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Abstract
In this paper we give a survey of the modern theory of bi-
rational rigidity for Fano fiber spaces over a base of positive
dimension. The paper is a follow up of the previous sur-
vey on birational rigidity of Fano varieties. We describe the
techniques of the method of maximal singularities for Fano
fiber spaces.
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Introduction

The present paper is a follow up of the survey [1], devoted to the theory of
birational rigidity of higher-dimensional Fano varieties: we consider the “relative”
version of the theory, that is, we study Fano fiber spaces over a positive dimensional
base. Whereas for typical Fano varieties the phenomenon of birational rigidity meant
the absence of non-trivial structures of a rationally connected fiber space, for typical
Fano fiber spaces birational rigidity means the uniqueness of the default structure.
Both in the absolute case (Fano varieties) and the relative case (Fano fiber spaces)
the theory is based in the technical sense on the method of maximal singularities,
however the fiber spaces over a non-trivial base are essentially harder to work with
in many respects, they require additional technical means and for these reasons the
theory of Fano fiber spaces needs to be considered separately (from the absolute
case). Geometry of Fano varieties and fiber spaces form two branches of the theory
of birational rigidity, they developed parallel to each other. It is the technical
difficulties that are responsible for the fact that up to the mid-nineties the Sarkisov
theorem [2] remained the one and only result on birational rigidity of Fano fiber
spaces, and the situation changed only when the paper [3] appeared and made it
possible to study successfully new classes of fiber spaces.

In this paper we assume that the reader is familiar with the previous survey
[1]. In particular, such crucial concepts as rationally connected variety, threshold
of canonical adjunction, maximal singularity etc. are assumed to be known and are
used without special explanations. This also applies to the technique of hypertangent
divisors which was presented in [1] in full detail.

The structure of the present survey is similar to that of [1]: the first chapter is
less formal, its aim is to explain by examples, what types of varieties are studied,
which problems are considered and what approaches are available today for their
solution. The second chapter deals with birational geometry of Fano fiber spaces
over P1. In the third chapter we discuss varieties with many non-trivial structures
of a rationally connected fiber space. In particular, we consider briefly the double
spaces of index two: they make the first example of a large class of non-rigid Fano
varieties, for which the method of maximal singularities makes it possible to give a
complete description of their birational geometry. Note that the recent survey [4]
was devoted to fibrations into del Pezzo surfaces of degrees 1 and 2 and for that
reason we do not consider this class of varieties.

Everywhere in the sequel “Fano fiber space” means a fiber space over a positive
dimensional base, that is, a non-trivial fiber space.

The claims, definitions, remarks, etc., are numbered in this paper in the same
way as in [1]: theorem (definition, lemma, remark, . . . ) a.b is the theorem (. . . ) b of
chapter a; in each chapter the numbering is independent; when we refer to a section
§a or subsection a.b, and do not specify the chapter, the current chapter is meant.
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Chapter 1. Birational geometry of rationally connected fiber spaces

§1. Rationally connected fiber spaces

1.1. Fano fiber space: definitions and examples. First of all, recall the
well known

Definition 1.1. A surjective morphism of smooth projective varieties π: V → S
with connected fibers of the same dimension is called a Fano fiber space, if the
anticanonical class (−KV ) is relatively ample, that is, ample on the fibers of the
projection π. A Fano fiber space is said to be standard, if

Pic V = ZKV ⊕ π∗ Pic S, (1)

in particular, the relative Picard number is ρ(V/S) = 1.
In the present survey we consider only Fano fiber spaces over a rationally con-

nected base S; in that case the variety V is automatically rationally connected. If
the variety V has Q-factorial terminal singularities, S is normal and the condition
(1) is replaced by the equality ρ(V/S) = 1, then this more general object is of-
ten called a Mori fiber space, see §2. However, the term “a Fano fiber space with
singularities” is also justified.

The fibers of a Fano fiber space π: V → S are varieties from some family F , the
general element of which is a smooth Fano variety, so that the projection π generates
a map S → F , associating to a point s ∈ S the corresponding fiber. In a sufficiently
typical situation the sheaf π∗(−KV ) is locally free and allows one to give an explicit
construction of a Fano fiber space, which is shown by the following two examples.

Example 1.1 (fibrations into Fano complete intersections). Let S be
a smooth projective rationally connected variety of positive dimension, E a locally
free sheaf on S of rank M + k + 1, where M,k ≥ 1 are positive integers, X =
P(E) the corresponding projective bundle in the sense of Grothendieck (X is the
projectivisation of the vector bundle, the sheaf of sections of which is E∗, the sheaf,
dual to E). The projection π: X → S is a locally trivial PM+k-fibration. If LX ∈
Pic X is the class of the tautological sheaf OP(E)(1), then

Pic X = ZLX ⊕ π∗ Pic S,

so that X/S is a Fano fiber space. For the canonical class of the variety X there is
a well known formula

KX = −(M + k + 1)LX + π∗(det E + KS).

Let (d1, . . . , dk) ∈ Zk
+ be a k-uple of integers, satisfying the conditions

dk ≥ . . . ≥ d1 ≥ 2 and d1 + . . . + dk = M + k.

Consider, furthermore, the set of classes Ai ∈ Pic S, i = 1, . . . , k, and assume that
there are irreducible divisors

Gi ∼ diLX + π∗Ai, i = 1, . . . , k,
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such that the complete intersection

V = G1 ∩ . . . ∩Gk ⊂ X

is a smooth variety, the fibers of which V ∩π−1(s), s ∈ S, are of the same dimension
M . We denote the restriction of the projection π onto V by the same symbol
π: V → S. The restriction of the tautological class LX |V is denoted by the symbol
LV . Obviously,

KV = −LV + π∗∆

for some ∆ ∈ Pic S, so that V/S is a Fano fiber space. Moreover, for a point of
general position s ∈ S the fiber π−1(s) ⊂ V is a smooth Fano complete intersection
of the type d1 · . . . · dk in PM+k. For M ≥ 3 this implies that

Pic V = ZLV ⊕ π∗ Pic S = ZKV ⊕ π∗ Pic S, (2)

that is, V/S is a standard Fano fiber space. If M = 2, then V/S is a fibration into
del Pezzo surfaces of degree 3 (k = 1), that is, cubic surfaces in P3, or degree 4
(k = 2, d1 = d2 = 2), that is, complete intersections of the type 2 ·2 in P4. If M = 1,
then V/S is a conic bundle: in that case we require in addition that dim S ≥ 2. For
M ∈ {1, 2} the condition (2) does not hold automatically and we should require it
as an extra. However, if the divisors Gi, 1 ≤ i ≤ k ∈ {1, 2}, are ample, then (2)
holds by the Lefschetz theorem. The construction above gives the most “classical”
example of a standard Fano fiber space.

Example 1.2 (fibrations into Fano double covers). Let S, E , X, π be the
same as in the previous example, k = 1. Consider a pair of integers m ≥ 2, l ≥ 2,
satisfying the equality m+ l = M +1. Assume that for some classes AQ, AW ∈ Pic S
there are divisors

Q ∼ mLX + π∗AQ and WX ∼ 2(lLX + π∗AW ),

where Q ⊂ X is a smooth subvariety, intersecting each fiber π−1(s), s ∈ S, by a
hypersurface (that is, Q does not contain entire fibers of the projection π), and
WX cuts out on Q a smooth divisor that does not contain fibers of the projection
πQ = π|Q. This collection of data determines the double cover σ: V → Q, branched
over the divisor W = WX ∩ Q. The fibers of the projection πQ ◦ σ: V → S are
M -dimensional varieties and the general fiber is a smooth primitive Fano variety,
which implies that

Pic V = ZKV ⊕ σ∗π∗Q Pic S,

that is, V/S is a standard Fano fiber space. A particular case of this construction
(corresponding to the value m = 1) is a double cover σ: V → X, branched over a
smooth divisor WX ∼ 2((M + 1)LX + π∗AW ) that does not contain fibers of the
projection π (there is no divisor Q); this is a standard fibrations into Fano double
spaces of index one.

In each of the considered examples the fibers of the Fano fiber space π: V → S
belong to a family F of M -dimensional schemes, the general element of which is a
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smooth Fano variety of index one. Each of these families admits a natural structure
of a projective variety, so that to the fiber space V/S we can associate a map

S → F ,

sending a point s ∈ S to the fiber π−1(s) ∈ F . In this connection, we get a geometric
characterization of “twistedness” of the fiber space V/S as complexity of the map
S → F . For instance, if V ⊂ P1 × P3 is a smooth divisor of bidegree (d, 3), so
that the projection π: V → P1 onto the first factor realizes V as a fibration into del
Pezzo surfaces of degree 3, then the twistedness of this fiber space over the base P1

is easy to define as the value d ≥ 1. The twistedness over the base is an intuitively
clear degree of complexity of a fiber space, and it is natural to expect that the more
twisted the fiber space is, the more rigid is its structure. Now let us give an example
of a least twisted fiber space.

Example 1.3 (Fano fiber spaces). Let F1, . . . , Fk, k ≥ 2, be primitive Fano
varieties,

V = F1 × . . .× Fk

their direct product, πi: V → Si =
∏
j 6=i

Fj the projection along Fi, i ∈ {1, . . . , k}. By

assumption, πi: V → Si is a standard Fano fiber space. The corresponding map of
twistedness Si → Fi is a map to the point.

Recall [1], that by a structure of a rationally connected fiber space (or, briefly,
a rationally connected structure) on a rationally connected variety V we mean a

birational map V
χ99K V +, where on the variety V + a morphism π+: V + → S+ is

fixed, which is a rationally connected fiber space. A Fano fiber space is obviously
a rationally connected fiber space. Now we can formulate the main problem of
birational geometry of Fano fiber spaces as follows:

fir a given standard Fano fiber space π: V → S describe all structures of
a rationally connected fiber space on the variety V modulo the relation of
fiber-wise birational equivalence.

Informally speaking, the more rationally connected structures there are on a
given variety V , the more complicated is its birational geometry (in particular, the
projective space Pn has the most complicated birational geometry). The group of
birational self-maps Bir V acts on the set RC(V ) of rationally connected structures
and of the greatest interest is the quotient set RC(V ), introduced in [1]. If V/S
is a Fano fiber space over a base of positive dimension, then there is an important
subgroup

Bir(V/S) ⊂ Bir V

of fiber-wise (with respect to π) birational self-maps, equipped with the natural
homomorphism

Bir(V/S) → Bir S.

The kernel of the latter homomorphism is the group Bir(Fη) of the generic fiber
(over the generic point of S with the residue field C(S)).
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As the first stage in the solution of the general problem that was formulated
above, it is natural to identify those Fano fiber spaces V/S, that have exactly one
structure of a rationally connected fiber space π: V → S, or, at least, those, for which
that structure is unique modulo the action of the group Bir V . Such a uniqueness in
most cases is a consequence of the fundamental property of birational (super)rigidity.
As it was pointed out in [1, Chapter 1, Sec. 3.2], the informal general principle is
that a sufficiently high twistedness over the base implies birational rigidity, the
uniqueness of the structure V/S and reduces birational geometry of the variety V
to birational geometry of the fiber Fη over the generic point. This principle will be
realized below in various examples that are by now completely studied.

The method of maximal singularities, which forms a basis of the proof of almost
all results of the current survey, as a by-product solves other problems as well:
describes the group Bir V and the group Bir(V/S). The modern version of the
method makes it possible to start investigating varieties with several and even many
non-equivalent structures of a rationally connected fiber space. Chapter 2 is devoted
(mainly) to varieties with a unique rationally connected structures, Chapter 3 is
devoted to varieties with many structures.

In [1, Chapters 1,2] we explained and illustrated the idea of untwisting of a bi-
rational map (or untwisting maximal singularities). Essentially, this is the universal
idea of simplification of a complex object by means of subsequent elementary steps.
For Fano varieties such steps are usually birational involutions [1, Chapter 1, §3].
For Fano fiber spaces the most natural candidates for simplifying modifications are
fiber-wise modifications: here, apart from self-maps, operations of a different type
emerge. The informal working principle is that a birational map χ: V 99K V ′ of the
total space of a Fano fiber space V/S onto the total space of the fiber space V ′/S ′

should be simplified by fiber-wise modifications until either it becomes, in a certain
sense, “simple”, or a new structure of a rationally connected fiber space appears
on the modified space V , which is not compatible with the original structure V/S.
In the latter case replacing the old structure by the new one makes the simplifying
step.

Below we consider examples of simplifying modifications of both types.

1.2. Fiber-wise birational maps. In the study of birational geometry of a
Fano fiber space π: V → S of great importance are the fiber-wise birational modifi-
cations, that is, commutative diagrams of maps

V
χ99K V +

π ↓ ↓ π+

S
ϕ99K S+,

where χ and ϕ are birational maps. The most elementary type of such modifications
is given by birational self-maps of the generic fiber, S+ = S, ϕ = id, V + = V .
Following [5,3], consider

Example 1.4 (fiber-wise birational self-maps of a pencil of cubic sur-
faces). In this example the Fano fiber space is a particular case of the construction

7



of Example 1.1. Let P(E)
π→ P1 be the projectivization of a locally free sheaf of rank

4 on P1, V ⊂ P(E) a smooth divisor, intersecting each fiber π−1(t) by a cubic surface
Ft ⊂ P3 = π−1(t); assume that V/P1 is a standard Fano fiber space. Consider an
arbitrary section C ⊂ V of the projection π: V → P1. For a general point t ∈ P1 a
general line L ⊂ P3 = Gt, containing the point C ∩ Ft, meets the cubic surface Ft

at two more distinct points, say x, y. Set

τC(x) = y.

Obviously, this defines a birational involution τC ∈ Bir Fη ⊂ Bir V . Let α: V ∗ → V
be the blow up of the curve C, E = α−1(C) the exceptional divisor, Pic V ∗ =
Zh⊕ Ze⊕ ZF , where h = −KV .

Lemma 1.1. The birational involution τC extends to a biregular involution of
an invariant open set V ∗\Y , codim Y ≥ 2, and its action on Pic V ∗/ZF ∼= Zh̄⊕Zē
is given by the relations

τ ∗C h̄ = 3h̄− 4ē,

τ ∗C ē = 2h̄− 3ē.

Proof. See [5].
Now let us consider an arbitrary bi-section C ⊂ V , that is, an irreducible curve

which is a two-sheeted cover of the base P1. We define the involution τC by its
action on the generic fiber F in the following way (see [5,3]). Let {a, b} = C ∩ F ,
and q = Lab ∩ F be the third point of intersection of the line in P3 that joins the
points a and b, with the cubic surface F . The points q sweep out a curve C∗ ⊂ V ,
a section of the morphism π, that is, q = C∗ ∩ F . The pencil of planes P in P3,
containing the line Lab, generates a pencil of elliptic curves QP = P ∩ F on the
surface F . Set

τC |QP
(x) = y,

where
x + y ∼ 2q

on QP , that is, τC is the reflection on the elliptic curve QP from the point q. This
defines the involution τC ∈ Bir Fη ⊂ Bir V .

Let α: V ∗ → V be the blow up of the curve C, E = α−1(C) the exceptional
divisor, Pic V ∗ = Zh⊕ Ze⊕ ZF , where again h = −KV .

Lemma 1.2. The birational involution τC extends to a biregular involution of
an invariant open set V ∗\Y , codim Y ≥ 2, and its action on Pic V ∗/ZF ∼= Zh̄⊕Zē
is given by the relations

τ ∗C h̄ = 5h̄− 6ē,

τ ∗C ē = 4h̄− 5ē.

Proof: straightforward computations [5].
The birational involutions constructed above are used for the study of geometry

of the variety V in the following way. Let Σ ⊂ | − nKV + lF | be a movable linear
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system on V , where n ≥ 1, that is, Σ is not composed from the pencil of fibers. The
curve C ⊂ V is called a maximal curve of the system Σ, if the inequality

multC Σ > n

holds. Assume that C is a horizontal maximal curve, that is, π(C) = P1 (in other
words, C is not contained in a fiber Ft). It is easy to show that

(K2
V · F ) = 3 > deg(π|C) ∈ {1, 2},

that is, C is a section or bi-section of the projection π. By Lemmas 1.1 and 1.2 it is
easy to see that the strict transform Σ1 = (τC)∗Σ of the linear system Σ with respect
to the involution τC satisfies the relation Σ1 ⊂ |−n1KV + l1F |, where n1 < n. More
precisely,

n1 = 3n− 2 multC Σ,

if C is a section, and
n1 = 5n− 4 multC Σ,

if C is a bi-section of the projection π. Since n ∈ Z+, in finitely many steps we
come to a system without maximal curves. This is the first, easier step in the study
of birational geometry of the variety V and in the proof of the main theorem on
birational rigidity of the fiber space V/P1 [3], which was formulated in [1] (Theorem
1.7). The second, harder, step (the exclusion of infinitely near maximal singularities)
is discussed in §3 of Chapter 2 of the present survey.

Example 1.5 (fiber-wise birational modifications of conic bundles). Let
π: V → S be a standard conic bundle. Some examples of birational self-maps
preserving the fibers were given in [1, Sec. 2.3]. However, what turns out to be
productive to describe birational geometry of the variety V (see the Sarkisov theorem
and its discussion that were given in [1, Sec. 2.3]) is not simplifying a linear system
by birational self-maps as above but another approach, which we will now briefly
describe. Consider the simplest situation: let the fiber C = π−1(p) over a point
p ∈ S be a non-singular conic, C ∼= P1. Let us blow up simultaneously the point p
on the surface S and the curve C on the variety V :

V ← V +

π ↓ ↓ π
S ← S+,

the projection V + → S+ is for simplicity denoted by the same symbol π. Let E ⊂ V +

and ES ⊂ S+ be the exceptional divisors of these blow ups. Note that V +/S+ is
again a standard conic bundle. Obviously, E = ES × P1. Let Σ ⊂ | − nKV + π∗A|
be a movable linear system, µ = multC Σ and

Σ+ ⊂ | − nKV + + π∗(A + (n− µ)ES)|
its strict transform on V +. The fiber C is a maximal curve of the system Σ, if
µ > n, and this example shows how to remove all maximal curves of that type,
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modifying the conic bundle (if C is a component of a reducible fiber or the support
of a non-reduced fiber, then the construction of the birational modification is much
more complicated, see [2]). Let us now assume that some curve Γ ⊂ E, which is not
a fiber of π, satisfies the condition

ν + µ > 2n,

where ν = multΓ Σ+ > n, that is, it is an infinitely near maximal curve of the original
system Σ. Since Σ+ has no fixed components and for a general divisor D+ ∈ Σ+ we
have

(D+ · π−1(s)) = −n(KV + · π−1(s)) = 2n,

the curve Γ is a section of the ruled surface E/ES, in particular, it is a smooth
rational curve. Let ϕ: V ] → V + be the birational modification which is a compo-
sition of two operations: the blow up of the curve Γ and the subsequent fiber-wise
contraction of the strict transform of the ruled surface E. We obtain a new standard
conic bundle π: V ] → S+, for the strict transform of the linear system Σ on V ] we
get

Σ] ⊂ | − nKV ] + π∗(A + (3n− 2µ− ν)ES)|.
Note once again, that if a maximal singularity of the system Σ lies over a point of
a singular or non-reduced fiber of the projection π, then the required modification
is much more complicated of the construction described above. However, what has
been said already makes it possible to explain the idea of the proof of the Sarkisov
theorem [2] (in [1] it is Theorem 1.6). Let

V
χ99K V ′

π ↓ ↓ π′

S S ′

be a birational map between two conic bundles¡ where V satisfies the condition
|4KS+∆| 6= ∅, and ∆ ⊂ S is the discriminant divisor. Pulling back from the base S ′ a
very ample linear system, we get a movable system Σ′ on V ′. Let Σ ⊂ |−nKV +π∗A|
be its strict transform on V . If χ is not fiber-wise, then n ≥ 1. So assume that
n ≥ 1. It is easy to check that the condition |4KS + ∆| 6= ∅ is invariant under
fiber-wise modifications (this is obvious in the example above). Therefore, applying
fiber-wise modifications, we may assume that the linear system Σ has no maximal
singularities. Now it is easy to obtain from the condition of termination of canonical
adjunction that in this case the class A ∈ Pic S is not effective (more precisely, not
pseudo-effective). Let us compute the self-intersection

Z = (D1 ◦D2), Di ∈ Σ,

of the linear system Σ and push it down on S:

π∗Z ∼ n2π∗K2
V + 4nA ∼ −n2(4KS + ∆) + 4nA.
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From here by assumption it follows that

A ∼ n

4
(4KS + ∆) +

1

4n
π∗Z

is an effective class. This contradiction proves the Sarkisov theorem. For the details,
see [2].

1.3. Replacing the structure of a Fano fiber space. In the class of Fano
fiber spaces of dimension three and higher, fiber-wise modifications appear much
more seldom. The following example shows how much more rigid is fiber-wise bira-
tional geometry in higher dimensions.

Example 1.6 (the absence of non-trivial fiber-wise modifications in
higher dimensions [6]). Let C be a smooth affine curve with a marked point
p ∈ C, and C∗ = C\{p} the punctured curve. Let V(d), d ≥ 2, be the set of smooth
divisors V ⊂ X = C × PM , M ≥ 3, each fiber of which

Fx = V ∩ {x} × PM ,

x ∈ C, is a hypersurface of degree d. Set

X∗ = C∗ × PM , V ∗ = V ∩X∗,

so that V ∗ is obtained from V by removing the fiber Fp over the marked point.
Assume that d ≥ 3 and V1, V2 ∈ V(d). The following fact is true [6].

Theorem 1.1. Let χ∗: V ∗
1 → V ∗

2 be a fiber-wise isomorphism. Then χ∗ extends
to a fiber-wise isomorphism χ: V1 → V2.

Proof is given in §2 of Chapter 2.
The next example deals with varieties with two structures of Fano fiber spaces.

The transition from one structure to another is the required simplifying modification.
For other similar examples, see [7,8].

Example 1.7. Consider the following particular case of the construction of
Example 1.1: let E = O⊕(M−1)

P1 ⊕OP1(1)⊕2 be a locally free sheaf of rank (M +1) on
P1, X = P(E) the corresponding PM -bundle over P1, Pic X = ZLX ⊕ ZR, where R
is the class of a fiber of the projection πX : X → P1, LX the tautological class. Let
V ∼ MLX be a general divisor. It is a smooth variety, fibered by the projection
π = πX |V : V → P1 into Fano hypersurfaces of index one. Obviously, V/P1 is a
standard Fano fiber space, Pic V = ZKV ⊕ZF , where F is the class of a fiber of the
projection π and KV = −L, L = LX |V . On the variety V , however, there is another
structure of a rationally connected fiber space.

Consider the following locally free subsheaves:

E0 = O⊕(M−1)

P1 ↪→ E and E1 = OP1(1)⊕2 ↪→ E .

Obviously, E = E0 ⊕ E1. Let LX be the tautological sheaf of Grothendieck of the
bundle P(E) and Π0 ⊂ H0(X,LX) the subspace, corresponding to the space of
sections of the subsheaf H0(P1, E0) ↪→ H0(P1, E). Set also

Π1 = H0(X,LX ⊗ π∗OP1(−1)) = H0(P1, E1(−1)).
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Let x0, . . . , xM−2 be some basis of the space Π0, y0, y1 a basis of the space Π1. Then
the sections

x0, . . . , xM−2, y0t0, y0t1, y1t0, y1t1, (3)

where t0, t1 is a system of homogeneous coordinates on P1, forms a basis of the space
H0(X,LX). It is easy to see that this complete linear system defines the morphism

ξ: X → X ⊂ PM+2,

the image of which X is a quadric cone with the vertex space PM−2 = ξ(∆X),
the base of which is a non-singular quadric in P3, isomorphic to P1 × P1, where
∆X = P(E0) is the base set of the pencil |LX −R|, ∆X = PM−2 × P1, contracted by
the map ξ onto the first factor. The morphism ξ is birational, more precisely,

ξ: X \∆X → X \ ξ(∆X)

is an isomorphism, and moreover, ξ contracts ∆X = PM−2×P1 onto the vertex space
of the cone. Let

u0, . . . , uM−2, u00, u01, u10, u11

be the homogeneous coordinates on PM+2, corresponding to the ordered set of sec-
tions (3). The cone X is given by the equation

u00u11 = u01u10.

On the cone X there are two pencils of M -planes, corresponding to the two pencils
of lines on the smooth quadric in P3. Let τ ∈ AutPM+2 be the automorphism,
permuting the coordinates u01 and u10, and not changing the other coordinates.
Obviously, τ ∈ Aut X is an automorphism of the cone X, permuting the pencils of
M -planes. One of those pencils is the image of the pencil of fibers of the projection
π, that is, the pencil ξ(|R|). For the other pencil we have the obvious equality

τξ(|R|) = ξ(|LX −R|).

The automorphism τ induces an involutive birational self-map

τ+ ∈ Bir X.

More precisely, τ+ is a biregular automorphism outside a closed subset ∆X of codi-
mension two. Let ε: X̃ → X be the blow up of the smooth subvariety ∆X . Obviously,
the variety X̃ is isomorphic to the blow up of the cone X at its vertex space ξ(∆X).
It is easy to check that τ+ extends to a biregular automorphism of the smooth vari-
ety X̃. The linear systems |kLX |, k ∈ Z+, are invariant under τ+. In particular, for
a general divisor V ∈ |MLX | its τ+-image V + = τ+(V ) is a general divisor of the
same linear system, in particular, V + is a smooth variety. Note that if V ∈ |MLX |
is given by an equation

h(u0, . . . , uM−2, u00, u01, u10, u11),
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then its image V + is given by the equation

h+(u∗) = h(u0, . . . , uM−2, u00, u10, u01, u11),

where the coordinates u01 and u10 are permuted.
Therefore, we obtain two Fano fiber spaces, V/P1 and V +/P1, related via the

birational isomorphism τ+: V 99K V +, which is not fiber-wise. That birational map
is biregular in codimension one and acts on the Picard group in the following way:

(τ+)∗KV + = KV , (τ+)∗F+ = −KV − F,

where F+ is the class of a fiber of the projection V + → P1, so that Pic V + =
ZKV + ⊕ ZF+. By construction, the construction is involutive, that is, (V +)+ = V .

Note that the birational map τ+: V 99K V + is the composition of the blow up of
the subvariety ∆ = ∆X ∩ V of codimension two and the subsequent contraction of
the exceptional divisor onto the subvariety ∆+ = ∆X ∩ V +.

The transition from the model V to the model V + by means of the birational
map τ+ is used as a simplifying modification in the following way. Let

Σ ⊂ | − nKV + lF |

be a movable linear system. If l < 0, then the linear system τ+
∗ Σ ⊂ |−n+KV ++l+F+|

has parameters
n+ = n + l, l+ = −l ≥ 1.

§2. The minimal model program and the Sarkisov program

2.1. Minimal models and Mori fiber spaces. The Minimal Model Program
(MMP) generalizes to higher (≥ 3) dimensions the classical theory of minimal models
of algebraic surfaces [9]. The purpose of MMP is to associate to every algebraic
variety, by means of explicitly described birational modifications, a certain “model”
with “good properties” with respect to the canonical class. While for a smooth
projective surface it is sufficient to contract the exceptional lines (or (−1)-curves),
to obtain either a minimal surface with a numerically effective canonical class or a
ruled surface (that is, a P1-bundle over a smooth projective curve), in dimensions
three and higher the situation is much more complicated:

— extremal contractions (the higher-dimensional analogues of the operation of
contracting a (−1)-curve) inevitably produce singular varieties, even if the original
variety was non-singular;

— a new type of birational modifications emerges, which are isomorphisms in
codimension one, that is, outside a closed subset of codimension ≥ 2; it is these
modifications that generate the worst technical complications;

— as it became clear starting from the mid-eighties, a technically more natural
object is not an algebraic variety X, but a pair (or log pair) (X, ∆), where ∆ is a
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boundary, which is an (effective, as a rule) Weil Q-(or R-)divisor on X, such that
KX+∆ is a Q-(respectively, R-)Cartier divisor. Working with pairs makes it possible
to deal with all types of singularities and is well adjusted to constructing inductive
procedures of MMP.

Let X be a normal projective variety, ∆ an effective Weil R-divisor, ∆ =
∑

di∆i,
where ∆i ⊂ X are distinct prime divisors. Let f : Y → X be a log resolution of the
pair (X, ∆), that is a sequence of blow ups such that Y is a smooth projective variety
and ⋃

∆+
i

⋃
Ej

is a normal crossings divisor, where
⋃

Ej is the exceptional divisor of the morphism
f , ∆+

i the strict transform of the divisor ∆i on Y . Writing down

KY + ∆+ = f ∗(KX + ∆) +
∑

ajEj

(where ∆+ =
∑

di∆
+
i ; recall that KX + ∆ is a R-Cartier divisor), we say, that the

pair (X, ∆) is a klt-pair (Kawamata log terminal), if all di < 1 and all aj > −1.
There are two most important types of klt-pairs:
1) the minimal models (or log terminal models), when KX + ∆ is numerically

effective,
2) the Mori fiber spaces, when there is a morphism ϕ: X → S onto a normal

projective variety S, where ρ(X/S) = 1, ϕ∗OX = OS and −(KX + ∆) is ϕ-ample.
The aim of MMP is to obtain, by means of birational modifications of a special

type, from an arbitrary klt-pair (X, ∆) either a minimal model, or a Mori fiber
space:

X0 = X
f199K X1

f299K . . .
fN99K XN , (4)

∆0 = ∆, ∆i = (fi)∗∆i−1 and (XN , ∆N) is of type 1) or 2). Each birational map
fi+1: Xi 99K Xi+1 is either a (KXi

+∆i)-extremal divisorial contraction, or a flip with
respect to a small (KXi

+∆i)-extremal contraction ϕi: Xi → Yi, that is, the rational
map ϕ+

i = ϕi ◦ f−1
i+1: Xi+1 99K Yi is a small birational morphism and (KXi+1

+ ∆i+1)
is relatively ϕ+

i -ample. Existence of flips in the arbitrary dimension and the highest
generality was proven in [10]. The main difficulty in constructing the MMP was from
the start the finiteness problem, that is, the problem of termination of a sequence
of flips. Indeed, a sequence of divisorial contractions for obvious reasons can not
be infinite. Therefore the algorithm of MMP gives the desired result (a minimal
model or a Mori fiber space) provided that a sequence of modifications of the flip
type can not be infinite. In [10] the existence of minimal models was proven via a
modification of the basic approach: instead of proving the finiteness of any sequence
of flips, it is sufficient to construct (or prove the existence of) a certain sequence,
which terminates after finitely many steps. That is what was done in [10]. Now let
us formulate the main result of that paper.

Theorem 1.2 [10]. Let (X, ∆) be a klt-pair, where KX + ∆ is a R-Cartier
divisor and π: X → U a projective morphism of quasi-projective varieties. Assume
that either ∆ is π-big, and KX + ∆ is π-pseudoeffective, or KX + ∆ is π-big. Then:
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1) the pair (X, ∆) gas a log terminal model over U ,
2) if KX + ∆ is π-big, then (X, ∆) has a log canonical model over U ,
3) if KX + ∆ is a Q-Cartier divisor, then OU -algebra

⊕

m∈N
π∗OX(xm(KX + ∆)y)

is finitely generated.
This rather technical result implies a number of important geometric facts. We

will give three claims, of which the last one is most important for the present paper.
Corollary 1.1 [10]. Let X be a smooth projective variety of general type. Then

X has a minimal model, the canonical ring

⊕

m∈N
H0(X,OX(mKX))

is finitely generated and X has a model with a Kähler-Einstein metric.
Corollary 1.2 [10]. Let (X, ∆) be a klt-pair and π: X → Z a small (KX + ∆)-

extremal contraction. Then for π a flip exists.
Corollary 1.3 [10]. Let (X, ∆) be a klt-pair, whereas X is a Q-factorial variety.

Let π: X → U be a projective morphism of normal quasi-projective varieties where
KX + ∆ is not π-pseudo-effective. Then some sequence of MMP modifications

f = fN ◦ . . . ◦ f1: X 99K Y

gives a Mori fiber space g: Y → W over U .
The last claim immediately implies that any rationally connected variety X is

birationally equivalent to a Mori fiber space

X 99K Y
↓ g

W,

where Y is a variety with Q-factorial terminal singularities, W is a projective normal
variety and (−KY ) is g-ample. Similarly, for any rationally connected fiber space
π: X → S there is a commutative diagram

X 99K Y
π ↓ ↓ g

S ← W,

where the top arrow is a birational map and Y/W is a Mori fiber space. (Note
that since termination of an arbitrary sequence of flips is still an open problem,
Corollary 1.3 does not claim that any sequence of MMP-modifications gives a Mori
fiber space.)

It follows from what was said, that all problems of birational geometry of ra-
tionally connected varieties could be set within the category of Mori fiber spaces:
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instead of finding out whether there is a birational equivalence X1 99K X2 between
two rationally connected varieties, we can replace Xi by birationally equivalent Mori
fiber space πi: Yi → Si and consider the same problem for Y1, Y2. If X1, X2 are bi-
rationally equivalent, then to describe all birational maps X1 99K X2 is the same
as to describe the group of birational self-maps Bir Xi = Bir Yi. If π: X → R is
a rationally connected fiber space, then the problem of description of the relation
between the group Bir X and the group of fiber-wise birational self-maps Bir(X/R)
is also carried over to the corresponding Mori fiber space Y/S.

Restriction of the problems of birational geometry by the framework of the cate-
gory of Mori fiber spaces has a number of clear advantages. For instance, it removes
the asymmetry of the traditional approach, when birational maps χ: V 99K V ′ are
investigated, where the variety V belongs to the category of Fano fiber spaces and
V ′ to the category of rationally connected varieties (or fiber spaces); whereas if we
work with Mori fiber spaces (that is, with Fano fiber spaces with Q-factorial ter-
minal singularities and the relative Picard number one) then both varieties belong
to the same category. Furthermore, the approach, motivated by MMP, makes it
possible to set and solve the general problem of factorization of birational maps in a
composition of elementary modifications (links), which we will consider in the next
section.

And, nevertheless, it is not clear, to what extent these advantages are essential
and whether they justify replacing the traditional approach by the new one, to
what extent the main definitions (for instance, that of the key concept of birational
rigidity), corresponding to the ideology of MMP, are “better” or “worse”; this issue
will be discussed below.

2.2. The problem of factorization of birational maps. The Sarkisov
program is the theory of factorization of birational maps between Mori fiber spaces
in a composition of elementary modifications (links). Consider the diagram

X
χ99K X ′

π ↓ ↓ π′

S S ′,

where χ is a birational map, X/S and X ′/S ′ are Mori fiber spaces. It is required to
construct a sequence of intermediate Mori fiber spaces πi: Xi → Si, i = 0, 1, . . . , N ,
that starts with π0 = π (X0 = X and S0 = S) and ends with πN = π′ (XN = X ′

and SN = S ′), and a sequence of elementary modifications (links) τi: Xi−1 99K Xi

such that
χ = τN ◦ . . . ◦ τ1: X0 = X 99K XN = X ′.

Recall that a link τ : X 99K Y between Mori fiber spaces π: X → S and ρ: Y → T
is a birational map of one of the following four types.

Type I (enlarging the base). There are: an extremal divisorial contraction
ϕ: Z → X, a birational map ψ: Z 99K Y , which is a composition of flops (in particu-
lar, an isomorphism in codimension one) and an extremal contraction ε: T → S (in
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particular, ρ(T/S) = 1) such that the following diagram of maps commutes:

Z
ψ99K Y

ϕ ↓ ↓ ρ
X T

π ↓ ↓ ε
S = S,

(5)

where ψ ◦ϕ−1 = τ : X 99K Y . The simplest exmaple of a link of that type was given
above (Example 1.5), it corresponds to the blow up of a point ε: T → S on the base
of the conic bundle and the blow up ϕ: Z → X of the fiber over that point. Let us
give one more

Example 1.8. Let L ⊂ P3 be a line, σ: X → P3 its blow up, ΠL the pencil of
planes in P3, containing the line L, Π+

L its strict transform on X. Obviously, Π+
L is

the pencil of fibers of the morphism

π: X → S = P1

with the fiber P2, that is, X/S is a Mori fiber space (and a Fano fiber space in
the traditional sense). Now let R ⊂ X be an arbitrary section of the projection π,
ϕ: Z → X its blow up. The composite map

π ◦ ϕ: Z → P1

is a fibration into rational ruled surfaces of type F1. More precisely, E ⊂ Z be the
exceptional divisor of the blow up ϕ, that is, E = ϕ−1(R). Obviously the projection
F1 → P1 (the regularized projection of P2 from the point R∩π−1(s), s ∈ S) generates
the projection p: Z → E, which is a P1-bundle, that is, Z/E is a Mori (Fano) fiber
space. This gives the digram (5) of a link of the first type with T = E, where
ε: T → S is the projection ϕ: E → R with respect to the identification π: R → S
and Z = Y , ψ is the identity map. In the described example the Mori fiber space
Y/T is obtained from X/S by fibering the fibers π−1(s), s ∈ S. Accordingly, the
fibers of the new fiber space Y/T are of a smaller dimension. This operation can
also be interpreted as fibering the generic fiber Fη of the morphism X → S over the
line P1

η (which is the generic fiber of the morphism T → S).

Type II (fiber-wise modifications). In this case S = T . There are extremal
divisorial contractions ϕ: Z → X and λ: W → Y and a birational isomorphism
ψ: Z 99K W , which is a composition of flops (an isomorphism in codimension one)
such that the following diagram commutes:

Z
ψ99K W

ϕ ↓ ↓ λ

X
τ99K Y

π ↓ ↓ ρ
S = T.
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The fiber-wise self-maps of the pencils of cubic surfaces, considered above (Example
1.4) belong to this type.

Let us consider one more

Example 1.9 (replacing the fiber). Let S be a smooth curve, π: X → S a
Pn-bundle , x ∈ X an arbitrary point, F = π−1(π(x)) ∼= Pn the fiber that contains
that point. Let

ϕ: Z → X

be the blow up of the point x, E = ϕ−1(x) ∼= Pn the exceptional divisor, F+ ⊂ Z the
strict transform of the fiber F . Obviously, R = F+ ∩ E is a hyperplane in E = Pn

and the projection of the fiber F = Pn from the point x generates a P1-bundle

λF : F+ → R.

If L ⊂ F is an arbitrary line, passing through the point x, then its strict transform
L+ ⊂ F+ is a fiber of the projection λF . Since KZ = ϕ∗KX + nE, the following
equalities hold:

(KZ · L+) = −1, (F+ · L+) = −1

(taking into account that (KX · L) = −(n + 1)), so that the numerical class of
the curve L+ generates the extremal ray [L+] ∈ NE(Z). Let λ: Z → Y be the
contraction of that ray. Obviously, λ|F+ = λF and λ contracts the divisor F+. The
image Y is again a Pn-bundle over S, which is birationally isomorphic to the original
one:

τ = λ ◦ ϕ−1: X 99K Y

is a link of the second type. Here W = Z and ψ is an isomorphism. The fiber
space Y/S had the same fibers over all points of the curve S, except for the point
π(x) ∈ S. The fiber over that point is replaced by the exceptional divisor E = Pn.
For n = 1 the described procedure is the classical modification of a ruled surface.

Finally, the birational modification of a conic bundle, described in Example 1.5,
also belongs to type II. (In fact, the links of that type were modelled by those mod-
ifications.) Note that by construction, a link of type II always induces a birational
isomorphism of the generic fibers Fη 99K Gη of Mori fiber spaces X/S and Y/S.

Type III (shrinking the base). The links of this type are inverse to the links
of type I, that is, in the diagram (5) the left hand side and the right hand side are
swapped. More precisely, there are: an extremal divisorial contraction ϕ: Z → Y ,
a birational map ψ: X 99K Z, which is a composition of flops (an isomorphism in
codimension one) and an extremal contraction ε: S → T , ρ(S/T ) = 1, such that the
following diagram of maps commutes:

X
ψ99K Z

π ↓ ↓ ϕ
S Y

ε ↓ ↓ ρ
T = T,
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where ϕ ◦ ψ = τ : X 99K Y . Inverting the construction of Example 1.5, we obtain a
link of type III. From the geometric viewpoint, it is most interesting that a composi-
tion of two links which are of types I and III, gives, generally speaking, a birational
modification which is not compatible with the structures of fiber spaces, that is,
fibers are not mapped into fibers, as shows the following

Example 1.10. In the notations of Example 1.8 let us choose the section R ⊂ X
in a special way: let R = σ−1(L∗), where L∗ ⊂ P3 is a line that does not meet L, in
particular, < L, L∗ >= P3. In this case the composition σ ◦ ϕ: Z → P3 is the blow
up of a smooth reducible (non-connected) curve L∪L∗ with the exceptional divisor
EL∪E, where EL = σ−1(L) is the exceptional divisor of the blow up σ. Contracting
EL ⊂ Z, we obtain a link of type III

Y 99K X∗

↓ ↓
T → S∗,

where X∗ is P3 with the blown up line L∗, the curve S∗ = P1 and X∗ → S∗ is
the regularized projection from L∗. The composition of this link with the link of
Example 1.8 gives a birational map

X 99K X∗

↓ ↓
S S∗,

of P2-bundles over S, S∗ ∼= P1, which is not compatible with the structures of those
fiber spaces. Note that in the special case under consideration, T = S×S∗ = P1×P1

and the projection Y → T is the regularization of the rational map

P3 99K L× L∗,

that maps a point x ∈ P3 \ (L ∪ L∗) to the unique pair of points (z, z∗) ∈ L × L∗

such that x ∈< z, z∗ > (the lines L and L∗ identify naturally with the curves S∗

and S as sections of the Mori fiber spaces X∗/S∗ and X/S, respectively). Note also
that the diagram

T = T
↓ ↓
S S∗,

,

is an example of a link of type IV (in the dimension two), which we will now describe.

Type IV (replacing the structure of a fiber space). This type is most
interesting. There are: a birational map ψ: X 99K Y , which is a composition of
flops, and extremal contractions s: S → R and t: T → R such that the following
diagram of maps commutes:

X
ψ99K Y

π ↓ ↓ ρ
S T

s ↓ ↓ t
R = R.
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The simplest example of a link of this type was given above (replacing one projection
P1×P1 → P1 by another). A non-trivial example of a link of type IV was described
in Example 1.7. In that example the variety V has precisely two structures of a
Fano fiber space and the structures are changed via a flop.

Today the strongest completely proved fact on factorization of birational maps
into a composition of links is

Theorem 1.3 [11]. Let π: X → S and π′: X ′ → S ′ be Mori fiber spaces with Q-
factorial terminal singularities. The varieties X and X ′ are birationally equivalent
if and only if when there exists a sequence of links

Xi−1
τi99K Xi

↓ ↓
Si−1 Si,

i = 1, . . . , N , connecting X/S and X ′/S ′, that is, X0/S0 = X/S and XN/SN =
X ′/S ′.

However, as we mentioned above, the main question is whether an arbitrary
birational map χ: X 99K X ′ can be decomposed into a composition of links. In the
dimension three the answer if positive [12], in the dimension ≥ 4 the weaker claim,
formulated above, is true. This comes from the different approaches to the problem
of factorization of birational maps.

2.3. On the proof of Sarkisov program. Let us briefly describe the original
Sarkisov’s approach [13,14], realized in [12]. Let χ: X 99K X ′ be a birational map
between the total spaces of Mori fiber space X/S and X ′/S ′ of dimension three.
One has to show that χ can be decomposed into a composition of elementary links,
χ = τN . . . τ1. The proof, based on the original Sarkisov’s ideas, is by producing
an inductive algorithm, which associates with a birational χ, or, more precisely, a
diagram

X
χ99K X ′

π ↓ ↓ π′

S S ′
(6)

an untwisting link of one of the four types I-IV,

X
τ99K X1

χ◦τ−1

99K X ′

π ↓ ↓ π1 ↓ π′

S S1 S ′,

which decreases a certain invariant of the original birational map,

δ(χ ◦ τ−1) < δ(χ),

which can not decrease infinitely.
Let us describe this invariant. The dimension dim X is now arbitrary ≥ 3. Since

ρ(X ′/S ′) = 1, there is a positive integer m and a very ample divisor A′ on the base
S ′ such that

D′ = −mKX + π′∗A′
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is a very ample divisor on X ′. The very ample linear system |D′| = H′ is fixed
through the whole procedure of factorization of the map χ. Note that the map χ
is fiber-wise (that is, there exists a rational dominant map ε: S 99K S ′, making the
diagram (6) a commutative one, επ = π′χ) if and only if the strict transform of the
linear system |π′∗A′| is pulled back from the base S, that is,

χ−1
∗ |π′∗A′| ⊂ |π∗A+|

for some (movable) divisor A+ on the base S. Set

H = χ−1
∗ |D′|

to be the strict transform of the system Σ′ on X. Since X/S is a Mori fiber space,
we get

H ⊂ | − nKX + π∗A|
for some Q-Cartier divisor A on S. Since the denominators are bounded, we may
assume that n ∈ Z+. Obviously, n ≥ 1. The following claim holds.

Proposition 1.1. The inequality n ≥ m is holds. If n = m, then the map χ is
fiber-wise.

Proof (see, for instance, [12]) is elementary. One has to repeat, almost word for
word, the arguments that were used in the proof of Proposition 2.6 of the previous
survey. Let us outline it: let ϕ: Z → X be a resolution of singularities of the map
χ, ψ = χ ◦ ϕ: Z → X ′ the composite map, a birational morphism,

{Ei | i ∈ I} and {E ′
j | j ∈ J}

the sets of ϕ- and ψ-exceptional divisors, respectively. Arguing word for word as in
[1, Proposition 2.6], we get

(
1− n

m

)
ϕ∗KX +

1

m
ϕ∗π∗A =

1

m
ψ∗π′∗A′ +

∑
j∈J

a′jE
′
j +

∑
i∈I

(
bi

m
− ai

)
Ei,

where a′j > 0, ai > 0 (the singularities are terminal) and bi ≥ 0. Since Ei are
ϕ-exceptional, the restriction of this equality onto the fiber of general position of
the projection π shows that n ≥ m, whereas, if n = m, then the strict transform of
the linear system |π′∗A′| with respect to χ is pulled back from the base S, and each
ψ-exceptional divisor E ′

j either is ϕ-exceptional, or its image ϕ(E ′
j) is pulled back

from the base S. Q.E.D. for Proposition 1.1.
Recall [12], that the canonical (respectively, log canonical) threshold of the pair

(X,H) is the number

ct(X,H) = sup{α ∈ Q+| the pair (X, αH) is canonical}
(respectively, lct(X,H) = sup{α ∈ Q+| the pair (X, αH) is log canonical}). If
ϕ: Z → X is a resolution of singularities of the pair (X,H) with the set of ex-
ceptional divisors {Ei|i ∈ I}, then

1

ct(X,H)
= max

i∈I

ordEi
ϕ∗D

a(Ei, X)
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for a general divisor D ∈ H and similarly

1

lct(X,H)
= max

i∈I

ordEi
ϕ∗D

a(Ei, X) + 1
.

In particular, the inequality lct(X,H) > ct(X,H) takes place. If ct(X,H) = γ, then
for each exceptional divisor Ei the inequality

γ ordEi
ϕ∗H) ≤ a(Ei, X),

holds, and, moreover, for at least one divisor Ei this inequality is an equality. Such
divisors are called crepant divisors; the corresponding discerete valuations of the field
of rational functions C(X) do not depend on the choice of resolution of singularities
and are determined by the pair (X,H). Let e(X,H) be the number of crepant
valuations ≥ 1.

Definition 1.2. The degree (or Sarkisov degree) of the pair (X,H) is the triple
of numbers

δ(X,H) = (n, γ = ct(X,H), e = e(X,H)).

The set of values of the degree δ is ordered in the following way (corresponding
to the lexicographic order of the triples (n, γ−1, e)):

δ = (n, γ, e) > δ1 = (n1, γ1, e1),

if either n1 < n, or n1 = n, but γ1 > γ, or, finally, n1 = n and γ1 = γ, but e1 < e.
Since (with the very ample linear system H′ fixed) the map χ is uniquely determined
by the system H, we can write δ(χ) instead of δ(X,H). At this stage in Sarkisov
program appears the key concept of a maximal singularity.

Definition 1.3. A maximal singularity of the linear system H (or the birational
map χ) in the sense of the minimal model program (briefly, a MMP-maximal sin-
gularity) is an exceptional divisor E ⊂ Z of some resolution ϕ: Z → X of the pair
(X,H) (or the discrete valuation of the field of rational functions C(X), correspond-
ing to that divisor), if the Noether-Fano inequality holds:

ordE ϕ∗H > na(E,X).

In [12] instead of the word combination “maximal singularity” the “base com-
ponent of high multiplicity” is used. In the survey [16] the “maximal singularity”
is returned, however, one should remember, that in the classical theory the param-
eter n is the threshold of canonical adjunction. In the general situation, considered
above, c(H) = n, only if the divisor A is pseudo-effective on the base S. Thus
between the concepts of maximal singularity in the traditional approach and MMP
there are certain differences (ignored in [12]). To emphasize the point, we speak
about MMP-maximal singularities (for the majority of problems, that are solved by
now, these differences are inessential).
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Obviously, a MMP-maximal singularity exists if and only if the inequality

ct(X,H) <
1

n

holds.
Now ([12, Theorem 5.4]), if H has an MMP-maximal singularity, then applying

(KZ+αHZ)-MMP to the extremal extraction ϕ: Z → X of one of the crepant discrete
valuations, where the number α is specially selected, one gets a link τ : X/S 99K
X1/S1 of type I or II, such that (n1, γ1, e1) < (n, γ, e), and moreover, if n1 = n,
then τ is fiber-wise and induces birational isomorphisms of the bases S 99K S1 and
generic fibers,

X
τ99K X1

π ↓ ↓ π1

S 99K S1,

,

that is, makes a “square” in the terminology of [12]. If, however, H has no MMP-
maximal singularities (that is, the inequality ct(X,H) ≥ 1

n
holds), then a sequence

of links of types III and IV is constructed

X/S
τ199K X1/S1

τ299K . . .
τk99K Xk/Sk,

such that either n = n1 = . . . = nk−1 > nk, or n = n1 = . . . = nk and the induced
birational map is an isomorphism of the Mori fiber spaces. Finally, the last necessary
fact, the finiteness of this procedure, that is, that the problem of factorization can
solved in finitely many steps, is proved via Alexeev’s theorem that there are no
accumulation points from below for the log canonical thresholds [16]. A complete
proof of the theorem on factorization see in [12] or in the survey [15].

The algorithm, described above, in principle does not depend of dimension, how-
ever, today not all facts of MMP that are needed to prove it, are shown in dimension
≥ 4 (although the work is in progress and essential advances have been made; for
instance, on the termination of thresholds see [17,18]). All those facts are certain
claims on finiteness (for instance, the termination of a sequence of flips), they are
needed both for constructing links and for proving the finiteness of the factoriza-
tion procedure. Using the approach that turned out so successful in [10], Hacon
and McKernan in [11] proved a weaker version of the Sarkisov program in the arbi-
trary dimension: instead of consructing an algorithm of factorization and proving its
finiteness, they showed existence of some sequence of links, the composition of which
gives a birational isomorphism X 99K X ′ of the total spaces of Mori fiber spaces
X/S and X ′/S ′ (about which it is assumed in advance, that they are birationally
isomorphic).

The main result [11] is as follows.

Theorem 1.4. Assume that the Mori fiber spaces X/S and X ′/S ′ are both
products of the (KZ +Φ)-MMP for some klt-pair (Z, Φ). Then the induced birational
map X 99K X ′ is a composition of links of types I-IV.
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It should be pointed out that if the tital spaces of two Mori fiber spaces are
birationally equivalent and have Q-factorial terminal singularities, then they are
products of the KZ-MMP for some variety Z, so that the corresponding Mori fiber
spaces satisfy the assumptions of Theorem 1.4.

The proof of Theorem 1.4 is based on the technique developed in [10]; to the
latter paper we refer an interested reader.

2.4. The method of maximal singularities and the factorization the-
ory: a comparison. After what has been said it makes sense to compare the two
approaches to investigating birational geometry of rationally connected fiber spaces:
the classical method of maximal singularities and the program of factorization of
birational maps, based on the theory of minimal models (the Sarkisov program). It
should be noted that both approaches go back to the same ideas (developed in the
works of M. Noether and his predecessors, and after that in the works of the Italian
classics up to Fano, see [1]), and for that reason in many respects are sufficiently
close. Between these approaches there are, however, essential differences, on which
we will now dwell.

The main idea of the method of maximal singularities, described in details in
[1], is to study the maximal singularities of a birational map χ: V 99K V ′ or, what is
equivalent, the maximal singularities of a movable linear system Σ on V , that defines
this birational map. The method works successfully, if it is possible to describe
explicitly the potentially maximal singularities, which are then untwisted, as a rule,
by birational self-maps τ ∈ Bir V (in the relative case, by fiber-wise birational self-
maps τ ∈ Bir(V/S)). The point, why almost all potentially maximal singularities
can be untwisted by means of self-maps, is not discussed, as it is an empirical fact. In
those successfully studied cases, when the self-maps are not sufficient, each maximal
singularity explicitly defines a transition to another structure of a Fano fiber space.
The method of maximal singularities was modelled on the pioneer paper [19]; in
the past almost forty years the general approach did not change a lot, although the
technical side has been transformed and made radically stronger.

The MMP-approach was modelled on the proof of the Sarikisov theorem [2],
taking into account the ideology of the Mori theory. That approach is about fifteen
years “younger”. Its main idea, described in the previous section, is to simplify a
birational map (or a movable linear system) by means of elementary links. A link is
constructed by applying MMP to a suitable log pair. A priori a link is a birational
map between distinct Mori fiber spaces, that is, even in the case of a fiber-wise link
one comes over to another model.

The method of maximal singularities is a (technically powerful and successfully
working) scheme of arguments leading to very strong individual results, that is,
results for particular explicitly given families of Fano varieties and fiber spaces. On
the contrary, the Sarkisov program (in the form in which it is known since the paper
[12] was published) is a general existence theorem, claiming the very fact that it
is possible to factorize a birational map (or a somewhat weaker fact in dimension
≥ 4). Each of these two approaches has its advantages and disadvantages.
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An obvious advantage of the Sarkisov program is its generality. From the de-
scription of the program and the proof of the main theorem follows a procedure of
constructing factorizing links. Taking into account the rapid development of MMP
since the mid-eighties, it is not surprising that the proof of Sarkisov program in
[12] generated a lot of optimism in respect of three-dimensional birational geometry.
In 1993-95 it seemed to many people that solution of the problems of the classical
birational geometry in dimension three, even such as description of the Cremona
group of rank three or description of the group of birational self-maps of the three-
dimensional cubic, or a proof of the rationality criterion for three-fold conic bundles,
is a matter of not so distant future. Something was said on that subject (although
in a rather cautious way) in [12]. The first thing to be done, was to find new proofs
of the known results that were obtained by the method of maximal singularities.
After that, it was meant to make further progress in the area where the classical
methods did not work.

Today, after more than fifteen years, one can say that these hopes did not realize.
The problems of describing birational maps between three-dimensional Mori fiber
spaces turned out to be much more difficult than the authors of [12,14] thought.
Their optimism of the early nineties is explained rather by their poor aquaintance
with the preceding works of the Moscow school of birational geometry; probably, for
the same reason in [12] the work of the Moscow school is considered as belonging
to the past: it was expected that the new techniques of MMP will make it possible
to easily overcome the difficulties that obstructed successful work of the method
of maximal singularities. It should be acknowledged that some ideas that came
from MMP turned out to be fruitful indeed. It is, in the first place, the so called
connectedness principle of Shokurov and Kollár and the inversion of adjunction that
follows from that principle (see Sec. 3.3 of this chapter and §2 of Chapter 3), which
made it possible to considerably simplify some parts of the classical techniques (cf.,
for instance, the exception of a maximal singularity over a quadratic point in [20] and
in [21]: the latter approach essentially does not need anything but a straightforward
application of the inversion of adjunction).

However, as a whole the attempts to realize the Sarkisov program for a wide
class of three-dimensional Mori fiber spaces were not successful. Birational maps
between particular three-dimensional varieties were in most cases studied using the
well trodden approach of the classical method of maximal singularities, sometimes
with certain technical improvements. This applies already to the very first, and best
known, paper of that series [22], which was originally conceived as a first big-scale
stage in the realization of the Sarkisov program. It turned out that MMP-techniques
is useless for all 95 types of the weighted Fano hypersurfaces, because all potentially
maximal singularities (on many varieties they simply do not exist) are untwisted by
birational self-maps, which, in their turn, are constructed by means of the known
classical techniques. Nevertheless, [22] was interpreted as a result of application of
the new MMP-techniques (see, for instance, the survey [15]), which was, of course,
a big exaggeration. The paper [22] was written in the new language (and contains
new proofs of certain known facts of the classic theory), but this seems to be the
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most that can be said. By its contents [22] undoubtedly belongs to the series of
papers done by the method of maximal singularities and directly follows the paper
[19] on the three-dimensional quartic.

Apart from [22], a few more papers were published, where the scheme of the
Sarkisov program was used for studying birational maps between three-dimensional
Mori fiber spaces [23,24]. In [21] some known results, that were earlier obtained
by the method of maximal singularities, are presented in the language of Sarkisov
program. In [23,24] that program really works: non-trivial links are constructed
that connect the varieties under investigation with other Mori fiber spaces, however,
the existence of such a link does give any really meaningful information about the
birational type of a variety, although it does mean that, in the terminology of Reid-
Corti, that the variety is not birationally rigid. The paper [25] which joins this
series of papers contains certain non-trivial computations and constructions, also a
number of interesting conjectures, but no progress at all towards their proof.

The poverty of results that were obtained in the course of attempts to apply the
general theory [12] to the study of birational geometry of three-dimensional Mori
fiber spaces, is even more impressive if one compares them with the results that were
obtained during the same period of time in the framework of the classical method
of maximal singularities [3,26-29], speaking not about the results in the arbitrary
dimension. The reason of such unsuccessfulness is, it seems, in the fact that to
construct links one needs a precise description of all potentially maximal singulari-
ties, so that the work of the classical method of maximal singularities is inevitably
included into the work of Sarkisov program as the most important part. On the
other hand, the above mentioned empirical fact takes place: for almost all (acces-
sible for investigation) varieties the potentially realizable maximal singularities are
untwisted by birational self-maps, which makes the MMP techniques unnecessary,
as it is sufficient to define a birational map between two given varieties at the generic
point, not taking care how it could be decomposed into a sequence of elementary
contractions/extractions and flips. It seems that these observations explain the ex-
tremely low efficiency of the general theory [12], which found almost no applications
in fifteen years.

As an illustration, let us consider Example 1.4. Let V
π→ P1 be a standard

fibration into cubic surfaces, C ⊂ V a section of the projection π. Assume that C is
a maximal curve of a movable linear system Σ ⊂ |− nKV + lF |, where l ∈ Z+. The
extremal blow up, associated with the curve C, is simply its blow up in the usual
sense, ϕ: Ṽ → V . Now the general theory guarantees that application of MMP to
a suitable pair (Ṽ , αΣ̃) leads to a link V 99K V +/P1, untwisting the maximal curve
C. However, this general claim which uses all the power of MMP, is practically
useless, since the construction of the link is obvious from the elementary geometric
considerations and its proof does not require any efforts since V = V + and the link
is well defined on the generic fiber. There are finitely many fibers Fi = π−1(ti),
i = 1, . . . , k, where through the point C ∩ Fi there is at least one line on Fi. MMP
guarantees that a sequence of flops, starting from Ṽ , leads to a model V ], that
admits an extremal contraction (so that the birational self-map of Example 1.4,

26



associated with the section C, is a composition of two links, of type I and type
III), however, the classical techniques gives at one the final result with considerably
less effort. It is especially important here, that using the classical approach, we
stay on the same model, whereas the general theory provides an untwisting of the
curve C, by means of, generally speaking, a transition to a new Mori fiber space.
For that reason, whereas the classical method of maximal singularities requires only
information on the biregular geometry of the given model of a Mori fiber space, for
the Sarkisov program to work effectively one needs (as it is only natural to expect
from a theory of such level of generality) information on all models of that dimension.
Biregular classification of Mori fiber spaces even in dimension three is still very far
from completion (in any reasonable sense). And this is the reason why the general
theory [12] is so inefficient.

In dimension three there are three classes of Mori fiber spaces: Fano varieties
(with Q-factorial terminal singularities), del Pezzo fibrations and conic bundles. By
the mid-nineties, a lot was known on birational geometry of varieties of the first
and third classes, however del Pezzo fibrations remained a white spot. Attempts
to study their geometry by means of the test class technique were made in the
course of about ten years, but they turned out to be unsuccessful [30] (as it became
clear somewhat later [3], it was impossible in principle). The situation has changed
radically when the paper [3] appeared, where the classical approach was essentially
re-developed, in particular, the test class technique was replaced by the technique of
counting multiplicities. However, as far as the author knows, up to a very recent time
attempts were made to obtain results on birational geometry of del Pezzo fibrations
by means of methods similar to the proof of Sarkisov theorem on the conic bundles
(Example 1.5), that is, by means of fiber-wise modifications. (Since it is precisely
the maximal singularities, the center of which is contained in a fiber, present the
biggest difficulty, see Chapter 2.) Those attempts were also unsuccessful. In contrast
to the conic bundles, even the simplest fiber-wise modifications of a pencil of cubic
surfaces lead to varieties with complicated singularities and the study terminates at
this point.

This is the situation today; introducing new ideas and new facts in the future
can, of course, change it.

Let us emphasize that this section is in no way a survey of the very minimal
model program or Sarkisov program. For that reason, we do not mention (and
the more so, do not discuss) the main papers on MMP (due to Mori, Kawamata,
Shokurov, Kollár and many others), except for the paper [10]. This is the end of our
short visit to the general theory of factorization of birational maps (the Sarkisov
program). We come back to the theory, techniques and results of the method of
maximal singularities, the subject of the present survey.

§3. Birational rigidity of Fano fiber spaces

3.1. The threshold of canonical adjunction. For an arbtrary rationally
connected smooth projective variety X we denote by the symbol AiX the Chow
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group of algebraic cycles of codimension i ≥ 1 modulo numerical equivalence,
Ai
RX = AiX⊗R. By the symbol Ai

+X we denote the closed cone in Ai
RX, generated

by the classes of effective cycles (the pseudo-effective cone). By the symbol Ai
movX

we denote the closed cone in Ai
RX, generated by the classes of movable divisors (that

is, such divisors D, that the complete linear system |D| has no fixed components),
the movable cone.

Let us consider a standard Fano fiber space π: V → S. Obviously, we get an
inclusion π∗Ai

movS ⊂ Ai
movV . Furthermore,

A1V = R[KV ]⊕ π∗A1S.

Definition 1.4. We say that the standard Fano fiber space π: V → S satisfies
the K-condition, if

A1
movV ⊂ R+[−KV ]⊕ π∗A1

+S.

In other words, V/S satisfies the K-condition if and only if for any movable
linear system | − nKV + π∗A| the class A ∈ Pic S is pseudo-effective. If the pseudo-
effective cone A1

+S has a sufficienty simple structure, for instance, A1S = ZHS,
where HS is the ample generator, so that A1

+S = R+[HS] is the positive ray, or
S = S1× . . .× Sk, where A1Si

∼= Z, then it is easy to check that, in a certain sense,
the “overwhelming majority” of standard Fano fiber spacea with the given fixed
base S satisfies this condition. As an illustration let us consider the construction of
Example 1.1, assuming that A1S = ZHS.

In the notations of Example 1.1 we have Ai ∼ aiHS for some ai ∈ Z. Set
a = a1+. . .+ak. Twisting the locally free sheaf E , we may assume that it is generated
by global sections, so that the tautological class LX is numerically effective. Set also

bHS ∼ det E + KS,

where the integral parameter b depends on X only. We get

KV = −L + (a + b)H,

where for the brevity of notations L = LV and H = π∗HS. Now if the linear system
| − nKV + lH| is non-empty (the more so, movable), then the inequality

(−nKV + lH) · LM ·HdimS−1 ≥ 0
‖

nLM+1HdimS−1 + d(l − n(a + b))HdimS

holds, where d = d1 · . . . · dk, which immediately implies that for some a0 ∈ Z for
a ≥ a0 we have l ∈ Z+, that is, the K-condition holds for all standard Fano fiber
space, satisfying the inequality a1 + . . . + ak ≥ a0.

This example shows that a “majority” of standard Fano fiber spaces of Example
1.1 satisfies a stronger condition:

A1
+V ⊂ R+[−KV ]⊕ π∗A1

+S.
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The situation is similar for Fano double covers (Example 1.2). On the contrary, it is
easy to see that Fano direct products (Example 1.3) do not satisfy the K-condition.

Now let us consider the most interesting case S = P1. To check the K-condition
we use the fact that the self-intersection of a movable class z ∈ A1

movX is a pseudo-
effective class of codimension two: z2 ∈ A2

+X. Therefore, if z2 6∈ A2
+X, then

z 6∈ A1
movX.

Definition 1.5. We say that a standard Fano fiber space π: V → P1 satisfies
the K2-condition, if

K2
V 6∈ Int A2

+V.

Let Pic V = ZKV ⊕ ZF , where F is the class of a fiber of the projection π.

Proposition 1.2. If a fiber space π: V → P1 satisfies the K2-condition, then it
satisfies the K-condition, too.

Proof. The self-intersection of the class −nKV + lF is

n2K2
V + 2nl(−KV · F ),

where in the brackets it is the anticanonical section of the fiber, that is, an effective
cycle of codimension two. By the K2-condition, the self-intersection can not be
pseudo-effective for l < 0, which is what was required. Q.E.D.

The importance of the K-condition can be seen from the following simple fact.

Proposition 1.3. Assume that a standard Fano fiber space π: V → S satisfies
the K-condition.

(i) The threshold of canonical adjunction of a movable linear system Σ ⊂ | −
nKV + π∗A| is c(Σ, V ) = n.

(ii) If the movable linear system Σ satisfies the equality c(Σ, V ) = 0, then Σ is a
π-pull back of a movable linear system ΣS on the base S.

(iii) Assume in addition that the variety V is birationally superrigid: cvirt(Σ) =
c(Σ, V ) for any movable linear system Σ. Then every structure of a rationally
connected fiber space on V is compatible with π: V → S, that is, for any birational
map χ: V 99K V ′, where π′: V ′ → S ′ is a rationally connected fiber space, there is a
rational dominant map ε: S 99K S ′ such that the following diagram commutes:

V
χ99K V ′

π ↓ ↓ π′

S
ε99K S ′.

Proof. (See [1, §1].) The claim (i) is obvious, because π∗A ∈ A1
+V is apseudo-

effective class, whereas the class αKV + π∗A for α > 0 is negative on the fibers and
cannot be pseudo-effective. The claim (ii) follows from (i). If the linear system Σ′ on
the variety V ′ is movable and pulled back from the base S ′, then its strict transform
Σ = χ−1

∗ Σ′ on V is a movable linear system, satisfying the equality cvirt(Σ) =
c(Σ′, V ′) = 0. By the asuumption on birational superrigidity and the claim (ii), it
follows that Σ is a π-pull back of a movable linear system on S. This proves the
claim (iii) and completes the proof of the proposition. Q.E.D.
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Now let us give an example of a non-trivial computation of the threshold of
canonical adjunction on a variety that does not satisfy the K-condition.

Example 1.11. Consider the Fano fiber space π: V → P1 of Example 1.7 (we
use the notations of that example). If a movable linear system Σ is a subsystem
of the complete linear system | − nKV + lF | with l ∈ Z+, then, as above, we get
c(Σ) = n. However, if l < 0, then the linear system Σ+ = τ+

∗ Σ is a subsystem of
the complete linear system | − n+KV + + l+F+| on the standard Fano fiber space
V +/P1 from the same family. Now since l+ = −l ∈ Z+, we have c(Σ+, V +) = n+.
However, τ+: V 99K V + is a biregular isomorphism in codimension one (that is, an
isomorphism of complements to closed sets ∆ ⊂ V , ∆+ ⊂ V + of codimension two).
Therefore, c(Σ, V ) = c(Σ+, V +), that is, for l < 0 we have

c(Σ, V ) = n+ = n + l.

Another similar example is given by Fano fiber spaces V/P1 with a non-trivial
(that is, non-compatible with the structure of the fiber space π: V → P1) birational
involution τ ∈ BirV [31, Sec. 3.1] and [32, Sec. 2.3]; in the latter case they are
varieties, described in the part (iii) of Theorem 1.5 below. Computations in those
examples are completely similar to those considered above: if Σ ⊂ | − nKV + lF |
l < 0 is a movable linear system, then applying the involution τ (which is biregular
in codimension one), we transform Σ into a system Σ+ ⊂ | − n+KV + l+F | with
l+ ∈ Z+, which makes it possible to compute the threshold c(Σ, V ) = c(Σ+, V ) = n+.
For the details, see the papers mentioned above.

Today there are two main approaches to proving birational rigidity of Fano fiber
spaces: the quadratic and the linear ones. The quadratic method is aimed at study-
ing the self-intersection Z = (D1 ◦ D2) of a movable linear system Σ 3 Di; the
method extends the techniques of proving birational rigidity of primitive Fano vari-
eties, described in the previous survey. Almost all results on birational geometry of
standard Fano fiber spaces V/P1 are obtained by means of the quadratic method.

The linear method is aimed at studying singularities of an arbitrary divisor
D ∈ Σ or its restriction D|R onto a specially selected algebraic subvariety R ⊂ V .
This method works in the proof of the theorem on Fano direct products [33], it is
used in the proofs of the theorems on birational rigidity of fiber spaces V/P1 to
simplify certain steps [7,34], also in the proof of the theorem on birational geometry
of Fano double spaces of index two [35]. The quadratic technique is considered in
detail in Chapter 2, the linear technique in Chapter 3.

3.2. The quadratic method: main results. Consider a standard Fano fiber
space π: V → P1, that is, Pic V = ZKV ⊕ ZF , where F is the class of a fiber of the
projection π. Assume in addition that the condition

A2V = ZK2
V ⊕ ZHF , (7)

holds, where HF = (−KV · F ) is the class of an anticanonical section of the fiber.
The K2-condition can be weakened in the following way.
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Definition 1.6. A standard Fano fiber space V/P1 satisfies the K2-condition of
depth ε ≥ 0, if

K2
V − εHF 6∈ Int A2

+V.

Sometimes for more clarity the K2-condition of depth ε = 0 will be called the
strong K2-condition. If the depth is not specified, then it is assumed that it is equal
to zero.

It is easy to see that the K-condition for the class of Fano fiber space under
consideration takes the following form

−KV 6∈ Int A1
movV.

Besides, it is obvious that if ε1 ≤ ε2, then the K2-condition of depth ε1 implies the
K2-condition of depth ε2.

Fibrations into Fano complete intersections. This class of varieties corre-
sponds to the base S = P1 in Example 1.1. Let a∗ = {0 = a0 ≤ a1 ≤ . . . ≤ aM+k}
be a non-decreasing sequence of non-negative integers, E =

M+k⊕
i=0

OP1(ai) a locally

free sheaf on P1, X = P(E) the corresponding projective bundle in the sense of
Grothendieck. Obviously, we get

Pic X = ZLX ⊕ ZR, KX = −(M + k + 1)LX + (aX − 2)R,

where LX is the class of the tautological sheaf, R is the class of a fiber of the
morphism π: X → P1, aX = a1 + . . . + aM+k. Furthermore, we have LM+k+1

X = aX .
For a set of k integers (b1, . . . , bk) ∈ Zk

+ let Gi ∈ | diLX + biR| be irreducible
divisors such that the complete intersection

V = G1 ∩ . . . ∩Gk ⊂ X

is a smooth subvariety. The projection π | V : V → P1 is denoted by the same symbol
π, the fiber π−1(t) ⊂ V by the symbol Ft, the restriction LX | V by the symbol L.

The fiber space V/P1 is a standard Fano fiber space, satisfying the condition (7).
Obviously, KV = −L+(aX + bX − 2)F , where bX = b1 + . . .+ bk. It is easy to check
the formulas

(LM · F ) = (HF · LM−1) = d, LM+1 = d

(
aX +

k∑
i=1

bi

di

)
,

where d = d1 . . . dk is the degree of the fiber. From here we get:

(−KV ·LM) = d

(
2−

k∑
i=1

di − 1

di

bi

)
and (K2

V ·LM−1) = d

(
4− aX −

k∑
i=1

2di − 1

di

bi

)
.

Since the linear system |L| is free, these formulas immediately imply
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Proposition 1.4. (i) If aX +
k∑

i=1

2di−1
di

bi ≥ 4, then the strong K2-condition holds.

(ii) If aX +
k∑

i=1

2di−1
di

bi ≥ 2, then the K2-condition of depth 2 holds.

(iii) If
k∑

i=1

di−1
di

bi ≥ 2, then −KV 6∈ Int A1
+V and, the more so, −KV 6∈ Int A1

movV ;

if, even more, the inequality above is strict, then −KV 6∈ A1
+V .

Now let us formulate the main result.
Assume that the variety V is sufficiently general in its family.
Theorem 1.5 [32]. (i) The variety V is birationally rigid, the projection π: V →

P1 is the only structure of a rationally connected fiber space on V and the groups of
birational and biregular automorphisms coincide, Bir V = Aut V , if for the integral
parameters of the variety V one of the following six cases takes place:

• aX + bV ≥ 4,

• aX = 1, bV = 2,

• aX = 0, bV = 3,

• aX = 3, bV = 0,

• aX = 2, bV = 1,

• (a∗) = (0, . . . , 0, 2) and bV = 0.

(ii) For (a∗) = (0, . . . , 0, 1, 1) and bV = 0 a general variety V is birationally
superrigid. However, the K-condition does not hold: the linear system | −KV − F |
is movable and determines a rational map ϕ: V 99K P1, the fibers of which are
rationally connected. On the variety V there are precisely two non-trivial structures
of a rationally connected fiber space: the morphism π: V → P1 and the map ϕ.
There exists a unique, up to a fiber-wise isomorphism, Fano fiber space π+: V + →
P1 with the same parameters (a∗) = (0, . . . , 0, 1, 1) and bV + = 0 and a birational
isomorphism χ: V 99K V +, biregular in codimension one, such that the following
diagram commutes:

V
χ99K V +

ϕ ↓ ↓ π+

P1 = P1.

The correspondence V → V + is an involution of the set of Fano fiber spaces of that
type, that is, (V +)+ = V .

(iii) For aX = 0, be = 2 for some e ∈ {1, . . . , k} and bi = 0 for i 6= e the variety
V is birationally superrigid. However, the K-condition does not hold: the linear
system | − deKV − F | is a pencil of rationally connected varieties. The group of
birational self-maps Bir V is non-trivial and for a general variety V generated by the
birational involution τ , which is biregular in codimension one, and moreover, τ∗|F | =
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| − deKV − F |. On the variety V there are precisely two non-trivial structures of a
rationally connected fiber space: the projection π: V → P1 and the map πτ : V 99K P1.

Fibrations into Fano cyclic covers. Let a∗ = {0 = a0 ≤ a1 ≤ . . . ≤ aM+1}
be a non-decreasing sequence of no-negative integers, E =

M+1⊕
i=0

OP1(ai) a locally

free sheaf on P1, X = P(E) the corresponding projective bundle in the sense of
Grothendieck. Obviously, we have

Pic X = ZLX ⊕ ZR, KX = −(M + 2)LX + (aX − 2)R,

where LX is the class of the tautological sheaf, R is the class of a fiber of the
morphism πX : X → P1, aX = a1 + . . . + aM+1, LM+2

X = aX . For some aQ, aW ∈ Z+

let
Q ∼ mLX + aQR and WX ∼ K(lLX + aW R)

be divisors on X, where Q ⊂ X is a smooth subvariety, W = WX ∩ Q a smooth
divisor on Q. Let

σ: V → Q

be the K-sheeted cyclic cover of the variety Q, branched over the divisor W . The
projection πX |Q will be denoted by the symbol πQ, the projection πQ ◦ σ: V → P1

by the symbol π. The fiber π−1
Q (t), t ∈ P1, will be denoted by the symbol Gt (or

simply G, when it is clear, which point t ∈ P1 is meant), the fiber π−1(t) ⊂ V by
the symbol Ft or F . Set LQ = LX | Q and L = σ∗LQ, respectively. Obviously,

Pic V = ZL⊕ ZF, KV = −L + (aX + aQ + (K − 1)aW − 2)F.

It is easy to check the formulas (LM ·F ) = mK, LM+1 = K(maX + aQ). From here
we obtain (−KV · LM) = K((1−m)aQ −m(K − 1)aW + 2m) and

(K2
V · LM−1) = K(−maX + (1− 2m)aQ − 2m(K − 1)aW + 4m).

For convenience we write the parameters of the cover V in the form

((a1, . . . , aM+1), (aQ, aW )),

and moreover, among the numbers a1, . . . , aM+1 we specify only non-zero values, if
there are any, otherwise we write simply (0). These notations are convenient because
only those covers V require an individual study which have almost all parameters
equal to zero. Indeed, the explicit formulas above immediately imply the following

Proposition 4.1. (i) The variety V satisfies the strong K2-condition, that is,
the K2-condition of depth 0, if one of the following cases takes place

• aW ≥ 1,

• aW = 0, aQ ≥ 3,

• aW = 0, aQ = 2, aX ≥ 1,
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• aW = 0, aQ = 1, aX ≥ 3,

• aW = aQ = 0, aX ≥ 4.

(ii) If aW = 0, aQ = 2, aX = 0, then the variety V satisfies the K2-condition of
depth 2

m
.

(iii) If aW = 0, aQ = 1, then the variety V satisfies the K2-condition of depth 1
m

for aX = 2 and of depth (1 + 1
m

) for aX = 1.
(iv) If aW = aQ = 0, then the variety V satisfies the K2-condition of depth 1 for

aX = 3 and of depth 2 for aX = 2.
Proof: this follows immediately from the fact that for any irreducible subvariety

Y the inequality (Y · LdimY ) ≥ 0 holds.
Now let us formulate the main result.
We assume that the cyclic cover V is sufficiently general in the family constructed

above.

Theorem 1.6 [8]. (i) The variety V is birationally superrigid, the projection
π: V → P1 is the only structure of a rationally connected fiber space on V , and
the groups of birational and biregular automorphisms of the variety V coincide,
Bir V = Aut V , if the integral parameters of the variety V either satisfy any of
the six conditions of Proposition 1.5, (i), or are of one of the following six types:
((2), (0, 0)), ((2), (1, 0)), ((1, 1), (1, 0)), ((3), (0, 0)), ((1, 2), (0, 0)), ((1, 1, 1), (0, 0)).

(ii) The variety V of the type ((1, 1), (0, 0)) is birationally superrigid. However,
the K-condition does not hold: the linear system | −KV −F | is movable and deter-
mines a birational map ϕ: V 99K P1, the fibers of which are rationally connected. On
the variety V there are precisely two structures of a rationally connected fiber space:
the projection π and the map ϕ. There exists a unique (up to a fiber-wise isomor-
phism) fibration into Fano cyclic covers π+: V + → P1 of the same type ((1, 1), (0, 0))
and a birational isomorphism χ: V 99K V +, biregular in codimension one, such that
the following diagram of maps commutes:

V
χ99K V +

ϕ ↓ ↓ π+

P1 = P1.

The correspondence V → V + is an involution, that is, (V +)+ = V .
(iii) The variety V of the type ((0), (2, 0)) is birationally superrigid. However, the

K-condition does not hold: the linear system |−mKV−F | is movable and determines
a birational map, the fibers of which are rationally connected. The group of bira-
tional self-maps Bir V is stictly larger than the group of biregular automorphisms:
it contains a non-trivial birational involution τ ∈ Bir V \ Aut V , and moreover,
Bir V ∼= (Z/2Z) × (Z/KZ), where Z/2Z = {id, τ}. On V there are precisely two
structures of a rationally connected fiber space: the projection π and the rational
map πτ : V 99K P1, and moreover, | −mKV − F | = τ∗|F |.

Note the obvious parallelism of Theorems 1.5 and 1.6 (their proofs, however, are
essentially different). Birational (super)rigidity is also proved for some other families
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of Fano fiber spaces over P1, see [3,36-38]. Theorems 1.5 and 1.6 describe the most
“massive” families.

Varieties with a pencil of del Pezzo surfaces. That class of three-dimensional
rationally connected varieties for a long time was out of reach. Birational rigidity
of the overwhelming majority of these varieties was proved in [3]. That paper was
followed by [26,27], where birational geometry of almost all remaining types of vari-
eties with a pencil of del Pezzo surfaces of degree 1 and 2 was completely described.
That work was summarized in the survey [4].

Let V
π→ P1 be a fibration into del Pezzo surfaces of degree d ∈ {1, 2, 3}, Pic V =

ZKV ⊕ ZF , where the variety V is smooth and for d = 3 sufficiently general.

Theorem 1.7 [3]. Assume that the fiber space V/P1 satisfies the K2-condition:
K2

V 6∈ Int A2
+V . Then the variety V is birationally rigid (superrigid for d = 1), the

projection π: V → P1 is the only structure of a rationally connected fiber space on the
variety V , and the quotient group of the group of birational self-maps by the normal
subgroup of birational self-maps of the generic fiber Bir Fη is finite, generically trivial.

For d = 1 the group Bir Fη = Aut Fη is finite, for d = 2 it is generated by the
subgroup Aut Fη and the involutions, associated with sections of the fiber space π,
for d = 3 it is generated by the subgroup Aut Fη and the involutions, associated
with sections and bi-sections of the projection π, described in Example 1.4 (for the
original description of these groups, see [5,39]).

The techniques of the proof of Theorems 1.5, 1.6 and 1.7 is explained below in
Chapter 2.

3.3. The linear method: main results. The linear method is based on the
theorem on “inversion of adjunction”, proved by Shokurov in dimension three in
[40] and by Kollár in arbitrary dimension [41]. Let us formulate a particular case of
that result, which is used in the theory of birational rigidity. A discussion and the
proof of inversion of adjunction are given in §2 of Chapter 3.

Theorem 1.8 (inversion of adjunction). Let x ∈ X be a germ of a Q-
factorial terminal variety, D an effective Q-divisor, the support of which contains the
point x. Let R ⊂ X be an irreducible subvariety of codimension one, R 6⊂ Supp D,
and, moreover, R is a Cartier divisor. Assume that the pair (X, D) is not canonical
at the point x, but canonical outside that point, that is, the point x is an isolated
centre of non-canonical singularities of that pair. Then the pair (R, DR = D|R) is
not log canonical at the point x.

The inversion of adjunction (formulated above not in the most general way, but in
the form in which it will be really needed) is used for excluding maximal singularities
of movale linear systems Σ on a rationally connected variety V under consideration
in the following way. Let R ⊂ V be an irreducible reduced Cartier divisor (as a rule,
the variety V is smooth or has elementary singularities, so that the assumptions of
Theorem 1.8 are satisfied automatically), D ∈ Σ a general divisor. Sine the linear
system Σ is movable, we get R 6⊂ Supp D, so that the restriction DR is well defined.
Now, if the pair (R, 1

n
DR) is log canonical at the point x ∈ R, then the pair (V, 1

n
Σ)

is canonical at the point x, that is, there are no maximal singularities of the system
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Σ, the centre of which is the point x. The procedure just described reduces studying
birational geometry of the variety V to studying geometry of the divisor R, which
sometimes essentially simplifies the work. Note that this procedure can be repeated
(provided that the assumptions of Theorem 1.8 hold), reducing investigation of the
singularities of the pair (V, 1

n
Σ) to studying singularities of the pair (R, 1

n
DR), where

R ⊂ V is an irreducible subvariety (not necessarily a divisor). The most important
case is restricting onto a fiber R = π−1(s) of a fibration π: V → S.

There are three groups of results that make an essential use of the linear method.

Fano direct products. Theorems on birational geometry of Fano direct prod-
ucts form the largest (up to now) group of results [33,34,32,42,43].

Let F be a Fano variety of dimension ≥ 3 with Q-factorial terminal singularities
and the Picard number ρ(F ) = 1.

Definition 1.7. We say that the variety F satisfies the condition of divisorial
canonicity, or the condition (C) (respectively, the condition of divisorial log canon-
icity, or the condition (L)), if for any effective divisor D ∈ | − nKF |, n ≥ 1, the
pair

(F,
1

n
D) (8)

has canonical (respectively, log canonical) singularities. If the pair (8) has canonical
singularities for a general divisor D ∈ Σ ⊂ | − nKF | of any movable linear system,
then we say that F satisfies the condition of movable canonicity, or the condition
(M).

Explicitly, the condition (C) is formulated in the following way: for any birational

morphism ϕ: F̃ → F and any exceptional divisor E ⊂ F̃ the following inequality
holds:

νE(D) ≤ na(E). (9)

The inequality (9) is opposite to the Noether-Fano inequality. The condition (L) is
weaker: it is required that the inequality

νE(D) ≤ n(a(E) + 1) (10)

holds. Recall that in (9) and (10) the number a(E), that is, the discrepancy of

an exceptional divisor E ⊂ F̃ with respect to the model F . The inequality (10)
is opposite to the log Noether-Fano inequality. The condition (M) means that (9)
takes place for a general divisor D of any movable system Σ ⊂ | − nKF | and any
discrete valuation νE.

In another terminology, the condition (L) maens that the the global log canonical
threshold of the variety F is equal to one: lct(F ) = 1. The condition (C) means
that the global canonical threshold ct(F ) = 1. The importance of these conditions
is shown by the following fact [33].

Theorem 1.9. Assume that the primitive Fano varieties F1, . . . , FK, K ≥ 2,
satisfy the conditions (L) and (M). Then their direct product

V = F1 × . . .× FK
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is a birationally superrigid variety, that is, for any movable linear system Σ its
virtual and actual thresholds of canonical adjunction coincide:

c(Σ) = cvirt(Σ).

In particular:
(i) All structures of a rationally connected fiber space on the variety V are pro-

jections onto direct factors. More precisely, let β: V ] → S] be a rationally connected
fiber space and χ: V − − → V ] a birational map. Then there exists a set of indices
I = {i1, . . . , ik} ⊂ {1, . . . , K} and a birational map

α: FI =
∏
i∈I

Fi − − → S]

such that the following diagram commutes:

V
χ−− → V ]

πI ↓ ↓ β

FI

α−− → S],

that is, β ◦ χ = α ◦ πI , where πI :
K∏

i=1

Fi →
∏
i∈I

Fi is the natural projection onto a

direct factor. In particular, on the variety V there are no structures of a fibration
into rationally connected varieties of dimension strictly smaller than min{dim Fi}.
In particular, V has no structures of a conic bundle or a fibration into rational
surfaces.

(ii) The groups of birational and biregular automorphisms of the variety V coin-
cide:

Bir V = Aut V.

(iii) The variety V is non-rational.

Theorem 1.9 is proven in [33] for smooth primitive Fano varieties, however, the
proof is valid word for word in a more general case, described above. Obviously, the
condition (C) is stronger than (L) and (M). To apply Theorem 1.9, it is sufficient
to check that a Fano variety from a given family satisfies the condition (C) (or the
both conditions (L) and (M)).

For generic Fano hypersurfaces Fd ⊂ Pd, d ≥ 6, and generic Fano double space
of index one F2 → Pd, d ≥ 3, the condition (C) is shown in [33]. For generic Fano
double hypersurfaces F → Qm ⊂ Pd, d ≥ 7, branched over W = W ∗

2l ∩ Qm, where
Qm and W ∗

2l are generic hypersurfaces of degrees m and 2l, respectively, m + l = d,
the condition (C) is shown in [34]. For generic weighted Fano hypersurfaces of
dimension three the condition (L) is checked in [42].

The proof of Theorem 1.9 and of the divisorial canonicity of Fano hypersurfaces
Fd ⊂ Pd is given in §1 of Chapter 3.

Fano fibrations over P1. Application of the linear method simplifies the proof
of birational rigidity of fiber spaces V/P1, see [34,43]. Assume that Σ ⊂ |−nKV +lF |
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is a movable linear system, where l ∈ Z+, and a fiber F ∗ = π−1(t∗) of the projection
π: V → P1 satisfies the condition (L). Then by the inversion of adjunction, the
centre of any maximal singularity of the system Σ can not be contained in the fiber
F ∗: it either covers the base P1, or is contained in another fiber. In particular, if
all fibers satisfy the conditions (L) and (M), then the system Σ has no maximal
singularities at all, which implies that

cvirt(Σ) = c(Σ, V ) = n.

Arguments of that type can be used for exclusion of certain particular types of
maximal singularities as well [7].

Fano varieties of index two. This result comes out of the framework of the
present survey as it deals with non-rigid varieties (in fact, it is the first full fledged
example of a complete description of birational geometry of non-rigid varieties of
arbitrary dimension). However, it stands next to the previous results and makes
an essential use of the linear method. For that reason, we formulate it below and
briefly discuss the scheme of its proof in §3 of Chapter 3.

Let M ≥ 5 and W = W2(M−1) ⊂ PM be a smooth hypersurface of degree 2(M−1).
Consider the double cover

σ: V → PM ,

branched over W . The variety V is a Fano variety of index two: Pic V = ZH,
where H is the ample generator, KV = −2H, the class H is the σ-pull back of the
hyperplane in P. On the variety V there are the following natural structures of a
rationally connected fiber space: let αP :P 99K P1 be the linear projection from an
arbitrary linear subspace P of codimension two, then the map

πP = αP ◦ σ: V 99K P1

fibers V into (M−1)-dimensional Fano varieties of index 1. Assume that the variety
V is sufficiently general.

Theorem 1.10 [35]. Let M ≥ 5 and χ: V 99K Y be a birational map onto the
total space of a rationally connected fiber space λ: Y → S. Then S = P1 and for
some isomorphism β:P1 → S and some subspace P ⊂ P of codimension two we have
λ ◦ χ = β ◦ πP , that is, the following diagram commutes:

V
χ99K Y

πP ↓ ↓ λ

P1 β→ S.

Corollary 1.4. (i) On the variety V there are no structures of a rationally
connected fiber space with the base of dimension ≥ 2. In particular, on V there are
no structures of a conic bundle and del Pezzo fibration, and the variety V itself is
non-rational.

38



(ii) Assume that there is a birational map χ: V 99K Y , where Y is a Fano variety
of index r ≥ 2 with factorial terminal singularities, such that Pic Y = ZHY , where
KY = −rHY , where the linear system |HY | is non-empty and free. Then r = 2 and
the map χ is a biregular isomorphism.

(iii) The groups of birational and biregular automorphisms of the variety V co-
incide: Bir V = Aut V = Z/2Z.

Proof of the corollary. The claim (i) and the equality r = 2 in (ii) are
obvious (any linear subsystem of the projective dimension ≤ r − 1 in the complete
linear system |HY | defines a structure of a rationally connected fiber space on Y ).
Furthermore, the χ-pull back of a general divisor in the system |HY | is a divisor in
the linear system |H| by Theorem 1.10, which completes the proof of the claim (ii).
The part (iii) obviously follows from (ii). The proof is complete.
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Chapter 2. Fano fiber spaces over the projective line

§1. Sufficient conditions of birational rigidity

1.1. Formulation of the sufficient conditions. Start of the proof. Let
π: V → P1 be a standard Fano fiber space, that is, V is a smooth variety, Pic V =
ZKV ⊕ ZF , where F is the class of a fiber of the projection π. Assume in addition
that the condition

A2V = ZK2
V ⊕ ZHF , (11)

holds, where HF = (−KV · F ) is the ample antocanonical section of the fiber, and
that every fiber F = Ft = π−1(t), t ∈ P1, is a Fano variety with at most non-
degenerate quadratic singularities, and moreover,

A1F = Pic F = ZKF and A2F = ZH2
F ,

where KF = −HF and HF is considered as an element of the group A1F . These
conditions are satisfied for almost all families of standard Fano fiber spaces that are
by now successfully studied. The exception is made by fiber spaces with fibers of
dimension 2,3 and 4, where the low dimension makes it possible to employ additional
arguments. The extremal case, fibrations into cubic surfaces, is considered below in
§3.

Now let us formulate additional conditions, from which birational (super)rigidity
of Fano fiber spaces is derived. These conditions should be understood as some con-
ditions of general position for the fiber space V/P1; more precisely, generic (in their
family) fiber spaces V/P1 satisfy these conditions. By the degree of an irreducible
subvariety Y ⊂ V , covering the base P1, π(Y ) = P1 (we refer to such varieties as
horizontal), we mean the number

deg Y = (Y · F · (−KV )dim Y−1).

Definition 2.1. The fiber space V/P1 satisfies

• the condition (v), if for every irreducible vertical subvariety Y of codimension
two (that is, Y ⊂ Ft is a prime divisor, t = π(Y )) and every smooth point
o ∈ Ft the inequality

multo Y

deg Y
≤ 2

deg V
(12)

holds;

• the condition (f), if for every irreducible vertical subvariety Y of codimension
three (that is, codimF Y = 2, F = Ft ⊃ Y ) and every smooth point of the
fiber o ∈ F , the inequality

multo Y

deg Y
≤ 4

deg V
(13)

holds.
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• the condition (vs), if for any vertical subvariety Y ⊂ Ft of codimension 2 (with
respect to V , that is, for a prime divisor on Ft), a singular point o ∈ Ft and

an infinitely near point x ∈ F̃t, where ϕ: F̃t → Ft is a blow up of the point o,
ϕ(x) = o, Ỹ ⊂ F̃t the strict transform of the subvariety Y on F̃t, the following
estimates hold:

multo Y

deg Y
≤ 4

deg V
,

multx Ỹ

deg Y
≤ 2

deg V
;

• the condition (h), if for any horizontal subvariety Y of codimension 2 and a
point o ∈ Y the estimate

multo Y

deg Y
≤ 4

deg V
.

holds.

As in the previous survey [1], for the convenience of notations we write down in the
sequel the ratio of the multiplicity to the degree by the single symbol

multo

deg
Y =

multoY

deg Y
.

The sufficient conditions of birational (super)rigidity, which can be applied to
the majority of standard Fano fiber spaces V/P1, are collected in the following claim.

Theorem 2.1. (i) Assume that the standard Fano fiber space V/P1 satisfies
the (strong) K2-condition and the conditions (v), (vs) and (h). Then V/P1 is a
birationally superrigid Fano fiber space.

(ii) Assume that the standard Fano fiber space V/P1 satisfies the K2-condition
of depth 2, the conditions (v), (vs) and at least one of the conditions (f) or (fs)
at any point o ∈ V . Then for any movable linear system Σ ⊂ | − nKV + lF | with
l ∈ Z+ its virtual and actual thresholds of canonical adjunction coincide:

cvirt(Σ) = c(Σ) = n.

In particular, if V/P1 satisfies the K-condition, then this fiber space is birationally
superrigid.

(iii) Assume that the standard Fano fiber space V/P1 satisfies the K2-condition
of depth 2 and conditions (v) and (f). If the centre of any maximal singularity of
the movable linear system Σ ⊂ | − nKV + lF | with l ∈ Z+ is not a singular point of
a fiber, then the virtual and actual thresholds of canonical adjunction coincide:

cvirt(Σ) = c(Σ) = n.

In particular, if the latter assumption holds for any movable linear system on V and
the fiber space V/P1 satisfies the K-condition, then this fiber space is birationally
superrigid.
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The claim (i) is proven in [36] (see also [31]). The claim (ii) is essentially stronger
(the K2-condition of depth 2 is assumed, which makes it possible to study many
fiber spaces that do not satisfy the strong K2-condition) and requires more refined
arguments [31]. The claim (iii) is a simplified version of (ii): the maximal singu-
larities lying over the singular points of the fibers are not considered (it is assumed
that they are excluded by some other method).

In the remaining part of this section we give
Proof of the claim (iii). We follow [8,32]. Proof of the claim (i) is simpler,

whereas dealing with the maximal singularities lying over quadratic points of the
fibers (the only step that needs to be added to the proof of part (iii), in order to get
the claim (ii)) is completely similar to the arguments given below.

So let us fix a movable linear system Σ ⊂ |−nKV + lF | with l ∈ Z+. Obviously,
c(Σ) = n, where n = 0 if and only if Σ is composed from the pencil of fibers |F |.
Assume that the inequality cvirt(Σ) < n holds, in particular, n ≥ 1. This means

that there exists a birational morphism ϕ: Ṽ → V of smooth varieties such that
c(Σ̃, Ṽ ) < n, where Σ̃ is the strict transform of Σ on Ṽ . This implies immediately
that the pair (V, 1

n
Σ) is not canonical, that is, the system Σ has a maximal singularity

E ⊂ Ṽ . Consider its centre B = ϕ(E) ⊂ V , an irreducible subvariety of codimension
at least two.

Let (see [1, Chapter 2])

ϕi,i−1: Vi → Vi−1⋃ ⋃
Ei → Bi−1

(14)

be a sequence of blow ups with irreducible centres Bi−1 ⊂ Vi−1, which is uniquely
determined by the following conditions:

1) V0 = V , B0 = B, i = 1, . . . , N ;
2) Bj = centre(E, Vj) ⊂ Vj, Ej+1 = ϕ−1

j+1,j(Bj);
3) the valuation νEN

coincides with νE.

In other words, the birational map VN 99K Ṽ is biregular at the generic point of the
divisor EN and transforms EN into E. Recall that the varieties V1, . . . , VN , generally
speaking, can be singular, since the centres Bj of blow ups are not necessarily
smooth. However, Vj is smooth at the generic point of Bj. By the symbol Σj we
denote the strict transform of the linear system Σ on Vj. Set

νj = multBj−1
Σj−1, δj = codim Bj−1 − 1.

On the set of exceptional divisors {E1, . . . , EN} we define in the usual way the
structure of an oriented graph: Ei and Ej are joined by an oriented edge (an arrow),
if and only if i > j and

Bi−1 ⊂ Ei−1
j ,

notation: i → j. As usual, set for i > j

pij = ]{the paths from Ei to Ej} ≥ 1,
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pii = 1 by definition. Set pi = pNi. The Noether-Fano inequality takes the tradi-
tional form:

N∑
i=1

piνi > n

N∑
i=1

piδi.

Proposition 2.1. The centre B of the maximal singularity E on V is contained
in some fiber Ft = π−1(t), t ∈ P1.

Proof. Assume the converse: π(B) = P1. Let F ⊂ V be a fiber of general
position. It is easy to see that the restriction ΣF = Σ | F of the linear system Σ
onto F is a movable linear system ΣF ⊂ |nHF |, and moreover the pair (F, 1

n
ΣF )

is not canonical, that is, ΣF has a maximal singularity. The easiest way to define
this maximal singularity is as follows: let F̃ ⊂ Ṽ be the strict transform, EF an
irreducible component of the closed set F̃ ∩ E. Otherwise, one can restrict the
sequence of blow ups (14) onto the fiber F . The discrepancy remains the same:
a(EF , F ) = a(E, V ). The centre of the singularity EF is ϕ(EF ), an irreducible
component of the closed set B ∩ F .

By assumption, Pic F = ZKF , A2F = ZK2
F and for every irreducible subvariety

Y ⊂ F of codimension two at every point the inequality (13) holds. These two
assumptions imply the every pair (F, 1

n
ΣF ) is canonical, where ΣF ⊂ |nHF | is a

movable linear system (see [1, Chapter 2]). This contradiction completes the proof
of the proposition.

Thus B ⊂ F = Ft is contained in a fiber.

Lemma 2.1. The following inequality holds: codimF B ≥ 2.

Proof. Assume the converse: B ⊂ F is a prime divisor. Let D ∈ Σ be a general
divisor, DF its restriction onto F . By the Noether-Fano inequality multB D > n, so
that DF = αB + D], where α > n and D] is an effective divisor on F . However,
DF ∼ nHF , which immediately gives a contradiction. Q.E.D. for the lemma.

Let M = {T1, . . . , Tk} be the set of all maximal singularities of the linear system

Σ on Ṽ . As we have proved above, the centre BE = centre(νE) of any maximal
singularity E ∈M is contained in some fiber Ft. The set M is finite, so that there
are at most finitely many points t ∈ P1, the fibers Ft over which contain a centre of
a maximal singularity. Set Mt = {E ∈M|BE ⊂ Ft},

e(E) = νE(Σ)− na(E, V ) > 0

for E ∈M. Recall that Σ ⊂ | − nKV + lF |, l ∈ Z+.

Proposition 2.2. The following inequality holds:

∑

t∈P1

max
{E∈Mt}

e(E)

νE(Ft)
> l (15)

Proof. Let D̃ ∈ Σ̃ be a general divisor, that is, the strict transform of a divisor
D ∈ Σ of general position on Ṽ . By assumption, the linear system |D̃+nK̃| is empty
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(where K̃ is the canonical class of the variety Ṽ ). Therefore the linear system

|lF −
∑
E∈M

e(E)E|

is empty, either. On the other hand, for E ∈ Mt by construction the divisor
Ft − νE(Ft)E is effective, so that the divisor

∑

t∈P1

[

(
max

{E∈Mt}
e(E)

νE(FT )

)
Ft −

∑
E∈Mt

e(E)E]

is also effective. From this, we immediately obtain the inequality (15).
Q.E.D. for Proposition 2.2.

1.2. The structure of the sequence of blow ups. Consider the self-
intersection of the linear system Σ, that is, the effective algebraic cycle Z = (D1◦D2),
where D1, D2 ∈ Σ are general divisors. Let Z = Zv + Zh be the decomposition of
the cycle Z into the vertical (Zv) and horizontal (Zh) parts. The cycle Zv can be
further decomposed as

Zv =
∑

t∈P1

Zv
t , Supp Zv

t ⊂ Ft.

Let E ∈ Mt be a maximal singularity over a point t ∈ P1. To prove Theorem 2.1
(iii), we apply to the effective cycle Zv

t +Zh the technique of counting multiplicities [1,
§2.2]. First of all, let us study the structure of the sequence of blow ups, resolving
the singularity E. This means, to break the sequence of blow ups into segments
that determine multiplicities of the cycles Zv

t , Zh and (Zh ◦ Ft) (the intersection of
a horizontal cycle with a fiber is always well defined).

So long as we discuss a fixed singularity E, we omit the symbols t and E for
simplicity of notations, for instance, we write F instead of Ft, Zv instead of Zv

t , e
instead of e(E) and so on.

So let us consider the sequence of blow ups (14), associated with E. As usual,
the upper index j means the operation of taking the strict transform on Vj, for
instance, F j ⊂ Vj is the strict transform of the fiber F and so on. Set

Nf = max{i |Bi−1 ⊂ F i−1}.
Since ϕi,i−1(Bi) = Bi−1 for any i = 1, . . . N − 1, the codimensions codim Bi do not
increase. Set

L = max{i | codim Bi−1 ≥ 3} ≤ N.

We introduce the following notations: for i ∈ {1, . . . , L}
mh

i = multBi−1
(Zh)i−1, mv

i = multBi−1
(Zv)i−1,

m
h(v)
i ≤ m

h(v)
i−1 for i = 2, . . . , L. Note that by the assumption the fiber F can be

assumed to be smooth at the generic point of B and therefore the strict transform F i
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is smooth at the generic point of each variety Bi, if Bi ⊂ F i. Thus for i ∈ {1, . . . , Nf}
we get multBi−1

F i−1 = 1. For i > Nf , obviously, multBi−1
F i−1 = 0. The more so,

mv
i = 0 for i > Nf (if Nf < L). Now the technique of counting multiplicities [1,

§2.2] combined with the relation

K∑
i=1

piνi = n

K∑
i=1

piδi + e,

e > 0, gives the inequality

L∑
i=1

pim
h
i +

min{Nf ,L}∑
i=1

pim
v
i ≥

N∑
i=1

piν
2
i ≥

(n
N∑

i=1

piδi + e)2

N∑
i=1

pi

(16)

where pi is the number of paths in the graph Γ of the resolution of the maximal
singularity E going from the vertex EN to Ei.

Unfortunately, the estimate (16) is not strong enough for our purposes (it would
have been sufficient under the assumption that the standard K2-condition holds,
K2

V 6∈ Int A2
+V , but we assume the weaker K2-condition of depth 2). A more refined

study of the resolution of the singularity E is needed. Set

Σl =
L∑

i=1

pi, Σu =
N∑

i=L+1

pi, Σf =

min{Nf ,L}∑
i=1

pi.

Note that νE(F ) =

Nf∑
i=1

pi ≥ Σf . Obviously, mh
i ≤ mh = mh

1 = multB Zh. Set also

dh = deg Zh, dv = deg Zv
t .

Now let us break the set of blow ups into a few subsets. First of all, let us
separate the blow ups of subvarieties Bi−1 of codimension three. Set

Js = {i | 1 ≤ i ≤ K, codim Bi−1 ≥ 4},
Jm = {i | 1 ≤ i ≤ K, codim Bi−1 = 3},
Ju = {i |L + 1 ≤ i ≤ K}, Jl = Js ∪ Jm.

In its turn, we break the set Jm into two disjoint subsets, Jm = J+
m

∐
J−m, where

J+
m = {i ∈ Jm |Bi−1 ⊂ F i−1},

J−m = Jm \ J+
m = {i ∈ Jm |Bi−1 6⊂ F i−1}. It can well turn out that J+

m or J−m (or the
whole set Jm) is empty. Set, furthermore,

Σs =
∑
i∈Js

pi, Σ±
m =

∑

i∈J±m

pi, Σm = Σ+
m + Σ−

m,
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the symbol Σu retains its meaning. Obviously, Σl = Σs + Σm.
Now the inequality (16) can be rewritten as

∑
i∈Jl

pim
h
i +

∑

i∈Js∪J+
m

pim
v
i ≥

((3Σs + 2Σm + Σu)n + e)2

Σs + Σm + Σu

. (17)

The next step is estimating the horizontal multiplicities mh
i .

Proposition 2.3. The following inequality holds:

∑

i∈Js∪J+
m

pim
h
i ≤ Σs multB(Zh ◦ F ). (18)

1.3. Multiplicities of the horizontal cycles. Let us prove Proposition 2.3.
The arguments below hold with obvious simplifications in the case when J+

m = ∅.
So we assume that J+

m 6= ∅, so that, in particular, Js ⊂ {1, . . . , Nf}.
First let us consider the following general situation. Let Y ⊂ V be an irreducible

horizontal subvariety of codimension two, Y i ⊂ Vi its strict transform,

mY (i) = multBi−1
Y i−1 (19)

the corresponding multiplicity. Set YF = (Y ◦ F ). It is an effective cycle of codi-
mension two in the fiber F . Let Y i

F ⊂ Vi be its strict transform,

mY,F (i) = multBi−1
Y i−1

F . (20)

Since the support of the cycle YF is contained in the fiber F , the numbers mY,F (i)
vanish for i ∈ J−m.

Lemma 2.2. The following estimate holds:

∑

i∈Js∪J+
m

pimY (i) ≤
∑
i∈Js

pimY,F (i). (21)

Before starting the proof, recall some facts which follow immediately from the
elementary intersection theory [44]. Note that here we intersect a divisor and a
subvariety of arbitrary codimension, unlike [1, Chapter 2], where the case of two
divisors was considered. Let X be an arbitrary smooth variety, B ⊂ X, B 6⊂ Sing X
an irreducible subvariety of codimension ≥ 2, σB: X(B) → X its blow up, E(B) =
σ−1

B (B) the exceptional divisor. Let

Z =
∑

miZi, Zi ⊂ E(B),

be a cycle of dimension k, k ≥ dim B. Define the degree of the cycle Z, setting

deg Z =
∑

i

mi deg
(
Zi

⋂
σ−1

B (b)
)

,
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where b ∈ B is a point of general position, σ−1
B (b) ∼= Pcodim B−1 and the degree in the

right-hand side is the usual degree in the projective space.
Note that deg Zi = 0 if and only if σB(Zi) is a proper closed subset of the

subvariety B.
Now let D be a prime Weil divisor on X, Y ⊂ X an irreducible subvariety of

dimension l ≤ dim X − 1. Assume that Y 6⊂ D and that dim B ≤ l − 1. The strict
transforms of the divisor D and the subvariety Y on X(B) denote by the symbols
DB and Y B, respectively.

Lemma 2.3. (i) Assume that dim B ≤ l − 2. Then

DB ◦ Y B = (D ◦ Y )B + Z,

where ◦ means the operation of taking the algebraic cycle of the scheme-theoretic
intersection, Supp Z ⊂ E(B) and

multB(D ◦ Y ) = multB D ·multB Y + deg Z.

(ii) Assume that dim B = l − 1. Then

DB ◦ Y B = Z + Z1,

where Supp Z ⊂ E(B), Supp σB(Z1) does not contain B and

D ◦ Y = [(multB D)(multB Y ) + deg Z] B + (σB)∗Z1.

Proof is easy to obtain by the standard intersection theory [44].

1.4. The technique of counting multiplicities. Let us construct a sequence
of effective cycles of codimension three on the varieties Vi, setting

Y ◦ F = Z0 (= YF ),
Y 1 ◦ F 1 = Z1

0 + Z1,
...

Y i ◦ F i = (Y i−1 ◦ F i−1)i + Zi,
...

i ∈ Js, where Supp Zi ⊂ Ei. Thus for every i ∈ Js we get:

Y i ◦ F i = Y i
F + Zi

1 + . . . + Zi
i−1 + Zi.

For any j > i, j ∈ Js set mi,j = multBj−1
(Zj−1

i ) (the multiplicity of an irreducible
subvariety along a smaller subvariety is understood in the usual sense; for an arbi-
trary cycle we extend the multiplicity by linearity).
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Now set di = deg Zi. We obtain the following system of equalities:

mY (1) + d1 = mY,F (1),
mY (2) + d2 = mY,F (2) + m1,2,

...
mY (i) + di = mY,F (i) + m1,i + . . . + mi−1,i

...

i ∈ Js. Setting S = max{i ∈ Js}, consider the last equality in this sequence:

mY (S) + dS = mY,F (S) + m1,S + . . . + mS−1,S.

If J+
m 6= ∅, then by part (ii) of Lemma 2.3 we get

dS ≥
∑

i∈J+
m

mY (i) deg(ϕi−1,S)∗Bi−1 ≥
∑

i∈J+
m

mY (i).

Slightly modifying Definition 2.6 in [1], we say that a function a: Js → R+ is com-
patible with the graph structure, if

a(i) ≥
∑

j→i,

j∈Js

a(j)

for any i ∈ Js. (Compared to the above-mentioned definition, only the domain of
the function is changed.)

In fact, we will use only one function compatible with the graph structure, namely
a(i) = pi.

Proposition 2.4. Let a(·) be a function, compatible with the graph structure.
Then the following inequality holds:

∑
i∈Js

a(i)mY,F (i) ≥
∑
i∈Js

a(i)mY (i) + a(S)
∑

i∈J+
m

mY (i). (22)

Proof is given word for word in the same way as for the case of two divisors
([1, §2.2]): multiply the i-th equality by a(i) and put them all together. In the
right-hand side for any i ≥ 1 we get the expression

∑
j≥i+1

a(j)mi,j.

In the left-hand side for any i ≥ 1 we get the summand a(i)di.

Furthermore, by Lemma 2.3 in [1], if mi,j > 0, then j → i.
The next standard step is to compare the multiplicities mi,j with the degrees.

Lemma 2.4. For any i < j ∈ Js we get mi,j ≤ di.
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Proof. If mi,j = 0, then there is nothing to prove. Otherwise, j → i and we
have to show that

multBj−1
Zj−1

i ≤ deg Zi.

Taking into account that the maps ϕa,b: Ba → Bb are surjective, it is sufficient to
prove the inequality

mult[Bj−1∩ϕ−1
i,i−1(t)j−1][Zi ∩ ϕ−1

i,i−1(t)]
j−1 ≤ deg[Zi ∩ ϕ−1

i,i−1(t)], (23)

where t ∈ Bi−1 is a point of general position. Taking into account that ϕ−1
i,i−1(t)

is the projective space Pcodim Bi−1−1, we get that in the right-hand side in (23) we
get the usual degree of a hypersurface in the projective space, whereas the set
[Zi∩ϕ−1

i,i−1(t)]
j−1 is obtained from this hypersurface by a finite sequence of blow ups

ϕs,s−1, s = i + 1, . . . , j − 1, restricted onto ϕ−1
i,i−1(t). Taking into account that the

multiplicities do not increase under the blow ups, we reduce the claim to the obvious
case of a hypersurface in the projective space. Q.E.D. for the lemma.

As a result, we get the following estimate:
∑

j≥i+1

a(j)mi,j =
∑

j≥i+1

mi,j 6=0

a(j)mi,j ≤ di

∑
j→i

a(j) ≤ a(i)di.

By what was said above, we can delete in the right-hand side all the summands
mi,∗, i ≥ 1, and in the left-hand side all the summands di, i ≥ 1, replacing the
equality sign = by the inequality sign ≤. Q.E.D.

Setting in the inequality (22) a(i) = pi and taking into account that for j ≥ S
we have pj ≤ pS, we complete the proof of Lemma 2.2.

Now let us complete the proof of Proposition 2.3.
Obviously, the inequality (21) remains true, if Y is an effective horizontal cycle

of codimension two on V , that is, each irreducible component of the cycle Y is a
horizontal subvariety. The formulae (19,20) extend by linearity to the set of all
effective horizontal cycles, whereas the left-hand side and right-hand side of the
inequality (21) are linear in mY (·), mY,F (·), respectively.

Now set Y = Zh and take into account that mY,F (i) ≤ multB(Zh ◦ F ) for i ≥ 1.
This proves Proposition 2.3.

1.5. The supermaximal singularity. We apply the estimates obtained above
to a maximal singularity E ∈M, satisfying, apart from the Noether-Fano inequality,
a certain additional condition formulated below in Proposition 2.5. Such singulari-
ties are said to be supermaximal. Since by assumption the K2-condition of depth 2
holds, for the horizontal part of the self-intersection of the linear system Σ we get

Zh ∼ n2K2
V + αHF ,

where the coefficient α ∈ Z satisfies the inequality α ≥ −2n2. Therefore, for the
vertical component we get

Zv ∼ (2nl − α)HF ,
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whence
deg Zv =

∑

t∈P1

deg Zv
t ≤ (2nl + 2n2) deg V. (24)

Proposition 2.5. For some point t ∈ P1 there is a maximal singularity E ∈
Mt 6= ∅, satisfying the estimate

e(E) >
νE(Ft)

2

(
deg Zv

t

n deg V
− 2n

)
(25)

Proof of Proposition 2.5. Compare the inequalities (15) and (24). Replacing
the number l in the right-hand side of the inequality (24) by the left-hand side of
the inequality (15), we get

∑

t∈P1

[
deg Zv

t − 2n deg V max
{E∈Mt}

e(E)

νE(Ft)

]
< 2n2 deg V,

whence our proposition follows immediately.
Remark 2.1. If there are several maximal singularities, the centres of which lie

in the fibers over distinct points t1, . . . , tk, then Proposition 2.5 gets stronger: there
is a maximal singularity E ∈Mt, t ∈ {t1, . . . , tk}, satisfying the estimate

e(E) >
νE(Ft)

2

(
deg Zv

t

n deg V
− 2n

k

)
.

Thus we consider the worst possible case, setting k = 1.
Let o ∈ B be a point of general position. Since by assumption o ∈ F is a smooth

point of the fiber, the conditions (f) and (v) hold. From the inequality (13) we
immediately get the estimate

∑

i∈Js∪J+
m

pim
h
i ≤ 4n2Σs.

Since mh
i ≤ mh

1 ≤ 4n2, we get the inequality

∑
i∈Jl

pim
h
i ≤ 4n2(Σs + Σ−

m). (26)

This is the very estimate for the singularities of the horizontal component Zh that
we need.

Now consider the vertical component Zv. By the condition (v) the inequality

mv
i ≤ mv

1 ≤
2

deg V
dv (27)

holds. On the other hand, the generalized K2-condition of depth 2 implies the
estimate

dv

deg V
<

2en

νE(F )
+ 2n2. (28)
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Combining (27) and (28), we obtain the inequality

∑

i∈Js∪J+
m

pim
v
i < 2n

(
2e

νE(F )
+ 2n

)
(Σs + Σ+

m).

Taking into account that by definition νE(F ) =
k∑

i=1

piµi ≥ Σs + Σ+
m, we get finally:

∑

i∈Js∪J+
m

pim
v
i < 4ne + 4n2(Σs + Σ+

m) (29)

Now the inequalities (16), (26) and (29) imply the following estimate:

(4n2(Σs + Σ−
m) + 4ne + 4n2(Σs + Σ+

m))(Σs + Σm + Σu) >

> ((3Σs + 2Σm + Σu)n + e)2.

Taking into account that Σm = Σ+
m + Σ−

m, after some easy arithmetic we get the
inequality

(n(Σs − Σu) + e)2 < 0.

A contradiction.
Q.E.D. for the claim (iii) of Theorem 2.1.

§2. Varieties with a pencil of Fano complete intersections

The aim of this section is to explain the key steps of the proof of Theorems
1.5 and 1.6. The proof is based on the techniques of Theorem 2.1, so that our
work is reduced to checking the conditions (f), (v) and excluding the infinitely near
maximal singularities lying over a singular point of a fiber. It is not hard to check
the K2-condition of depth 2 and the K-condition (see Propositions 1.4, 1.5) and we
omit that step.

2.1. Fibrations into Fano complete intersections. Let us prove Theorem
1.5. Since the fiber space V/P1 is sufficiently general, we may assume that every
fiber F at every point satisfies the regularity condition formulated in Definition 3.4
of the survey [1], that is, the set of polynomials

{qi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ di, (i, j) 6= (k, dk)} (30)

makes a regular sequence. Now [32] or [1, Chapter 3, §2] give the condition (f). Let
us prove the condition (v). Let Y ⊂ F = Ft be a prime divisor, o ∈ Y a point. Take
a general hyperplane H ⊂ P, tangent to F at the point o, that is, H ⊃ ToF . Set
T = H ∩ F . By generality, Y 6= T , so that YT = (Y ◦ T ) is a well defined effective
cycle of codimension two on F , and moreover,

multo

deg
YT ≥ 2

multo

deg
Y.
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Now the condition (f) implies (v).
Now to prove Theorem 1.5, it remains to check that the centre of a maximal

singularity of the system Σ ⊂ | − nKV + lF | (or of the pair (V, 1
n
Σ)) can not be

a singular point of a fiber. There are finitely many such points on the variety V ,
so that we may assume that certain additional conditions of general position are
satisfied. Let us formulate these conditions.

As we did in §2 of [1, Chapter 3], take a system (z1, . . . , zM+k) of affine co-
ordinates on P = PM+k with the origin at the point o ∈ V , which is a singular
point of the fiber F 3 o, F ⊂ P. By assumption, o ∈ F is a non-degenerate
quadratic singularity. Assume in addition, that the system of homogeneous equa-
tions {qi,j = 0 | (i, j) 6= (k, dk)} defines a closed set of dimension two in CM+k

(respectively, a curve in PM+k−1), such that the linear span of each of its irreducible
components is the linear space

T = {q1,1 = q2,1 = . . . = qk,1 = 0}.
Note that if x ∈ F is a singularity, then the linear forms qi,1, i = 1, . . . , k, are linear
dependent. The regularity of the point x ∈ F means that, deleting from the set (30)
exactly one linear form, say q1,e, we obtain a regular sequence, that is, the system
of equations

{qi,j = 0 | (i, j) 6∈ {(1, e), (k, dk)}} (31)

defines a two-dimensional set in CM+k (respectively, a curve in PM+k−1). In partic-
ular, codim T = k − 1 and the tangent cone TxF ⊂ T is a non-degenerate quadric.
Moreover, it follows from the regularity condition that, replacing in the set (30) the
linear form q1,e by an arbitrary linear form l(z1, . . . , zM+k−1), such that l | T 6≡ 0, we
obtain a regular sequence, since neither component of the closed set (31) is contained
in the hyperplane l = 0.

Now assume that the singular point of the fiber o ∈ F is the centre of a maximal
singularity. Let λ: F+ → F be the blow up of the point o, λ−1(o) = E+ ⊂ F+ the
exceptional divisor. The blow up λ can be looked at as the restriction of the blow
up λP:P+ → P of the point o on P, so that E+ ⊂ E is a non-singular quadric of
dimension M − 1, where E = λ−1

P (o) ∼= PM+k−1 is the exceptional divisor.

Proposition 2.5. There exists a hyperplane section B of the quadric E+ ⊂ E,
satisfying the inequality

multB(λ∗ΣF ) > 2n.

Proof is given below in §2 of Chapter 3, where we collect all facts related to the
connectedness principle of Shokurov and Kollár.

Let D ∈ ΣF = Σ |F be an effective divisor on F , D ∈ |nHF |. For the strict
transform D+ ⊂ F+ we have λ∗D = D+ +(1

2
multo D)E+. Taking into account that

multB E+ = 1, we obtain from Proposition 2.5 the inequality

multo D + 2 multB D+ > 4n.

Let H ⊂ P be a general hyperplane, containing the point o and cutting out B,
that is, H+ ∩ E+ = (H+ ∩ E) ∩ E+ = B, where H+ ⊂ P+ is the strict transform.
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Set T = H ∩ F . The variety T is a complete intersection of type (d1, . . . , dk) in
H = PM+k−1 with an isolated quadratic singularity at the point o. The effective
divisor DT = (D ◦ T ) on T satisfies the inequality

multo DT > 4n. (32)

Obviously, DT ∈ |nHT |, where HT is the hyperplane section of T ⊂ PM+k−1. By lin-
earity, one may assume the divisor DT to be prime, that is, an irreducible subvariety
of codimension one.

Now we obtain a contradiction, repeating the arguments of [1, Chapter 3, §2]
word for word: intersecting DT with the hypertangent divisors, we construct a curve
C ⊂ T , satisfying the inequality multo C > deg C, which is, of course, impossible.
It remains to check that the technique of hypertangent divisors applies to our case.
In [1, Chapter 3, §2] the following two facts were used:

1) the regularity condition for the complete intersection F at the point under
consideration,

2) the irreducibility of the intersection F ∩ToF (it was derived from the relation
k < 1

2
dim F by the Lefschetz theorem).

The arguments of [1, Chapter 3, §2] work in our case, if the conditions 1) and 2)
hold.

As for the regularity condition, it is satisfied in our case due to the stronger reg-
ularity condition imposed on the singular point, formulated above. More precisely,
the hyperplane section T = H ∩ F satisfies the usual regularity condition for any
hyperplane H 6⊃ ToF .

Let us consider the condition 2). Recall that in this case codim ToF = k−1 (the
point o ∈ F is singular). Instead of the condition 2) we need the following fact: the
intersection

T ∩ ToF = H ∩ F ∩ ToF

is irreducible (and by the regularity condition has automatically the multiplicity
exactly 2k at the point o). This is true again by the Lefschetz theorem due to
the inequality k < 1

2
dim F , since o ∈ F is a non-degenerate double point. This

completes the proof of Theorem 1.5.

2.2. Fibrations into Fano cyclic covers. Let us prove Theorem 1.6. The
conditions (f) and (v) for sufficiently general Fano cyclic covers are checked in the
same way as for the complete intersections above, taking into account the additional
hypertangent divisors, described in [1, Chapter 3, §2]. For the details, see [8]. Now
it is enough to show that the centre of a maximal singularity can not be a singular
point of a fiber o ∈ F .

Let σ: F → G ⊂ P = PM+1 be a realization of the fiber as a K-sheeted cyclic
cover. For a generic variety V the singular point o ∈ F can belong to strictly one of
the two types:

— when the hypersurface G has a non-degenerate quadratic singularity at the
point p = σ(o) (and the point p does not lie on the branch divisor),
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— when the hypersurface G is non-singular at the point p = σ(o), but the branch
divisor W ∩G, where W = WKl ⊂ P is a hypersurface of degree Kl, has a quadratic
singularity at the point p.

A singularity o ∈ F of the first type is excluded as a possible centre of a maximal
singularity in precisely the same way as in Sec. 2.1 (again, taking into account the
additional hypertangent divisors for the K-sheeted cover). Referring to [8] for the
details, let us consider a singularity o ∈ F of the second type. In this case, to
exclude the maximal singularity, we need another method.

First of all, let us formulate the regularity condition for a singularity of the
second type. Introducing a new coordinate u of weight l, we realize the fiber F as
a complete intersection of the type m ·Kl in the weighted projective space

P(1, . . . , 1︸ ︷︷ ︸
M+2

, l).

Namely, F is given by the system of equations

{
f(x0, . . . , xM+1) = 0
uK = g(x0, . . . , xM+1),

(33)

where f(x∗) and g(x∗) are homogeneous polynomials of degrees m and Kl, respec-
tively. Recall that the integers m, l and K satisfy the relation m+(K−1)l = M +1.

Let F ∼ (f, g) be our variety, o ∈ F an arbitrary point, p = σ(o) ∈ G = {f = 0}
its image on P. Choose a system of affine coordinates z1, . . . , zM+1 with the origin at
the point p. Without loss of generality we may assume that zi = xi/x0. Set y = u/xl

0.
Now the standard affine set AM+2

(z1,...,zM+1,y) is a chart for P(1, . . . , 1, l). Abusing our
notations, we use for the non-homogeneous polynomials, corresponding to f and g,
the same symbols:

f = q1 + . . . + qm, g = w0 + w1 + . . . + wKl,

where qi, wj are homogeneous components of degree i, j in the variables z∗, respec-
tively, so that in the affine chart AM+2

(z∗,y), introduced above, the variety F is given by

the pair of equations f = 0, yK = g (replacing the system (33)). If the point o ∈ F
does not lie on the ramification divisor of the morphism σ, then we always assume
that w0 = 1. If the point p ∈ G is non-singular, then without loss of generality we
assume that q1 ≡ zM+1. In the latter case we set

q̄i = qi | {zM+1=0} = qi(z1, . . . , zM , 0)

and w̄j = wj | zM+1=0 = wj(z1, . . . , zM , 0) for i, j ≥ 2.
Now let us formulate the regularity condition for the singular point o ∈ F . Here

w0 = 0, q1 = zM+1, w1 = λzM+1, where λ ∈ C is a constant, that is, the point p ∈ G
is non-singular. We require the quadratic form w̄2(z1, . . . , zM) to have the maximal
rank M and the sequence

q̄2, . . . , q̄m, w̄2, . . . , w̄K
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to be regular in Oo,CM , and moreover, the system of homogeneous equations

q̄2 = . . . = q̄m = w̄2 = . . . = w̄K = 0 (34)

should define a closed algebraic set in CM , neither component of which is contained
in a hyperplane.

Obviously, we may assume that λ ∈ {0, 1}. Now, either q1 ≡ w1 ≡ zM+1, or
q1 ≡ zM+1 and w1 ≡ 0. The germ of the variety o ∈ F is analytically the germ
of the hypersurface yK = w̄2(z1, . . . , zM) + . . ., where w̄i, q̄i are the restrictions of
the polynomials wi, qi onto the hyperplane zM+1 = 0, in the space CM+1

(z1,...,zM ,y). Let

ϕ: F+ → F be the blow up of the point o, E ⊂ F+ the exceptional divisor. It
follows from what was said that E realizes naturally as a quadratic hypersurface,
E ⊂ PM

(z1:...:zM :y). Let ϕG: G+ → G be the blow up of the point p ∈ G, EG = ϕ−1
G (p) ⊂

G+ the exceptional divisor, EG
∼= PM−1

(z1:...:zM ). It is easy to see that the morphism σ

extends to a rational map σ+: F+ 99K G+, whereas the restriction

σE = σ+| E: E 99K EG

is the projection of the quadratic cone E ⊂ PM , given in PM
(z1:...:zM :y) by the equation

w̄2(z1, . . . , zM) = 0, from its vertex o+ = (0 : . . . : 0 : 1), onto the smooth quadric
E+ ⊂ EG, given in EG = PM−1 by the very same equation w̄2 = 0. Therefore, σ+

contracts generators of the cone E to points.
By the regularity condition, the system of homogeneous equations (34) cuts

out on E+ (and thus on E) a closed algebraic set, neither component of which is
contained in a hyperplane.

Assume that there exist an effective divisor R ∈ |nHF | and a hyperplane section
B of the quadric cone E ⊂ PM , satisfying the inequality

ν + µ > 2n, (35)

where R+ ∈ |nHF − νE|, that is, ν = 1
2
multo R, and µ = multB R+, R+ ⊂ F+ is

the strict transform of the divisor R. By linearity of the inequality (35) one may
assume the divisor R to be prime.

Lemma 2.5. The following estimate holds: ν ≤ 3
2
n.

Proof. Assume the converse: ν > 3
2
n. Let

Di = σ∗(fi | G), fi = q1 + . . . + qi, i = 1, . . . , m− 1,

and
∆i = σ∗(gi | G), gi = w1 + . . . + wi, i = 2, . . . , K − 1,

be hypertangent divisors on F , D = {D1, . . . , ∆K−1}, ]D = m + K − 3. By the
regularity condition we get

codimo

( ⋂
D∈D

D

)
= ]D.
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Lemma 2.6. The prime divisors D1 and R are distinct: D1 6= R.

Proof. If ν ≤ 2n, then µ ≥ 1, that is, R+ ⊃ B. By the regularity condition,
D+

1 6⊃ B. Therefore, D+
1 6= R+.

If ν > 2n, then, taking into account that D+
1 ∈ |HF − 2E|, we obtain again that

D1 6= R. Q.E.D. for the lemma.
By the lemma the effective cycle (R ◦ D1) of codimension two is well defined.

The inequality
multo

deg
(R ◦D1) >

6

mK

holds, so that there is an irreducible subvariety Y ⊂ F of codimension two (an
irreducible component of the cycle (R ◦D1)), satisfying the inequality

multo

deg
Y >

6

mK
.

Applying to the subvariety Y [1, Proposition 3.2], we obtain the opposite inequality

multo

deg
Y ≤ 2

3
· . . . · m− 1

m
· 3

4
· . . . · K − 1

K
=

6

mK
.

The contradiction just obtained shows, in addition, that the maximum of the ratio
multo / deg is attained at the divisor σ∗D1 and equal to 4/mK. Q.E.D. for the
lemma.

Corollary 2.1. The following inequality holds: µ > 1
2
n.

Thus the hyperplane section B is really present in the divisor R+ ⊂ F+. Now
it is more convenient to use the technique of hypertangent linear systems (see [1,
§3.1]). Set

ΛG
i =

∣∣∣∣∣∣

(
i∑

j=1

fjsi−j +
i∑

j=2

gjri−j

)∣∣∣∣∣
G

= 0

∣∣∣∣∣∣
,

where sk, rk run through the set of all homogeneous polynomials in z1, . . . , zM+1 of
degree k. Furthermore, let

Λi = σ∗ΛG
i and Λ+

i

be the pull back of the system ΛG
i on F and its strict transform on F+, respectively.

We get Λ+
i ⊂ |iHF − (i + 1)E|. Finally, let

ΛE
i = Λ+

i | E
be the projectivized tangent system of the linear system Λi at the point o.

Let HE be the class of a hyperplane section of the cone E. We get ΛE
i ⊂

|(i + 1)HE|. In the coordinate form

ΛE
i = σ∗E

∣∣∣∣∣
i∑

j=1

q̄j+1s̄i−j +
i∑

j=2

w̄j+1r̄i−j = 0

∣∣∣∣∣ ,
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where s̄k = sk | {zM+1=0}, r̄k = rk | {zM+1=0}. From this explicit presentations and the
regularity condition we get at once that

codimE Bs ΛE
i = min{i,m− 1}+ min{i,K − 1} − 1,

and moreover neither component of the closed set Bs ΛE
i is contained in a hyperplane.

Note that for i ≥ max{m,K} − 1 we get Bs Λi = Bs Λi+1: it is precisely the closed
set

q̄2 = . . . = q̄m = w̄3 = . . . = w̄K = 0.

Let

L = (D1, . . . , Dm−1, L2, . . . , LK−1) ∈
m−1∏
i=1

Λi ×
K−1∏
i=2

Λi

be a general set of hypertangent divisors,

L+ = (D+
1 , . . . , L+

K−1) and LE = (DE
1 , . . . , LE

K−1) = L+| E
its strict transform on F+ and restriction onto the quadric cone E, respectively.

Set RE = R+| E to be the projectivized tangent cone of the divisor R at the
point o. By the regularity condition the closed algebraic set

RE ∩
(

m−1⋂
i=2

DE
i

)
∩

(
K−1⋂
i=2

LE
i

)
(36)

is of codimension precisely m+K−2 with respect to E (note that in (36) the divisor
DE

1 is omitted).
Therefore, the effective cycle

YE = (RE ◦DE
2 ◦ . . . ◦DE

m−1 ◦ LE
2 ◦ . . . ◦ LE

K−1)

of codimension m + K − 2 on E is well defined. Its HE-degree is

deg YE =
1

4
m!K! deg RE =

1

2
m!K!ν.

Furthermore, by the regularity condition the closed set

R ∩
(

m−1⋂
i=2

Di

)
∩

(
K−1⋂
i=2

Li

)

is of codimension m+K−2 with respect to F in a neighborhood of the point o. Thus
we get the uniquely determined effective algebraic cycle Y of codimension m+K−2
on F , each irreducible component of which contains the point o, and which coincides
with the effective cycle

(R ◦D2 ◦ . . . ◦Dm−1 ◦ L2 ◦ . . . ◦ LK−1)U
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on a suitable Zariski open set U ⊂ F , containing the point o. For a general set L we
get: YE = (Y + ◦E) is the projectivized tangent cone to Y at the point o. However,
generally speaking, for the HF -degree of the cycle Y we get only the inequality

deg Y ≤ (m− 1)!(K − 1)! deg R = nm!K!,

since constructing the cycle Y , at the intermediate steps (the divisor R is successively
intersected with D2, L2, D3, L3 and so on) we remove the components that do not
contain the point o. Note that, generally speaking, certain irreducible components
of the cycles Y and YE can be contained in D1 and DE

1 , respectively. Let us separate
those components:

Y = Z + Y ], YE = ZE + Y ]
E,

where Supp Z ⊂ D1 and Z is the maximal subcycle of the effective cycle Y with
this property (that is, neither irreducible component of the cycle Y ] is contained in
D1), ZE = (Z+ ◦ E), Y ]

E = ((Y ])+ ◦ E) = YE − ZE. Obviously, Supp ZE ⊂ DE
1 , but

irreducible components of the cycle Y ]
E, generally speaking, can be contained in DE

1 .
The following fact is of key importance.

Lemma 2.7. The algebraic cycle

Y ]
E − µ(B ◦DE

2 ◦ . . . ◦DE
m−1 ◦ LE

2 ◦ . . . ◦ LE
K−1)

is effective. In particular, the following inequality holds:

deg Y ]
E ≥

1

2
m!K!µ.

Proof. The first claim holds because by construction the algebraic cycle RE−µB
is effective, so that the cycle YE−µBL is effective, either, where BL = (B ◦DE

2 ◦ . . .◦
LE

K−1). The support of the cycle BL is a closed set Supp BL of pure codimension
m + K − 3 with respect to E. For any irreducible component ∆ ⊂ Supp BL we get
∆ 6⊂ DE

1 .
Indeed, assume the converse: ∆ ⊂ DE

1 . Then ∆ ⊂ B and

∆ ⊂
(

m−1⋂
i=1

DE
i

)
∩

(
K−1⋂
i=2

LE
i

)
,

which contradicts the regularity condition.
Therefore, each irreducible component ∆ of the cycle BL cannot be a component

of the cycle ZE and so appears in the cycle Y ]
E only. This proves the first claim of

the lemma. The second claim follows from the first one in a trivial way. Q.E.D. for
the lemma.

Since the irreducble components of the cycle Y ] are not contained in the divisor
D1, the effective cycle (Y ] ◦D1) is well defined, and moreover, the inequality

multo

deg
(Y ] ◦D1) ≥ 2

multo

deg
Y ]
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holds.
Since for any irreducible subvariety ∆ ⊂ F we have the estimate (multo / deg)∆ ≤

1, we get
deg Y ] ≥ 2 multo Y ] = 2 deg Y ]

E ≥ m!K!µ.

On the other hand, we have the inequality deg Z ≥ multo Z = deg ZE (which is true
for any effective cycle Z).

Combining these estimates, we get

m!K!n ≥ deg Y = deg Z + deg Y ] ≥
≥ deg ZE + 2 deg Y ]

E = deg YE + deg Y ]
E ≥

≥ 1

2
m!K!ν +

1

2
m!K!µ =

1

2
m!K!(ν + µ).

Therefore, ν + µ ≤ 2n. Contradiction.
We have proved that a singular point of a fiber o ∈ F , lying on the ramification

divisor of the morphism σ, cannot be the centre of a maximal singularity of a movable
linear system.

This completes the proof of Theorem 1.6. Q.E.D.

2.3. Fiber-wise birational modifications. Let us prove Theorem 1.1. Let
V ∈ V(d), F = V ∩ {p} × PM be the fiber over the marked point. Fix a local
parameter t on the curve C in a neighborhood of the point p. The hypersurface
V ⊂ X in a neighborhood of the fiber F is given by the equation

f = f (0) + tf (1) + . . . + tjf (j) + . . . ,

where f (j) are homogeneous polynomials of degree j in the homogeneous coordinates
(x∗) = (x0 : . . . : xM) on PM . It is well known [6], that dim Sing V ≥ dim Sing F −1,
so that the smoothness of the hypersurface V implies that, firstly, the hypersurface
F = {f (0) = 0} ⊂ PM has at most zero-dimensional singularities and, secondly, for
every point x ∈ Sing F we have f (1)(x) 6= 0.

Take V1, V2 ∈ V(d) and let χ∗: V ∗
1 → V ∗

2 be a fiber-wise isomorphism outside
the marked point p ∈ C. Since the fibers over points of general position y ∈ C
are smooth hypersurfaces of degree d ≥ 2, over a point y ∈ C∗ the isomorphism
χ∗y is induced by an automorphism of the ambient projective space ξy ∈ AutP.
Therefore, χ∗ = ξ∗|V1 , where ξ∗y = ξy is an algebraic curve ξ∗: C∗ → AutP of
projective automorphisms. Let P = P(L), where L ∼= CM+1 is a linear space. The
curve ξ∗ lifts to a curve ξ: C → End L, ξ(C∗) ⊂ Aut L. If ξ(p) ∈ Aut L, then χ∗

extends to a fiber-wise (biregular) isomorphism χ = ξ|V1 , and the varieties V1 and
V2 are fiber-wise isomorphic. Assume that this is not the case: det ξ(p) = 0.

Let
∑∞

i=0 tiξ(i) be the Taylor series of the curve ξ. We may assume that ξ(0) 6= 0.
The next claim is a well known fact of elementary linear algebra.

Lemma 2.8. There exist curves of endomorphisms β, γ: C → End L and a basis
(e0, . . . , eM) of the space L such that β(p), γ(p) ∈ Aut L and in this basis the curve
βξγ−1: C → End L is of diagonal form:

βξγ−1: ei 7→ tw(ei)ei, (37)
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where w(ei) ∈ Z+.

Now replace V1 by γ(V1) and V2 by β(V2). We can simply assume that the fiber-
wise birational correspondence ξ is of the form (37) from the start. Let us show that
if m = max{w(ei)} ≥ 1, then this is impossible.

Let {a0 = 0 < a1 < . . . < ak} = {w(ei), i = 0, . . . , M} ⊂ Z+ be the set of
weights of the diagonal transformation (37), k ≤ M , m = ak the maximal weight.
Consider the system of homogeneous coordinates (x0 : . . . : xM), dual to the basis
(e∗). Define the weight of monomials in x∗, setting

w(xn0
0 xn1

1 . . . xnM
M ) =

M∑
i=0

niw(ei).

Set Ai = {xj|w(ej) = ai} ⊂ A = {x0, . . . , xM} to be the set of coordinates of weight
ai. We pay special attention to the sets A∗ = A0 and A∗ = Ak of coordinates of the
minimal and maximal weights, respectively.

Now let f = f (0)(x) + tf (1) + . . . be the local over the base C equation of the
hypersurface V2 ⊂ C × P, f (i) are homogeneous polynomials of degree d ≥ 3 in the
coordinates x∗. The series

fξ =
∞∑

l=0

tlf
(l)
ξ (x) =

∞∑

l=0

tlf (l)(tw(x0)x0, . . . , t
w(xM )xM)

vanishes on V1, and outside the marked fiber F1, that is, for t 6= 0, gives an equation
of V1. Let b ∈ Z+ be the maximal power of the parameter t, dividing fξ. Then

t−bfξ = g =
∞∑

l=0

tlg(l)(x0, . . . , xM)

gives an equation of the hypersurface V1 in the marked fiber Xp, too.

Lemma 2.9. For any l ∈ Z+ the polynomial f (l) is a linear combination of
monomials of weight ≥ b − l, and the polynomial g(l) is a linear combination of
monomials of weight ≤ b + l.

Proof. Assume that the monomial xI comes into the polynomial f (l) with a
non-zero coefficient. Then it generates the component tl+w(xI)xI of the series fξ

and, moreover, this component is generated only by this monomial in f (l). Therefore
l + w(xI) ≥ b, as we claimed. Assume that the monomial xI comes into g(l) with
a non-zero coefficient. It comes from the monomial tl+bxI of the series fξ, which,
in its turn, can come only from the monomial xI in the polynomial fα, where
α + w(xI) = l + b. Q.E.D. for the lemma.

Let
P∗ = {xj = 0|w(xj) ≥ 1} = P〈ej|w(xj) = 0〉,
P ∗ = {xj = 0|w(xj) ≤ m− 1} = P〈ej|w(xj) = m〉

be the subspaces of the minimal and maximal weights, respectively.
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Lemma 2.10. If b ≥ m + 1, then P∗ ⊂ Sing F2. If m(d − 1) ≥ b + 1, then
P ∗ ⊂ Sing F1.

Proof. Assume that b ≥ m + 1. The fiber F2 ⊂ P over the marked point is
given by the equation f (0) = 0. By assumption, f (0) is a linear combination of the
monomials of weight ≥ m + 1. If the monomial xI comes into f (0) with a non-
zero coefficient, then xI is divided by a quadratic monomial in the variables A \A∗
(otherwise w(xI) ≤ m). Therefore all first partial derivatives of the polynomial f (0)

vanish on P∗. Therefore P ⊂ Sing F2.
Similarly, if b ≤ m(d − 1) − 1, then any monomial xI in g(0) are divided by a

quadratic monomial in A\A∗, otherwise we get w(xI) ≥ m(d−1), which contradicts
the assumption and Lemma 2.9. Q.E.D. for Lemma 2.10.

Note that for d ≥ 3 the inequalities b ≤ m and b ≥ m(d − 1) can not hold
simultaneously. Therefore, at least of the two inequalities of Lemma 2.10 holds. Let
b ≥ m + 1. Since V2 is non-singular, P∗ is a point. Let A∗ = {x0}, so that P∗ =
(1, 0, . . . , 0). Again from the fact that V2 is non-singular, we get f (1)(1, 0, . . . , 0) 6= 0.
Therefore, the monomial xd

0 comes into f (1) with a non-zero coefficient. By Lemma
1.4 we get b ≤ 1. Therefore m = 0, a contradiction.

In the case b ≤ m(d − 1) − 1 the arguments are symmetric: V1 is non-singular,
P ∗ is a point (0, . . . , 0, 1), A∗ = {xM} and g(1)(0, . . . , 0, 1) 6= 0, so that md ≤ b + 1,
whence we get again m = 0, a contradiction.

Therefore, there are no non-trivial weights and ξ is a fiber-wise biregular isomor-
phism. So χ = ξ|V1 is a fiber-wise isomorphism as well. Proof of Theorem 1.1 is
complete.

§3. Varieties with a pencil of cubic surfaces

In this section we sketch the proof of Theorem 1.7 for d = 3, that is, for varieties
with a pencil of cubic surfaces.

3.1. Maximal singularities. Existence of a line. Let π: V → P1 be a
fibration into cubic surfaces which is a standard Fano fiber space, Σ ⊂ |−nKV + lF |
a movable linear system. Since by assumption V/P1 satisfies the K2-condition, the
K-condition holds as well, that is, l ∈ Z+. Now we argue in the same way as in §1,
with the only difference that the system Σ can have maximal singularities, covering
the base P1. More precisely, assume that the inequality cvirt(Σ) < c(Σ, V ) = n holds.
Then we have

Proposition 2.6. The linear system Σ has a maximal singularity. More-
over, either there is a maximal singularity, covering the base P1, or on some model
ϕ: V + → V there is a finite set of exceptional divisors

M = {E ⊂ V + | e(E) = ordE ϕ∗Σ− na(E) > 0},

such that the following inequality holds:

∑

t∈P1

(
max

{E∈M|ϕ(E)∈Ft}
e(E)

ordE ϕ∗Ft

)
> l.

61



The standard proof (see §1) is omitted.
Now if C ⊂ V is a horisontal curve (that is, π(C) = P1), which is the centre

of a maximal singularity, then multC Σ > n, so that C is a section or bi-section
of the projection π. Untwisting such curves by fiber-wise involutions, described
in Example 1.4 of Chapter 1, we come to the situation when the system Σ has no
maximal singularities, covering the base. Now, arguing as in §1, we get the existence
of a supermaximal singularity E ∈M, satisfying the inequality

6ne(E) > ordE ϕ∗Ft · deg Zv
t ,

where ϕ(E) = x ∈ Ft = π−1(t) and Zv
t is the vertical component of the self-

intersection Z = (D1 ◦D2) of the linear system Σ, contained in the fiber Ft. From
this moment, the singularity E is fixed, the fiber Ft is denoted by F , instead of Zv

t

we write Zv etc.

Proposition 2.7. Through the point x ∈ F there is at least one line L ⊂ F ⊂ P3.

Proof. Assume the converse. Then the point x is a smooth point of the cubic
surface F ⊂ P3. Moreover, the curve R = TxF ∩F is irreducible, its degree is equal
to 3 and its multiplicity at the point x is equal to 2 exactly. If C ⊂ F is any other
curve, then

deg C = (C ·R) ≥ (C ·R)x ≥ 2 multx C.

Thus for any curve Q ⊂ F we get the inequality

multx Q ≤ 2

3
deg Q.

Therefore,

multx Zv ≤ 2

3
deg Zv <

4ne

νE(F )
.

Now the computations of §1 (simplified) give a contradiction. Q.E.D. for the propo-
sition.

The main difficulty in the proof of Theorem 1.7 for d = 3 is precisely the existence
of lines, the input of which into the self-intersection Z of the system Σ can be too
large, so that the computations of §1 do not give a contradiction. In the present
survey we consider the case when there is precisely one line through the point x on
the cubic surface F . The remaining cases are considered in [3].

If the line L 3 x is unique, then the point x is smooth on F and TxF ∩F = L+Q,
where Q ⊂ F is a smooth conic. The arguments given above show that for any curve
C ⊂ F , C 6= L, the following inequality takes place:

multx C ≤ 1

2
deg C.

Write down Zv = C + kL, where C is an effective 1-cycle, not containing L. Now

k +
1

2
deg C ≥ 4ne

νE(F )
, k + deg C <

6ne

νE(F )
.
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This implies that

deg C <
4ne

νE(F )
.

In particular, (C · L) ≤ deg C <
4ne

νE(F )
.

3.2. The main construction: the staircase, associated with the line L.
We assume that the line L does not contain singular points of the fiber F (if there
are such points). The general case is done in [3].

An infinite series of blow ups

σi : V (i) → V (i−1)⋃ ⋃
E(i) → Li−1,

i ≥ 1, starting from V (0) = V , where Li−1 is the centre of the i-th blow up, and E(i) =
σ−1

i (Li−1) is its exceptional divisor, L0 = L, is said to be a staircase, associated with
the line L, or, simply, an L-staircase, if the following conditions are satisfied:

Li is a curve for all i ∈ Z+, E(i) is a ruled surface of the type F1 over Li−1 and
Li ⊂ E(i) is the exceptional section (i.e. the (−1)-curve).

Obviously, by this definition the staircase is unique. Just below we show that it
exists. Its starting segment, consisting of the blow ups σi for 1 ≤ i ≤ M , is said to
be a (finite) staircase of the length M .

It is convenient to prove the existence of the staircase together with some of its
properties.

For convenience of notations set E(0) to be the fiber F of the morphism π, which
contains L. The operation of taking the proper inverse image on the i-th step (i.e.
on V (i)) is denoted by adding the bracketed upper index i. For instance, the proper
inverse image of the surface E(i) on V (j) for j ≥ i is written down as E(i,j). Set also:

si to be the class of Li in A2(V (i)), s0 = f ;
fi ∈ A2(V (i)) to be the class of the fiber of the ruled surface E(i) over a point

∈ Li−1.
Abusing our notations, we sometimes treat si and fi as numerical classes of

curves on the ruled surface E(i):

A1E(i) = Pic E(i) = Zsi ⊕ Zfi,

so that, in particular, the formulas like (si · si) = −1, (si · fi) = 1 etc. make sense.
In these notations we have the following

Proposition 2.8. (i) For i ≥ 2 the effective 1-cycle (E(i−1,i) ◦ E(i)) is just the
irreducible curve E(i−1,i)∩E(i). Its numerical class is equal to (si+fi). In particular,
this curve does not intersect Li ∼ si.

(ii) The following equalities hold: (E(i))3 = 1, (E(i) ·Li) = 0. Taking into account
the isomorphism Li

∼= P1, we can write down

NLi/V (i)
∼= OLi

⊕OLi
(−1).
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In this presentation the first component is uniquely determined. It corresponds to
the exceptional section Li+1 ⊂ E(i+1) = P(NLi/V (i)). For the second component we

can take the one-dimensional subbundle, corresponding exactly to the curve E(i,i+1)∩
E(i+1).

(iii) The classes si and fi satisfy the relations

σ∗si−1 = si,

σ∗fi = 0

for i ≥ 1.

Assuming that L∩ Sing F = ∅, we give a simultaneous proof of the existence of
the staircase and of Proposition 2.8.

Let us consider the first step of the staircase, that is, the morphism σ1 : V (1) →
V (0) = V , blowing up the line L0 = L ⊂ F . We get the exact sequence

0 → NL/F → NL/V → OV (F ) |L → 0,

which can be rewritten down in the following way:

0 → OL(−1) → NL/V → OL → 0.

Consequently, E(1) is a ruled surface of the type F1, (E(1))3 = 1, whence (E(1) ·
E(1)) ∼ (−s1−f1) and (E(0,1) ·L1) = ((F −E(1)) ·s1) = 0. Thus all the requirements
(i)-(iii) of the definition of the staircase are satisfied for the first blow up.

We proceed by induction on i ≥ 1. We get the exact sequence

0 → NLi/E(i) → NLi/V (i) → OV (i)(E(i))
∣∣
Li
→ 0.

Taking into account the facts which were already proved, this sequence can be
rewritten down as follows:

0 → OLi
(−1) → NLi/V (i) → OLi

→ 0.

Again this implies that E(i+1) = P(NLi/V (i)) is a ruled surface of the type F1 and

(E(i+1))3 = 1, so that
E(i+1) |E(i+1) ∼ (−si+1 − fi+1).

Thus (E(i+1) · Li+1) = 0, (i) and (iii) are satisfied in an obvious way. The proof is
complete. Q.E.D.

Remark 2.2. (i) Since E(i−1,i) does not intersect Li (for i ≥ 1 in the non-special
and for i ≥ 2 in the special case), we get

E(i−1,i) = E(i−1,i+1) = . . . = E(i−1,j) = . . .

for any j ≥ i. In particular, if C ⊂ E(i−1) is a curve, which is not the exceptional
section Li−1, then its proper inverse images on all the varieties V (j), j ≥ i, are the
same:

C(i) = C(i+1) = . . . = C(j).
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(ii) Abusing our notations, we call an irreducible curve C ⊂ E(i), i ≥ 1, a
horizontal one, if σi(C) = Li−1, and a vertical one, if σi(C) is a point on Li−1.
Respectively, we define horizontal and vertical 1-cycles with the support in E(i).
The degree of a horizontal curve C is equal to deg C = deg σi |C = (C · fi), the
degree of a vertical curve C is equal to deg C = (C · Li) = 1. We define the degree
of a horizontal and a vertical 1-cycle with the support in E(i) as its intersection
with fi and Li, respectively. In particular, the degree of a vertical 1-cycle is just
the number of lines (fibers) in it. Note that if an effective horizontal 1-cycle C does
not contain the exceptional section Li as a component, then its class in A1(E(i)) or
A2(V (i)) is equal to αsi + βfi, where α ≥ 1 and β ≥ α.

(iii) Obviously, the graph of the sequence of the blow ups σi is a chain. In
particular,

KV (M) = σ∗M,0KV +
M∑
i=1

σ∗M,iE
(i)

(where σi,j, as always, stands for the composition σj+1 ◦ . . . ◦ σi) and the canonical
multiplicity of the valuation νE(i) is equal to i. In the non-special case

σ∗M,0F = F (M) +
M∑
i=1

E(i,M),

Proposition 2.9. There exists a finite L-staircase of the length M ≥ 1 such
that for i = 0, . . . , M − 1 the centre of the valuation νE on V (i) is a point xi ∈ Li,
x0 = x, whereas the centre of the valuation νE on V (M) is either:

A) a point xM 6∈ LM , xM 6∈ E(M−1,M);
B) the line B = σ−1

M (xM−1), that is, a fiber of the ruled surface E(M);
C) the point xM = E(M−1,M) ∩ σ−1

M (xM−1).

Proof. If the centre of the valuation νE is contained in E(i), then i = a(E(i), V ) ≤
a(νE, V ). Therefore, there exists M ≥ 1 such that the centre of the valuation νE on
V (M) is not a point on LM . The remaining part of the proof is an obvious listing of
possible cases. Q.E.D. for the proposition.

Let us fix the constructed staircase of the length M .

3.3. End of the proof: the technique of counting multiplicities. We
only exclude the case A): the cases B) and C) are excluded in a similar way, but
the formulas are somewhat more complicated. See [3] for all details. Let Σ(i) be the
strict transform of the system Σ on V (i). Set λi = multLi−1

Σ(i−1), n ≥ λ1 ≥ . . ..
The surface E(M) ⊂ V (M) is for convenience denoted by the symbol E∗. Let

ϕi,i−1 : Vi → Vi−1⋃ ⋃
Ei → Bi−1,

i = 1, . . . , K, V0 = V (M), be the resolution of the valuation νE, considered as a
discrete valuation on the variety V (M). We introduce the following notations:

νi = multBi−1
Σi−1
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is the multipplicity of the strict transform of the system Σ on Vi−1 along the centre
of the blow up;

pi = p(EK , Ei) is the number of paths in the oriented graph of the valuation
ν = νEK

from EK to Ei (here ν is considered as a discrete valuation on the variety
V0 = V (M)!);

N∗ = max{i | 1 ≤ i ≤ K, Bi−1 ⊂ Ei−1};
L = max{i | 1 ≤ i ≤ K,Bi−1− is a point} (so that for j ≤ L Bj−1 is a point and

for j ≥ L + 1 Bj−1 is a curve); finally, set

N = min{N∗, L}, Σ0 =
L∑

i=1

pi, Σ1 =
K∑

i=L+1

pi, Σ∗ =
N∗∑
i=1

pi, Σ∗ =
N∑

i=1

pi.

Obviously, in these notations we get νE(E∗) = ε = Σ∗ and νE(F ) = ε. Further-
more,

νE(Σ) = νE∗(Σ)νE(E∗) + νE(Σ(M)).

Now the Noether-Fano inequality takes the form

K∑
i=1

piνi = ε

M∑
i=1

(n− λi) + n

K∑
i=1

piδi + e.

As always, let D
(M)
i , i = 1, 2, be the proper inverse images of general divisors

from the system Σ. Let Z(M) = (D
(M)
1 ◦ D

(M)
2 ) be the effective 1-cycle of their

scheme-theoretic intersection. Set

mi = multBi−1
(Z(M))i−1

for i ≤ L. In accordance with the technique of counting multiplicities, we obtain
the estimate

L∑
i=1

pimi ≥
(2Σ0n + Σ1n + ε

M∑
i=1

(n− λi) + e)2

Σ0 + Σ1

.

Estimating the minimum of this quadratic form under the restrictions specified above
and taking into account the Noether-Fano inequality, we get

multB Z(M) ≥

(
Σn + ε

M∑
i=1

(n− λi) + e

)2

K∑
i=1

p2
i

.

3.4. The cycle Z(M) in terms of the staircase. Now to complete the proof
of our theorem we must get some estimates of the upper bounds of the left hand
parts of the principal inequality, which was obtained above. The computations to be
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performed are rather tiresome. However, they are quite clear geometrically. Coming
back to our main construction – that is, the staircase,– let us introduce some new
terminology and notations, connected with the linear system Σ. First of all, set

zi = (D
(i)
1 ·D(i)

2 ) ∈ A2V (i)

to be the class of the effective 1-cycle Z(i) = (D
(i)
1 ◦D

(i)
2 ). On the “zeroth” step of

our staircase we have the decomposition

Z = Zv + Zh.

Let us trace down the changes which the 1-cycle Z(k) undergoes when k comes from
i−1 to i. Naturally, instead of the components of the cycle Z(i−1), which are different
from Li−1, their proper inverse images come into the cycle Z(i). Instead of the curve
Li−1, which is present in Z(i−1) with some multiplicity ki−1, the cycle Z(i) contains
an effective sub-cycle with the support in the exceptional divisor E(i). Let us break
this sub-cycle into three parts:

1) C
(i)
h includes all the curves, which are horizontal with respect to the morphism

σi: E
(i) → Li−1, and different from the exceptional section Li,

2) C
(i)
v includes all the vertical curves, that is, the fibers of σi over points of the

curve Li−1,
3) the exceptional section Li with a certain multiplicity ki ∈ Z+.

To make our notations uniform, set C
(0)
h to be the part of the cycle Zv, which

includes all the curves different from L. Set also

d
(i)
h,v = deg C

(i)
h,v

(see Remark 2.2, (ii) of the previous section). Now we get the following presentation
of the cycles Z(i):

Z(0) = Zh + Zv = Zh + C
(0)
h + k0L,

Z(1) = (Zh)(1) + C
(0,1)
h + C

(1)
h + C(1)

v + k1L1,

. . . ,

Z(i) = (Zh)(i) + C
(0,1)
h + C

(1,2)
h + C(1,2)

v + . . . +

+C
(i−1,i)
h + C(i−1,i)

v + C
(i)
h + C(i)

v + kiLi.

3.5. Computation of the class zM and the end of the proof. Obviously,
the class of the cycle C

(i)
v in A1V (i) is equal to d

(i)
v fi, and the class of the cycle C

(i)
h

is equal to d
(i)
h si + βifi, where the coefficients satisfy the important inequality

βi ≥ d
(i)
h

(see Remark 2.2, (ii)). Furthermore, the class of the cycle C
(i,i+1)
v is equal to d

(i)
v (fi−

fi+1) and the class of the cycle C
(i,i+1)
h is equal to

d
(i)
h si + βifi − (βi − d

(i)
h )fi+1.
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Setting αi =
(
(Zh)(i−1) · Li−1

)
, we can write down zh

i = zh
i−1 − αifi, where zh

i is the

numerical class of the horizontal cycle (Zh)(i).

Lemma 2.11. The following inequality is true:

αi ≤ deg Zh = 3n2.

Proof. Since L ⊂ F , and deg Zh is equal to (Zh · F ), this is obvious. Q.E.D.

Proposition 2.10. The classes zi satisfy the chain of relations

zi = zi−1 − (2λin + λ2
i )fi − λ2

i si.

Proof. We have

zi = (D(i))2 = (D(i−1) − λiE
(i))2 =

= zi−1 − 2λi(D
(i−1) · Li−1)fi − λ2

i (si + fi).

It follows from what was proved above, that for any j ∈ Z+ (D(j) ·Lj) = (D ·L) = n.
Q.E.D.

Proposition 2.11. For i ≥ 2 the integers ki, αi, βi and d
(i)
h,v satisfy the following

system of relations:

d(i)
v + βi = αi + d(i−1)

v + (βi−1 − d
(i−1)
h )− 2λin− λ2

i .

For i = 1 we get
d(1)

v + β1 = α1 + (C
(0)
h · L)− 2λ1n− λ2

1.

Proof. To obtain this proposition, it is necessary to write out explicitly the
class of the cycle Z(i) in terms of the parameters introduced above, and to use the
previous proposition. The corresponding computations are elementary.

Proposition 2.12. For any i ≥ 1 we get the inequality

d(i)
v + βi ≤ (C

(0)
h · L) +

i∑
j=1

(3n2 − 2λjn− λ2
j).

Proof. It is necessary to apply the inequality of the previous proposition i times
and to use the last lemma. Q.E.D.

Finally, let us complete the exclusion of the case A). It is clear that among all
the curves, lying on the divisor

M⋃
i=0

E(i,M),

only those can possibly contain the point xM , which lie entirely in E(M) and are
different from the exceptional section LM . Consequently, we are justified in writing
down

Z(M) = (Zh)(M) + C(M)
v + C

(M)
h + . . . ,
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where the dots stand for the sum of all the curves, which do not contain the point
xM . Set

W = C(M)
v + C

(M)
h , mv

i = multBi−1
W i−1, mh

i = multBi−1
(Zh)(M),i−1

for i ≤ L, so that mi = mv
i + mh

i . Obviously, the multiplicities mv
i vanish for

N + 1 ≤ i ≤ L. Furthermore, mh,v
i ≤ mh,v

1 , and similarly to Lemma 2.11 we get

mh
1 ≤ 3n2. Finally, mv

1 ≤ d
(M)
v + d

(M)
h ≤ d

(M)
v + βM , so that, summing up our

information, we get

3n2Σ0 + Σ∗

(
(C

(0)
h · L) +

M∑
i=1

(3n2 − 2λin− λ2
i )

)
≥

L∑
i=1

pim
h
i +

N∑
i=1

pim
v
i ≥

≥

(
2Σ0n + Σ1n + ε

M∑
i=1

(n− λi) + e

)2

Σ0 + Σ1

.

Replacing Σ∗ by ε = Σ∗, we make our inequality stronger, and replacing ε(C
(0)
h · L)

by 4ne, we get a strict inequality. Subtract the left-hand side from the right-hand
one and look at the expression just obtained as a quadratic form in λi on the domain
0 ≤ λi ≤ n. By symmetry, its minimum is attained somewhere on the diagonal line,
that is, at λi = λ, 0 ≤ λ ≤ n. Replace all the λi’s by this value λ. Thus we get the
strict inequality

Φ < 0,

where the expression Φ by means of elementary arithmetic can be transformed as
follows:

Φ = (Σ2
0 + Σ0Σ1 + Σ2

1)n
2 + MεΣ0(n− λ)2−

−MεΣ1(n− λ)(n + λ)+

+M2ε2(n− λ)2 − 2eΣ1n + 2Mεe(n− λ) + e2.

Since λ ≤ n, we can replace (n + λ) by 2n, preserving the strict inequality.
However, it is easy to check that the last expression is the sum of the complete
square

(Σ1n−Mε(n− λ)− e)2

and a few non-negative components. Thus it can not be negative. Our proof is
complete. Q.E.D.

Chapter 3. Varieties with many rationally connected structures

§1. Fano direct products
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In this section, following [33], we give a proof of Theorem 1.9 on birational
superrigidity of Fano direct products and prove the divisorial canonicity of generic
Fano hypersurfaces of index one.

1.1. Maximal singularities of movable linear systems. We prove Theorem
1.9 by induction on the number of factors K. When K = 1, the theorem holds
in a trivial way: the condition (M) means that movable linear systems on the
variety F = F1 have no maximal singularities. This immediately implies birational
superrigidity of the variety F .

Starting from this moment, K ≥ 2.
Assume the converse: there is a moving linear system Σ on V such that the in-

equality cvirt(Σ) < c(Σ) holds. By the definition of the virtual threshold of canonical

adjunction it means that there exists a sequence of blow ups ϕ: Ṽ → V such that
the inequality

c(Σ̃) < c(Σ) (38)

holds, where Σ̃ is the strict transform of the linear system Σ on Ṽ . To prove that
the variety V is birationally superrigid, we must show that the inequality (38) is
impossible, that is, to obtain a contradiction.

Let Hi = −KFi
be the positive generator of the group Pic Fi. Set

Si =
∏

j 6=i

Fi,

so that V ∼= Fi × Si. Let ρi: V → Fi and πi: V → Si be the projections onto the
factors. Abusing our notations, we write Hi instead of ρ∗i Hi, so that

Pic V =
K⊕

i=1

ZHi and KV = −H1 − . . .−HK .

We get Σ ⊂ |n1H1 + . . . + nKHK |, whereas c(Σ) = min{n1, . . . , nK}. Without loss
of generality we assume that c(Σ) = n1. By the inequality (38) we get n1 ≥ 1. Set
n = n1, π = π1, F = F1, S = S1. We get

Σ ⊂ | − nKV + π∗Y |,

where Y =
K∑

i=2

(ni − n)Hi is an effective class on the base S of the fiber space π.

Now we need to modify the birational morphism ϕ. For an arbitrary sequence
of blow ups µS: S+ → S we set V + = F ×S+ and obtain the following commutative
diagram:

V + µ→ V
π+ ↓ ↓ π

S+ µS→ S,

(39)

where π+ is the projection and µ = (idF , µS). Let E1, . . . , EN ⊂ Ṽ be all exceptional
divisors of the morphism ϕ.
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Proposition 3.1. There exists a sequence of blow ups µS: S+ → S such that
in the notations of the diagram (39) the centre of each discrete valuation Ei, i =
1, . . . , N , covers either S+ or a divisor on S+:

codim[π+(centre(Ei, V
+))] ≤ 1.

Proof. Let E ⊂ Ṽ be the exceptional divisor of the birational morphism
ϕ: Ṽ → V , B = ϕ(E) the centre of the discrete valuation E on V . Assume that
codimS π(B) ≥ 2. Construct a sequence of commutative diagrams

Vj
εj→ Vj−1

πj ↓ ↓ πj−1

Sj
λj→ Sj−1 ,

(40)

where j = 1, . . . , l, satisfying the following conditions:
1) V0 = V , S0 = S, π0 = π;
2) Vj = F × Sj, πj is the projection onto the factor Sj, εj = (idF , λj) for all

j ≥ 1;
3) λj is the blow up of the irreducible subvariety

Bj−1 = πj−1(centre(E, Vj−1)) ⊂ Sj−1,

where codim Bj−1 ≥ 2.
It is obvious that the properties 1)-3) determine the sequence of diagrams (40)

in a unique way.

Lemma 3.1. The following inequality holds: l ≤ a(E, V ).

Proof. Let ∆j ⊂ Vj be the exceptional divisor of the morphism εj. By con-
struction we get centre(E, Vj) ⊂ ∆j, so that νE(∆j) ≥ 1. Now we obtain

a(E, V ) = a(E, Vl) +
l∑

j=1

νE(∆j)a(∆j, V ) ≥ l.

Q.E.D. for the lemma.
Therefore the sequence of diagrams (40) terminates: we may assume that centre(E, Vl)

covers a divisor on the base Sl. From this fact (by the Hironaka theorem on the
resolution of singularities) Proposition 3.1 follows immediately.

Let Σ+ be the strict transform of the linear system Σ on V +. Now the arguments
break into two parts due to the following fact.

Proposition 3.2. The following alternative holds:
(i) either the inequality c(Σ+) < c(Σ) is true,
(ii) or for a general divisor D+ ∈ Σ+ the pair (V +, 1

n
D+) is not canonical,

and moreover, for some i = 1, . . . , N the discrete valuation Ei determines a non-
canonical singularity of this pair.

Remark 3.1. The alternative of Proposition 3.2 should be understood in the
“and/or” sense: at least one of the two possibilities (i), (ii) takes place (or both).
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Proof of Proposition 3.2. Consider the diagram of maps (39). Let τ : V ] → V +

be the resolution of singularities of the composite map

V + µ→ V
ϕ−1→ Ṽ .

Set ψ = ϕ−1 ◦ µ ◦ τ : V ] → Ṽ . There exist an open set U ⊂ V ] and a closed set of
codimension two Y ⊂ Ṽ such that

ψU = ψ|U : U → Ṽ \ Y

is an isomorphism. Obviously, if E ⊂ V ] is an exceptional divisor of the morphism
τ and E ∩ U 6= ∅, then E ∩ U = ψ−1

U (Ei) for some exceptional divisor Ei of the
morphism ϕ.

Let Σ+ and Σ] be the strict transforms of the linear system Σ on V + and V ],
respectively, ΣU = Σ]|U . If D] ∈ Σ] is a general divisor, then

D̃ = ψU(D]
U) ∈ Σ̃

is a general divisor of the linear system Σ̃ (we make no difference between Σ̃ and its

restriction onto Ṽ \ Y , since the set Y is of codimension two). We know that

D̃ + nKṼ /∈ A1
+Ṽ ,

see (38). Therefore,
D]

U + nKU /∈ A1
+U. (41)

Let E be the set of exceptional divisors of the morphism τ with a non-empty inter-
section with U . By (41) we get

τ ∗(D+ + nK+)|U −
∑
E∈E

(νE(D+)− na+(E))EU /∈ A1
+U,

where K+ is the canonical class of V +, a+(E) = a(E, V +). Consequently, either

D+ + nK+ /∈ A1
+V +,

and we are in the case (i) of Proposition 3.2, or there exists an exceptional divisor
E ∈ E , satisfying the Noether-Fano inequality νE(D+) > n · a+(E), that is, the
discrete valuation E realizes a non-canonical singularity of the pair (V +, 1

n
D+). In

the latter case we get part (ii) of the alternative of Proposition 3.2, since E ∈ E and
thus E = Ei for some i = 1, . . . , N (as discrete valuations). Q.E.D. for Proposition
3.2.

1.2. Reduction to the base of the fiber space. Assume that the case (i)
of the alternative of Proposition 3.2 takes place, that is, D+ + nK+ /∈ A1

+V +. Let
z ∈ F be a point of general position. Set

S+
z = {z} × S+, Sz = {z} × S.
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It is clear that K+
z = K+|S+

z
and Kz = KV |Sz are the canonical classes K+

S = KS+

and KS, respectively. Let

Σz = Σ|Sz and Σ+
z = Σ+|S+

z

be the restriction of the linear systems Σ, Σ+ onto Sz and S+
z . Take general divisors

Dz ∈ Σz and D+
z ∈ Σ+

z . We get a movable linear system Σz on the variety S =
F2 × . . .× FK . Moreover,

Σz ⊂ |n2H2 + . . . + nKHK |,
so that c(Σz) = min{n2, . . . , nK} ≥ n = c(Σ).

Lemma 3.2. The following estimate holds: D+ + nK+ = π∗+(D+
z + nK+

z ).

Proof. Set ES to be the set of exceptional divisors of the morphism µS. The
exceptional divisors of the morphism µ are F × E = π∗+E for E ∈ ES. We get

K+
S = µ∗SKS +

∑
E∈ES

aEE and K+ = µ∗KV + π∗+(
∑
E∈ES

aEE),

where aE = a(E) is the discrepancy of the divisor E. For some numbers bE ≥ 0 we
get

D+ = µ∗D −
∑
E∈ES

bEπ∗+E,

whereas for a point z ∈ F of general position

D+
z = µ∗SDz −

∑
E∈ES

bEE.

Now taking into account that D + nKV = π∗Y and Dz + nKz = Dz + nKS = Y , we
obtain the claim of the lemma.

Corollary 2. D+
z + nK+

z /∈ A1
+S+.

Proof. Indeed, it is clear that

π∗+A1
+S+ ⊂ A1

+V +.

Q.E.D. for the corollary.
Thus for the strict transform Σ+

z of the linear system Σz on S+ we get the
inequality c(Σ+

z ) < c(Σz). The more so, cvirt(Σz) < c(Σz). Therefore the variety S
is not birationally superrigid. This contradicts the induction hypothesis.

1.3. Reduction to the fiber of the fiber space. End of the proof.
By Proposition 3.2 and what was said above, for a general divisor D+ ∈ Σ+ the
pair (V +, 1

n
D+) is not canonical, that is, there exists a birational morphism V ] →

V + and an exceptional divisor E ⊂ V ], satisfying the Noether-Fano inequality
νE(Σ+) > n · a+

E, where a+
E = a(E, V +). Moreover, we can assume that the centre

B = centre(E, V ) of the valuation E covers a divisor on the base or the whole base:
codimS+ T ≤ 1, where T = π+(B).
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Let t ∈ T be a point of general position. The fiber Ft = π−1
+ (t) cannot lie entirely

in the base set Bs Σ+ of the moving linear system Σ+, since

codimV + π−1
+ (T ) ≤ 1.

Therefore, Σ+
t = Σ+|Ft is a non-empty linear system on F , Σ+

t ⊂ |nH| = | − nKF |
(if T ⊂ S+ is a divisor, then Σ+

t can have fixed components). Let D+
t ∈ Σ+

t be a
general divisor. By inversion of adjunction (see Theorem 1.8 and §2 of this chapter),
the pair

(F,
1

n
D+

t )

is not log canonical. We get a contradiction with the condition (L). This contradic-
tion completes the proof of birational superrigidity of the variety V .

1.4. The structures of a rationally connected fiber space and birational
self-maps. Let us prove the remaining claims of Theorem 1.9. Let β: V ] → S] be
a rationally connected fiber space, χ: V − − → V ] a birational map. Take a very
ample linear system Σ]

S on the base S] and let Σ] = β∗Σ]
S be a movable linear system

on V ], c(Σ]) = 0. Let Σ be the strict transform of the system Σ] on V . By our
remark, cvirt(Σ) = 0, so that by what we proved above we conclude that c(Σ) = 0.
Therefore, in the presentation

Σ ⊂ | − n1H1 − . . .− nKHK |
we can find a coefficient ne = 0. We may assume that e = 1. Setting S = F2× . . .×
FK and π: V → S to be the projection, we get Σ ⊂ |π∗Y | for a non-negative class
Y on S. But this means that the birational map χ of the fiber space V/S onto the
fiber space V ]/S] is fiber-wise: there exists a rational dominant map γ: S 99K S]

making the diagram

V
χ99K V ]

π ↓ ↓ β

S
γ99K S]

commutative. For a point z ∈ S] of general position let F ]
z = β−1(z) be the corre-

sponding fiber, F χ
z ⊂ V its strict transform with respect to χ. By assumption, the

variety F χ
z is rationally connected. On the other hand,

F χ
z = π−1(γ−1(z)) = F × γ−1(z),

where F = F1 is the fiber of π. Therefore, the fiber γ−1(z) is also rationally con-
nected.

Thus we have reduced the problem of description of rationally connected struc-
tures on V to the same problem for S. Now the claim (i) of Theorem 1.9 is easy
to obtain by induction on the number of direct factors K. For K = 1 it is obvious
that there are no non-trivial rationally connected structures. The second part of the
claim (i) (about the structures of conic bundles and fibrations into rational surfaces)
is obvious since dim Fi ≥ 3 for all i = 1, . . . , K. Non-rationality of V is now obvious.
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Let us prove the claim (ii) of Theorem 1.9. Set RC(V ) to be the set of all
structures of a rationally connected fiber space with a non-trivial base on V . By the
claim (i) we have

RC(V ) = {πI : V → FI =
∏
i∈I

Fi | ∅ 6= I ⊂ {1, . . . , K}}.

The set RC(V ) has a natural structure of an ordered set: α ≤ β if β factors through
α. Obviously, πI ≤ πJ if and only if J ⊂ I. For I = {1 . . . , K} \ {e} set πI = πe,
FI = Se. It is obvious that π1 . . . , πK are the minimal elements of RC(V ).

Let χ ∈ Bir V be a birational self-map. The map

χ∗: RC(V ) → RC(V ),

χ∗: α 7−→ α ◦ χ,

is a bijection preserving the relation ≤. From here it is easy to conclude that χ∗ is
of the form

χ∗: πI 7−→ πIσ ,

where σ ∈ SK is a permutation of K elements and for I = {i1, . . . , ik} we define
Iσ = {σ(i1), . . . , σ(ik)}. Furthermore, for each I ⊂ {1, . . . , K} we get the diagram

V
χ99K V

πI ↓ ↓ πIσ

FI

χI99K FIσ ,

where χI is a birational map. In particular, χ induces birational isomorphisms
χe: Fe 99K Fσ(e), e = 1, . . . , K. However, all the varieties Fe are birationally super-
rigid, so that all the maps χe are biregular isomorphisms. Thus

χ = (χ1, . . . , χK) ∈ Bir V

is a biregular isomorphism, too: χ ∈ Aut V . Q.E.D. for Theorem 1.9.

1.5. An example of varieties satisfying the condition of divisorial
canonicity. Let P = PM , M ≥ 3, be the complex projective space. Set F =
P(H0(P,OP(M))) be the space of hypersurfaces of degrees M .

Theorem 3.1. For M ≥ 6 there exists a non-empty Zariski open subset Freg ⊂
F such that any hypersurface F ∈ Freg is non-singular and satisfies the condition
(C).

Proof. The set Freg is defined by explicit regularity conditions which we will
now formulate. Let F = FM ⊂ P = PM be a smooth Fano hypersurface. For a point
x ∈ F fix a system of affine coordinates z1, . . . , zM with the origin at x and let

f = q1 + q2 + . . . + qM
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be the equation of the hypersurface F , qi = qi(z∗) are homogeneous polynomials of
degree deg qi = i,

fi = q1 + . . . + qi

to be the left segments of the polynomial f , i = 1, . . . , M .
The condition (R1.1): the sequence

q1, q2, . . . , qM−1

is regular in Ox,P, that is, the system of equations

q1 = q2 = . . . = qM−1 = 0

defines a one-dimensional subset, a finite set of lines in P, passing through the point
x. This is the standard regularity condition, which was used in [1, Chapter 3].

The condition (R1.2): the linear span of any irreducible component of the closed
algebraic set

q1 = q2 = q3 = 0

in CM is the hyperplane q1 = 0 (that is, the tangent hyperplane TxF ).
(R1.3) The closed algebraic set

{f1 = f2 = 0} ∩ F = {q1 = q2 = 0} ∩ F ⊂ P (42)

(the bar means the closure in P) is irreducible and any section of this set by a
hyperplane P 3 x is

• either also irreducible and reduced,

• or breaks into two irreducible components B1 + B2, where Bi = F ∩ Si is the
section of F by a plane Si ⊂ P of codimension 3, and moreover multx Bi = 3,

• or is non-reduced and is of the form 2B, where B = F ∩ S is the section of F
by a plane S of codimension 3, and moreover multx B = 3.

Set Freg ⊂ F to be the set of Fano hypersurfaces, satisfying the conditions
(R1.1−R1.3) at every point (in particular, every hypersurface F ∈ Freg is smooth).
It is clear that Freg is a Zariski open subset of the projective space F . We have

Proposition 3.3. For M ≥ 6 the set Freg is non-empty.

Proof is given in [33]. For M ≥ 8 in the condition (R1.3) we may require that
the section of the set (42) by any hyperplane P 3 x were irreducible and reduced,
a general hypersurface satisfies this stronger condition. On the other hand, for
M = 4, 5 it is easy to show that for any hypersurface F ∈ F there is a point where
the conditions (R1.2) and (R1.3) are not satisfied.

Let us prove that the condition (C) is satisfied for a regular Fano hypersurface
F ∈ Freg.
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Let ∆ ∈ |nH| be an effective divisor, n ≥ 1, where H ∈ Pic F is the class of a
hyperplane section, KF = −H. We have to show that the pair (F, 1

n
∆) has canonical

singularities.
Assume the converse. Then for a certain sequence of blow ups ϕ: F+ → F and

an exceptional divisor E+ ⊂ F+ the Noether-Fano inequality

νE+(∆) > n · a(E+) (43)

is satisfied. For a fixed E+ the inequality (43) is linear in ∆, so that without loss
of generality we may assume that ∆ ⊂ F is a prime divisor, that is, an irreducible
subvariety of codimension 1. From (43) it follows easily that the centre Y = ϕ(E+)
of the valuation E+ on F satisfies the inequality multY ∆ > n. On the other hand,
it is well known [1, Lemma 2.1], that for any irreducible curve C ⊂ F the inequality

multC ∆ ≤ n holds. Thus Y = x is a point. Let ε: F̃ → F be its blow up, E ⊂ F̃
the exceptional divisor E ∼= PM−2. By Proposition 3.6, which is proven below, for
some hyperplane B ⊂ E the inequality

multx ∆ + multB ∆̃ > 2n, (44)

holds, where ∆̃ ⊂ F̃ is the strict transform of the divisor ∆.
Let T = TxF ⊂ P be the tangent hyperplane at the point x. The divisor E

can be naturally identified with the projectivization P(TxT) = P(TxF ). There is a
unique hyperplane B ⊂ T, x ∈ B, such that B = P(TxB) with respect to the above-
mentioned identification. Let ΛB be the pencil of hyperplanes in P, containing B,
and ΛB = ΛB|F ⊂ |H| its restriction onto F . Consider a general divisor R ∈ ΛB. It

is a hypersurface of degree M in PM−1, smooth at the point x. Let R̃ ⊂ F̃ be the
strict transform of the divisor R. Obviously,

R̃ ∩ E = B.

Set ∆R = ∆|R = ∆ ∩R. It is an effective divisor on the hypersurface R.

Lemma 3.3. The following estimate holds:

multx ∆R > 2n. (45)

Proof. We have (∆̃ ◦ R̃) = ∆̃R + Z, where Z is an effective divisor on E.
According to the elementary rules of the intersection theory [44], multx ∆R =
multx ∆ + deg Z, since multx R = 1. However, Z contains B with multiplicity
at least multB ∆̃. Therefore, the inequality (44) implies the estimate (45). Q.E.D.
for the lemma.

Lemma 3.4. The divisor TR = TxR ∩ R on the hypersurface R is irreducible
and has multiplicity exactly 2 at the point x.

Proof. The irreducibility is obvious (for instance, for M ≥ 6 one can apply
the Lefschetz theorem). By the condition (R1.2) the quadric {q2|E = 0} does not
contain a hyperplane in E as a component, in particular, it does not contain the
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hyperplane B ⊂ E. Thus the quadratic component of the equation of the divisor
TR, that is, the polynomial q2|B, is non-zero. Q.E.D. for the lemma.

Let us continue our proof of Theorem 3.1. By Lemmas 3.3 and 3.4 we can write

∆R = aTR + ∆]
R,

where a ∈ Z+ and the effective divisor ∆]
R ∈ |n]HR| on the hypersurface R satis-

fies the estimate multx ∆]
R > 2n]. Moreover, ∆]

R does not contain the divisor TR

as a component. Without loss of generality we can assume the divisor ∆]
R to be

irreducible and reduced.
Now consider the second hypertangent system [1, Chapter 3]

ΛR
2 = |s0f2 + s1f1|R,

where si are homogeneous polynomials of degree i in the linear coordinates z∗. Its
base set

SR = {q1|R = q2|R = 0}
is by condition (R1.3) of codimension 2 in R and either irreducible and of multiplicity
6 at the point x, or breaks into two plane sections of R, each of multiplicity 3 at the
point x. In any case, for a general divisor D ∈ ΛR

2 we get ∆]
R 6⊂ Supp D, so that the

following effective cycle of codimension two on R,

∆D = (D ◦∆]
R),

is well defined. Since multx D = 3 and ΛR
2 ⊂ |2HR|, the cycle ∆D satisfies the

estimate
multx

deg
∆D >

3

M
. (46)

We can replace the cycle ∆D by its suitable irreducible component and thus assume
it to be an irreducible subvariety of codimension 2 in R. Comparing the estimate
(46) with the description of the set SR given above, we see that ∆D 6⊂ SR. This
implies that ∆D 6⊂ TR. Indeed, if this were not true, we would have got

f1|∆D
≡ q1|∆D

≡ 0. (47)

However, ∆D ⊂ D, so that for some s0 6= 0, s1 6= 0 (the divisor D is chosen to be
general) we have

(s0f2 + s1f1)|∆D
≡ 0.

By (47) this implies that f2|∆D
≡ (q1 + q2)|∆D

≡ 0 (since s0 6= 0 is just a constant),
so that ∆D ⊂ SR. A contradiction.

Thus ∆D 6⊂ TR. Therefore the effective cycle ∆+ = (∆D ◦ TR) is well defined. It
satisfies the estimate

multx

deg
∆+ >

6

M
. (48)

The effective cycle ∆+ as a cycle on F is of codimension 4. Now recall the following
fact ([45] or [1, Chapter 3]): if the Fano hypersurface F at the point x satisfies
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the regularity condition (R1.1), then for any effective cycle Y of pure codimension
l ≤ M − 2 the inequality

multx

deg
Y ≤ l + 2

M

holds. Therefore, the inequality (48) for an effective cycle of codimension 4 is im-
possible.

The proof of Theorem 3.1 is complete.

§2. The connectedness principle and its applications

In this section, we formulate the connectedness principle of Shokurov and Kollár
and consider its geometric applications.

2.1. The connectedness principle. Inversion of adjunction. Let X, Z be
normal varieties or analytic spaces and h: X → Z a proper morphism with connected
fibers and D =

∑
diDi a Q-divisor on X.

Theorem 3.2 (the connectedness principle, [6, Theorem 17.4]). Assume
that D is effective (di ≥ 0) and the class −(KX + D) is h-numerically effective and
h-big. Let

f : Y
h→ X

h→ Z

be a resolution of singularities of the pair (X, D). Set

KY = g∗(KX + D) +
∑

eiEi.

The support of the Q-divisor
∑

ei≤−1

eiEi, that is, the closed algebraic set

⋃
ei≤−1

Ei,

is connected in a neighborhood of any fiber of the morphism f .

Proof see in [41, Chapter 17]. It has been also reproduced in the survey [15]
and in [46] for a particular case (in which the arguments follow the same scheme as
in [41]).

The connectedness principle has numerous applications, which we will now con-
sider. The first application is Theorem 1.8 (inversion of adjunction).

Proof of Theorem 1.8. We use the notations of Theorem 1.8. Let D =∑
i∈I diDi be an effective Q-divisor, di ∈ Q+ for all i ∈ I. Since the pair (X,D) is

canonical outside the point x, we get the inequality di ≤ 1 for all i ∈ I. Replacing
D by 1

1+ε
D for a small ε ∈ Q+, we may assume that di < 1 for all i ∈ I.

Let ϕ: X̃ → X be a resolution of singularities of the pair (X, D + R). Write
down

KX̃ = ϕ∗(KX + D + R) +
∑
j∈J

ejEj −
∑
i∈I

diD̃i − R̃, (49)
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where Ej, j ∈ J , are all exceptional divisors of the morphism ϕ, D̃i and R̃ are the

strict transforms of the divisors Di, R on X̃, respectively. Set

bj = ordEj
ϕ∗D, aj = a(Ej, X),

j ∈ J . In these notations for j ∈ J we get ej = aj − bj − rj, where rj = ordEj
ϕ∗R.

Obviously,

ϕ−1(x) =
⋃

j∈J+

Ej

for some subset J+ ⊂ J . Recall that by assumption R is a Cartier divisor, containing
the point x, which implies (it is a key point) that for j ∈ J+

rj = ordEj
ϕ∗R ≥ 1.

Furthermore, by assumption the pair (X, D) is not canonical, but canonical outside
the point x. Therefore, among the indices j ∈ J+ there is an index k such that
ak < bk. For this index we have ek < −1.

Now by the connectedness principle we get: there is an index l ∈ J , such that
el < −1 and

El ∩ R̃ 6= ∅.
Now from (49) by the adjunction formula we get

KR̃ = (KX̃ + R̃)|R̃ = ϕ∗R(KR + DR) + (
∑
j∈J

ejEj|R̃ −
∑
i∈I

diD̃i|R̃),

where ϕR = ϕ|R̃: R̃ → R is the restriction of the sequence of blow ups ϕ onto R.
By what was said, in the last bracket there is at least one prime divisor of the form
El|R̃, where l ∈ J+, the coefficient at which is strictly less than −1. Q.E.D. for
Theorem 1.8.

The following version of the inversion of adjunction is useful.

Proposition 3.4. Let x ∈ X be a germ of a smooth variety, D an effective
Q-divisor, the pair (X,D) is not canonical, but canonical outside the point x, that
is, the point x is an isolated centre of non canonical singularities of the pair. Let
R 3 x be a non-singular divisor where TxR is a hyperplane of general position in
TxX. Then the pair (R, DR) is not log canonical, but canonical outside the point x.

Proof. In the notations of the proof of Theorem 1.8, the index k, which realizes
a non log canonical singularity of the pair (R, DR), lies in J+: by the assumption of
general position, the divisor R does not contain any centres of singularities of the
pair (X, D) outside the point x. Q.E.D. for the proposition.

Here is one more application of the connectedness principle.

Proposition 3.5. Let x ∈ X be a germ of a smooth variety, D an effective
Q-divisor, the pair (X,D) is not canonical at the point x, but canonical outside
that point. Let λ: X+ → X be the blow up of the point x, E = λ−1(x) ⊂ X+
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the exceptional divisor, D+ and R+ the strict transforms of the divisors D and R,
respectively. Furthermore, let µ: X̃ → X+ be a resolution of singularities of the pair
(X+, D+ + R+),

ϕ = λ ◦ µ: X̃ → X

the composite map. Now write down

KX̃ = ϕ∗(KX + D + R) +
∑
j∈J

ejEj −
∑
i∈I

diD̃i − R̃, (50)

where Ej, j ∈ J , are all exceptional divisors of the morphism ϕ, D̃i and R̃ are the

strict transforms of the divisors Di and R on X̃, respectively.
Then the following alternative takes place:
(1) either multx D > dim X,
(2) or the set

µ(
⋃

bj>aj+1

Ej) ⊂ E

is connected.

Proof. By the assumptions the claim follows immediately from the connected-
ness principle.

2.2. Further applications of the connectedness principle. First of all, let
us show the following useful fact.

Proposition 3.6. Assume that the pair (X,D) is the same as in Proposition
3.5, λ: X+ → X is the blow up of the point x, E = λ−1(x) ⊂ X+ is the exceptional
divisor, D+ the strict transform of the divisor D. Then the following alternative
takes place:

1) either multx D > 2,
2) or there is a hyperplane B ⊂ E, which is uniquely determined by the pair

(X,D) such that the inequality

multx D + multB D+ > 2. (51)

holds.

Proof. Canonicity is stronger than log canonicity. Therefore one can apply
inversion of adjunction (in the form of Proposition 3.4) several times, subsequently
restricting the pair (X,D) onto smooth subvarieties

R1 ⊃ R2 ⊃ . . . ⊃ Rk,

where R1 ⊂ X is a smooth divisor, Ri+1 ⊂ Ri is a smooth divisor, x ∈ Rk and
Rk 6⊂ Supp D. All the pairs

(Ri, D|Ri
)

are not log canonical at the point x. Thus Proposition 3.4 holds for a generic smooth
germ R 3 x of codimension k ≤ dim X − 1. In particular, it holds for a general
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surface S 3 x. (This fact was for the first time used by Corti [1] in order to obtain
an alternative proof of the 4n2-inequality, see also [34, Proposition 1.5].) Thus the
pair

(S,DS = D|S)

has at the point x an isolated (for a general S) non log canonical singularity. Let us
consider the two-dimensional case more closely. Let x ∈ S be a germ of a smooth
surface, C ⊂ S a germ of an effective (possibly reducible) curve, x ∈ C. Consider a
sequence of blow ups

ϕi,i−1: Si → Si−1,

S0 = S, i = 1, . . . , N , ϕi,i−1 blows up a point xi−1 ∈ Si−1, Ei = ϕ−1
i,i−1(xi−1) ⊂ Si is

the exceptional line. For i > j set

ϕi,j = ϕj+1,j ◦ . . . ◦ ϕi,i−1: Si → Sj,

ϕ = ϕN,0, S̃ = SN . We assume that the points xi lie one over another, that is,
xi ∈ Ei, and that x0 = x, so that all the points xi, i ≥ 1, lie over x:

ϕi,0(xi) = x ∈ S.

Let Γ be the graph with the vertices 1, . . . , N and oriented edges (arrows) i → j,
that connect the vertices i and j if and only if i > j and

xi−1 ∈ Ei−1
j ,

where for a curve Y ⊂ Sj its strict transform on Sa, a ≥ j, is denoted by the symbol
Y a. Assume that the point x is the centre of an isolated non log canonical singularity
of the pair (S, 1

n
C) for some n ≥ 1. This means that for some exceptional divisor

E ⊂ S̃ the log Noether-Fano inequality

νE(C) = ordE ϕ∗C > n(aE + 1), (52)

holds, where aE is the discrepancy of E. Without loss of generality we may assume
that E = EN is the last exceptional divisor.

As usual, for i > j let the symbol pij denote the number of paths in the graph Γ
from the vertex i to the vertex j, for i < j set pij = 0, as always pii = 1. In terms
of the numbers pij the log Noether-Fano inequality (52) takes the traditional form

N∑
i=1

pNiµi > n(
N∑

i=1

pNi + 1), (53)

where µi = multxi−1
C i−1.

Proposition 3.7. Either µ1 > 2n (that is, the first exceptional divisor E1 ⊂ S1

already gives a non log canonical singularity of the pair (S, (1/n)C)), or N ≥ 2 and
the following inequality holds:

µ1 + µ2 > 2n.
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Proof. If N = 1, then µ1 > 2n by means of log Noether-Fano inequality. Assume
that µ1 ≤ 2n, then N ≥ 2. Obviously, µ1 > n. If µ2 ≥ n, then µ1 + µ2 > 2n, as we
claim. So assume that µ2 < n. Then for each i ∈ {2, . . . , N} we have µi ≤ µ2 < n
(since the point xi−1 lies over x1). Therefore from the inequality (53) we get

pN1(µ1 − n) +
N∑

i=2

pNi(µ2 − n) > n.

However,

pN1 =
∑
j→1

pNj ≤
N∑

i=2

pNi,

so that the more so
N∑

i=2

pNi(µ1 + µ2 − 2n) > n.

Therefore µ1 + µ2 > 2n. Q.E.D. for the proposition.

Let us now complete the proof of Proposition 3.6. Consider a general surface
S 3 x. The pair (S,DS) is not log canonical, but log canonical outside the point x.
By Proposition 3.7, either multx DS > 2, but in this case multx D > 2, so that the
first of the two cases of Proposition 3.6 takes place, or the pair (S+, D+

S ) (that is, the
strict transform of the pair (S,DS) on X+) is not log canonical, but log canonical
outside some proper closed connected subset

ZS ⊂ ES = E ∩ S+ ∼= P1.

Obviously, ZS is a point yS ∈ ES. Since the surface S is general, there is a hyperplane
B ⊂ E such that

yS = B ∩ S+.

By Proposition 3.7, the inequality

multx DS + multyS
D+

S > 2

holds. This immediately implies the inequality (51) and Proposition 3.6.

2.3. Isolated hypersurface singularities. As one more application of the
connectedness principle, consider a germ x ∈ X of an isolated terminal singularity
with the following properties. Let

ϕ: X+ → X

be the blow up of the point x, E = ϕ−1(x) the exceptional divisor, which is irre-
ducible and reduced. The varieties X, X+ and E have Q-factorial terminal singu-
larities. Let δ = a(E, X) be the discrepancy of E, D an effective Q-divisor on X,
D+ its strict transform on X+. Define the number νE(D) by the formula

ϕ∗D = D+ + νE(D)E.
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Proposition 3.8. Assume that the pair (X,D) is not canonical at the point x,
which is an isolated centre of a non-canonical singularity of this pair. Assume also
that for some integer k ≥ 1 the inequality

νE(D) + k ≤ δ (54)

holds. Then the pair (X+, D+) is not log canonical and there is a non log canonical

singularity Ẽ ⊂ X̃ of that pair (where X̃ → X+ is some model), the centre of which

centre(Ẽ, X+) ⊂ E

is of dimension ≥ k.

Proof. Assuming X ⊂ PN to be projectively embedded, consider a generic linear
subspace P ⊂ PN of codimension k, containing the point x. Let ΛP be the linear
system of hyperplanes, containing P , and Λ be the corresponding linear system of
sections of the variety X. Let ε > 0 be a sufficiently small rational number of the
form 1

K
and

{HI | i ∈ I} ⊂ Λ

a set of ]I = Kk generic divisors. Set

R = D +
∑
i∈I

εHi,

and let R+ be the strict transform of R on X+.
Obviously, the pair (X+, D+) is not log canonical. The centre of any of its non

log canonical singularities is contained in E. Furthermore, being non log canonical
is an open property, so that, slightly decreasing the coeffients in D, we may assume
that the strict version of the inequality (54) holds, that is, νE(D) + k < δ (whereas
other assumptions still hold).

Now consider the pair (X+, R+) (we still assume that X 3 x is a germ, so that
all constructions are local in a neighborhood of the point x). It is non log canonical,
and all its non log canonical singularities are non log canonical singularities of the
pair (X+, D+), with the exception of one additional singularity, the germ (P ∩X)+

of the section of X by the plane P , that is, the base set of the system Λ. By the
strict version of the inequality (54), the class −(KX+ + R+) is obviously ϕ-nef and
ϕ-big, so that, applying the connectedness principle (to X = X+, Z = X, h = ϕ,
D = R+), we conclude that the union of the centres of non log canonical singularities
of the pair (X+, R+) on X+ is connected. Since P is generic, this is only possible
if (P ∩ X)+ intersects some centre of a non log canonical singularity of the pair
(X+, D+), which should be of dimension at least k. Q.E.D. for the proposition.

The fact which we have just proven will be applied to our case of a hypersurface
singularity x ∈ X with a smooth exceptional divisor.

1.2. Singularities of pairs on a smooth hypersurface. Let X ⊂ PN be a
smooth hypersurface of degree m ∈ {2, . . . , N − 1}, D ∈ | lHX | an effective divisor,
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which is cut out on X by a hypersurface of degree l ≥ 1. (So that HX is the class of
a hyperplane section of X.) The following fact and its proof are well known [47,48].

Proposition 3.9. For any n ≥ l the pair (X, 1
n
D) is log canonical.

Proof. We may consider the case n = l. Assume the converse: the pair (X, 1
n
D)

is not log canonical. Since for any curve C ⊂ X the inequality multC D ≤ n holds
(see [1, Lemma 2.1]), the centre of a non log canonical singularity of the pair (X, 1

n
D)

can only be a point. Let x ∈ X be such a point. Consider now a general projection
π:PN 99K PN−1. Its restriction onto X is a finite morphism πX : X → PN−1 of degree
m, which is an analytic isomorphism at the point x, and one may assume that

π−1
X (πX(x)) ∩ Supp D = {x}.

This implies that the germ of the pair (X, 1
n
D) at the point x and the germ of the

pair (PN−1, 1
n
π(D)) at the point π(x) are analytically isomorphic. In particular,

the point π(x) is an isolated centre of a non log canonical singularity of the pair
(PN−1, 1

n
π(D)). However, this is impossible.

Being non log canonical is an open property, so that for a rational number
s < n−1, sufficiently close to n−1, the pair

(PN−1, sπ(D))

still has the point π(x) as an isolated centre of a non log canonical singularity.
Let P ⊂ PN−1 be a hyperplane, not containing the point π(x). By the inequality
smn+1 < N the Q-divisor −(KPN−1 + sπ(D)+P ) is ample, so that one may apply
to the pair

(PN−1, sπ(D) + P )

the connectedness principle of Shokurov and Kollár (in the notations of Theorem
3.2, X = PN−1, Z is a point, for the Q-divisor D we take sπ(D) + P , the conditions
of Theorem 3.2 are satisfied in a trivial way by what was said above) and obtain a
contradiction: the point π(x) is an isolated centre of a non log canonical singularity
and the divisor P comes into the Q-divisor sπ(D) + P with the coefficient one,
however π(x) 6∈ P , so that the connectedness is violated. Q.E.D. for Proposition
3.9.

2.5. The weak local inequality for an isolated hypersurface singularity.
Let x ∈ X be a germ of isolated hypersurface terminal singularity. More precisely,
if ϕ: X+ → X is the blow up of the point x, ϕ−1(x) = E ⊂ X+ is the exceptional
divisor, we assume that X+ and E are smooth, whereas E is isomorphic to a smooth
hypersurface of degree µ = multo V in PM .

Furthermore, let D 3 x be a germ of a prime divisor, D+ ⊂ X+ its strict
transform, D+ ∼ −νE for ν ∈ Z+, so that the equality

multo D = µν

holds.
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Proposition 3.10. Assume that the pair (X, 1
n
D) is not canonical at the point

x, which is an isolated centre of a non-canonical singularity of that pair. Then the
inequality

ν > n (55)

holds.

Proof. Assume the converse: ν ≤ n. Then the pair (X+, 1
n
D+) is not canonical,

and moreover, the centre of any non-canonical singularity of this pair (that is, of
any maximal singularity of the divisor D+) is contained in the exceptional divisor
E. By the inversion of adjunction the pair (E, 1

n
D+

E), where D+
E = D+ | E, is not log

canonical. Let HE = −E | E be the generator of the Picard group Pic E, that is, the
hyperplane section of E with respect to the embedding E ⊂ PM . We get

D+
E ∼ −νE | E = νHE.

Since ν ≤ n, the non log canonicity of the pair (E, 1
n
D+

E) contradicts to Proposition
3.9. Q.E.D.

As one more application of the connectedness principle, consider the following
local situation. Let x ∈ X be a germ of a quadratic singularity, dim X ≥ 3. Let us
blow up the point x:

λ: X+ → X,

and denote by the symbol E the exceptional divisor λ−1(x), which we consider as
a quadric hypersurface E ⊂ Pdim X . Let, furthermore, D be an effective Q-Cartier
divisor on the variety X, D+ its strict transform on X+. Assuming the exceptional
quadric E to be irreducible, define the number β ∈ Q+ by the relation

D+ ∼ λ∗D − βE.

Proposition 3.11. Assume that the rank of the quadric hypersurface E is at
least 4 and the pair (X, D) has the point x as an isolated centre of a non canonical
singularity, that is, it is non canonical, but canonical outside the point x. Then the
following inequality holds: β > 1.

Proof. If dim X = 3, then by assumption the point x ∈ X is a non-degenerate
quadratic singularity, and this fact is well known [21]. (If β ≤ 1, then the pair
(X+, D+) is non canonical, so that by inversion of adjunction the pair (E, D+

E)
is not log canonical, but E ∼= P1 × P1 and D+

E is an effective curve of bidegree
(β, β), which is impossible [20].) If dim X ≥ 4, then, restricting D onto a generic
hyperplane section Y 3 x of the variety X with respect to some embedding X ↪→ PN ,
and repeating this procedure dim X − 3 times, we reduce the problem (by inversion
of adjunction) to the already considered case dim X = 3. Proof of the proposition
is complete.

§3. The double spaces of index two
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In this section we sketch the proof of Theorem 1.10 on the double spaces of index
two. This brevity of exposition comes, firstly, from the fact that these varieties are
not birationally rigid (in the sense of any of the definitions of birational rigidity and
superrigidity that are used today) and for that reason are outside the framework of
the present survey (which is on birationally rigid varieties), and, secondly, from the
physical size of the proof (see [35]), so that it is not possible to give it here. We just
describe the key steps of the proof.

Theorem 1.10 is based on some claim on the virtual threshold of canonical ad-
junction of a movable linear system on V . For an arbitrary linear subspace P ⊂ P
of codimension two let VP be the blow up of the subvariety σ−1(P ) ⊂ V (it is ir-
reducible because the variety V is assumed to be generic). For a movable linear
system Σ on V the symbol ΣP stands for its strict transform on VP .

Theorem 1.10 is implied by the following technical fact.

Theorem 3.3. Assume that for a movable linear system Σ the inequality

cvirt(Σ) < c(Σ, V ) (56)

holds. Then there exists a uniquely determined linear subspace P ⊂ P of codimension
two, satisfying the inequality

multσ−1(P ) Σ > c(Σ, V ),

whereas for the strict transform ΣP the equality

cvirt(Σ) = cvirt(ΣP ) = c(ΣP , VP )

holds.
Let us obtain Theorem 1.10 from Theorem 3.3. Let us fix a movable linear

system Σ, satisfying the inequality (56). Taking, if necessary, a symmetric power
of Σ, we may assume that Σ ⊂ |2nH| = | − nKV |, where n ≥ 1 is a positive
integer. The system Σ (and the integer n) are fixed throughout the proof. Obviously,
c(Σ, V ) = n. According to Theorem 3.3, there exist a (unique) linear subspace P ⊂ P
of codimension two, satisfying the estimate multR Σ > n, where R = σ−1(P ) is an
irreducible variety. Singularities of the varieties R are ar most zero-dimensional.
Let ϕ: V + → V be the blow up of the (possibly singular) subvariety R = σ−1(P ),
E = ϕ−1(R) the exceptional divisor.

Lemma 3.5. (i) The variety V + is factorial and has at most finitely many
isolated double points (not necessarily non-degenerate).

(ii) The linear projection πP:P 99K P1 from the plane P generates the regular
projection

π = πP ◦ σ ◦ ϕ: V + → P1,

the general fiber of which Ft = π−1(t), t ∈ P1 is a non-singular Fano variety of index
one, and finitely many fibers have isolated double points.

(iii) The following equalities hold:

Pic V + = ZH ⊕ ZE = ZK+ ⊕ ZF,
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where H = ϕ∗H for simplicity of notations, K+ = KV + is the canonical class of the
variety V +, F is the class of a fiber of the projection π, whereas

K+ = −2H + E, F = H − E.

Proof. These claims follow directly from the definition of the blow up ϕ, the
genericity of the variety V and the well known fact that an isolated hypersurface
singularity of a variety of dimension ≥ 4 is factorial (see [51]).

Let Σ+ be the strict transform of the system Σ on the blow up V + of the
subvariety R. By Theorem 3.3, the following equality holds:

cvirt(Σ
+) = c(Σ+, V +). (57)

From this fact we immediately get

Proposition 3.12. Assume that cvirt(Σ
+) = 0. Then the system Σ+ is composed

from the pencil |H −R|, that is, Σ+ ⊂ |2nF |.
Proof of the proposition. Assume the converse:

Σ+ ⊂ | −mK+ + lF |,
where m ≥ 1. By the part (iii) of Lemma 3.5,

m = 2n− ν, l = 2ν − 2n ≥ 2,

so that for the threshold of canonical adjunction we get c(Σ+, V +) = m. Since
cvirt(Σ

+) = 0, by Theorem 3.3 we get m = 0, which is what we claimed. Q.E.D. for
the proposition.

Proof of Theorem 1.10. For the linear system Σ we take the strict transform
with respect to χ of any linear system of the form λ∗Λ, where Λ is a movable system
on the base S. Applying Theorem 3.3 and Proposition 3.12, we complete the proof.

From the arguments above, one can see that the proof of Theorem 1.10 is based
on the two key claims:

1) the existence (and uniqueness) of the maximal subvariety of the form σ−1(P ),
where P ⊂ P is a linear subspace of codimension two and

2) on the equality (57) of the thresholds of canonical adjunction.
In the proof of the claim 1) of crucial importance is the following local fact,

which is known as the 8n2-inequality.
Let o ∈ X be a germ of a smooth variety of dimension dim X ≥ 4. Let Σ be a

movable linear system on X, and the effective cycle Z = (D1◦D2), where D1, D2 ∈ Σ
are generic divisors, its self-intersection. Blow up the point o:

ϕ: X+ → X,

E = ϕ−1(o) ∼= Pdim X−1 is the exceptional divisor. The strict transform of the system
Σ and the cycle Z on X+ we denote by the symbols Σ+ and Z+, respectively.
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Proposition 3.13 (8n2-inequality). Assume that the pair (X, 1
n
Σ) is not

canonical, but canonical outside the point o, where n is some positive number. There
exists a linear subspace P ⊂ E of codimension two (with respect to E), such that
the inequality

multo Z + multP Z+ > 8n2

holds.

An equivalent claim, but formulated in a rather cumbersome way, was several
times published by Cheltsov [50-52], however his proof is essentially faulty (see [53]).
For a complete proof, see [53].

Now let us sketch a proof of the claim (57), that is, the claim 2).
Assume that the inequality

cvirt(Σ
+) < c(Σ+, V +) = m

holds. Then the pair (V +, 1
m

Σ+) is not canonical, so that the linear system Σ+

has a maximal singularity, that is, for some birational morphism ψ: Ṽ → V + and
irreducible exceptional divisor E+ ⊂ Ṽ the Noether-Fano inequality holds:

νE(Σ+) > ma(E+, V +).

Lemma 3.6. The centre of maximal singularity E+ is contained in some fiber
Ft = π−1(t), that is, B = π ◦ ψ(E+) = t ∈ P1.

Proof. Assume the converse: π ◦ψ(E+) = P1. Retsricting the linear system Σ+

onto the fiber of general position F = Fs, we get that the pair

(F,
1

m
ΣF )

is not canonical, where ΣF ⊂ | −mKF |. However, F is a smooth double space of
index one and it is well known [54], that this is impossible. Q.E.D. for the lemma.

For simplicity of notations, let F = Ft be the fiber, containing the centre of
singularity E+.

Proposition 3.14. The centre B is a singular point of the fiber F .

Proof. See [35].

Now let λ: V ] → V + be the blow up of the point o, E] = λ−1(o) ⊂ V ] the
exceptional divisor, which can be seen as a quadratic hypersurface in PM . One can
show [35] that for M ≥ 6 we may assume that for a generic hypersurface W ⊂ P,
arbitrary plane P ⊂ P of codimension two and any singularity o ∈ V + the quadric
E] is of rank at least 4. Define the integer β ∈ Z+ by the formula

D] ∼ λ∗D − βE],

where D ∈ Σ+ is a generic divisor, D] its strict transform on V ]. To the generic
variety V we may apply Proposition 3.11, which gives the inequality

β > m.
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Furthermore, the divisor λ∗F DF − βE]
F on the strict transform F ] ⊂ V ] is effective

(the symbols λF and E]
F stand for the blow up of the point o ∈ F and for the

exceptional divisor λ−1
F (o), respectively). This implies the inequality

multo DF ≥ 2β > 2m,

which is impossible (the H-degree of the divisor DF as an effective algebraic cycle
is 2m). This proves the coincidence of the thresholds (57) for M ≥ 6.
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