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ABSTRACT. We study the question of whether the Morava K-theory of the clas-
sifying space of an elementary abelian group V is a permutation module (in either
of two distinct senses, defined below) for the automorphism group of V. We use
Brauer characters and computer calculations. Our algorithm for finding permutation
submodules of modules for p-groups may be of independent interest.

1. INTRODUCTION

Let p be a prime, let K (n)* denote the nth Morava K-theory, V an elementary
abelian p-group, or equivalently an Fp-vector space, and GL(V) the group of au-
tomorphisms of V. Then GL(V) acts naturally on the classifying space BV of V
and hence on h*(BV) for any cohomology theory h. In the case when h = K(n),
K(n)*(BYV) is a finitely generated free module over the coefficient ring K (n)* whose
structure is known [9], and it is natural to ask what may be said about its structure
as a module for the group ring K (n)*[GL(V)]. The Morava K-theory of arbitrary
finite groups is not known, and there is no direct construction of Morava K-theory
itself. We hope that a better understanding of K (n)*(BV) may lead to progress
with these questions.

For any ring R, and finite group G, we say that an R-free R[G]-module M is a
permutation module if there is an R-basis for M which is permuted by the action
of G. Call such an R-basis a permutation basis for M. If S is a G-set, write R[S]
for the permutation module with permutation basis S. If M is a graded module
for the graded ring R[G] (where elements of G are given grading zero), we call M a
graded permutation module if it is a permutation module with a permutation basis
consisting of homogeneous elements.

If M is a graded module for K(n)*[G], and G, is a Sylow p-subgroup of G, the
following four conditions on M are progressively weaker, in the sense that each is
implied by the previous one.

(1) M is a graded permutation module;

(2) M is a permutation module;

(3) M is a direct summand of a permutation module;

(4) as a K(n)*[G,]-module, M is a graded permutation module.

Typeset by ApS-TEX
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The implications (1) => (2) == (3) are obvious, and hold for M a graded R[G]-
module for any R. The implication (3) = (4) is explained below in Sections
2 and 7.

One might hope for I{(n)*(BV) to satisfy condition (1) for G = GL(V), i.e., for
K(n)*(BV) to be a graded permutation module for the group ring K(n)*[GL(V)].
This would be useful for the following reason: The ordinary cohomology of a group
with coefficients in any permutation module is determined by the Eckmann-Shapiro
lemma. Hence if K(n)*(BV) is a graded permutation module for GL(V), and H
is a group expressed as an extension with kernel V| the E; page of the Atiyah-
Hirzebruch spectral sequence converging to K (n)*(BH) is easily computable. Even
condition (4) would be very useful, as it would facilitate the computation of the
E,-page of the Atiyah-Hirzebruch spectral sequence for any p-group H expressed
as an extension with kernel V.

The recent work of 1. Kriz on Morava K-theory, including his dramatic discovery
of a 3-group G such that K(2)*(BG) is not concentrated in even degrees, has em-
phasised the importance of studying the Aut(H)-module structure of K(n)*(BH)
[6]. For example, Kriz has shown that for any prime p and any cyclic p-subgroup
C of GL(V), K(n)*(BV) is a (graded) permutation module for C. He uses this
result to deduce that for p odd and G a split extension with kernel V and quotient
C, K(n)*(BG) is concentrated in even degrees. N. Yagita has another proof of this
result [17].

It should be noted that if the dimension of V is at least three, there are infin-
itely many indecomposable graded K(n)*[GL(V)]-modules, of which only finitely
many occur as summands of modules satisfying condition (4), which suggests that
a ‘random’ module will not satisfy any of the conditions. On the other hand, work
of Hopkins, Kuhn and Ravenel [4] shows that for certain generalised cohomology
theories h*, h*(BV) is a permutation module for R*[GL(V)]. Amongst these h* are
theories closely related to K(n)*, albeit that their coefficient rings are torsion-free
and contain an inverse for p.

A result due to Kuhn [7] shows that K(n)*(BV) has the same Brauer charac-
ter as the permutation module K(n)*[Hom(V,(F,)")] for GL(V). We shall show
however that in general K(n)*(BV) does not have the same Brauer character as a
graded permutation module for K(n)*[GL(V)]. Note that Brauer characters give
no information whatsoever concerning the structure of K(n)*(BV) as a module
for the Sylow p-subgroup of GL(V). We give an algorithm to determine, for any
p-group G, whether an F,[G]-module is a permutation module, and use this algo-
rithm and computer calculations to determine in some cases whether K(n)*(BV)
satisfies condition (4) above.

The main results of this paper are summarised in the following four statements.
Before making them, we fix some notation.

Definition. Throughout the paper, let p be a prime, K(n)* the nth Morava K-
theory (at the prime p), and let V be a vector space over the field of p elements of
dimension d. Let GL(V) act on the right of V, which will have the advantage that
the modules we consider will be left modules. Let U(V) be a Sylow p-subgroup of
GL(V).
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Theorem 1. Let p be a prime, let V be a vector space of dimension d over F,
and let K(n)* stand for the nth Morava K-theory.

(a) If p 13 odd, then K(n)*(BV) is not a graded permutation module for GL(V).
(b) If p=2 and n = 1, then for any d, K(n)*(BV) is a graded permutation module
for GL(V).

(¢) For p=2,n>1and d >4, K(n)*(BV) 1s not a graded permutation module
for GL(V) if d is greater or equal to the smallest prime divisor of n.

(d) For p=2 and d =3, K(n)*(BV) is not a graded permutation module if n is a
multiple of three, or if n 13 2, 4, or 5.

(e) For p=2 and d =2, K(n)*(BV) is a graded permutation module for GL(V) if
and only if n 1s odd.

Theorem 2. The K(n)*[GL(V)}-modules K(n}*(BV) and K(n)*[Hom(V, (F,)")]
are (ungraded) isomorphic in the following cases:
(a) For n =1, for any p and d.
(b) For d =2, p=2, and any n.

And are isomorphic as K(n)*[SL(V)]-modules in the case:
(c)d=2,p=3,n=1,2o0r3.

Theorem 3. K(n)*(BV) is not a permutation module for K(n)*[U(V)] in the
following cases:
(a) d=3,p=3, n=2,
(b)d=3,p=5 n=2.

In the following cases, as well as those implied by Theorems 1 and 2, K(n)*(BV)
i3 a graded permutation module for K(n)*[U(V))]:
(c)d=3,p=2,n=2,3 ord.

Work of Kriz [6] shows that for any V, K(n)*(BV) is a (graded) permutation
module for any subgroup of GL(V') of order p. In the cases covered by Theorem 3,
the group U(V) has order p?®, and for p > 2 it contains no element of order p?. The
gap between Theorem 3 and a special case of Kriz’s result is filled by:

Theorem 4. Let d = 3, let p = 3 or 5, and let H be any subgroup of GL(V) of
order p*. Then K(2)*(BV) is not a permutation module for H.

Statements 1(b) and 2(a) are corollaries of Kuhn's description of the mod-p K-
theory of BG [8]. Our interest in these questions was aroused by [2], in which it is
shown that in the case V = (Z/2)%, K(n)*(BV) is a graded permutation module
for n = 3 but is not a graded permutation module for n = 2, i.e., the cases n = 2
and n = 3 of 1(e).

The remaining sections of the paper are organised as follows. In Section 2 we
describe K(n)*(BV), the action of GL(V), and the process of reduction to ques-
tions concerning finite-dimensional F,-vector spaces. This material is well-known
to many topologists, but we hope that its inclusion will make the rest of the paper
accessible to the reader who knows nothing about Morava K-theory. We also in-
clude some remarks concerning K (n)*[Hom(V, (F,)™)]. In Section 3 we prove those
of our results that require only Brauer character methods. In Section 4 we deduce
1(b) and 2(a) from Kuhn’s work on mod-p K-theory and give a second proof of 1(b).
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Section 5 studies F3[G Ly (F2)]-modules, and contains proofs of 1(e) and 2(b). In
Section 6 we describe how to decompose F3[SLz(F3)]-modules, and outline the
proof of 2(c). In Section 7 we describe our algorithm for determining when a mod-
ule for a p-group is a permutation module, and outline the proofs of the rest of the
results we have obtained using computer calculations. The algorithm of Section 7
may be of independent interest. Section 8 contains the tables of computer output
relevant to Sections 6 and 7, together with some final remarks.

2. PRELIMINARIES

Fix a prime p. The nth Morava K-theory, {(n)* (which depends on p as well
as on the positive integer n), is a generalised cohomology theory whose coeffi-
cient ring is the ring F,[vn,v;?] of Laurent polynomials in v,, which has degree
—2(p™ — 1). All graded modules for this ring are free, which implies that there is a
good Kiinneth theorem for K(n)*. For any graded K (n)*-module M, let M be the
quotient M/(1 — v,)M. Then M is an Fy-vector space, naturally graded by the
cyclic group Z/2(p™ - 1). If M is a graded K (n)*[G]-module for some finite group
G, then M is naturally a Z/2(p" — 1)-graded F,[G]-module, and M is determined
up to isomorphism by M. It is easy to see that M is a (graded) permutation module
for K(n)*[G] if and only if M is a (Z/2(p™ — 1)-graded) permutation module for
F,[G].

For C a cyclic group of order p™, it may be shown [9] that the Morava K-theory
of BC is a truncated polynomial ring on a generator of degree two:

K(n)*(BC) = K(n)"[z]/(=""").

The generator z is a Chern class in the sense that it is the image of a certain
element of K'(n)2(BU(1)) under the map induced by an inclusion of C in the unitary
group U(1). From the Kiinneth theorem mentioned above it follows that if V is an
elementary abelian p-group of rank d, then

K(n)*(BV) = K(n)*[z1,... ,zd)/(z" ... 2} ),

where z,,... ,74 are Chern classes of d 1-dimensional representations of V' whose
kernels intersect trivially. The Chern class of a representation is natural, and the d
representations taken above must generate the representation ring of V. Thus the
action of GL(V) on K(n)*(BV) may be computed from its action on Hom(V,U(1))
together with an expression for the Chern class of a tensor product p ® 6 of two
1-dimensional representations in terms of the Chern classes of p and 8.

For any generalised cohomology theory h* such that h*(BU(1)) is a power series
ring h*([z]] (Morava K-theory has this property), Chern classes may be defined,
and there is a power series z+py € h*[[z, y]] expressing the Chern class of a tensor
product of line bundles in terms of the two Chern classes. This power series is called
the formal group law for h*, because it satisfies the axioms for a 1-dimensional com-
mutative formal group law over the ring h*. Since each Chern class in K(n)*(BV)
is nilpotent of class p”, we need only determine z+ry modulo (z?",y?"). This is
the content of the following proposition, which is well-known, but for which we can
find no reference.
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Proposition 5. Modulo the ideal generated by =" and y®", the formal sum z+py
for K(n)* s

p—1
1 n— N om—
T+ryY =m+y—vn(§1—j(€>m”' ly(”“)” 1).

Sketch proof. First we recall the formal sum for BP*, Brown-Peterson cohomology
[15]. Let ! be the power series

l(z) = Zm;x"‘,

>0

where mg = 1, but the remaining m;’s are viewed as indeterminates, and let e(z) be
the compositional inverse to [, i.e., a power series such that e({(z)) = l(e(z)) = =.
The BP* formal sum is the power series e({(z) +!(y)). The K(n)* formal sum may
be obtained as follows: Take the BP* formal sum, replace the indeterminates m;
by indeterminates v; using the relation

1—1
p‘
v; = anj —_ E m,-vj_,.,

i=1

set v; = 0 for i # n, by which point all the coefficients lie in Z(;), and take the
reduction modulo p. To calculate the K (n)* formal sum, it is helpful to set v; =0
for ¢ # n as early as possible, and one may as well set v, = 1, since every term in
z+py has degree 2. Solving for the m;’s in terms of the v;’s gives

m; =0 if n does not divide 1,

ma; = 1/p'.
Thus to compute z+py, let e'(z) be the compositional inverse to
V)= 2" /7',
i>0
and then x4 Fy is the mod-p reduction of e'(I'(z) + '(y)). It is easy to see that
e(z)=z-2" /p modulo z?",

and so . .
s+ry=z+y—(z+y)’ /p modulo (z* ,y” ,p).

The claimed result follows. O

Using the reduction M +— M as at the start of this section and Proposition 5,
the study of the graded K (n)*[GL(V)]-module structure of K (n)*(BV') reduces to
the study of the Z/(p" — 1)-graded Fy[GL4(F,)]-module K ; defined below.
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As an Fp-algebra,

n

n
I&;’d%’Fp[ml,... czal/ (2} ... ,mﬂ ).

Each z; has degree 1, and the GL4(Fp)-action is compatible with the product. The
action of the matrix (a;;) € GL4(F,) is given by

I e (Z l'(mi)a;j),

where ¢’ and I’ are as in the proof of Proposition 5. (Recall that for any V we
take GL(V) to act on the right of V, and hence obtain a left K(n)*[GL(V)]-module
structure on K (n)*(BV).)

Note that we have halved the original degrees because I{(n)*(BV) is concen-
trated in even degrees. Until recently it was an open problem whether a similar
statement holds for arbitrary finite groups, although some cases had been verified
[9,5,13,14,10]. Kriz has recently announced that this is not the case [6].

If we are only interested in Brauer characters, or equivalently composition factors,
then a further simplification may be made, see {7]. Let L}, , denote the algebra of
polynomial functions on (F,)%, modulo the ideal of p"th powers of elements of
positive degree. Grade L}, ; by Z/(p" — 1), and let GL4(F,) act on L}, , by its
natural action on the polynomial functions. Thus L] , is a truncated polynomial

algebra F,lz1,... ,xd]/(n:’l’n,... ,cr:’;"), cyclically graded, and having the standard
action of GLq(F,).

Lemma 6. K, ; has a scries of (graded) submodules such that the direct sum of the
corresponding quotients is 1somorphic to L}, 4 In particular, K , and L}, ; have
the same composition factors (as graded modules).

Proof. For each degree k, take the basis consisting of monomials of length congruent
to k modulo p™ — 1, and arrange them in blocks with respect to length. For any g,
the matrix of its action on sz,d with respect to this basis consists of square blocks
along the diagonal, whereas the corresponding matrix for the action on K ,’f‘d has
some extra entries below the blocks. 0O

The permutation module K (n)*[Hom(V, (F,)")] occurs in the statement of The-
orem 2, so we complete this preliminary section with some remarks concerning this
module. If ¢ is a homomorphism from V' to Fy, then g € GL(V) acts by composi-
tion, i.e.,

g8(v) = ¢(vg).

Since we view GL(V') as acting on the right of V, this makes Hom(V, (F;)") into a
left GL(V')-set. The GL(V)-orbits in Hom(V, (F,)") may be described as follows.
For W a subspace of V, let H(W) < GL(V) be

HW)={g€GL(V):vg—veWVveV}
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For example, H({0}) = {1}, and H(V) = GL(V). For 0 <1 < dim(V), let H; be
H(W;) for some W; of dimension i. Thus H; is defined only up to conjugacy, but
this suffices to determine the isomorphism type of the GL(V)-set GL(V)/H;. Now
let ¢ be an element of Hom(V, (F,)"). The stabiliser of ¢ in GL(V) is the subgroup
H(ker(¢)), and the orbit of ¢ consists of all ¢’ such that Iim(¢’) = Im(¢). It follows
that as GL(V)-sets,

1%

Hom(V, (F,)") H m(n,1) - G/H;,

0<i<dim(V)

where m(n, 7) is the number of subspaces of (F,)" of dimension i. Thus to decom-
pose the module Fy[Hom(V, (Fp)")], it suffices to decompose each F,[GL(V)/H;].

3. BRAUER CHARACTERS

In this section we shall prove most of the negative results of Theorem 1. Firstly,
we describe how to compute the values of the modular characters afforded by the
modules Lf:,d' As a general reference, see 3], in particular §17. Fix an embedding
of the multiplicative group of the algebraic closure of F,, in the group of roots of
1 in C. Let g be a p-regular element of GL(V), i.e., an element whose order is
coprime to p, and let Ay, Ag,... , Az denote the images in C of the eigenvalues of its
action on V*. Then the Brauer character of ¢ is

xve(g) =M+ A+ 4+ A

Two F,[G]-modules have the same Brauer character if and only if they have the
same composition factors. To compute the character of L:‘l’ 4 we proceed as follows:
an argument similar to the one used to prove Molien’s theorem (see e.g. (3], p. 329)
shows that the character of a truncated polynomial algebra has a generating function

d

fio =T1(5225).

Then the character of L}, ; evalued at g is simply f4(1), whereas for each degree k
(recall that we are grading cyclically) one has

(1) xee (9) = . Y (),

-1

where the sum ranges over all (p” — 1)-st roots of unity—to see this, recall that the
sum, over all mth roots of unity A, of A\* is equal to zero if m does not divide &,
and equal to m if m does divide k.

Proof of 1(a). Let D be the subgroup of diagonal matrices in GLq4(F;), so that D

is isomorphic to a direct product of d cyclic groups of order p — 1. In K7, 4, each

monomial in zy,...,z4 is an eigenvector for D, and the monomials fixed by D are
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those in which the exponent of each x; is divisible by p — 1. Hence if p — 1 does not

divide k, then K ,’f ¢ cannot be a permutation module for D because it contains no
D-fixed point. O

Proof of 1{c). As already said above, this is done by computing the character values
on certain 2-regular elements of GL(V'). We shall first look at the case where d
equals a prime divisor ¢ of the fixed number n. Consider an element, g, say, of
GL,(F;) which permutes the 27 — 1 nontrivial elements of (F,)? cyclically. (To
see that there is always such an element consider the action of the multiplicative
group of Faq on the additive group of Faq.) The set of eigenvalues of g, contains a
primitive (29 — 1)st root of unity, and is closed under the action of the Galois group
Gal(F,¢/F;). Hence the Brauer lifts of the eigenvalues of g, are A, A%,... 2
for some primitive (29 — 1)-st root of unity A € C. Consequently, the generating
function for the character afforded by L},  is given by

g—1

1— (A2
0= I (55 )

If 7 is a (2" — 1)-st root of unity, one gets

on ifre{\? i=01,...9-1
fgq(T)z{ { }

1 otherwise.

Thus evaluating the formula (1) for the character afforded by L  yields

1 k on 2 2 ke
XLglq(gq)=2n_1 Z_T +2n_1§/\
r#E -2 =

which is equal to
g+1 for k=10

-1

Z)\T" for k # 0.

=0
Specialising to the case k = 1, this sum is never zero, since the powers \! for i
coprime to 2¢ — 1 form a Q-basis for Q[A]. For ¢ > 2 the sum is not a rational,
because it is not fixed by the whole Galois group Gal(Q[A]/Q). In the case ¢ = 2, one
obtains —1 (the sum of the two primitive third roots of unity). Since permutation
modules have positive integer character values, this shows that K (n)*(BV,) is not a
graded GL4(F,)-permutation module. To proceed with vector spaces of dimension
bigger than ¢ we consider the cases ¢ > 2 and ¢ = 2 separately. In the first case
we use the following lemma to conclude that the character still takes non-integer
values on certain elements of GL(V). Let ¢ be an (arbitrary) 2-regular element of
GL4(F2) and I, the r x r identity matrix. If we denote by g x I,. the element of
GL4,..(F2) which acts like g on the first d generators of L::, 44 8nd trivially on the
last r, one has
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Lemma 7. XLﬁ,d+r(g x I.) = XL’;'d(Q) + (ZQZP:II)XL(Q) .

Proof. The generating function for g x I, is obtained from the one for ¢ as the
product with r factors (1 +% 4 t2 +... +t2 =), thus

1 -k
XL:,"_*_'_(QXIT): 9n _ 1 ZT ngIr(T)
T

2 onr
:2n1_12”"_kf9(’r)(1 : )+2:—1f9(1)

ot l—71

ﬂl"_l

=xrx ,(9)+ (ﬁ)fg(l) - O

Thus g, x I will do the trick when V' has rank g+ r. This fails for ¢ = 2, whence
we choose the element ¢’ which consists of d/2 copies of g3 = (? 1) arranged along
the diagonal if d is even, and add an extra diagonal entry 1 if d is odd. Then a

computation similar to the one carried out in the previous lemma shows that for
k # 0 mod 3,

2nd/‘2 -1
—-—21'1—1_ lf d Is even
N —_
XLﬁ,d (g ) - 2n(d—l)/2 -1
B T — +1 ifdisodd

For d > 3 these numbers are negative. 0O

The other parts of Theorem 1 that may be proved using Brauer characters are
some cases of 1{d) and both implications of 1(e). The details are similar to the
above proof so we shall not give them. In the case when V has rank 3, evaluation
of the Brauer character of an element of GL(V') of order 7 shows that L], ; is not
a GL(V)-permutation module if 3 divides n. Similarly, when V has rank 2, the
Brauer character of an element of GL(V') of order 3 on L}, , is negative if n is even.
When V has rank 2 and n is odd, it may be shown that for each k, any GL(V')-
module having the same Brauer character as Lﬁ,z is a permutation module. This
shows that for n odd, K,'f'2 is a permutation module, but does not specify which
one. In Section 5 we shall describe the isomorphism type of K,’j‘2 and Lﬁ,z for all
n and k, giving an alternative proof of 1(e).

4. ON K(1)

Here we describe how those parts of Theorems 1 and 2 that concern K(1)*
(i.e., 1(b) and 2(a)) follow from Kuhn’s description of the mod-p K-theory of finite
groups [8]. An ‘elementary’ proof, working directly with the description of K7 ; in
the previous section, would be more in keeping with the rest of the paper. We give
such a proof in the case p = 2.
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Proof of 1(b) and 2(a). First, note that for p = 2, v; has degree —2, so that the
‘cyclically graded’ modules K7 ; are in fact concentrated in a single degree. Hence
2(a) implies 1(b). To prove 2(a) recall [15] that the spectrum representing mod-
p K-theory splits as a wedge of one copy of each of the Oth, 2nd,...,(2p — 4)th
suspensions of the spectrum representing K(1)*. Since K(1)*(BV) is concentrated
in even degrees it follows that K} ; is naturally isomorphic to K°(BV;F,). In [8] it
is shown that for any p-group G, K°(BG;F,) is naturally isomorphic to F, ® R(G),
where R(G) is the (complex) representation ring of G. The case G = V gives 2(a),
because as a GL(V)-module, F, ® R(V) is isomorphic to Fp[Hom(V,F,)]. O

Alternative proof, p = 2. In this case, K, is isomorphic to an exterior algebra
Alzy,... ,z4] = F2[z1,... ,z4}/(z?). The monomial 1 generates a trivial GL(V)-
summand. Let H be the subgroup of GL(V) fixing z1. Then H is the subgroup
of GL(V) stabilising some hyperplane W and inducing the identity map on the
quotient V/W. There is a GL(V)-set isomorphism

Hom(V, F) 2 GL(V)/GL(V) I GL(V)/H,

so it will suffice to show that the submodule M generated by z; contains each
monomial in A[zy,...,zq4] of strictly positive length. The permutation matrices

permute the monomials of any given length transitively. Assume that M contains
all the monomials of length 7 (this holds for : = 1), and let g € GL(V') be such that

gT1 = T1,. - ,gTi—1 = Ti-1, GTi=2Ti+FTiy1.
Then
glz1...2)+21...2i +T1 ... Tic1ZTig1 = T1 ... ZiTi € M,
so M contains all monomials of length : + 1. O

It should be possible to give an ‘elementary’ proof of 2(a) for p > 2 by considering
the element x; + a:f 4o+ :Ei’_l, but we have not done so.

5. WHEN V HAS ORDER FOUR

In this section we shall prove Theorems 1(e) and 2(b), which concern K(n)*(BV')
for V of dimension two over F;. We determine the structure of L% , as a GLy(F2)-
module, and deduce that K ,’;’_2 and Lﬁﬂ are isomorphic. Note that it is also possible
to prove 1(e) using the methods of Section 3 without determining the isomorphism
type of K,’f,z. Throughout this section, let V = F2.

There are three isomorphism types of indecomposable Fo[GL({V)]-modules: the
1-dimensional trivial module T; the natural module V' which is both simple and
projective (and is the Steinberg module for GL(V')); and a module N expressible as
a non-split extension of T' by T', which is the projective cover of T'. Each module is
self-dual. There are four conjugacy classes of subgroups of GL(V'). The transitive
permutation modules are the following four modules:

T, N, TaoV, Na&2V

Let S*[V*] stand for the algebra of polynomial functions on V as a graded GL(V)-
module.
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Proposition 8. The generating functions Pr, Py and Py for the number of each
indecomposable GL(V)-summand of S*[V*] arc the following power series:

1 43 t
P =1 BO=goggms PO=ga-w

Proof. Recall that the ring of invariants S*[V*|9L(Y) is 4 free polynomial ring on
two generators of degrees two and three (see [16]). The Poincaré series for S*[V*],
and the ring of invariants, together with the generating function for the Brauer
character of an element of GL(V) of order three give the three equations below,
whose solution is as claimed.

Pr + 2Py + 2Py =

(1 1)
1
Pr+Pv=0ma o
PT+2PN—Pv=—1;t O
1 —¢3

Proposition 9. Let k be an element of Z/(2" — 1). The direct sum decomposition
for the module Lﬁ‘g 18

2T@2"6_2N@2n;'1V forn odd, k=0,
T@QRG_QNGBTJIV forn odd, k # 0,
2T@2n;2Ne§2n3_1V for n even, k =0,
T®211;2N®2n3_11/ for n even, k#0, k=0 mod 8§,
T€B2n_4N®2n+2V for n even, kK £ 0 mod §.

6 3

Proof. Let L* be the truncated symmetric algebra L}, o, but graded over the integers
rather than over the integers modulo 2" —1, Then L* = {0} for k > 2(2"—1), and for
k = 2(2" —1), L¥ is isomorphic to T, generated by xfn—lmg"—l. For0 <k < 2" -1,
viewing k as either an integer or an integer modulo 2" — 1 as appropriate, Lﬁ’z is
isomorphic to L¥ @ L?"~'+¥ while L , is isomorphic to L° @ L*"~! @ [2@"-1) o

2T @L?" 1. For 0 < k < 2"—1, L* is isomorphic to S¥[V*]. The product structure
on L* gives a duality pairing

Bk x F2@°-D-k L fat-D >

and since all GL(V)-modules are self-dual it follows that for 2" < k < 2(2" — 1),
LF = g22"-D-ky*] The claimed description of L% , follows from Proposi-
tion 8. O
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Corollary 10. For eachn and each k € Z/(2" —1), K} , and L% , are isomorphic.

Proof. For k # 0 K,’:’Z has odd dimension, so must contain at least one direct
summand isomorphic to T'. It is easy to see that 1 generates a summand of Kﬁyz,
and the same dimension argument applied to a complement of this summand shows

that K 312 contains at least two summands isomorphic to T. On the other hand, V
and N are projective, and (Proposition 5) K,’;";, has a filtration such that the sum
of the factors is isomorphic to Ly ,. Hence K} , has at least as many N summands
and V summands as Lﬁ,z. This accounts for all the summands of K ,L;’z. 0

The proof of 1(e) follows easily from the given description of K ,. For 2(b),
recall from the end of Section 2 that

Hom(V, (F)") = GL(V)/GL(V)
I (2" — 1) - GL(V)/H,
Ir (2" - 1)(2" - 2)/6 - GL(V)/{1},

where H) is a subgroup of GL(V') of order two, and that
F:[GL(V)/H\| 2TV, F:[GL(V)/{1}]= N @ 2V.

6. WHEN V HAS ORDER NINE

Our results concerning the SLz(F3)-module structure of K, , in the case when
p = 3 were obtained by computer. We wrote a Maple program to generate matrices
representing the action of a pair of generators for SL,(F3) on K ,’;2. These matrices
were fed to a GAP [11] program which, given a matrix representation of SLy(F3),
outputs a list of its indecomposable summands. In fact the output from the Maple
program needed a little editing before being read into the GAP program. This was
done by a third program, although it could equally have been done by hand.

Using standard techniques of representation theory [1,3], the following facts may
be verified. For V = F2, there are three simple F3[SL(V)]-modules: the trivial
module T, the natural module V, and a simple projective module P = S§%(V) of
dimension three. There are three blocks. The blocks containing T and V each
contain three indecomposable modules, each of which is uniserial. This data may
be summarised as follows:

blOCkOfT=Ill THIQ-»T, THI;;—»IQ,
block of V =14 : Vi Ils » V, Vo I —» I,

block of P = I7 : contains no other indecomposables.

Letting 7 stand for the element of order two in SL(V) and o for the sum of the
six elements of SL(V') of order four, the block idempotents are

br = 2+ 271 + 20, by =2+, bp =o.
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The modules in any single block are distinguishable by their restrictions to a cyclic
subgroup of SL(V) of order three. Thus if e is an element of SL(V) of order three,
and M is an SL(V)-module, the direct summands of M are determined by the ranks
of the elements of End(M) representing the actions of the following seven elements

of F3SL(V):
bT, (1 —a)bT, (1 —O:)QbT, bv, (1—-(1)[)1/, (l—a)zbv, bp.

More precisely, if the seven ranks are rq,... ,r7, and n; stands for the number of
factors of M isomorphic to I;, then

ny=ry—2ry+r3, ng=ryg—2r3, n3=r3, n4=rs5—2rs,

ns =14 —2rs + 16, ng=(2r5 —14)/2, n;=r7/3.

Our GAP program reads in matrices representing the action on M of a certain
pair of generators for SL(V), and calculates ny,... ,n7 by first finding rqy,... ,77 as
above.

Recall from the end of Section 2 that there is an isomorphism of (right) GL(V')-
sets:

Hom(V,(F3)") =GL(V)/GL(V)
II3"-1)/2-GL(V)/H,

IT (3" — 1)(3" — 3)/48 - GL(V)/{1},

where H; is the subgroup stabilising a line L in V' and acting trivially on V/L. As
SL(V)-modules, it may be checked that

F3[GL(V)/GL(V)] = I,
Fg[GL(V)/L(V)] 2Ll Iy,
Fi[GL(V)/{1}] = 2I; ® 4Is @ 617

From this information together with the results given in Table 1 it is easy to check
the claim of Theorem 2(c).

There are fourteen indecomposable GL(V )-modules in four blocks, two of which
contain a single simple projective module. The six indecomposables in the block

containing V are comparatively hard to distinguish, which is the reason why we
considered only SL(V).

7. PERMUTATION MODULES FOR p-GROUPS

In this section we shall describe the computer programs used in the proofs of
Theorem 3, Theorem 4, and the cases n = 2, 4, and § of 1{(d). In Sections 5 and 6 our
programs made use of the fact that there were only finitely many indecomposable
modules. If G is a group whose Sylow p-subgroup is not cyclic, then F,[G] has
infinitely many indecomposable modules, so the same sort of methods cannot work.
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Here we shall describe an algorithm which may be used to determine, for any p-
group G, whether an F,,[G]-module is a permutation module, and if so to decompose
it. (For a precise statement, see Propostion 10 below.) As before, we use a Maple
program to generate matrices representing the action of a Sylow p-subgroup of
GL4(F,) on K,'f'd for various p, k, n, and d, and we use a GAP program working
with our algorithm to decompose these modules.

Our algorithm relies on the following fact [3]: For G a p-group, any transitive
permutation module for Fp[G] has a unique minimal submodule, which is the triv-
ial module generated by the sum of the elements of a permutation basis. This
implies that any transitive permutation module is indecomposable. Note that the
Krull-Schmidt theorem and the indecomposability of transitive permutation mod-
ules together imply that if a graded F,[G]-module is a permutation module, then
it is also a graded permutation module.

Proposition 11. Let Gy,... ,Gy, be subgroups of a p-group G, where the order
of Git1 is at least the order of Gy, and let M be a (finitely generated) F,[G]-
module. Let my,... ,my, be the integers whose calculation i3 described below. Then
M contains a submodule M', where

M = mle[G/Gll ©---D man[G/Gn]a

and M' has mazimal dimension among all submodules of M 1somorphic to a direct
sum of copies of the F,[G/G].

To compute m;, proceed as follows. Let My be the zero submodule of M. If M;_,
has been defined, let

M; = M;_4 +Im(( Z g) - MO —)M),
g€G/G;

where the sum ranges over a transversal to G; in G, M denotes the G;-fized points
of M, and the sum is an element of F,[G] viewed as an element of End(M). Now
define

m; = dim M; — dim M;_;.

Without loss of generality, it may be assumed that no two of Gy,... ,G, are
conjugate. The dimension of M' is equal to the sum Y, m;|G : Gi|. If Gh,... ,Gq
contains a representative of each conjugacy class of subgroups of G, then dim M’ =
dim M if and only if M 1s a permutation module.

Proof. First, recall that the socle, Soc(N), of a module N is the smallest submodule
of N containing every minimal submodule. The following statement is easy to prove,
and will be useful below. If L is a submodule of M, and f : N — M is a module
homomorphism, then f is injective if and only if its restriction to Soc(N) is injective.
If f is injective, then Soc(f(N)) = f(Soc(N)), and the sum L+ f(N) in M is direct
if and only if the sum Soc(L) + f(Soc(N)) is direct.

Module homomorphisms from F,[G/G;] to M are naturally bijective with ele-
ments of MY, where the element z corresponds to the homomorphism 6, sending
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1-G; to z. The socle of F,[G/G}] is a trivial submodule generated by ZQEG/G.- g-Gj,
so its image under 8 is generated by > 9€G/G; 9" T It follows that any submodule
of M isomorphic to a direct sum of copies of the modules F,[G/G1],... ,F,[G/G]
has socle contained in M;, and in particular consists of at most dim M; summands.
This shows that any submodule of M isomorphic to a direct sum of Fp[G/Gi]’s
has dimension less than or equal to Y, m;|G : G;|, but it remains to exhibit a
submodule M’ having this dimension.

Define M| to be the zero submodule of M, and assume that for some j with
1 € 7 < n we have constructed a submodule Mf}_l of M with

M;_l = mle[G/G]] - D ?TLJ'_]FP[G/GJ'_l].

Let z1,... ,2m; € MG be such that the images EQEG'/G_,- g - z; form a basis for a
complement to M;_; in M;. Taking L = M;_y, N = m;F,|G/Gj],and f : N - M
the map sending the elements (0,...,1-G,,...,0) to the z;’s, the statements in
the first paragraph of the proof show that f is injective, and that M }' defined
as the submodule of M spanned by M;_; and the 2;’s is isomorphic to M]_, &
m;F,[G/G;]). Now M’ may be taken to be M. O

The data in Tables 2-6 of Section 8 were obtained using the algorithm described
above.

8. TABLES AND FINAL REMARKS

For each p, n, and d, let Iz’;’d be the direct summand of K7 ; corresponding to
the reduced Morava K-theory K(n)*(B(F,)%). Thus IZ’,’;',d = I(f:’d for k # 0, and
Ky, = ;,n,d @ T, where T is the trivial Fp[GL(V)]-submodule of dimension one
spanned by the monomial 1. Table 1 describes the SL,(F3)-module structure of

I‘{,’jﬁ (for p = 3) in terms of the indecomposable modules Iy, ... , I7 as described in
Section 6.

n k I] .[2 13 I4 I5 Is I",'

1 1 0 0 0 0 0 1

1 1 0 0 0 0 1 0 0

2 0,4 1 0 1 0 0 0 2

2 1,3,5,7 0 0 0 0 1 1 0

2 2,6 1 0 0 0 0 0 3

3 even 1 0 2 0 0 0 7

3 odd 0 0 0 0 1 4 0

Table 1: The SLo(F3)-summands of f\’,’,f‘z.

Let V have dimension d = 3 over F,. Let [ be a line in V, and let = be a
plane in V containing . The group GL(V) acts on the set of all such pairs, and the
stabiliser of the pair (I, 7) contains a unique Sylow p-subgroup U(V') of GL(V') (and



16 [AN J. LEARY AND BJORN SCHUSTER

is in fact equal to the normaliser of U(V)). Let C be a generator for the centre of
U(V'), which is cyclic of order p. Let A be a non-central element of U(V) stabilising
every line in m, and let B be a non-central element of U(V) stabilising every plane
containing [. Then A and B generate U(V'), and after replacing C' by a power if
necessary, the commutator of A and B is equal to C. If we identify V with Ff,, and
take U(V) to be the upper triangular matrices, then we may take

1 10 1 00
A=1(10 1 0 B=1011].
0 0 1 0 01

(Recall that V is to be viewed as the space of row vectors with a right GL(V)-
action.)

n k Pl .P2 P3 P4 P5 PG P7 Pg
1 0 0 1 0 0 0 0 1 1
2 0 0 2 2 1 0 0 0 1
2 1,2 1 1 1 0 0 1 1 1
3 0 4 4 4 2 0 0 0 1
3 1,6 6 1 3 0 0 3 1 1
3 2,5 9 3 3 1 0 1 1 1
3 3,4 3 2 4 1 0 2 0 1
4 0 24 8 8 4 0 0 0 1
4 | 1,04 | 28 1 7 0 0 7 1 1
4 | 213 | 25 7 7 3 0 1 1 1
4 3,12 27 2 8 1 0 6 0 1
4 | 4,11 | 25 6 8 3 0 2 0 1
4 5,10 27 3 7 1 0 ) 1 1
4 6,9 26 5 7 2 0 3 1 1
4 7,8 26 4 8 2 0 4 0 1
) 0 112 16 16 8 0 0 0 1

Table 2: The Dg-summands of Ii’,f’;,.

For p = 2 the group U(V) has 8 conjugacy classes of subgroups, which we list in
the following order:

{1},(4),(B),(C),(AB),(4,C),(B,C),U(V).
Let Pi,...,Ps be the corresponding transitive permutation modules, so that P; is
the free module and Py is the trivial module. Similarly, for p > 2, U(V') has 2p+ 5
conjugacy classes of subgroups, which we list as:
{1},(A),(AB),... ,(AB*71),(B),(C),
(A,C),(AB,C),... ,(AB*"1 C),(B,C),U(V).
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n k dim. M’ P P, Py P P, Py Py
1 0,1 13 0 1 0 0 0 1 1
2 0 91 1 3 3 1 0 0 1
2 1 65 1 1 2 0 3 0 2
2 2 71 1 2 2 0 1 1 2
2 3 73 1 2 2 0 1 2 1
2 4 o7 1 1 1 0 2 1 3
2 5 65 1 2 1 0 1 2 2
2 6 67 1 2 1 0 2 2 1
2 7 73 1 2 2 0 2 1 1
Table 8: A mazimal Syly(GL3(F3))-permutation submodule of I;’,’;;,
n k dim. M' | P P, | P, | Py | Py Py | Pris
1 0-3 31 0 1 0 0 0 1 1
2 0 651 3 5 5 1 0 0 1
2 1 527 3 1 4 0 5 0 2
2 2 447 2 3 4 0 3 1 2
2 3 467 2 4 4 0 2 1 2
2 4 587 3 4 4 0 1 1 2
2 5 591 3 4 4 0 1 2 1
Table 4: A mazimal Syls(GL3(F5))-permutation submodule of R’,ﬁ:,
Again we let Py,..., Pyp45 be the corresponding transitive permutation modules.

Tables 2, 3, and 4 describe maximal U(V)-permutation submodules M’ of I{',’f,a
in the cases p = 2, 3, and 5 respectively. These submodules were found using the
algorithm of Proposition 11, with the conjugacy classes of subgroups of U(V) listed
in the order given above. The permutation modules omitted from Tables 3 and 4
never arose as summands of any such M’. In Table 2 the dimension of M’ is omitted
since in these cases M’ was always the whole of f\",’f’g’, with dimension 22" 42" 4 1.
Table 4 in the case n = 2 is incomplete in the sense that not all values of k have
been considered. This is because each row required over 24 hours’ computing time.

Note that for fixed p and n, the modules K,‘s'3 tend not to be isomorphic to each
other, except when n = 1, and 1somorphic in pairs when p = 2. For each p, the ring
structure gives rise to a duality

Kby xKN7F R, CK)

1, n,3»

where N = p” — 1. This explains the observed fact that whenever I{ ,f,3 is a permu-

tation module, then K,Ixa_k = K,ﬁ";{.
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We find it intriguing that in the case p = 2 we have been unable to find pairs
(n, k) such that K} 5 is not a U(V)-permutation module. Note also that for each
n and p considered, 1{2'3 is a U(V)-permutation module, although it is easy to
show that usually K7, ; cannot be a GL(V)-permutation module by comparing the
information in the tables with the information given by Brauer characters. (This
technique may be used to prove the cases n = 2, 4 and 5 of Theorem 1(d), which
we leave as an exercise.)

Finally, in tables 5 and 6 we give just enough information to prove Theorem 4,
in the cases p = 3 and p = 5 respectively. That is, for each subgroup H of U(V)
of order p?, we give the dimension of a maximal H-permutation submodule M"
of K35. Only one of the subgroups (AB,C),... ,(AB?7!,C) is listed in these
tables, because these subgroups are all conjugate in GL(V') and so give rise to M'"s
of the same dimension. The programs were run separately for each of these groups
however, as a check.

Subgroup H dim. M"
(A,C) 69
(AB,C) 84
(B,C) 87

Table 5: A magimal H-permutation submodule of K} 5 (p = 3).

Subgroup H dim. M"
(4,C) 535
(AB,C) 628
(B,C) 643

Table 6: A mazimal H-permutation submodule of K3 5 (p=5).

Kriz’s example of a 3-group G such that K (2)*(BG) is not concentrated in even
degrees is the Sylow 3-subgroup of GL4(F3) [6]. This group is expressible as the
split extension with kernel F3 and quotient the Sylow 3-subgroup of GL3(F3), with
the natural action. There may be a connection between our result that K3, is
not a permutation module for the Sylow 3-subgroup of GL3(F3) and the fact that
K(2)*(BG) is not entirely even. If so, then Theorem 4 suggests if H is a split
extensions with kernel F3 and quotient a subgroup of GL3(F3) of order nine, then
possibly K(2)*(BH) is not entirely even. Such H include the extraspecial group of
order 3° and exponent 3.
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