k3
'I'G'_lG—IZg W(tgeerstpgi 1oeeemst )

From the way we define ‘I‘G it follows that it is a proper C* function. We must prove
that ‘I!G has a unique nondgenerate critical point. This fact will follow from the following
Proposition.

8.3.1.Proposition.

\Il(tl,...,thfl,....;fN) is a convex function when it is restricted on a real geodesic v(t) with
respect to the Weil-Petersson metric.

Proof: We must prove that

2

d°vy
>0 on v(t

w2 (t)

From the definition of ¥:=<w,w;>, where w; is defined in (1.8.5.) it follows that

2 -
d“<we,w, >  d(<w,w>) . .
(%) dtt2 =g m =2 <0 w> iy

From the definition of wy it follows that

is a tangent to the geodesic v(t). (See [T]). From the definition of a geodesic with respect to

the Weil-Petersson metric it follows that

dzwt .
sz is a form of type (n-2,2)

This was proved in #3. This yields

<wt0,i.bt0)=0
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So from (*) we obtain that

aZ<wy,0p>  Nlogl?
g =270
dt fleg l

Q.E.D.

From the Proposition 8.3.1. it follows that ¥~ has a unique non-degenerate minimum xg. Since
G g o

¥ is G invariant it follows that g(xo)=xo VYg€G.

Q.E.D.
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