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Abstract.

This paper extends our previous work [GKR]. We interpret the Harder – Narasimhan fil-
trations as random processes over a set of slopes (which plays the role of time) and discuss
the functorial properties of Harder – Narasimhan filtrations. We construct the finest re-
finement for t-stability on Abelian category (satisfying some natural finiteness conditions).
We introduce modular t-stability (whose semistable subcategories can be separated on the
level of K0) and give a complete description of finest and modular t-stabilities on a category
generated by an exceptional pair. The description of semistable classes is quite parallel
in this case to the geometric theory of continuous fractions. For categories generated by
exceptional collections of higher length we construct a huge family of modular t-stabilities
depending on a choice of irrational curve on appropriate Grassmannian.
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§1. Introduction.

1.1. t-stabilities. Recall (see [GKR]) that a t-stability on a triangulated category � is a to-
tally ordered collection Φ = {Πϕ}ϕ∈Φ of non empty strictly full extension closed1 subcategories
Πϕ ⊂ � such that

• the grading shift functor Πϕ 7→ Πϕ[1] is correctly acting on Φ by some non decreasing

bijection Φ
τ

∼

- Φ;

• Hom60(Πψ,Πϕ) = 0 for all ψ > ϕ ;

• each non zero object X ∈ � is fitted into a diagram (finite Postnikov tower):

Xϕ0
Xϕ1

Xϕn

X =F 0X �
p1

q 0-

F 1X �
p2

q 1--

F 2X �

-

· · · � F nX �
pn+1

qn-

F n+1X = 0

- (1)

in which all Xϕi ∈ Πϕi are non zero, ϕi < ϕi+1 for all i, and all the triangles are
distinguished.

The subcategories Πϕ ⊂ � are called semistable categories, indexes ϕ are called (generalized)
slopes, objects G ∈ Πϕ are called semistable objects of slope ϕ, and diagram (1) is called the
Harder – Narasimhan filtration of X w. r. t. t-stability Φ. There are several reasons for why
t-stabilities are interesting.

On the one hand, t-stability formalizes what one would like to understand as ‘functorial
filtration’ defined for all objects of a category. For example, canonical filtrations associated
with t-structures (e.g. canonical filtrations of derived categories), Beilinson-type decompo-
sitions w. r. t. semiorthogonal generators, the classical Harder – Narasimhan filtration and
Grothendieck’s filtration by torsion sheaves in categories of coherent sheaves in algebraic ge-
ometry — these all are particular cases of t-stabilities. Roughly speaking, t-stability is a way
for canonical presentation of objects as consequent extensions of some standard, semistable,
indecomposable (in some sense) objects.

On the other hand, the set of isomorphism classes of objects of a semistable category
gives a first coarse approximation to what one would like to understand as ‘moduli space’
of objects having some ‘prescribed topological type’. There is a hope that, if the semistable
categories are small enough (i. e. t-stability is sufficiently fine), then some rough topological
invariants of the corresponding moduli spaces could be read from the Hochschild complexes
of the corresponding semistable categories.

1.2. Fine and coarse t-stabilities. We say that t-stability Ψ is coarser than Φ (respectively,
Φ is finer than Ψ), if Ψ is obtained from Φ by decomposing Φ into a disjoint union of totally
ordered segments and a fusion of all semistable subcategories in each segment.

This relation provides the set of all t-stabilities with a partial ordering and can be used for
building new stability data from given ones. In particular, each t-stability Φ defines a family

1a subcategory � ⊂ � is called extension closed , if for any A, C ∈ � the existence of a distinguished
triangle A → B → C → A[1] forces B ∈ �
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of the t-structures2 on � that consists off all possible decompositions Φ = t
m∈Z

τmΦ̂, where

Φ̂ ⊂ Φ is any connected3 fundamental domain for the shifting automorphism Φ
τ- Φ from

n◦ 1.1. This is quite similar to Dedekind’s approach to the real numbers.

For example, the standard Mumford stability on the derived category of coherent sheaves
on elliptic curve C provides this category with the set of slopes Φ = t

m∈Z
τmQ̂, where Q̂ =

Q ∪ {∞}, (see [GKR]) and leads to a family of t-structures parameterized precisely by the
Dedekind reals and the cores of irrational t-structures in these family can be comprehend, at
request, as categories of ‘holomorphic bundles on non commutative torus’ (see [PS]).

Although the finest t-stabilities seem to be accumulating the most deep information about
a triangulated category, a good framework for handling them is rather non clear. The problem
is that any finest set of slopes is extremely huge even in the simplest cases. Say, the finest
refinement of the standard Mumford slope on elliptic curve contains the curve itself1. In
general case, the finest refinement of a given t-stability should encode, besides other things,
at least all possible Jordan – Hölder data on all Πϕ (see [J] to gain some insight about how
could it look like).

1.3.Modular t-stabilities and T. Bridgeland’s approach. A natural posterization level
for a set of slopes is to restrict ourself by collections of semistable categories Πϕ ⊂ � that
are uniquely (up to a shift) recovered from their images in the Grothendieck group K0(� ).
Let us say that a t-stability {Πψ}ψ∈Ψ on � is modular , if a coincidence of some classes of
semistable objects X ∈ Πψ , X ′ ∈ Πψ′ in K0(� ) always implies that Πψ′ = Πψ[2m] for some
m ∈ Z. A finest modular t-stability seems to be a good formalization for intuitive concept of
‘fixation of topological invariants2’ and should be considered as a starting point for building
the moduli spaces.

T. Bridgeland was the first who has introduced the concept of stability data in the context
of triangulated categories (see [Br1], [Br2]). He deals with modular t-stabilities of special
type, namely, Bridgeland’s slope set Φ ⊂ R is real and is considered together with a concrete
inclusion into R, which should be induced by an additive homomorphism3 Z : K0(� ) - C.
A good feature of this approach is that it leads to a nice finite dimensional topological spaces,
which parameterize pairs (Φ, Z). Moreover, the projection (Φ, Z) 7→ Z realizes such a space
as a topological cover of some domain inside Hom(K0(� ),C). But semistable categories
arising in this story are too coarse for serving deep geometry: say, Giesecker stabilities and
fine exceptional stabilities, which all are modular, lay outside Bridgeland’s theory. It seems
also that Bridgeland’s moduli spaces of pairs (Φ, Z) are mostly moduli of inclusions Φ ⊂ - R

(and, as a consequence, moduli of some t-structures coming from the same fine t-stability)
than the modules of fine semistable subcategories themselves: we can always take some fixed
family Φ of fine enough semistable categories (in fact, even the modular ones) in such a way
that the variation of Bridgeland’s central charge does nothing but serves inclusions Φ ⊂ - R

2the t-structures are just the coarsest t-stabilities, certainly
3i. e. such that for any ϕ1, ϕ2 ∈ Φ̂, ϕ1 < ϕ2, the whole segment [ϕ1, ϕ2]

def
= {ϕ ∈ Φ | ϕ1 < ϕ < ϕ2 } is also

contained in Φ̂
1see [GKR] for precise description of this t-stability)
2in fact, only ‘in the first order’ before the higher K-theory
3more precisely, a slope ϕ(X) of all objects from a given semistable subcategory Πϕ has to be equal to

tan(ArgZ), where Z : K0(� ) - C is the additive homomorphism in question
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together with appropriate decompositions of Φ into coarser subsets.

1.4.What is this paper about. We are sure that the set Φ of fine enough semistable
categories should be considered separately as a deep invariant of the category � . In §2 we
show that the Harder – Narasimhan filtration of X is in fact functorial in X being considered
as a result of some random processes in � over a time set Φ. This simple remark leads to a
decomposition of the identity functor Id� into a kind of ‘direct path integral’ over Φ, where
the set of semistable categories should be considered as a kind of ‘discrete measure’ along
these passes. We finish §2 with some speculations in this direction and with some program of
further investigations as well.

In §3 we prove the existence of the finest refinement of any t-structure on a category
satisfying some natural finiteness conditions. This result finalizes some considerations from
our previous paper [GKR] and indicates that there should be some canonical family of fine
slope sets and these family should be intrinsically recovered from the category itself.

The rest of paper deals with some precisely computable examples which illustrate some
of our ideas in very simple but not completely trivial demonstrative cases. In §4 we recall
what is category generated by an exceptional pair and in §5 and §6 we precisely describe the
set Φ of all finest modular semistable subcategories (which are the categories of semistable
Kronecker modules of given slope) and all t-structures obtained by their posterization (the
Abelian cores of this t-structures are categories of coherent sheaves on weighted projective
line). In §7 we make some remarks towards modular t-structures on categories generated by
exceptional collections of higher length. The set of fine semistable slopes becomes much more
complicated here and requires some ‘coherent’ ordering of all rational geodesic arcs inside a
triangle on a sphere. Such an ordering is given by an irrational convex curve.

1.5.Acknowledgments. We would like to thank the Max-Planck-Institute for hospitality
and excellent conditions for a work. We also bless A. Levin and D. Panov for useful discussions
which have clarified our understanding of orderings described in §7.

§2.Positive processes in triangulated categories.

2.1.Notations and terminology. Let us fix some infinite totally ordered set Φ called a
time (if you are ‘a physicist’) or a set of slopes (if you are ‘a mathematician’). Elements
ϕ ∈ Φ are called either moments of time or slopes. We consider Φ as a category with one

arrow ϕ1
� ϕ2 for each inequality ϕ1 < ϕ2. A functor Φ

F- � , to any other category � ,

is then a family of objects F ϕ ∈ � labelled by ϕ ∈ Φ and equipped with maps F ϕ �
←

F ϕψ
F ψ

for all ϕ < ψ.

A functor Φ
F- � is called an elementary process, if it has a finite image and is locally

constant and semicontinuous from the left. In other words, each elementary process F defines
and is uniquely defined by a finite chain of events ϕ0 < · · · < ϕn in Φ and a finite chain of
maps

F 0 �f0
F 1 �f1 · · · �fn F n (2)
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in � such that

F γ = F i , for ϕi−1 < γ 6 ϕi
←

Fαβ = fk ◦ fk+1 ◦ · · · ◦ fm , for ϕk−1 < α 6 ϕk & ϕm < β 6 ϕm+1

(assuming F n+1 = 0, ϕn+1 = +∞, ϕ−1 = −∞). An object F 0 (isomorphic to F ϕ for all
ϕ 6 ϕ0) is called a result of the process.

The elementary processes form a full subcategory � (Φ, � ) ⊂ � un (Φ, � ) in the category
of all functors Φ → � . The arrows in � (Φ, � ) are the natural transformations of functors:

an arrow F1

η- F2 is a family of maps1 F ϕ
1

ηϕ- F ϕ
2 in � such that for any α < β we have

a commutative square

F α
1

←

F αβ- F β
1

F α
2

ηα

? ←

F αβ- F β
2 .

ηβ

?

Certainly, sending a process F to its result F 0, we get a functor

� (Φ, � )
ev- � . (3)

2.2. Increments and positivity. Let � = � be a triangulated category. Then we can
associate with any elementary process F a collection of its cones Gϕ. By the definition,
Gϕ = 0 for ϕ 6∈ {ϕ0, ϕ1, . . . , ϕn}. For the events, that is, for ϕ = ϕi, a cone Gϕi is defined by
distinguished triangles

Gϕi � F ϕi � F ϕi+1 � Gϕi[−1] .

These non zero cones (defined up to non unique non canonical isomorphisms) are called
increments of the process. An elementary process F is called positive, if its increments satisfy
the conditions

Hom60(Gψ, Gϕ) = 0 for all ϕ < ψ (4)

Let for any ψ from some subset Ψ ⊂ Φ a full faithful (possibly, zero) subcategory Πψ ⊂ �
is given. Such a collection of subcategories is called positive, if Hom60(Πβ,Πα) = 0 for all
α < β. Given a collection of subcategories {Πψ}ψ∈Ψ ⊂ � , where Ψ ⊂ Φ, let us write

�
roΨ(Πψ) ⊂ � (Φ, � )

for a full subcategory of elementary processes whose events are in Ψ and increments belong
to Πψ.

2.2.1. LEMMA. For any positive collection of categories {Πψ}ψ∈Ψ the restriction of the

evaluation functor (3) onto a
�

roΨ(Πψ) ⊂ � (Φ, � ) gives a full faithful embedding:

�
roΨ(Πψ) ⊂

ev- � .

1labelled by ϕ ∈ Φ
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Moreover, the collection of increments Gψ ∈ Πψ for a process F ∈ �
roΨ(Πψ) with a result

X = F−∞ ∈ � is functorial in X.

Proof. Let X1, X2 ∈ � be the results of two processes F1, F2 with events in Ψ and incre-

ments in Πψ’s. We have to show that each map X1

f- X2 is uniquely lifted to a natural

transformation of processes F ψ
1

fψ- F ψ
2 accompanied by compatible transformation of in-

crements Gψ
1

gψ- Gψ
2 . We will construct such a lifting inductively by running over all the

consequent events from left to right. Let at some moment ψ at least one of the processes
undergoes a non trivial event. Then we have a diagram of distinguished triangles

F>ψ
1 [1] � Gψ

1
� F ψ

1
� F>ψ

1

Gψ
2

gψ

?
�
�...

.. f
′
....
.

F ψ
2

fψ

?
�
�..
.. f
′′
....

F>ψ
2

f>ψ

?
� Gψ

2 [−1]

(5)

where the middle solid vertical arrow is given by the inductive assumption and two dashed
vertical arrows should be constructed in such a way that the diagram becomes commutative.
This construction is essentially the same as in [BBD]: straightforward compositions f ′, f ′′

(dotted skew lines on diagram (5)) can be lifted to required maps gψ, f>ψ, because the
obstruction space (which is inside Hom0(F>ψ

1 , Gψ
2 ) in the both cases) vanishes. These liftings

are unique, because the ambiguity space (which is inside Hom−1(F>ψ
1 , Gψ

2 ) in the both cases)
vanishes as well. The both vanishing conditions

Hom0(F>ψ
1 , Gψ

2 ) = Hom−1(F>ψ
1 , Gψ

2 ) = 0

follow from the fact that F>ψ
1 is a result of a process whose increments Gϕ

1 have slopes ϕ > ψ,
i. e. satisfy Hom60(Gϕ

1 , G
ψ
2 ) = 0. �

2.2.2. COROLLARY. If categories {Πψ}ψ∈Ψ form a positive collection, then each Πψ is

extension closed, i. e. any distinguished triangle

A - B - C - A[1] (6)

with A,C ∈ Πψ forces B ∈ Πψ as well.

Proof. Let B be the result of a process F ∈ �
roΨ(Πψ). Then the distinguished triangle

(6) is lifted to the natural transformation of processes A - F - B, where A, B are
considered as trivial processes with the only event at ψ with the increments A, B respectively.
This extension leads for all α < ψ and β > ψ to the following commutative diagrams of
distinguished triangles:

A - F>α - C

A

wwwww
- F α

?
- C

wwwww

0
?

- Gα
?

- 0
?

0 - F>β - 0

0

wwwwww
- F β

?
- 0

wwwwww

0

wwwwww
- Gβ

?
- 0

wwwwww
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So, all Gα = 0 for α < ψ, F α = B for α 6 ψ, and all F β = Gβ = 0 for β > ψ. At the moment
ψ the above diagrams turn to:

0 - F>ψ - 0

A
?

- F ψ

?
- C

?

A

wwwww
- Gψ

?
- C

wwwww

which shows that B = F ψ = Gψ ∈ Πψ. �

2.3. Some speculations: t-stabilities, positive K-theory and integrable systems.

Two lemmas of the previous section show that a t-stability (as it was defined in n◦ 1.1) is
nothing but a positive collection of subcategories {Πϕ}ϕ∈Φ over appropriate slope set (=
time) Φ such that it contains all the shifts Πϕ[m] together with any Πϕ. Moreover, the Har-
der – Narasimhan filtrations of objects are automatically functorial w. r. t. the objects under
this approach. In this langauge, the refinement of t-stability means just a non decreasing
epimorphism Φ -- Ψ equipped with appropriate positive subdivision of positive subcate-
gories Πψ. In the next section we show how this ideology can be used to construct the finest
refinement of a given t-stability on an Abelian category.

It seems that one can associate with a given triangulated category � an intrinsic collection
of time sets Ψ such that each of out of them admits a natural positive collection of semistable
categories Πψ intrinsically coming with Ψ. For example, one can start with a positive nerve
of � , whose simpleces are elementary positive processes over [0, 1] like it was described in [Df]
for the case of ‘ordinary’ Waldhausen’s K-theory. Then one can equip this simplicial space
by a local system of subcategories Π ∈ � obtained by appropriate limit procedure. We hope
to clarify this picture in the next paper, which is in preparation now.

Another productive viewpoint on a positive collection of subcategories comes from the
theory of integrable systems on symplectic manifolds. A collection of increments of a positive
processes can be considered as a discrete measure, that is, a distribution of 1-forms supported
along subcategories Πϕ, which are analogs of special Lagrangian cycles in a sense of [Ty], i. e.
those cycles that the universal Maslov phase ψ is constant along them. A differentiable (=
non discrete) approximation of this story should be served by appropriate DG-enhancement
of � that emulates a choice of canonical bundle and a Levi – Civita connection on it. We are
planing to develop the corresponding DG-formalism in the next papers as well.

After this stream of consciousness, we spend the rest of the paper on some concrete
examples, which have putted the above ideology into our mind. All computations below will
be based rather on our initial understanding of t-stabilities explained in the introduction and
coming from [GKR].
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§3.Finest refinement of t-stabilities on Abelian categories.

3.1. t-stabilities that refine t-structures. In this section we construct the finest t-stabi-
lity on a triangulated category � which admits a non-degenerate t-structure whose Abelian
core � satisfies some natural finiteness conditions. In particular, this result will imply the
existence of the finest refinements for all modular t-stabilities and the standard t-stabilities
on derived categories of coherent sheaves on smooth algebraic curves as well as the derived
categories of quiver representations.

Our construction of the finest refinement splits into a series of reductions described in
[GKR, §1]. For convenience of reading, let us recall them here briefly.

3.2.Abelian stability data. First of all, there is the standard procedure (see [GKR], [Br1])
for inducing t-stabilities on � from stability data defined on � , that is, from a family
{Πϕ}ϕ∈Φ of extension closed subcategories Πϕ ⊂ � labelled by some totally ordered set Φ
such that

Hom� (Πϕ′,Πϕ′′) = 0 ∀ ϕ′ > ϕ′′

and any non zero object X ∈ � has the Harder – Narasimhan filtration

X = F 0X �⊃ F 1X �⊃ F 2X �⊃ · · · �⊃ F nX �⊃ F n+1X = 0,

G0

??
G1

??
G2

??
Gn

??

where Gi = F iX/F i+1X ∈ Πϕi and ϕi < ϕj for all i < j.
In its own turn, the Abelian stability data can be constructed via [Ru] by equipping the

set of objects Ob� with a pre-ordering that satisfies the following conditions:

• (the seesaw property) the middle term of any exact sequence of nonzero objects

0 - A - B - C - 0

either lays strictly between A, C, or1 A ∼ B ∼ C.

either A < B ⇔ A < C ⇔ B < C,

or A > B ⇔ A > C ⇔ B > C,

or A = B ⇔ A = C ⇔ B = C.

• (finiteness conditions) there are no infinite proper chains:

A1 ⊃ A2 ⊃ A3 ⊃ . . . , with A1 6 A2 6 A3 6 . . .

A1 ⊂ A2 ⊂ A3 ⊂ . . . ⊂ A, with A1 < A2 < A3 < . . .

A1 ⊂ A2 ⊂ A3 ⊂ . . . ⊂ A, with A1 > A2 > A3 > . . .

1we write ‘∼’ for an equivalence relation on � induced by the preordering in question, that is, A ∼ B

means the both A 6 B and A > B
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The corresponding stability data are defined now as follows. Call an object A ∈ � R-
semistable (resp. R-stable), if B 6 A (resp. B < A) for each proper subobject B ⊂ A. Write
Φ for a set of equivalence classes of objects of � w. r. t. the preorder in question and for each
ϕ ∈ Φ denote by Πϕ the set of all semistable objects in the class ϕ. Rudakov has proven in
[Ru] that

3.2.1. LEMMA. Subcategories {Πϕ}ϕ∈Φ provide � with the Abelian stability data. These

stability data have the following extra properties:

(1) a semistable subcategory Πϕ is Abelian;

(2) for each ϕ ∈ Πϕ there exists a stable object A ∈ Πϕ;

(3) a stable object of a semistable subcategory is irreducible in the sense that it has no

proper subobject of the same subcategory;

(4) two stable objects of Πϕ either are isomorphic or have no nonzero morphisms from one

to another;

(5) each nonzero object of Πϕ has a finite Jordan – Hölder with stable quotients.

(6) a semistable subcategory Πϕ is Noetherian and Artinian.

We call the stability data of this sort R-stability for short.
A preorder required to produce R-stability can be defined using the vector-slope technique.

Namely, given an ordered collection1 of integer additive functions on � : l, {di}i∈I such that
for any X ∈ � we have di(X) = 0 for all i outside some finite subset I(X) ⊂ I and l(X) > 0
for each non zero object X ∈ � , let us form a slope function λ on � by prescription

λ(X) =
1

l(X)

∑

i∈I

di(A)A

So, the slopes are vectors with rational coordinates. Comparing them lexicographically, we

define a pre-ordering on � by prescription X < Y
bydef⇐⇒ λ(X) < λ(Y ). It is easy to see that

if � is Noetherian and Artinian2, then this preorder provides � with R-stability.

3.3.Main theorem. The rest of this section is devoted to the proof of the following theorem.

3.3.1. THEOREM. Any R-stability {Πϕ}ϕ∈Φ on Abelian category � has a finest refinement.

Proof. We a going to construct an infinite chain

Φ = L0 � L1 � · · · � Lk � Lk+1 · · ·

of consequent refinements of the given stability data such that

Lk-stable object is Lk+1-stable;

Lk+1-semistable object is Lk-semistable.
(7)

1maybe infinite
2i. e. for each A ∈ � there are no infinite proper chains A ⊃ A1 ⊃ A2 ⊃ . . . , A1 ⊂ A2 ⊂ . . . ⊂ A
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After that we consider the set Stab of all Lk-stable objects (for all k ∈ Z>0) and equip it with
total order such that if A,B ∈ Stab and A > B, then Hom(A,B) = 0. Finally we give the
finest stability data on � with Ψ = Stab as the slope set.

The first refinement L1 is constructed as follows. Let us fix some ϕ ∈ Φ. By our assump-
tions, the corresponding semistable category Πϕ is of finite length. We denote the length
function on Πϕ by l0. This is non-negative additive function vanishing only at X = 0. Write
Stab0

ϕ for the set of all Φ-stable objects in Πϕ. Then for any A,B ∈ Stab0
ϕ either A ' B or

Hom� (A,B) = Hom� (B,A) = 0 .

Let us fix some total order on each set Stab0
ϕ. Then, combining these orders with the order

on the set Φ, we get a total order on the set Stab0 =
⋃
ϕ∈Φ

Stab0
ϕ such that

∀ A,B ∈ Stab0 A > B ⇒ Hom� (A,B) = 0 .

Further, for each A ∈ Stab0
ϕ let

degA : Πϕ
- Z>0

be an additive function that takes X to the number of Jordan–Holder quotients of X isomor-
phic to A. For each nonzero X ∈ Πϕ we introduce the slope function λ1

ϕ(X) by the following
rule

λ1
ϕ(X) =

∑

A∈Stab0
ϕ

degA(X)

l0(X)
· A .

Since an object X ∈ Πϕ has the finite Jordan – Hölder filtration, we see that this sum is
actually finite and equals

λ1
ϕ(X) =

n∑

i=1

degAi(X)

l0(X)
·Ai ,

where Simpl1(X) = {A1, A2, . . . , An} is the set of all pairwise non-isomorphic stable quotients
of X.

Let X, Y ∈ Πϕ and {A1, A2, . . . , An} = Simpl1(X) ∪ Simpl1(Y ). Without loss of gener-
ality, we can assume that A1 > A2 > · · · > An. We rewrite the slopes λ1

ϕ(X) and λ1
ϕ(Y ) as

follows:

λ1
ϕ(X) =

(
degA1

(X)

l0(X)
·A1,

degA2
(X)

l0(X)
·A2, . . . ,

degAn(X)

l0(X)
· An

)

λ1
ϕ(Y ) =

(
degA1

(Y )

l0(Y )
·A1,

degA2
(Y )

l0(Y )
· A2, . . . ,

degAn(Y )

l0(Y )
· An

)

Comparing them lexicographically, we get an R-stability on the Abelian category Πϕ. Now
we apply this procedure to each subcategory Πϕ and consider new vector slope λ1 = (ϕ, λ1

ϕ)
on whole the category � :

λ1(X) =

{
(ϕ(X), λ1

ϕ(X)), if X ∈ Πϕ,
(ϕ(X), 0), if X /∈

⋃
ϕ∈Φ

Πϕ.
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It produces the next R-stability L1 refining L0 = Φ. Note that preorder on � induced by the
slope function λ1 is compatible with the initial one coming with R-stability: λ1(A) < λ1(B)
for all A < B.

For better understanding what was really happening during the previous refinement, con-
sider a toy example: let an object X ∈ Πϕ have λ0(X) = 2, then there are three possibilities
for the Jordan – Hölder filtration of X: either X  (A,A), or X  (A,B) with A > B, or
X  (B,A) with A > B. Clearly, in the first case λ1(X) = (ϕ,A) and any proper subobject
A ⊂ X has λ1(A) = (ϕ,A). Therefore, X is L1-semistable but is not L1-stable. In the second
case λ1(X) = (ϕ, A

2
, B

2
). If the exact triple 0 - B - X - A - 0 does not split, then

the object X has a unique nontrivial subobject, namely B with λ1(B) = (ϕ, 0, B
1
) < λ1(X).

Hence X is λ1-stable. In the last case λ1(X) = (ϕ, A
2
, B

2
), but X has the subobject A with

λ1(A) = (ϕ,A, 0) > λ1(X). So, such X is unstable.
Returning to the proof, write L1

ϕ for the image of the slope function λ1
ϕ, denote by Stab1

λ1
ϕ

the set of λ1-stable objects in Πλ1
ϕ

whose λ1-slope equals λ1
ϕ, and fix a total order on each

Stab1
λ1
ϕ
. Then we get a totaly ordered set Stab1 =

⋃
ϕ∈Φ

⋃
λ1
ϕ∈L

1
ϕ

Stab1
λ1
ϕ
. We have

∀ A,B ∈ Stab1 A > B ⇒ Hom� (A,B) = 0 .

Moreover, the stabilities L0 and L1 satisfy condition (7). Hence Stab0 ⊂ Stab1.
Now suppose that we have a finite chain of R-stabilities L0 � L1 � · · · � Lk satisfying

condition (7) and such that for each i > 0 the stability Li is induced by a slope function λi

and has the slope set Li. Then we get also a chain of totaly ordered sets Stab0 ⊂ Stab1 ⊂
· · · ⊂ Stabk of λi-stable objects of fixed slope λi such that A > B ⇒ Hom(A,B) = 0 for all
A,B ∈ Stabk. We are going construct a next R-stability Lk+1 extending this chain.

For each Lk-semistable Abelian subcategory Πλk and any non zero object X ∈ Πλk let
lk(X) be a length of the Jordan – Hölder filtration of X with λk-stable quotients in Πλk .
Further, for each λk-stable object A ∈ Πλk define an additive function degA on Πλk whose
value at an object X ∈ Πλk is equal to the number Jordan – Hölder quotients of X isomorphic
to A. Let us form a new vector slope function λk+1

λk
on Πλk by prescription

λk+1

λk
(X) =

∑

A∈Stabk
λk

degA(X)

lk(X)
· A,

where Stabkλk = Stabk ∩ Πλk , and extend it onto the whole of � as

λk+1(X) =

{
(λk(X), λk+1

λk
(X)), if X ∈ Πλk ,

(λk(X), 0), if X /∈
⋃

λk∈Lk

Πλk .

Ordering the values of λk+1(X) lexicographically, we get the next R-stability Lk+1 on � ,
which is finer than Lk and satisfies (7). Now write Stabk+1

λk+1 for a set of all λk+1-stable objects

in Πλk+1, fix an arbitrary total order on it, and consider a totaly ordered set Stabk+1 =⋃
Stabk+1

λk+1. Of course, A > B ⇒ Hom(A,B) = 0 for all A,B ∈ Stabk+1.
The inductive process just described produces an infinite chain R-stabilities

L0 � L1 � · · ·Lk � · · ·
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on � and a chain of totaly ordered sets of stable objects Stab0 ⊂ Stab1 ⊂ · · · ⊂ Stabk ⊂ · · · .
The finest stability data L we are constructing is nothing but the projective limit of Li’s.
More precisely, take Stab =

⋃
k Stabk as the slope set of our the finest stability. This is a

totaly ordered set such that A > B ⇒ Hom(A,B) = 0 for all A,B ∈ Stab. The semistable
subcategory ΠA of slope A ∈ Stab is defined as with ΠA = 〈A〉.

To check that L really serves the stability data, it remains to construct a finite Harder –
Narasimhan filtration for any non zero object X ∈ � . As the first approximation to it, take
the Harder – Narasimhan filtration of X w. r. t. L0. Then replace all quotients Xi 6∈ Stab0

by their Harder – Narasimhan filtrations w. r. t. L1, after that replace there all L2-unctable
quotients e. t. c.This procedure is finite, because all Xi are of finite length. �

3.3.2. COROLLARY. Let {Πψ}ψ∈Ψ be a t-stability a triangulated category � . Suppose

that there exist a subset Φ ⊂ Ψ and a t-structure (� >0, � 60) with the core � such that

(1) the restriction of {Πψ}ψ∈Ψ onto � gives there R-stability data {Πϕ}ϕ∈Φ;

(2) for each ψ ∈ Ψ there exist ϕ ∈ Φ and n ∈ Z such that Πψ = Πϕ[n];

Then there exists a finest t-stability {Πψ}ψ∈Ψ that refines Ψ � Φ.

§4.Toy example: category
�

h generated by an exceptional

Hom-pair.

4.1.Preliminary remarks and notations. Let
�

h be C-linear triangulated category with
finite dimensional Hom’s1 generated (as a triangulated category) by a pair of objects (E0, E1)
such that

Hom0(E0, E0) = Hom0(E1, E1) = C , (8)

Homk(E1, E0) = 0 for all k ∈ Z , (9)

Homk(E0, E0) = Homk(E1, E1) = Homk(E0, E1) = 0 for all k 6= 0 , (10)

Hom0(E0, E1) = H , dimH = h > 2 . (11)

We call any such a pair (E0, E1) an exceptional Hom-pair .
It is well known (see [Bo1], [Bo2]) that

�

h is equivalent to the bounded derived category of
Kronecker modules over H∗. By the definition, such a module is a representation of the quiver
with two vertices [0], [1] and h-dimensional space of arrows [0] → [1], which is isomorphic to

H∗. Equivalently, a Kronecker module is given by a linear map V1

ψ- H ⊗ V2, where V1, V2

are arbitrary vector spaces. Actually, only the number of arrows, that is, dimH is essential

here, because any linear isomorphism H1

∼- H2 induces an equivalence of the categories of
the Kronecker modules over H∗1 and over H∗2 . In particular, the categories of the Kronecker

1this means that Hom•(X, Y ) = ⊕
k∈Z

Homk(X, Y ) = ⊕
k∈Z

Hom�
h
(X, Y [k]) is a finite dimensional graded

vector space over C for any pair of objects X , Y
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modules over H and over H∗ are equivalent. The equivalence between
�

h and the derived

category of the Kronecker modules takes two irreducible 1-dimensional modules C
0- H⊗0

and 0
0- H ⊗ C to E0 and E1[−1] respectively.

For d = 2 the category
�

2 is also identified with the bounded derived category of coherent
sheaves on the projective line P1 via taking E0, E1 to be the invertible sheaves � , � (1).

We write M for the lattice K0(
�

h) ' Z2 equipped with the (non symmetric) bilinear form

χ ( [E], [F ] )
def
=

∑

k∈Z

(−1)k dim Homk(E, F ) .

If we write e0, e1 for the classes [E0], [E1], then the scalar product of x = x0e0 + x1e1 and
y = y0e1 + y1e1 is written as

χ (x, y ) = x0y0 + h x0y1 + x1y1 .

4.2.Orthogonal geometry of M . It is a paraphrase of the Peell equation theory that all
the vectors e ∈ M with χ ( e, e ) = 1 can be arranged into two chains {ei}i∈Z and {−ei}i∈Z

formed by consequent integer points laying on two distinct branches of the hyperbola1

x2 + h xy + y2 = 1 (12)

(see fig. A). All ei’s are recovered recursively from any two consequent elements e0, e1 by the
equation

ei−1 + ei+1 = h ei (13)

(we refer to [GoKu] for the details).
Any triple of consequent elements ei−1, ei, ei+1 provides M with a pair of dual integer

e

e

e

e

e
-e

e

-e

1

0

2

3

-2
1

-1

0

positive
region

( )>0c v,v

negative
region

( )<0c v,v

x

y

Fig. A. The unit vectors of M .

semiorthonormal bases

{e, f} = {ei, ei+1} and {f∨, e∨} = {ei−1, ei}

satisfying the properties χ ( e, e∨ ) = 1 , χ ( f, f∨ ) =
−1 , χ ( e, f∨ ) = χ ( f, e∨ ) = 0 . In particular, the
coordinates of any vector v = x e + y f can be com-
puted as x = χ ( v, e∨ ), y = −χ ( v, f∨ ). Moreover,
all the semiorthonormal bases2 (e, f) for M are ex-
hausted by ones of the form (e, f) = (±ei,±ei+1).
The Gram matrix of such a basis always equals

(
1 ±h
0 1

)
,

where the plus sign appears for the basises (ei, ei+1)
and (−ei,−ei+1) formed by consequent unit vectors
laying at the same branch of hyperbola (12). It is

1for h = 2 this hyperbola degenerates to a pair of lines x + y = ±1
2i. e. such that χ ( e, e ) = χ ( f, f ) = 1 and χ ( f, e ) = 0
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clear from fig. A that for any positive vector v ∈M (i. e. such that χ ( v, v ) > 0) there exists
a unique base of this form (i. e. with positive Gram matrix) such that v expands through this
basis with positive coefficients.

4.3.Exceptional objects of
�

h. It follows immediately from the previous arithmetical
analysis that all exceptional objects3 of

�

h are exhausted by Ei[m], i,m ∈ Z, which are the
shifts of consequent left and right mutations of the initial exceptional generators E0, E1.

Recall, that the mutations in exceptional pair (E, F ) are defined by the distinguished
triangles

LEF - Hom•(E, F ) ⊗ E - F - LEF [1] ,

RFE[−1] - E - Hom× •(E, F ) ⊗ F - RFE ,
(14)

induced by the canonical contraction maps

Hom•(E, F ) ⊗ E - F ,

E - Hom× •(E, F ) ⊗ F .

It is easy to check (see [GoKu, §2]) that (LEF,E) and (F,RFE) are exceptional Hom-pairs
generating

�

h as soon as (E, F ) is such a pair. Furthermore, the left and right mutations are
inverse to each other.

So, if we put recursively Ei−1
def
= LEiEi+1, Ei+2

def
= REi+1

Ei for all i ∈ Z starting from i = 0,
then we get a series of exceptional objects whose classes ei = [Ei] = [Ei[2m]] ∈ M coincide
with the unit vectors sitting on the right upper branch of the hyperbola (12) considered above.
The odd shifts Ei[2m+ 1] are sitting on the down left branch.

It is easy to check that the Hom-spaces between exceptional objects Ei (forming one orbit
w. r. t. the mutations (14)) are controlled as follows:

Hom0(Ei, Ej) 6= 0 , iff i 6 j ,

Hom1(Ei, Ej) 6= 0 , iff i > j + 1 ,

Homk(Ei, Ej) = 0 ∀ i, j for k 6= 0, 1 .

(15)

This implies immediately the following inequalities between slopes of exceptional objects
(assuming that they are semistable).

4.3.1. LEMMA. If i 6 j, then ϕ(Ei) 6 ϕ(Ej) for any t-stability Φ such that Ei, Ej are

Φ-semistable.

�

4.4.Orthogonal decompositions in
�

h . It is a consequence of the Beilinson type theorem
for an exceptionally generated triangulated category (see [GoKu, §2]) that any object X of

�

h is fitted into distinguished triangle

X - ⊕
i
U i

0 ⊗ E0[−i]
δ- ⊕

i
U i

1 ⊗ E1[−i] - X[1] , (16)

which is functorial in X and has

U i
0 = Homi+1(∨E1, X) = Hom−i(X,E∨1 )∗ ,

U i
1 = Homi+1(∨E0, X) = Hom−i(X,E∨0 )∗ ,

(17)

3i. e. E such that Hom•(E, E) is the one dimensional algebra C situated at degree 0
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where ∨E1 = RE1
E0 = E2 , ∨E0 = E1 , E∨1 = E0 , E∨0 = LE0

E1 = E−1. Usually, the triangle
(16) is abbreviated to

X - U •0 ⊗ E0
- U •1 ⊗ E1

assuming that U •0 , U
•

1 are graded vector spaces and the tensor product of a graded vector
space with an object is defined as V • ⊗ E = ⊕

k∈Z
V k ⊗ E[−k].

Since (E0, E1) is an exceptional Hom-pair, the map δ in (16) splits into the direct sum of
maps

U−i0 ⊗ E0[i]
δi- U−i1 ⊗ E1[i] .

Hence, any object X canonically splits into a direct sum X = ⊕
i∈Z

Xi, where Xi comes from

the distinguished triangle

Xi
- U−i0 ⊗ E0[i] - U−i1 ⊗ E1[i] - Xi[1] . (18)

We will call such Xi a pure object of level i w. r. t. the base (E0, E1). The direct computation
using the orthogonality conditions (8)–(10) shows that Hom0(Xi, Xj) can be non zero only if
j − i = 0, 1.

So, if we write
�

h
6n for a full extension closed subcategory of

�

h generated by all
pure objects of level1 i > n and write

�

h
>n for similar subcategory spanned by all pure

objects of level i 6 n, then the pair (
�

h
60,

�

h
>1) provides

�

h with a t-structure whose core
�

h
0 =

�

h
60 ∩ �

h
>0 consists of all X in

�

h fitted into distinguished triangle

X - V0 ⊗ E0
- V1 ⊗ E1

- X[1]

Since the morphisms between such objects are represented by morphisms of triangles

Y0
- V0 ⊗ E0

- V1 ⊗ E1

X0

f
6

- U0 ⊗ E0

f0⊗id
6

- U1 ⊗ E1

f1⊗id
6

the category
�

h
0 is nothing but the Abelian category of the Kronecker modules over H∗

(in particular, the homological dimension of
�

h
0 equals 1, because of Homk(X, Y ) = 0 for

k 6= 0, 1 if X, Y ∈ �

h
0).

4.4.1. LEMMA. Let X be an object of
�

h such that its class x = [X] ∈M is positive, i. e.

χ ( x, x ) > 0. Then X is indecomposable iff X is exceptional.

Proof. Since χ (x, x ) > 0, there are two integer points on the hyperbola (12), say e0, e1,
such that x = v0e0 + v1e1, where the integer coefficients v0, v1 have the same sign or, more
precisely, satisfy inequality v0 · v1 > 0. On the other hand, since X is indecomposable, only
one out of its components (18) is non zero, i. e. after appropriate shift X → X[m] we can
assume that the orthogonal decomposition of X through E0, E1 is given by distinguished
triangle

X - V0 ⊗ E0
- V1 ⊗ E1

- X[1]

for some (non graded) vector spaces V0, V1. Hence, in M we have v0 = dim V0, v1 = − dimV1,
which is compatible with v0 ·v1 > 0 only if one of V0, V1 vanishes. Since X is indecomposable,
the remaining non zero space Vi = C. �

1inconsistency of inequalities comes from the traditional definition of t-structures, see [BBD], [GeMa]
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§5.Exceptional t-stability on
�

h.

5.1.Definition of exceptional t-stability. Let (F0, F1) be an exceptional pair generating
�

h . Then there is an exceptional t-stability {Πε} on
�

h constructed as follows (see [GKR] for
details). The set of slopes {ε} is in 1–1 correspondence with the set of exceptional objects of
the form Fi[k], where i = 0, 1, k ∈ Z. It is totally ordered by prescriptions F0[k] < F1[m] for
all m, k ∈ Z and Fi[k] < Fi[m] for all k < m and each i = 0, 1. For a slope ε corresponding to
Fi[k], the semistable category Πε is equivalent to the category of vector spaces and consists of
all objects of the form V ⊗ Fi[k], where V is (non graded) vector space. In other words, the
semistable objects of the exceptional stability built from (F0, F1) are exhausted by the direct
powers Fi[k]

⊕d.

Actually, in [GKR] some collection of such exceptional t-stabilities was constructed for a
fixed exceptional pair (F0, F1). They all have the same set of the semistable subcategories
and differ from each other only in a choice of the total ordering on this set. This ordering is
described by an integer p ∈ [1, +∞] and lines up the exceptional objects as

· · · < F1[−2] < F0[p− 1] < F1[−1] < F0[p] < F1 < F0[p + 1] < F1[1] < F0[p+ 2] < · · ·

We will consider here only one ordering corresponding to p = +∞ and described above.

5.2.Characterization of the exceptional t-stabilities. The rest of this section is devoted
to a proof of

5.2.1. PROPOSITION. Let Ψ be a t-stability on
�

h such that some exceptional object E
is not Ψ-semistable. Then, up to a choice of the linear ordering on the set of slopes, Ψ is an

exceptional t-stability built from some exceptional pair (F0, F1).

Proof. We fix the exceptional base (E0, E1) with E1 = E and let the Harder – Narasimhan
filtration of E1 start with an exact triangle

Y

E1
�

-

X ,

- (19)

where Y is Ψ-semistable and Hom60(X, Y ) = 0. Let Y = ⊕Yi be the decomposition into
direct sum of pure objects (18) w. r. t. the exceptional base (E0, E1). Then all Yi except for
Y1 should be zero. Indeed, Hom0(E1, Yi) = 0 for i 6= 1 implies that Yi[−1] is a direct summand
of X and this leads to Hom−1(X, Y ) 6= 0.

So, Y is pure of level 1 and fits in the distinguished triangle

Y - U0 ⊗ E0[1] - U1 ⊗ E1[1] .
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Then, by the octahedron axiom, X fits into diagram

X - U0 ⊗ E0
- U ′1 ⊗ E1

- X[1]

U0 ⊗ E0

www
- U1 ⊗ E1

6

- Y

6

E1

6

======E1

f
6

X

6

(20)

and is pure of level 0. In particular, Homi(X,X) = Homi(Y, Y ) = 0 for i 6= 0, 1.

Let us show that Hom1(X,X) = Hom1(Y, Y ) = 0 as well (this implies, in particular, that
the both are positive, i. e. χ (X, X ) > 0, χ (Y, Y ) > 0). It follows from the first row of (20)
that Hom1(X,E1) = 0. So, applying Hom(X, ∗) to the right column of (20), we get exact
triangle

Hom0(X, Y ) - Hom1(X,X) - Hom1(X,E1) ,

which shows that Hom1(X,X) = 0. Similarly, Hom1(E1, Y ) = 0 by the middle row of (20)
and, taking Hom(∗, Y ) of the right column in (20), we get the exact triangle

Hom0(X, Y ) - Hom1(Y, Y ) - Hom1(E1, Y ) ,

which shows that Hom1(Y, Y ) = 0.

Now it follows from asphericity1 and positivity of X, Y that all their indecomposable
direct summands are positive as well. Hence, by n◦ 4.4.1, X and Y are direct sums of some
exceptional objects. Applying the asphericity once more, we see that X = Ei[m]⊕u0⊕E⊕u0

i+1 [m]
and Y = Ej[k]

⊕v0 ⊕ E⊕v0j+1 [k] for some integer i, j, k, m. Taking into account the conditions

Hom0(X,E1) 6= 0, Hom0(E1, Y ) 6= 0, and Hom60(X, Y ) = 0, we see that either m = 0, k = 1,
i 6 1, j 6 −1 or m = −1, k = 0, i > 2, j 6 0. Since Hom−1(En, Em[1]) 6= 0 for m > n and
Hom0(En, Em[1]) 6= 0 for m 6 n− 2, there are only two possibilities for X, Y :

either X = U ⊗ Ei , Y = V ⊗ Ei−1[1] , where i < 1 (21)

or X = U ⊗ Ei[−1] , Y = V ⊗ Ei+1 , where i > 1 . (22)

In particular, X, Y [−1] are the multiplicities of consequent exceptional objects forming an
exceptional Hom-pair.

Let us assume that the first case (21) takes place and prove that Ψ should be the ex-
ceptional semistability build from the pair (Ei−1, Ei). Indeed, all the twists Ei−1[k] are Ψ-
semistable, because of Ψ-semistablity of Y . If we show that X is also Ψ-semistable, then
we get Ψ-semistablity of all twists Ei[m] as well. Since ψ(Ei[m]) > ψ(Ei−1[k]) for all m, k
(because of our ordering agreement from n◦ 5.1), the t-stability Ψ has to be a refinement of
the exceptional t-stability build from the pair (Ei−1, Ei) and we are done. So, it remains to
check that X is Ψ-semistable.

1we will call an object X aspherical , if Homi(X, X) = 0 for all i 6= 0
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To this aim, let us continue the Harder – Narasimhan filtration (19) by the next triangle,
which destabilizes X:

Y Y ′

E1
�

-

X �

-

-

X ′
-

and satisfies
Hom60(X ′, Y ′) = Hom60(X ′, Y ) = Hom60(Y ′, Y ) = 0 . (23)

But the right triangle here is just a direct sum multiplicity of the first triangle of the Harder –
Narasimhan filtration for Ei:

Y ′

X �

-

X ′
- =




Y ′′

Ei �

-

X ′′
-




L
N

which is completely similar to (19). So, by the same reason as above,

either X ′′ = U ′′ ⊗ Ej , Y
′′ = V ′′ ⊗ Ej−1[1] or X ′′ = U ′′ ⊗ Ej[−1] , Y ′′ = V ′′ ⊗ Ej+1 .

But this contradicts to orthogonality conditions (23), because of the Hom-relations (15) be-
tween the exceptional objects of the same level. So, X should be stable. The second alternative
case (22) is handled quite similarly. �

§6.Modular t-stability on
�

h.

6.1.Definition of modular t-stability. Let us say that a t-stability {Πψ}ψ∈Ψ on
�

h is
modular , if all exceptional objects are semistable of distinct slopes and the slope function is
factorized through K0(

�

h) in the following sense: if the images of semistable objects X ∈ Πψ ,
X ′ ∈ Πψ′ in K0(

�

h) coincide, then Πψ′ = Πψ[2m] for some m ∈ Z.

6.2.Example: µ-stability. An example of modular t-stability comes from quiver represen-
tations theory. Let us fix an exceptional pair E0, E1 and consider the associated t-structure
on

�

h described in n◦ 4.4. Its core
�

h
0 =

�

h
60 ∩ �

h
>0 consists of all X in

�

h fitted into
distinguished triangle

X - U0 ⊗ E0
- U1 ⊗ E1

- X[1] ,

where U0, U1 are (non graded) vector spaces. An ordered pair of additive functions

(u1, u0) = (dimU1, dimU0)

defines a slope

µ =
u0

u1

∈ Q̂
def
= Q>0 ∪ {∞}
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on the Abelian category � . In T. Bridgeland’s terminology [Br1], this slope corresponds to
the central charge

Z = −u0 + iu1 : K0(
�

h) - C .

centered at
�

h
0. An object X of

�

h
0 is called µ-semistable, if µ(Y ) 6 µ(X) for all proper

subobjects Y ⊂ X in
�

h
0. If for all proper subobjects Y ⊂ X the strict inequality µ(Y ) <

µ(X) holds, then X is called µ-stable. The semistable subcategory Πµ ⊂ � consists of all
semistable objects X of slope µ. This stability data on

�

h
0 is extended a t-stability on

�

h in
the standard way (see [Br1], [GKR]) by declaring {Πµ[m]}µ∈bQ,m∈Z

to be the set of semistable
subcategories ordered by Πµ[m] < Πµ[n] for m < n. We call this t-stability on

�

h the µ-
stability . The fact that all exceptional objects are µ-stable goes back to J.-M. Drezet (see
[Dz]).

6.2.1. LEMMA. All exceptional objects of
�

h are µ-stable.

Proof. Since all the exceptional objects of
�

h are exhausted by shifts of exceptional objects
sitting in the core

�

h
0, that is by Ei with i 6 0 and Ej[−1] with j > 1, it is enough to check

only the semistability of these objects. These exceptional objects are obtained by consequent
left and right mutations in the pair E0, E1[−1]. In terms of the Abelian category

�

h
0, the

first pair of mutations is given by the universal extensions

0 - E1[−1] - E−1
- Ext1

�

h
0 (E0, E1[−1]) ⊗ E0

- 0 ,

0 - Ext1
�

h
0 (E0, E1[−1])∗ ⊗ E1[−1] - E2

- E0
- 0

(24)

and all the other mutations are given by the universal exact triples

0 - Ei−1
- Hom�

h
0 (Ei, Ei+1) ⊗ Ei - Ei+1

- 0 , for i 6 −1 ,

0 - Ei−1[−1] - Hom�

h
0 (Ei−1, Ei)

∗ ⊗ Ei[−1] - Ei+1[−1] - 0 , for i > 2 .
(25)

Under the identification of
�

h
0 with the category of the Kronecker modules over

H∗ = Hom(E0, E1)
∗

the initial objects E0, E1[−1] go to the irreducible 1-dimensional modules of the dimensions
(1, 0) and (0, 1), which are clearly µ-stable. Further, the exceptional objects E−1, E2[−1],
obtained by the mutations (24), go to the modules of traceless and diagonal endomorphisms
of H:

ad(H) ⊂ - H ⊗H∗ ,

C · IdH ⊂ - H ⊗H∗ ,

which are clearly µ-stable as well. All the other mutations (25) go to the standard reflections
of these semistable modules in the category of quiver representations1. Recall (see details in

[Dz]) that such the reflection takes a µ-stable module presented by a linear map U ⊂
f- H⊗V

(necessary injective) to a module presented by the linear map coker(f)∗ ⊂ - H∗⊗V ∗ followed

by an isomorphism H∗⊗V ∗ ∼- H⊗V ∗ induced by some fixed linear isomorphism H
∼- H∗.

It is well known that such the reflection preserves µ-stability. �

1taking the source vertex to the target one and vice versa
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6.3.General remarks on modular t-stability. Let Ψ be a modular t-stability on
�

h.
Then all Ψ-semistable objects are pure and their slopes strictly increase with the level. Indeed,
in the decomposition of a semistable object X into the direct sum X = ⊕iXi, of pure objects,
all Xi should be semistable of the same slope ψ(Xi) = ψ(X). But distinguished triangle (18)

U1 ⊗ E1[i− 1] - Xi
- U0 ⊗ E0[i]

implies inequality ψ(E1[i− 1]) < ψ(Xi) < ψ(E0[i]).
Further, if X, Y are Ψ-semistable with slopes ψ(X) < ψ(Y ) and an object Z is fitted into

destabilizing distinguished triangle

X - Z - Y - X[1]

then in the Harder – Narasimhan decomposition Z  (G0, G1, . . . , Gn), of Z, the slopes of
all factors lay between the slopes of X, Y :

ψ(X) 6 ψ(G0) < ψ(G1) < · · · < ψ(Gn) 6 ψ(Y ) , ∀ i ,

because the opposite inequalities: either ψ(G0) < ψ(X) or ψ(Gn) > ψ(Y ), would prohibit
non zero maps Z - G0 and Gn

- Z coming from the Harder – Narasimhan filtration.
The rest of this section is devoted to the proof of the following

6.3.1. PROPOSITION. A modular t-stability on
�

h is unique and coincides with µ-stability

described in n◦ 6.2.

The proof will consist of two steps. First of all, in n◦ 6.4, we completely describe all classes
m ∈M = K0(

�

h) that are realized by µ-semistable objects. This description is quite parallel
to the geometric theory of continuous fractions and is of some own interest. Then, in n◦ 6.5,
we combain this description with the above remarks in order to compare the µ-stability with
an arbitrary modular t-stability Ψ and verify that they should have the same collection of the
semistable subcategories ordered in the same way.

6.4.Description of µ-semistable classes. Let us depict a vector m = x e0 + y e1 ∈ M ,
which corresponds to the class x · [E0] + y · [E1] by the point with coordinates (x, y) on fig. A
and call such an integer point stable, if the corresponding class in K0(

�

h) can be realized by
some µ-semistable object of

�

h .
It is also convenient to change the coordinates (x, y) by the coordinates (u1, u0) = (−y, x)

stable area

unstable area

unstable
area

E [ 1]-

E [ 1]-

E [ 1]-

E [ 1]-

1

2

3

4

E
0

E

E

E

-1

-1

-2

-3

l

l

u

u

0

1

Fig. B. Description of stable classes.

computed w. r. t. the basis (−e1, e0) formad by the classes of E1[−1], E0 and redraw fig. A as it
is shown on fig. B in order to focus on the classes of
elements from the core

�

h
0, which are given by non

negative (u1, u0). On fig. B, the slope µ = u0/u1 is
nothing but the usual geometric slope of the vectors
and the asymptotic directions of hyperbola are the
quadratic irrationals

λ±1 = (−h±
√
h2 − 4)/2 .

.4.1. LEMMA. All positive stable classes, i. e. stable classes m satisfying χ (m, m ) > 0,

are exhausted by multiples of exceptional vectors: m = t · ei for some t, i ∈ Z.
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Proof. Let X be µ semistable. Then X is pure. Moreover, we can assume that X is inde-
composable, because of all direct summands of semistable objects should be also semistable
of the same slope. By Lemma n◦ 4.4.1, all indecomposable objects in positive region are
exhausted by exceptional objects. �

Now we are going to prove that all integer points inside the ‘stable area’ on fig. B can
be realized by some µ-stable objects. It is enough realize only all irreducible integer vectors
in the stable area (then their multiples will be realized by a direct sums of the representing
semistable objects with themselves). It is well known that all irreducible vectors can be
enumerated by walking through the vertexes of an infinite binary tree as follows.

Let us say that two irreducible integer vectors u = (u0, u1), v = (v0, v1) with non negative
coordinates are coterminous, if

det(u, v)
def
= det

(
u0 v0

u1 v1

)
= −1 .

We start with a triple of vectors {(0, 1), (1, 1), (1, 0)} and will modify it by removing either the
leftmost or the rightmost vector and taking the sum of two remaining vectors as the middle
term of the resulting triple. Then we get a binary tree whose vertexes are labelled by all
triples of irreducible vectors (u, v, w) with non negative coordinates such that v = u+w and
all three ordered pairs (u, v), (v, w), (u, w) are coterminous. The edges of tree correspond to
the elementary transformations

(u, v, w)

(u, u+ v, v)
�

(v, v + w,w) .

-

All the irreducible vectors with non negative coordinates will appear consequently as the
middle terms of these triples. Those out of them that belong to the ‘stable area’ on fig. B can
be inductively realized by µ-stable classes by means of the following

6.4.2. LEMMA. Let X, Y ∈ �

h
0 be µ-stable objects whose classes ([X], [Y ]) are cotermi-

nous. Then in any non trivial extension 0 - X - Z - Y - 0 the middle term Z
is µ-stable as well, classes ([X], [Z]), ([Z], [Y ]) are coterminous, and both spaces Hom0(Z, Y ),
Hom0(X,Z) are non zero. Moreover, if (Z, Y ) is not an exceptional pair, then Hom1(Y, Z) 6= 0,

and if (X,Z) is not an exceptional pair, then Hom1(Z,X) 6= 0.

Proof. Since [Z] = [X] + [Y ], the straightforward computation of the determinants shows
that the pairs ([X], [Z]), ([Z], [Y ]) are coterminous. This implies immediately that any desta-
bilizing subobject of Z either coincides with Y or destabilizes Y (just imagine the corre-
sponding picture), which implies that Z should be stable. Non-vanishing of the Hom0-
spaces is evident. To compute Hom1(Y, Z), we apply Hom(Y, ∗) to our extension. Since
Hom0(Y,X) = Hom0(Y, Z) = 0 by the µ-stability, we get an exact sequence

0 - Hom0(Y, Y ) - Hom1(Y,X) - Hom1(Y, Z) - Hom1(Y, Y ) - 0

It easy to see that stable objects defined by a slope should be simple (see [Ru]). So,
dim Hom0(Y, Y ) = 1 and Hom1(Y, Z) = 0 implies dim Hom1(Y,X) = 1 and Hom1(Y, Y ) = 0.



22 A. L. Gorodentsev, S. A. Kuleshov . On finest and modular t-stabilities.

This is possible only if Y is exceptional and orthogonal to Z. Hence, Z is a multiple of an
exceptional object, orthogonal to Y . Since Z is pure and simple, it is exceptional. So, (Z, Y )
is an exceptional pair. �

6.4.3. COROLLARY. µ-semistable classes in K0(
�

h) are exhausted by the exceptional

vectors and integer vectors u = (u0, u1) satisfying inequality λ−1 < µ(u) = u0/u1 < λ, where

λ = (h +
√
h2 − 4)/2. Moreover, for any distinct semistable vectors u, v with λ−1 < µ(u) 6

µ(v) < λ there exists a chain of µ-semistable objects (X1, X2, . . . , Xn) in the core
�

h
0 such

that [X1] = u, [Xn] = v, and Hom0(Xi, Xi+1) 6= 0.

6.5.Proof of the proposition n◦ 6.3.1. Let {Πψ}ψ∈Ψ be an arbitrary modular stability.
First of all let us compare Ψ with the µ-stability on the Abelian core of

�

h .

6.5.1. LEMMA. An object X ∈ �

h
0 is Ψ-semistable iff it is µ-semistable. Moreover

ψ(X) > ψ(Y ) ⇐⇒ µ(X) > µ(Y )

for any pair of semistable objects X, Y ∈ �

h
0.

Proof. We will use the induction over the sum s = u0 + u1 of coordinates of the classes
[X], [Y ], which lay inside the coordinate quadrant sown on fig. B. The base of the induction,
when X, Y are among {E1[−1] , , E0}, is evident.

Let X be µ-semistable and s([X]) = m. If X is not Ψ-semistable, then it has non trivial
Harder – Narasimhan filtration X  (G0, G1, . . . , Gn) w. r. t. Ψ. Since each Gi is Ψ-
semistable, lies in the core, and s([Gi]) < s([X]), we deduce from the inductive assumption
that all Gi are µ-semistable and their µ-slopes are ordered precisely like their ψ-slopes. So,
they give µ-destabilizing filtration for X as well/ This contradicts to µ-semistablity of X and
proves that X is Ψ-semistable.

The same arguments show that any Ψ-semistable object X should be also µ-semistable. It
remains to check that for any Ψ-semistable Y with s([Y ]) < m the inequalities ψ(Y ) < ψ(X)
and µ(Y ) < µ(X) are equivalent. Let µ(Y ) < µ(X). Consider a chain of µ-semistable
objects (X1, X2, . . . , Xn) from the Corollary n◦ 6.4.3. By the inductive assumption all Xi are
Ψ-semistable. Then their ψ-slopes should be ordered in the same way as µ-slopes, because of
Hom0(Xi, Xi+1) 6= 0. Since Ψ is modular, we conclude that ψ(Y ) < ψ(X). �

Let Ψ′ ⊂ Ψ be a collection formed by all Ψ-semistable subcategories Πψ laying inside the
Abelian core

�

h
0 and all their shifts. It follows from the lemma that Ψ′ coincides with the

collection of all µ-semistable subcategories and is ordered in the same way. In fact, Ψ′ = Ψ,
because the collection Ψ′ suffice to build the Harder – Narasimhan filtration for any non zero
object X in

�

h . Indeed, since X = ⊕iXi, where Xi is pure of level i, it is enough to construct
the Harder – Narasimhan filtration for X pure of level 0. But in this case µ-filtration gives
what we need. This finishes the proof of Proposition n◦ 6.3.1.

6.6.Remark on geometric t-structures on
�

h. Finest modular t-stabilities on
�

h

described above lead to a family of t-structures on
�

h obtained as follows: draw any line
u0 = ϑ u1 on fig. B and fuse together all the semistable categories laying in the same half
plane bounded by this line. Then we get an Abelian core of some t-structure on

�

h . We left
to the reader to check that this Abelian core is equivalent to the category of coherent sheaves
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on appropriate weighted projective line1 whose precise equation (in the notations of [GeLe])
depends on ϑ, λ.

It is also instructively to compare our description of all (fine enough) t-stabilities on
�

h

with ‘moduli space of T. Bridgeland’s stability data’ described in a recent paper1 [Ma]: we see
immediately that Bridgeland’s slope functions serve precisely the all possible order preserving
inclusions of our semistable slope sets into R as well as their fusions via drawing a border line
as above.

§7.Some remarks towards higher dimensions.

7.1.Categories generated by exceptional Hom-collections. We say that an ordered
collection of objects (E0, E1, E2, . . . , En) is an exceptional Hom-collection, if any ordered pair
(Ei, Ej) inside it is an exceptional Hom-pair.

Let
�

be a triangulated category generated by an exceptional Hom-collection

(E0, E1, E2, . . . , En) .

There is a convenient t-structure on
�

coming from the quiver representation theory (comp.
with [Bo1], [Bo2]). It is formed by a pair of full subcategories (

� 60,
� >0), where

� 60 is
generated by all Ei[m] with m > −i (i. e. by E0, E1[−1], . . . , En[−n] and all their positive
twists Ei[−i + p], p > 1), and

� >0 is generated by all Ei[m] with m 6 −i (i. e. by the same
E0, E1[−1], . . . , En[−n] and all their negative twists). The core of this t-structure is an

Abelian category � , of representations of the finite dimensional algebra End

(
n

⊕
i=0

Ei

)
, or

equivalently, the category of complexes

V0 ⊗ E0
- V1 ⊗ E1

- · · · - Vn ⊗ En (26)

(thanks to the orthogonality conditions on Ei this complex has canonical convolution, i. e.
gives an orthogonal decomposition of an object X fitted to this complex from the left:

X - V0 ⊗ E0
- V1 ⊗ E1

- · · · - Vn ⊗ En .

it is functorial in X). The morphisms in � are morphisms of complexes (commuting with
the differentials).

This result of A. Bondal is especially demonstrative on the langauge of t-filtrations. Indeed,
the only non obvious out of the t-structure axioms here is that any object X ∈ �

is included
into a distinguished triangle

X60 - X - X>1 - X60[1] .

1see [GeLe] for details of the corresponding theory
1which has appeared when this paper was almost prepared already
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To check it, we start with an orthogonal decomposition of X w. r. t. to (E0, E1, E2, . . . , En)
(see [GKR, §2]), which provides X with t-filtration

X  

(
⊕
i
V i

0 ⊗ E0[−i] , . . . , ⊕
i
V i

0 ⊗ E0[−i]
)
.

and then rearrange the quotients in accordance with the required ordering:

. . . E0 < E1[−1] < . . . < En[−n] < E0[1] < E1[0] . . .

This is possible, because of the orthogonality conditions

Hom1(Ei[k], Ej[m]) = 0 unless i < j and m− k = −1 .

7.2.R-stabilities on
�

. There is a huge family of fine modular t-stabilities on
�

induced
by fine R-stabilities on the Abelian core � . Recall that by Rudakov’s results [Ru] we can
build t-stabilities from preorders on � which satisfy the seesaw and finiteness conditions
listed in n◦ 3.2. On the level of K0(

�
) such the preorderings have quite transparent geometric

description we are going to explain now. For simplicity we will assume that n = 2, that is,
�

is generated by an exceptional triple E0, E1, E2. The general case is completely similar and
is obtained by replacing all ‘triangles’ by ‘simplexes’ and all ‘lines’ by ‘hyperplanes’.

Write S for a sphere obtained by the factorization of real vector space R⊗
Z
K0(

�
) through

the natural action of multiplicative group R>0, of positive reals, by the scalar delatations. So,
the shift functor X 7→ X[1] acts on S by the central symmetry v 7→ −v. Then the classes of
proper elements1 of � are presented on S by the rational points of the triangle σ = (e0e1e2)
spanned by the classes of exceptional generators E0, E1, E2.

The seesaw property of a preorder on � means that the arcs cutted out of all rational

Fig. C. Oriented geodesic triangle.

geodesic cycles on S by σ should be ordered in such a way that this ordering induces a transi-
tive relation on a set of rational points of σ. In other words,
all the rational geodesic arcs inside σ should be equipped
with an arrow (which goes along the arc in the increasing
direction) in such a way that no cyclic triangles appear,
i. e. all the rational geodesic triangles inside σ shoud have
the maximal, the minimal and the middle vertex as on
fig. C. Given such a rational triangle, let us call its edge
joining the extreme vertexes (that is, the edge opposite to
the middle vertex) a base of this triangle.

It follows at once from the total transitivity that for
each rational triangle inside σ there is an irrational line `
coming from the middle vertex to the base (the dashed line on fig. C) such that all the rational
lines coming from the middle vertex to the base and laying in the left hyperplane bounded by
` are ordered like the left side of the triangle and all rational lines on the right side of ` are
ordered like the right side of the triangle. Moreover, the transitivity implies also that these
irrational lines have no intersection points inside σ.

1i. e. the actual complexes (26) but not their virtual differences
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Vice versa, each continuous distribution of irrational lines without intersections inside σ
provides all the rational geodesic arcs inside σ with a preorder suitable to define R-stability.
Indeed, taking a continuous orientation of each irrational line of the family, we get well defined
continuous notions of the right side and the left side of the line running through the family.
Given a rational line %, let us intersect it with some irrational line out of our family and
order by drawing an arrow from left to right w. r. t. the chosen irrational line. Clearly,
this orientation does not depend on a choice of an irrational line. And all together these
orientations provide rational points of σ with transitive preorder.

In general case, the triangle σ should be replaced by the simplex spanned by the classes
of E0, E1, . . . , En and a continuous distribution of irrational lines should be replaced by a
continuous distribution of irrational hyperplanes, that is by appropriate irrational curve on
the real Grassmannian of codimension two subspaces in R⊗

Z
K0(

�
).

Let us remark finally that the Bridgeland’s stabilities correspond to the families of ir-
rational lines (hyperplanes) forming a pencil of lines (hyperplanes) passing through a fixed
point outside σ. This just a quite thin subset in the whole set of fine t-stabilities on � .

References.

[BBD] A. Beilinson, I. Bernstein, P. Deligne. Faisceaux pervers. Asterisque 100 (1982).

[Bo1] A. I. Bondal. Representations of associative algebras and coherent sheaves. Math.
USSR Izv. 34 (1990) No 1, p. 23–42 (english translation).

[Bo2] A. I. Bondal. Helixes, Representations of Quivers, and Koszul Algebras. Helixes
and Vector Bundles, Lond. Math. Soc. L.N.S. 148 (1990), CUP, p. 75–96.

[Br1] T. Bridgeland. Stability conditions on triangulated categories. Preprint available in
arXiv:math.AG/0212237.

[Br2] T. Bridgeland. Stability conditions on K3 surfaces. Preprint available in
arXiv:math.AG/0307164.
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