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Abstract. We prove a characte1' fornlula for any finite-diInensional irredueible reprc

selltation V of thc (lquecr" Lie superalgebra 9 = q(n). If expresses ehV in tenns of the

rnultiplicitics of thc irreducible g-subquotiens of thc eoholnology groups of eertain donü

nant g-bundlcs on the fI-synlluetric projcctive spa.ces (i.c. on the honlOgeneous superspaces

G/ P whose reduced spaee is a projectivc space, whcre G = Q(n)). We also establish 1'c

curent relations for the abovc nlultiplicitics and this enables us to eornpute explicitly ehV

for any given V. This provides a cOlnpletc solution to the Kac character problenl for the

Lic superalgebra q(n). Finally we considcr the particular cases of q(2), q(3) anel q(4) in

which wc C0I11parC the new charactcr formula with thc gencric character formula of (P4J.
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Introduction

In this paper we solve thc Kac character problCln poseel in [K2], i.c. the problern of

cOlnputing thc character of any irreducible finite-dilnensional representation, for the Lie

superalgebra 9 = q(n). Our solution is bascel on the sanle general idea..c; as the second

author's solution of the Kac charactcr probleIn for gl(mln), [S2], but in the ca..'3e of q(n)

the argurnent is ahnost entirely geolnetric. Thc homogcneous superspaces we considcr

are Maninis IT-synllnctric Hag supcnnanifolcls. In 19S2 Manin constructed the flag super

manifolds corresponding to all classical serics of sirnple Lie supergroups, anel in particular

constructeel the Il-synlluetric flag supcrspaces corresponeling to Q(11,) (01' to the the sirnple

Lie supergroup PSQ(n)), see [MI] anel [M2]. Thc standard referellce toelay is Manin's

Inonog1'aph [rvI3]. Inunediately after constructing thc flag supe1'nlanifolels (of all types C01'

responding to the different sc1'ies of classical simple Lie superalgebras) Manin fonnulatecl

the probleIn of finding an analoguc of Borel-Weil-Bott's theorem (01' theo1'Y) for this case.

It was quite clear that the COhOluology of the Hag supernlanifolds eleserves by itself to be

caIculated, but Manin's hope was that this COhOluology should also give an approach to

calculating the characters of the irreducible representations.

This probleIn of Manin turned out to be a difficult one. SOIne progress was maeIe eIuring

the SO's (sec for instance [P3]) where, roughly speaking, a Borel-Weil-Bott type theorern

was proved for typical representations. Later (see [PSI] anel [P4]) the theory (in a gen

eral 'D-lnocIule version inspired by the cclebrated work of Beilinson anel Bernstein) was

extcnded to generic rcprcsentations. Finite-diruensional singly atypical (but not nccessar

ily gcneric) gl(n1.ln)-rnodules have been studied in [HJKT]. Howevcr the case of arbitrary

finite-dimensional irredllcible representations rClllained essentially intractahle until the pa

pers [SI] ancl [S2], where Kacis character problelll was solved for gl(n~ln) by a nlixture of

algebraic anel geolnetric techniques. The Inethod developeel therc by thc seconel allthol'

enablcs us to carry out Manin's prograIn also for thc II-synllnetric projective superspaces

and in particular to give a geollletry baseel cOlnplete solution of Kac's charactcr problclIl

for 9 = q(n).

Let us describe thc contents of thc paper. The objective of seetion 1 is to present anel

cxplain the rcsults. In subsections 1.1 and 1.2 wc fix the notations. In subseetion 1.3

we state our Inain rcsults in foul' theorcrns and two corollaries. The character fOl'1nula

of Theorelll Ireduces the problelll of caIculating the character of an irreelucible finite

dirnensional g-lnodule to caIclllating the nlultiplicities of the irrcelucible g'-subquotients
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(where g' = q(n - k)) of the COhoInologics of dOlninant g'-linearized bundles on the TI

synlllletric projeetive superspaces of G' = Q(n - k) for k = 1, ... ,n - 2. TheoreIlls 2 anel 3

cstablish rccurrent relations whieh reduec thc ealculation of the above Inultiplieitics to the

calculation of the Inultiplicities of the trivial irredueible representation in the eohornologies

of a certain bundle (corresponcling to thc highest weight of thc adjoint rcprcsentation) on

the Il-syullnetrie projcetive superspaee. Theareln 4 ealculatcs the latter llluitiplieities

explicitly. Together, Theorerns 1-4 provicle a eOInplete solution to the Kac eharacter

problelll for 9 = q(n). Subscction 1.4 is clcvoted to exaInplcs: wc C0l11pllte explkitly the

characters of all irreducible finitc-dinlellsional q(2)-, q(3)- and q(4)-moelulcs and C0l11pare

thc results with the approxirnation given by the gencrie eharaeter fonnllia of (P4).

Seetion 1 contains practically no proofs. Since thc proofs are quite tcehnical wc have

chosen to present theIn in aseparate section. This is section 3. In section 2 we provc SOll1C

auxiliary results which arc necdcd in the proofs of thc main rcslllts.
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1. Preliminaries and Statement of Main Results

1.1. Aigebraic preliminaries

The ground field is C. All vector spaces are autoIllatically assulned to be Z2-graded and

a subscript 0 or 1 (to any Z2-graded objcct such as vector space 01' sheaf) always refcrs

to the Z2-grading. TI cleuotcs the functor of parity change. Thc dim,ension of a vcetor

space V = Va EB V1 is by definition k + le, where k = dirn Va, /!, = dirn rrv1 , anel E is a

fornlal odd variable with E2 = 1. One has dirn rrv = E . dirn V. If dirn V = k + lE, wc set

Idirn VI := k + l. The upper index * dcnotes dual space.

Throughaut this paper E will denote a fixed vector space of dimension n + nE: , n 2: 2.

Q(E) is thc Lie supergrollp of endoIuOrphis111S of E which prescrvc a given odd iSOIJlOrphisIll

I1E : E -=+ E with rr~ = id. q(E) is the Lie superalgebra üf Q(E), Le. q(E) = LieG, where

Lie denütes the Lie superalgebra flluctor. E is the tautological representation of 9 and G.
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Let l) be a fixed Cartan subsupcralgebra 0/ g, i.e. a nilpotent self-nonnalizing Lic subsu

peralgebra of 9 (see for instance (PS2]). Then diI11 l) = n+nc and l)o is a Cartan subalgebra

of 90 = gl(Eo). Thc roots ß 0/ 9 (see [PS2]) are nothing but thc roots of gl(Eo):

Cl, ... , cn being a standard basis in l)ü. For each a E ß the din1ension of the root space g(ce)

is 1+c. W denotes the Wcyl group of go. (W is a symnlCtric group of order n.) The 1lJcights

are by definition the elen1ents of l)ü. If A E l)ü, we will usually write A = (Al, ... , An), where

thc standard coordinates Ai of Aare its coordinates with rcspect to ci, i.e. A = L~=l Aici.

We set also #A:= #{i I Ai i= O}. A= {A E l)ü I Ai-Aj E Z Vi,], 1 ::; i,j ::; n} is the

set of integrul wcights. Wc say that a weight A is a reduced expression of a weight A if

A is obtained froll1 A by replacing a maxiInal nlunber of pairs of coordinates Ai, Aj with

Ai +Aj = 0 by pairs ofthe form 0,0. For instance, whcn 11, = 5 (1,1,1,-1,-1) is a weight and

all its reduced expressions are (1,0,0,0,0), (0,1,0,0,0), and (0,0,1,0,0). If A = (Al" .. , An)

and a = ci - Cj, we say that A is a-typicnl when Ai + Aj i= °anel that A is a-atypical when

Ai + Aj = O. The set of all ~-atypical weights will be denoted by l)~; Ace := A n l);r'

Z elenotcs the center of the envcloping a.lgebra U(g). Z is a COlnlllutative C-algebl'a anel

thel'c is a canonical injective algebra hOll10lnol'phism, the Harish-Charulra hornomo'rphisrn

see [Serl] ol' {P4], and by definition, for each A E l)o, (}A : Z -t C is the uniquc hOI110111or

phisIll which 111akes the diagran1

COlunlutative, AW : S· (l)n) W -t C being thc natural hOluomorphisrn induceel by A. Thc

in1agc of HG has been first describcd by Sergeev in [Serl]. Scrgeev's result iluplics thc

following statel11ent (for the proof see [P4]):

Proposition 1.1. (}A = fJx {::} ~ E W· X, where A and X are (arbitrarily) rcdllced

exprcssioIlS rcspectively of A anel X. 0

If () : Z -t C is a ccntral character (i.e. siInply an algebra hOInomorphisrn) we set

#fJ := #Ä, Ä being the reduced expression of any weight A for which () = BA. Proposition

1.1 iInplies that #0 is weH definecl. We define thc parity B0/ () as #() (nlod 2).
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We fix b to be the Borel 8ubs7LpCTalgebra ~oBn (oB denoting serni-direct SUln of Lie Sllper

algebras)1 where n = ffioEL\+g(O), 6,+ = {ei -ej li < j}. All other Borel subsuperalgebras

of gwhich contain ~ are ~ :::f)(ffinE1U (6.+)g(o)) for'W E W\{id}. In particular when 71J = W m

is the elernent of rnaxitnal length we obtain the Borel subsuperalgebra b- opposite to b:

b- = ~ :::&n-, n- = ffi oE 6.-=-6.+ g(o).

As usual b defines a partial order::; 0 on Dü:

x ::;0 ,1, <=> X + L koO'. = 11, for sorne ko: E Z+ .
o:E6.+

The parabolic s71bsuperalgebras 0/ 9 (Le. thc Lie subsuperalgebras of gwhich contain

b) are in bijcctive correspondencc with the parabolic subalgebras of go. Throughout this

paper p will denote an arbitrary parabolic subsuperalgebra (such that p =:> b) and pk, for

k = 1
"

" 1n - 1, will denote the Inaxirnal proper parabolic subsuperalgebras: the roots

.6.(pk) of pk are by definition {ci - Cj, el) - eq li < j, k > P > q 2: 1, n 2: p > q 2: k + I}. il

For any p C g, WP will denote thc Weyl group of the semi-sitnple part of p considered

as a subgroup of W. Finally, it is a straightforward but irnportant observation that for

every p there is a unique Lie sllbsupergroup P '-t C (which is by definition a parabolic

subsupergroup) such that LieP = p. pk 1 whcrc k = 1, ... ,n - 1 and Lie pk = pk, are the

Inaxirnal proper parabolic subsupcrgroups of G with B y pk.

Note now that n acts on thc category of rcprcsentations of any Lie superalgebra 01' Lie

sllpergrollp but a particlllar rcpresentation rnay not be Il-invariant. In this paper we will

rcstrict ourselvcs to considcring only Il-invariant rcprcsentations , Le. we will asslirnc that

any representation considercd is IT-invariant. In thc ease of 9 (rcspcctively C, p, P , etc.)

we wi11 call sueh IllodnIes 9n -modules (rcsp. Cn-, pn-rnodulcs, etc.), anel an irreduciblc

gn- 7nodule (resp. Cn-rnodulc, cte.) is CL gn-1nodnlc with HO proper gn-sublnodule (i.e. with

no proper IT-invariaint g-slIbrnodllle).

Most of thc gn-Illodules (pn-Illodllles, ete.), wc will considcr are going to be finitc

dirnensional (with obviollS exeeptiolls such as Venna 1l10dlllcs) anel therefore if the contrary

is not explicitly statcd or is not cOlnplctely clear frorn thc context, all representations

considered will be asSlllllCd finite-ditnensional. The category of finite-dinlensional gn_

lnodules (resp. pn-1nodules, etc.) will bc elenoted by (gn-rnoel) f (resp. by (pn-mod) fete).

If VI is an irrcdllciblc gn-sublllOdulc of a finitc-dirnensional gn-module V, [V : VI) will

denote the Inultiplicity of VI in V 1Le. tbe utunbcr of tirnes VI occurs as a gn_conlposition

factor of V.
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If 8 : Z -t C is a eentral eharacter anel V is a gIT-ll1odule, then VB will be the direet

sUlll11land of V characterized by the property that the gIT-colnposition factors of VB coincide

with all COlllposition factors of V on which Z acts via B.

It is easy to see that the standard outer autoll1orphisll1 on go interchanging bo with bo
extenels to an autolllOrphislll of gwhich interchanges band b-. If w is the induced funetor

on the eategory of gn-nlodules, we set VV := w(V)*. By definition, a gIT-rllodulc V is

contragradient iff V V ~ V.

Any irreducible f)IT-n1oelule v is clctermined by a weight A E f)j) via which f)o aets on v,

so we will denote the fanlily of irreducible f)IT-moclulcs by v>... It is easy to verify that

(cf. (P2]). If V is a gIT- 1110clule, its generalized weight spaces V(>..) are autornatically f)

11l0clulcs. Wc set suppV = {A E f)j) I V(,.\) i= O}. Thc forrnal character chV 0/ V is by

definition the expression

L e1iIll V(/1) . eIl.

/1EsupPV

A highest weight gIT- 1nodule with highest weight ,X is any (possibly infinite-diInensional)

TI-invariant g-quoticnt of the Ve1ma 1nodulc

M(A) ;= U(g) 0U(b) v>.. .

V(,x) will dcnote thc unique irreducible (as a gTI- ll1odule) quotient of M('x), and wc will

assunlc that cliln V(,x) < 00. Z aets via 8"\ on M('x) anel thus on any llighcst weight

gn- ll1oclule with lüghest weight 'x. Thc eatcgory 0 is by definition the category of all (in

general infinitc-diIncnsional) gIT-n1odules which admit a finite gIT-filtration whose factors

are highcst wcight 11l0dulcs. For any fixed central eharacter 8, OB is thc fuH subeategory

of 0 consisting of gIT-1llodules on whose cornposition factors Z aets via 8.

Ir p is a parabolic subsuperalgebra, we set

anel denote by Vp(,x) the unique irreducible (as pIT-1llodule) quotient of Mp(A). Vo(,x)

will denote thc irrcducible g~-lIlodulc with highcst wcight ,x and Vpo(,x) will denote the

irreducible P~-lllOdtlle with highest weight A.

A+ is by definition the set of d01ninant integral weights, Le.

A+ := {,x E A I dilll V(.\) < oo}
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anel it is provcd in [P2] that in coordinatc fonn there is the following dcscription of A+:

A = (Al, ... ,An) E A+

n
A E A, Ai 2: Aj for i < j, and Ai = Aj irnplies Ai = Aj = Q.

By At we will denote thc bo-donünant weights in A, Le. At = {A = (Al:'" An) E A I
Ai 2: Aj for i < j}; obviously A+ c At. For each a E ~ we set also At = 1\+ n fJ;t' anel

for cach parabolic subsuperalgebra we set At := {A E A I diIn Vp(A) < oo}. If 5 is a Lic

subsuperalgebra of p or of 9, wc say that A is 5-typical in p, 01' respectively in g, if A is

a-typical for all roots a of p (resp. of g) which are not roots of 5.

A c0111plex of gn-nlodules

dl 1 cfJ °... --+M --+M --+0

is aresolution 0/ V(A) iff MO lirudo ~ V(A), kel'di = imdi+1 for all i 2:: O. Aresolution of

V(A) is a Bernstein-Gelfand-Gelfand resolution (01' BGG-resolution for short) of V(A) iff

MO ~ M(A), anel for each i, Mi is an object of 0 8 >' and Mi is frcc as a U(n-)-rnodule.

One cau show ea.sily that for BGG-resolution cach Mi adInits a filtration whose quotieuts

are Verrna lnoelules. It is also straightforward to prove (following thc sanle lhles a.." in thc

proof of a shnilar staternent in scction 2.1 of [PSI]) that for every .\ (not neccssarily for

.\ E A+) V(.\) achnits a BGG-resolution.

1.2. Geometrie prelimiIiaries

For any parabolic SubSllperb'TOUp P of G the quotient GIP in the category of Sllper

schClnes cxists and coincides with one of Manin's fiag superspaces of ll-sYlnnlctric ftags.

More precisely, in thc notation of [M3], GI P = FIIspec C ((Llla1' ... , ak lak, E). In our nota

tion the type of the ftags is a1 + alc, ... ,ak + akc, which is nothing but thc type of the fiag

in E whose stabilizer in G red 1 is P rerl . The redllCed sllbmanifold (GIP)red = GredlPred is

the usual ftag variety Fspec C (al, ... , (Lk, Eo). V c / p denotes the structure sheaf of GIP. It

is endowed with a cauonical finite Gred-subsheaf (and V G / p-Inodule) filtration whose ad

joint factors are the sYllllnetric powers of the cononnal bundle NtG/P)r~d/C/Pof (GIP)red

in GIP. The corresponding gradcd sheaf of algebras is S'(NtC/P)rcd/C/ P )' (Note that

thc supersylnmetric algebra S· (NtG/P)red/C/ P is simply a Grasslnann algebra becausc thc

rank of N(c/Prcd)/G/P as O(G/P)red-nlodule is purely odd). Furtherrnore NtG/Pr~d)/G/P is

1 By thc snbscript red wc indicate rcchlction modulo nilpotcnts Oll any snpermanifold.
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nothing but the cotangent bundle of (GIP)red with changed parity. For 11. > 2 the super

manifold GIP nevcr splits, i.c. for any P GIP is not isolnorphic to the split supcnnanifold

((GIP)rcd, S· (NtCIP)rfj,[/G/P)· This follows inUllediately fronl a result of I.Skornyakov (Wl

published) which clainls that for 11. > 2 the Picard group of GIP (which by definition is

the group of equivalence classcs of cven invcrtible OeI p-Illodules on GIP) is trivial, i.e.

its only elenlcnt is thc class of OeI p.

If v is any lJ-senlisilllplc finitc-dirncnsional pTI-1llOdlllc, wc dcnote by OeI P (v) the g

linearized OCIP-rnodule "induccd" fronl p in the standard way. This Iueans in particular

that the Po-l11odule structure on the geoilletric fibre of 0c / P (v )rcd = tJ(G /P)r(!<! Q!)oo/ p

tJcIP(v) over the closcd point Prcd of (GIP)red is nothing but v consiclcred as apo-module.

The COhOll1ology J/ (GIP, LJcI p(v)), which by definition is the usual shcaf cohorllology of

the sheaf LJc I p(v) on the topological space (GIP)red, is enclowcd with a canonical g-nlodulc

strncturc. When P = B we will sOI11etilllcs writc OCIB(Ä), where OCIB(Ä) is by definition

thc g-linearizcd 0 CIB-nlodnie iuduced froln t he irredudble bTI -1110 clnie of highest wcight

Ä. We dcfinc also OCIP(v)V as OCIP(vV), where V
V := wp(v)*, wp being thc fllIlctor on

the catcgory (pTI-n1od)! incluced by the standard outer authol11orphisrll on lJ + Pss.

By Froben ius cl ual ity (in its version whieh applies to induccd 9TI -lincarizcd ()C / p

luodules ),

(1.1)

for any gTI-nlOdule V. This iIuplics that if v is an irreduciblc pTI-n1oclule, HO(OcIPCu)) is

an indecoluposable pTI-n1odule cquippcd with a canonical surjcction of pII_rllodulcs

(1.2)

(thc latter bcing nothing but rcstriction of global sections to thc geornctric fibrc at the

closcd point Pred of (GIP)rcd). If VP (v) is the unique irrcducible gTI-n1odulc which achnits

a surjection of pn-nlodules

(1.1) inlplies that therc is a canonical injection of gTI-Iuoclulcs

(1.3)

such that thc following natural diagranl COI11luutes:

-------+) HO(GIP,OcIP(v))

-/

v
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If P = B, (1. 2) 111eans that HO (G / B, VG / D (A)) is b-lowest wcight grr-lIlodnIe with lowcst

weight A, and (1.3) nleans that thc irrcducihlc gn-nlodule Vb(A) with b-lowest weight A is

a eanonieal suhnlodule of HO(G/ B, VC/B(A)).

1.3. The main results

Our objeetive in this paper is to estahlish the foul' theorems and two corollaries stated

in this suhseetion.

Let us start by introducing SOIlle l110re notation. For any paraholie snbsupergroup P of

G and any two weights A, J-L E A+, we set

(1.4)

wherc W m (respectively wr,J is thc elcI11ent of Inaxilnallength in W (rcsp. WP) and

(1.5) iJi(G/P, VG/p(Vp(w~ 0 Wm(A)))) :=

{
Hi(G/P, OG/p(Vp(w~ 0 'llJm(A))))

HO(G/P, OG/p(Vp(wfn 0 Wm(A))))/V(A)

for i > 0

for i = 0 .

(Note that V(A) adlnits a canoilleal surjection of P-Ill0dulcs V(A) ---t Vp(wf,~ 0 Wm(A)) and

therefore thcrc is a eanonical injection of g-lnodules

In thc special case when P = pI we will onüt the subscript pi and will write sirnply

1ni (A, /1.) instead of m~l (A, 11.). If now k, eare two non-negative integcrs such that k+l < 11"

let Gk,i be thc Lic suhsupcrgroup of G with Lie superalgehra

gk l := f) ~( E9 g(n)) ,
nE6 k ,l

where 6,k,l = {Cj - cp I 1.: < j,]J ::; n - .e}. If furthcflnorc (pk,l) 1 is thc parabolic Lic

snbsupergroup of Gk /- whosc Lic supcralgebra is (pk,l)l = f) EB (EBaE(6h ,l)1 g(o)), whcl'c

(6,k,l)I = {Cj - cp,Eq - Ei ! k < j < p ::; 11, - e, k + 1 < s < q ::; TL - e}, we ean definc

1ntl(A, /1.) by fOflnula (1.4) with G replaced by Gk,l, P replaeed hy (pk,l)l, P rcplaccd hy

(pk,l) I, and wr,~ (respcetivcly 10m ) replacecl by the clenlent of lllaxiluallcngth in thc \Vcyl

group of the sernisilnple part of (pk/) I (resp. thc Weyl group of the semisitnple part of

gk,i). Obviously n~i(A, J-L) = mh,o(A, J-L).
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Fix now A = (Al, ... ,An) E A+. If Ak 1'= 0, Ak+l = ... = Al-l = 0, AI. 1'= 0, set

p(A) := pl n ... n pk n pl-l n ... n pn-l. If A = 0 put p(A) = g. P(A) is thc Lie

subsupergroup of G with Lic P(A) = p(A). Put

where Ech stands for the Euler character üf a g-linearizcd cheaf, Le the alternating sunl

af characters of its cohornolo6'Y graups. One verifies iInll1cdiatcly (using Borel-Weil-Botfs

theorelTI for (G/ P()")) red, cf. [P3]) that

a()..) = dinlV>.
D

2:= sgnw . w (e>.+Po . TI (1 + e-a
))

wEW aE6+\(6+n6(p(>.)))

wherc Po := ~ LaE6.+ Cl: alld D is the Wcyl clenonünatür für 90 = gl(Eo), i.c. D =
" sg'nw . eW(po)L..twEW· / .

Let 11. be the infinite-dinH~nsionalvector space aver C with basis eA wherc A runs aver

A+. 11.>. is the finite-dimensional sllbspace of 11. spanued by eV for all v E A+ with 1) ::;b A.

Consider thc linear operator

a:lI.-tll.

where far any J-L,I) E A+ aV,~ are thc integers

aVl~:= 2:=(~l)j[Hj(G/P(v), OG/P(v)(Vp(v)(w~v)owm(v)))): V(tt)] .
j?O

Furthennore, for any k = 1, ... ,n - 1 we define the linear operators

ak : 11. -t 11.

{

L~EA+ (Lj>O( -1)j1n{_1 o(v, IL) . eil.)
ak(eV) = - l

°
Theorem 1.

(a) The restrictiol1 oE a to H>. is an isolnorphisln

10
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(1.6) chV(A) = L b~'1l . a(J-L) 1

IJ,<II)..

whel'c b~,1l arc thc l11atrix coefflcicllts oE tlJe inverse operator b).. := (a)..) -1 ill tllc

basis eV
J 11 :Sb A oE1l)... Wllell Al = 0 or An = 0 Olle 1nt8 8iInp1y

ehV(A) = a(A) .

(b) For allY k = 1, .. . ,11. - 1, 'H).. is ak-invariant, and

where a~ : H).. --t H).. is the rcstriction oE ak to H)...

The next thrce thcorCllls cstablish rceurrent relations which lnake it possiblc to COlllPlltc

explicitly 1n{_1,O (v, tL) for all IJ :Sb A, and thcrcforc (by TheorClll 1(b)) also alJ,/J,'

Theorem 2. IE P +--' B is 8ny parabolic subsupcrgroup oE G alld A E A+ is p-typica1 in 9

(p := Lie P) J tllCll the canonica1 injection

is an isolllorpllislll and

Corollary 1. If A E A+ is p-typical in 9 (p being an arbitrary parabolic sllbsuperalgcbra

oE g) J tllcn

(1. 7) 1n~(A, I") = 0 for flll i 2: 0 allel all J-L E A+ .

Theorelll 2 iInplies also thc cquivalcnce of a certain category of gn-nl0dules to a category

of pn-1llOdulcs. Asslllning that A E A+ is p-typical in g, we denote by (gn_mod)j8-" ,p) the

subcategory of (gn-nlod) f consisting of gn-1llodules, all cOlnposition factors of which are

p-typical (i.e. their lüghcst weights are p-typical in 9) and afford the central character

(j)... By (j~ we denote the hOlllomorphisnl of the center of U(~o + P.'ls) (Pss being the senü

silnplc part of p) via which this center acts on Vp(A), anel (pn_1nod)j8;) is by definition thc

category of finite-diIncnsional pn-1llodules, all cOlnposition factors of which, considcred as

U(fJo + P,'ls)-lnodules, afford the ccntnLl character ()~.

11



Corollary 2. If A E A+ is p-typical in g, then the categories (grr_nlod)}e>.,~) and

(pIl_ll1od) jO;) are canonically equivalcnt.

Theorem 3. Let P := pI ;tnd let A = (Al, ... , An) E A+ be p-atypical in 9 and Al > 1.

Set C\' = EI - Ek, k > 1 being thc unique index such that Al + Ak = 0.

(a) If Al > A2 + 1 and Ak < Ak-l - 1, thcn

(1.11)

(1.8)

(1.9)

(1.10)

171
0 (A, A - C\') = 1, rni(A, A - C\') =°for i > 0,

171.
i (A, JL) = m i +1(A - C\', J-L) for any J-L E A+ 1 J-L =1= A - C\', and any i > 0,

m,O(A, JL) = 171.
1(A - C\',/L) for any /J, E A+ with #jJ, 2:: #A, JL i= A - C\',

{

rnO(A, /L) = rnl(A - Ci, JL) + 17/,O(A - C\', jJ,) for any jJ, E A+

witll #Jt < #A, IL i= A - C\',

whcre x := x(ll1od 2) for x E Z+.

(b) If Al = A2 + 1 but Ak < Ak-l - 1, then

(1.12)

alld if Al > A2 + 1 but Ak = Ak-l - 1, tlWll

(1.13)

(1.14)

Theorem 4. Let P = pI, pu-I.

(1.15)

(a) IE A = °(= (0,0, ... ,0)), then

17L~(A, f.-l) = °for all/l E A+, Jl i= 0, älld all i 2:: 0,

nL~ (A, 0) = 0,

rn~ (A, 0) = 1 for'i = 1, ... , n - 1.

/J, i= 0, alld all i 2:: 0,

n/'~(A,O)=O for 'i=1,2, ... ,n-3,n-l,

rn~-2(A,0) = 1.

(c) Ifn = 2 alld A = (~, -~), then m~(A, jJ,) = 0 for all J-L E A+ and all i 2:: 0.

(b) IE A = (1,0, ... ,0, -1), thcn

m~(A, jJ,) =°for all JL E A+,

nl,~(A, 0) = 1,
(1.16)
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Theorenls 2, 3 anel 4 provide us with thc following proccdure for C0111puting rnto CA, IL)

for any A E A+, any J.L E A+ anel all i anel l, i 2: 0, °:::; f :S 11, - 2. When I! = °Olle checks

first whether A is pl-typical in g. If yes, then by Corollary 1, 7n i (A, J.L) = °for all/" E A+

anel all i. If DO, ThcorCllls 3 and 4 apply. For Al = O,~, 1, Corollary 2 anel Theorenl 4

give tbe answer. Indeeel, if Al = 0, then A = (0, ... ,0, At, ... ,An) anel by Corollary 2,

',ni(A,J-L) = rnh,n_t+l(A,IL) for any 1-" E A+, If Al = ~, then A = (!,-~,A3, ... ,An), allel

if Al = 1, then A = (1,0, ... 1 0, -1, AB' ... ,An)' Corollary 2 gives respectively rni(A, J.L) =
rnh 71-2 (A, J-L) anel rni (A, 1-") = mh n-B+l (A, /L), anel both latter nlultiplicities are conlputeel

) )

by Theorern 4. Vvhcn Al > 1 one of thc cases in ThcorcrIl 3 applies. If it is (a), one

expresses 711.
i (A, 1-") in ternlS of n~j (A - 0:, J-L). Ifit is (b) or (c) one expresses 7n i (A, IL)

in ternlS of Tni O(A - Cl', J-L), m~ 1 (A - 0:, J.L), 01' rn~-/ (A - 0:, J-L). Continuing this proccss
, 1 1

Olle rechlces ultilnately the COIIlputatioll of 7n i (A, I") to Theormn 4. (Note that in this

cornputatioll onc applies Theoreills 3 anel 4 ollly to thc supergroups (pk,l.) 1. However,

as fonnulated, Theorenl 2 applies to any P, Theorclll 3 applies to pI only anel TheorclIl

4 applics to pI anel pn-l. The reader will straightforwardly find a syulluetric version

of Theorerll 3 applying to pn-l (OllC has to asSUlllC that Cl' = Ck - en and to define thc

corrcsponding analogs of rn~,q(A, IJ,)). In this way Theoretns 3 and 4 should be viewed

as an incluctive procedurc for ca1culating the COhOlllOlogy of tbe n-synul1ctric projcctivc

supcrspaces G/ pI and G/ pn-l with coefficients in any irredueiblc elorninant g-lineari:J;cd

loeally free sheaf.) The llHlltiplicitics nttO(A, J-L) for e= 1, ... ,11, - 2 are computed by a

cOlnpletely siInilar proeess.

Theorenls 1-4 give a solution of the Kac eharacter problenl for g. Given A E A+ Olle

calculates the Inatrix of the operator a A by USillg Theorem 1 (b) anel Theorcllls 2,3 and 4,

allel then obtains ehV()') by Theoreln 1 (a).

If A is generic, i.c. if Ai » Ai+l for i = 1, ... ,n - 1 (» nleans "Illuch greater"), thcn it

is true that

(1.17)
din1 VA,"",

ChV(A) = D . L..J sgnw· w
wEW

eA+PO . rr (1 + e-U
)

aEA+
A is a-typical

2

Fonnula (1.17) is the generic chaTlLcteT formula. If A is typical, i.e. A is o:-typical for

all 0' E ß +, or if 1110re generally Ak = Al = °whcnevcr A is Ck - El-atypical, then the

right-hand side of (1.17) sirnply coillcides wi th 0- (eA).

2The precisc meaning of this statement is that there cxist positive const.ants ki such tImt (1.17) holcls
whencver Ai - Ai+l > ki für i = 1) ... ) n - 1.

13



1.4. Comments and examples

Thc generic character fonnula was known prcviously ill thrcc ca,,'ies: for .A E A+ with

.Al = 0 01' .An = 0, for a typical .A E A+, anel for a gcncric A. In thc first case it is duc to

Sergeev, [Ser2]. In both other cases it has been established by the first author respectively

in [P2] and [P4]. The typical character fornHlla of [P2] is a particular case of (1.17) anel it

extends the pioneering work of V.Kac, [KlL[K2]' to the case of q(n). Fonnula (1.17) was

first proved in [P4] and was inspired by thc work of Bernstein anel Leitcs on gl(1 + ne),

[BL].

The rest of this seetion is dcvotcd to exanlples. We consider in detail the cases when

n = 2, 3 anel 4 anel idcntify all weights A E A+ for which the right-hand side of (1.6) eIoes

not coincide with thc right-hand siele of (1.17). We then cOlnpute thc rcspective diffcrences

in all cases. For 11, ::; 4 this replaces the sOlllewhat vague gcnericity condition by an explicit

description of all A E A+ for which (1.17) is true. We denote by Gen(.A) the right-side of

(1.1 7) for any A E A+ .

If 11 = 2 the generic fonllula is valid for all A E A+. This follows frou1 (P2] and eau also

be casily verified directly. If 11 = 3, Thcorenl 2 iInplies that the generic fOflnula applies to

all weights (Al, A2, ).3) E A+ with Al + A3 f:. O. Let Al + A3 = 0 and ..\2 = a # O. Ir a > 1,

(1.12) givcs

ehV(a + 1, a, -a - 1) + ehV(a, a - 1,1 - a) = Ech OC/PI (Vpl (-a - 1, a + 1, a)).

Furthenllorc,

Ech OC/PI (Vpl (-a - 1, a + 1, a)) = Gcn(a + 1, a, -(1 - 1) + Gen(a, a, -a)

wherc

.-- 2(1 + e)
Gcn(a, a, -a) := D

Sinee

chV(a,a -1,1- a) = Gen(a,a -1,1- a)

by Theorem 2, wc obtain

eh V(a + 1, a, -a - 1) = Gen(a + 1, a, -a - 1) + C;;;l(a, a, -a) - Gen(a, a - 1,1 - a).

14



Finally, a direct calculation shows that

Gen(a, a - 1,1 - a) = Gen(a, a, -a),

and this givcs

eh V(a + 1, a, -(L - 1) = Gcn(a + 1, a, -a + 1)

for a ~ 1.

For (L = ~ (1.12) in1plies

ehV ( ~, 4, - ~) = EchOC / P I (Vp1 ( - ~, ~, ~)),

and c1carly

EchOc/pI (-~, ~,!)) = Gen(~, ~,-~) + Gen(~, ~,-~).

Oue verifies dircctly that ~(~, ~, - ~) = 0, and in this way

Thcrcforc (1.17) holels for auy A E A+ with Al + A3 = 0, A2 ~ ~. One checks in thc

salne way that (1.17) holels for any A E A+ with Al + A3 = 0 and A2 ::; - ~, and thcrcfore it

remains to eonsielcr the ease whcn A2 = 0 and Al + A3 = 0. For At = 1 a trivial ealculation

shows that

(1.18) chV(l,O,-l) = Gcn(l,O,-I) - 2chV(O, 0, 0) .

(V(l, 0, -1) is nothing but thc direet sun1 psq(3) EB ITpsq(3), whcre psq(3) is thc siluple

subquoticnt of thc Lic superalgcbra q(3) (psq(3) = sq(3)/C anel q(3)/sq(3) = ne.) For

A2 = 2 Theoren1s 3 anel 4 givc

(1.19)
ehV (2, 0, - 2) + ehV (1, 0, -1) + 2ehV (0, 0, 0) = Ech0 G / pI (Vp1 ( - 2, 2, 0) )

= Gcn(2, 0, -2) + Gen(l, 0, -1)

anel thcrcfore (1.18) iInplies

ehV(2, 0, -2) = Gcn(2, 0, -2).

For A2 = k > 2, according to Thcoreu1s 3 and 4

chV(k, 0, -k) + chV(k - 1,0,1 - k) = Gen(k, 0, -k) + Gen(k - 1,0,1- k),

15



and thllS induetion on ~~ gives iIUIllediately

ehV(k, 0, -k) = Gen(k, 0, -k)

for k 2: 2.

Finally it is obvious that

ehV (0,0,0) = Gen(O, 0,0)

(V(O,O,O) = CEBIIC = C1+f:), and thus wc eonclude that far n = 3 ehV(A) = Gen(.-\) for

any A E A+ except A E (1,0, -1), ChV(A) being given in thc latter case by fonnula (1.18).

Thc ease af n = 4 ean bc analyzeel by the sanle nH~thoels. First af all olle notes that

(1.17) holds for any typical A E A+ as weIl as for any A E A+ which is pI n p2-typical 01'

p2 n p3-typical on g. This follows froIn Theorem 2. If.-\ is pl-typical in p 01' p3- typical,

Theorenl 2 anel aur consieleration of thc case n = 3 iInply that (1. 7) holds unless the weight

A is one of the follawing:

(1.20)

(1.21 )

A = (k, 1,0, -1) far k > 1,

A = (1, 0, -1, l) for I! < -1.

TheoreIU 2 applies to these cases tao anel gives that

1
ChV(A) = D . L sgnw· w(ChVp(A)' ePo . TI (1 + e- a

)) ,

wEW aE6.+, oft6.(p)

where p = pI für (1.21) alld pn-l für (1.22). But chVp(A) is givell in each case an obviollS

nlodification of fonuula (1.20), anel a trivial calculation shows that

(1.22)

anel

(1.23)

ChV(A) = Gen(A) - 2chV(k, 0,0,0) in the case of (1.20)

chV(A) = Gen(A) - 2chV(O,O,O,l) in the case of (1.21).

Thercfore it rcrnains to cünsider the case whell Al + A4 = 0. It has two subca..'3cs:

A2 + A3 i= 0 anel A2 + A3 = 0. Asslllne first that A2 + A3 i= O. Thell A = (a, b, c, -a),

b+ c f:. 0. Let CL = b + 1, Le. let A = (b + 1, b, c, -b - 1). If b > 2, using Theorerns 3 anel 4

one verifies that

chV(b + 1, b, c, -b - 1) + chV(b, b - 1, c, 1 - b) = Gcn(b + 1, b, c, -b - 1) + Ge;l(b, b, c, -b),

16



whcre

- diln V(b bc -b) '" (b b )Gcn(b, b, c, -b) = D1 1 • L.J sgnw . w(e "c,-b +PO .

wEW

11 (l +e- O
)).

oE.6.+
OiCl -C4

But eh V(b, b - 1, c, 1 - b) = Gcn(b, b - 1, c, 1 - b), and a direct chccking shows that

Gen{b, b - 1., C, 1 - b) = ~l(b, b, c, -b),

which gives

chV(b+ l,b,c,b-1) = Gcn(b+ l,b,c,b-1)

for b > 2. For b = 2 one considers thc threc possibilitics c = 1,0, -1, and {nsing in

particular fornnlla (1.19)) vcrifics that (1.17) holds in any of these cascs. Let now b = 1.

Then c = 0, i.c.

(1.25) A = (2,1,0, -2).

Herc a straightforwarcl calculation bascd on the relations (1.12)-(1.15) gives

(1.26) ehV(2, I, 0, -2) = Gen(2, 1,0, -2) - 2chV(l, 0,0,0) .

In this way we havc now fnlly analyzcd the case whcn A = (b + 1, b, c, -b - 1), b > 0,

b + c =I=- O. Using inductioll Oll k OllC verifies IlOW that if A = (b + k, b, c, -b - k) E A+ for

k 2: 2, then

ehV(b + k, b, c, -b - k) = Gen(b + k, b, c, -b, -b - k)

for all b > 0 anel all c.

The case when A = (b+ k, b, c, -b - k) E A+ with c < 0, b+c =I=- 0 is e0111plctely analogons

and thc result is that (1.17) holds exccpt when

(1.27)

and that in thc latter ease

A = (2,0, -1, -2),

(1.28) eh V(2, 0, -1, -2) = Gen{2, 0, -1, -2) - 2chV(O, 0,0, -1) .

It rClnains to consider the ease

(1.29)
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Let us first single out the followirlg weights:

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

A =(0,0,0,0),

A =(1,0,0, -1),

A =(2,0,0, -2),

A =(2,1, -1, -2),

A =(k + 1, k, -k, -k - 1) for k > 1.

In the eases (1.30)-(1.34) one verifies dil'eetly that:

(1.36) ehV(O, 0,0,0) = Gen(O, 0,0,0) ,

(1.37) ehV(l,O,O,-l) = Gen(l,O,O,-1)+2ehV(1,O,O,-1),

(1.38) ehV(~, ~, -~, -~) = Gen(~,~, -~, -~) ,

(1.39) eh V(2, 0,0, -2) = Gen(2, 0,0, -2) - 2ehV(O, 0,0,0) ,

(1.40) ehV(2, 1, -1, -2) = Gell(2, 1, -1, -2) - 2ehV(l, 0, 0, -1) .

In thc ease of (1.35) Theormll 3 irnplies

ehV(k + 1, k, -k, -k -1) - ehV(k, k -1,1- k, -k) = EehOc/pi (VIJI (-k -1, k+ 1, k, -k)) .

Fllrthcrnlore

(1.41) EchOC / P I (VI' I ( - k - 1, k+1, k, - k)) = Gen (k+1, k, - k, - k-1)+Gen(k, k, - k, - k)

for

C;;;l(k, k, -k, -k) = 4(1; c) . L sgnw . w(e(k,k,-k,-k)+Po . TI (1 + e-a »,
wEW oE~+

O#~l -~4 ,C2- C3

and a straightforward calculation gives

(1.42) --Gcn(k, k, -k, -k) = -8ehVo(k, k - 1,1 - k, -k)

wherc for any Il E At VO(Il) denotcs the irreclucible g~-rnodlllc with highcst wcight 1-".

Using (1.40) and (1.41) onc verifies by induetion on k that for k > 1

ehV (k + 1, k, - k, - k - 1) = Gen (k + I, k, - k, - k - 1) - ehV (k, k - 1, 1 - k, - k)
(1.43)

= ehVo(k + 1, k, - k, - k - 1) .
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Finally, if A is as in (1.29) but not as in (1.30)-(1.35), the reader will show by incluction

on Al - A2 that (1.17) holels.

The conclusion is that for n = 4 (1.17) holels except in thc cases (1.20), (1.21), (1.25),

(1. 27), (1.31), (1.33), (1.34), (1.35). The corrcsponding "correction tenns" to (1.17) a.re

given respectivcly in the fonntllas (1.22), (1.23), (1.26), (1.28), (1.37), (1.39), (1.40), (1.43).

2. Auxiliary Results

2.1. A lemma on central characters

Lemma 2.1. Let A,/" E At, I" ::;(1 A, and 0>" = BI-'. Then A = 1-" + L::=1 ai [01' SOlne

8equence a1, ... ,as , Cij E ß +, such tllat I-" + L:~=1 aj E At and 1-" + L:~=1 (Xj 18 D:i+ 1 

atypical for any i = 1, ... , s - 1.

PROOF. Let A - I" = 2:t btßt, ßt E ß + being siInple roots. We will prove the statenlent

by inductiol1 011 11, anel on IA - J-LI := 2:t bt . The incluction aSstunption with respect to n a.nel

LenlIna 1.1 in (P4) enable us to assurne that Ak -# I-"k for k = 1, ... , n. Furthennore, let the

reduced cxpressions of A and I" be respectively A = alci1 +.. ·+akcik' }1. = alCj\ +.. ·+akCjk

(ji, E W . j since B>" = (}J1., see Proposition 1.1). Consider first thc case when jI i= 1. Let

l be the InaxiInal index such that 1"1 + P'l = O. Setting I'" := IL + Cl - cl we see that the

pair A,I-'" satisfies thc conclitions of the Lelunla with IA - J-L'I < IA - 1-"1, anel therefore thc

induction asslllnption iInplies our c1ainl. Let]1 = 1. Then 1"1 = a1, )\} > 1-"1, and thus

i 1 > 1. Let r be thc rnaxilnal index such that Ar > al' Clearly r ::; i I - 1. Let T' be thc

nliniInal index for which Ar + Ar' = O. Set A' := A+ Er' - c,.. The pair A', I" satisfies thc

conditions of thc Lcnnna anel 1..\' - ILI < IA - ILL i.c. thc induction asslllnption givcs the

result in this case too. 0

2.2. On Verma module homomorphisms

Proposition 2.1. Let A E ~~ [ar SOlll€ a E ß +. TlwIl

HOlllgll (M(A - a), M(..\)) i= 0 .

PROOF. COllsider first the particular casc whcn in addition ..\ E At, A is gcneric, anel

A r:f. ~ß for ß i= a. Uncler these assurnptions Corollary 2.2 in (P4J ilnplies thc existence of

an exact sequence of gn- ll1odules

(2.1)
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where Hg/ B()..) := HO(G/B, OC/B(-)..))*' Since Hg/ B()..) is a lüghest weight gn-ruodllie

with llighcst weight ).. (Hg/B(G/ B, OC/B( -)..)) being a lowest weight Inodllie with lowest

weight -A), (2.1) irnplies that [M(A) : V(A - a)] =I- O. Therefore also [N : V(A - a))] =I- 0,

where N is thc kernel of the canonical surjection M(A) --+ V(A). Wc claim that ..\ - 0: is an

cxtrclnal weight for N, Lc. a Inaxirnal elelllcnt in suppN with rcspcct to ::;b. Note first that

if (jA = (jv for sorne v E A+, then v cannat satisfy both incqualities ..\ >b V, 1) >b ..\ - a.

The latter is a cornhinatorial observation which the reader will verify imlnediately using

Proposition 1.1. Since now ..\ >b v for any v E suppN, v =1-..\, 1) cannot satisfy v >b ..\ - a,

i.c. ).. - a is indccd an extrernal weight of N. Thercfore any v E N(A-a) is an tl-singular

vector, which irnplics that Horngn (M(A - a), M(..\)) =I- 0 for any generic A E A~ with

A ~ ~ß für all ß =I- a.

To cÜl11plete thc proof it suffices to l10tice that the set {..\ E ~~ I Hünlgn (M (>" - 0:),

M(..\)) =I- O} is a Zariski closed set in l)~. Indeed, it is an elerllentary excrcise to show

that a Zariski clased subset in l)~ which contains all gCllcric wcights in l)~ n A+ coincidcs

itself with l)~. Thercfore HOlngn (M(A - a), M(A)) =I- 0 for any ..\ E l)~ and the prüof is

corllplete. 0

2.3. Tensor product functors

Lemma 2.2. Let"\ E f)o, X(..\) bc a llighcst weigllt gD-module with highest wcight A, flnd

V bc any finite-diJncnsionaJ gn-1nodule. Then thcrc is a g-filtra,tion

o= pO C pI C ... C F k = ..-Y(..\) 0 V

such that pi / pi-l ~ X (J-Li) for 1 ::; i ::; k, whcre ..-Y (J.Li) is a highest wcight g-l11odule with

highcst wcight {li E ..\ + suppV, and such that {li ~ b fLi for i > j. Morcovcr,

1n(X(..\) ® V,fl) ::; [VA 0 V(J.I-A) : v,,] wlwrc m(X(A) ® V, fL) := #{i Ifl = J.Li}.

The proof is standard (see [BGGD and we olnit. it. o

Lemma 2.3. Let A E l)*. Any n-singlllar l)-sul)lnodule in V("\) 0 E 01' V(>") ® E* (i.c. any

l)-sllbll1odllle consisting of n-singular vcctors) is iSOl1l0rphic to u submodule of VA ® 'U€i' 01'

rcspcctivcly VA 0 V-Ei' for SOl1W i, 1::; i ~ n.

Thc proof is COlllplctely sirnilar to the proof of Lcmrna 5.3 in [S2].
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We introducc now thc functors

Te+ : 0 ~ 0 0 ,

To- : 0 ~ Oe ,

Te+(V) := (V ® E)e l

Te- (V) := (V ® E*)e ,

() : Z ---+ C being any ccntral charactcr. If ()' is another central charactcr such that B' = 0,
then for any object V of Oe

l

whcre V®E is thc eigenspace of eigenvaluc 1 of thc lllap Il ® IlE

SiInilarly

V0E ~ V®E.3

TO- (V) ~ (V®E*)o EB (V®E*)e ,

(If B' #- e, (V~E)e and (V0E*)e are only g-nlodules hut not necessarily gIl-Illodules).

Thcrefore for B= 8' wc have also the functors
"+ e' e .... + " eTel,e : 0 ~ 0, To',o(V) := (V0E) ,
"- e' e.... "f)Tf)I,f) : 0 ~ 0 , Tf)-;-,o(V) := (V0E*) .

The following threc leIllIllas are straightforward and the thc reader will casily provc all

of theIn 01' find analogons proofs in [BGG].

Lemma 2.4.

(a) Tl1e functors Tl and T~,f) are cxact.

(b) (Tf)+ ,To-) anel (Te-3; e, Te~el) a.re p;tirs of ar/joint functors.
, 1

o
Lemma 2.5. Let 8 = (jA for 80111e A E ~Ö' Tl1Cn 'if>. O(M(A)) has a finite gfl-filtratioll

o= FO C F 1 C ... C FP± = Te~,f)(M()")) such that pi / pi-l ~ M{tti ) for 1 :::; i :::; p±,

wl1ere /--Li = ,\ ± Cj; for $0111C ji alld ji #- jk for i 1=- k (and of course (}A±~ji = B). If (j 1=- {j\
tbc san1C is truc for Te± (M (,\) ) .

o

Lemma 2.6. For äny central character () and any ohjcct V of 0,

Tf(V)V ~ Tf(VV) .

If 8' = eand V is an objcct oE 0 0'
, then cLlso

o
31n seetion 3 we will also cOllsidcr V~E und V0E'" for a pIl_ module V.
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Lemma 2.7. Let"\,"\ - a E At for SOlI1C Ci E .6.+. Thon iE

... --+ M 2 --+ MI --+ M("\) --+ 0

is a BGG-resolution ofV("\), M("\ - a) is nccessarily prcsent alllang the quotients oE any

gD-filtration oE MI all quotients of which are Venna Inodulcs.

PROOF. Since HorIlgIl(M("\ - a),M("\)) =1= 0 (Proposition 2.1) but HOlllgn(M(A 

a), V(A)) = 0, we havc Horll(lll (M("\ - a), MI) =1= O. Furthermore, for any gIT-filtratioIl of

MI whose quotients are Venlla rllodllles, Horllgll (M(A - a), M(IJ)) =1= 0 for sorne quotient

M(IJ). We clahn that necessarily IJ = ,,\ - Q:. Indeed, assume the contrary. If Ci = ei - ej,

i < j, set "\' = A - ei and v' = v - Ci. Then, since ()A' = ()A-E:k irnplies k = i, Lerrlllla 2.5

gives

M("\') y TB~I (M("\ - a)) Y M()"') ffi M(A') .

Furthenllore, a straightforward combinatorial argurllent based on the inequalities A ~ b

V ~b ,,\ - a shows that ()V+!;/C-!;i = ()V irllplies k = i, and therefore (again by Lel111na 2.5)

Now, by Lor11n1a 2.4 (b),

H0l11gn (M()" - a), Tt>, (M(I1'))) ~ HOlllgn (TB~' (M("\ - a)), 1\11(11')))

and, since HOlllgfl(M("\-a),M(IJ)) i= 0, we obtain Honl g l1(M().'),M(v')) i= O. But

Horngn(M()"'), M(v')) = 0 shnply because )..' 1:-b v'. This contradiction proves that I) =

A-a. 0

If A E A+, we set for aIlY central character ()

(In section 3 below we will also need

for ). E At anel a central character ()p of ~ + Pss)'
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Proposition 2.2. Let e = e>.. [01' SOlllC A E A+. Tbcl] tlle Eollowing statmnents hold.

(a) #nt(A) ~ 2.
± . ~±(b) Jfne (.-\) = 0, thell Te.\,e(V(A)) = O.
± "'± "'±(c) JEne (A) = {tL}, tllen Te.\ e(V(A)) ~ V(J.L) 01' Te.\ e(V(A)) = O., ,

(cl) JE nt (A) = {J.L, tL'} [01' sanle /L' < b J.L, tlwn p, - tt' E ~+. FurtllCrrnorc, i[

te~ e(V(A)) i- 0, thcn te~ e(V(A)) is iSOII10rphic to V(IL) 01' to V(tt'), or tlwre, ,

is a uniq ue llighest wcight m adule X ± (J-l) with highcst wcight J-l for w11 ich therc

exists an exact sequence of gTI-n10dules

(2.2)

y± (tL) being a b-highest weigllt nlodule with highest weigllt tL'. In this latter case

tt>. e(V(A)) i8 an indecomposablc gTI-rnodule such which h8.5 a unique irredl1cible,
suhnlodule anel a unique irredllciblc quotient bath isoll1orphic to V (tL').

PRO0 F. (a) For any two ind ices i, j, (J>"±~ i = ()>..±~ j irnplics via Lmlllna 1.1 in [P4] Ai = Aj

01' Ai + Aj ± 1 = O. Since A E A+ we obtain that Ai = Aj = 0 01' Ai + Aj ± 1 = O. Let now

B>"±~i = ()>..±e:j = ()>..±q for i < j < k. Then, as one checks irnrnediately, Ai = Aj = 0 01'

Aj = Ak = O. Hut thereforc e>"±~j i- e\ and this contradiction proves that #nt (.-\) ~ 2.

(b) follows inuuediatcly frolll LClluna 2.2.

(c) By LClllllla 2.2, te~ o(V(.-\)) i- 0 givcs that tt>. e(V(A)) is a llighest wcight nlodulc, ,
with llighest wcight tL (thc rnultiplicity incquality in Lerrllna 2.2 iInplies the irreducibility

of the gIl_n1odule te~,e(V(A))(Jl)). Furthennore, V(A)V ~ V(A) and thus tt.,e(V(A))V ~

Te~ e(V(A)) by Lenuna 2.6. However a contragradient llighest weight I1lodule is necessarily,

irreducible as a gTI-rnodule, i.e. te~,e(V(A)) ~ V{tL).

(cl) LellllUa 2.2 iInplies the existence of an exact sequence of gIl-modules

(2.3)

where euch gIl-1llodule X± (J.L) and y± (/L') is either ~ero or is a llighest wcight Illodule

with respective lüghest weight {L and p'. If X±(p,) = 0 or y± (/l') = 0, tbc sanle argu

luent as in the proof of (c) gives that the other Inodule is irredllciblc as a gIl_nlodule. If

x± (p.. ) , ),T±(t-t') i- 0, thcn p" /--L' E nt (A) iInplies JL - J.L' = Cl: E ~+. Furthernlore, Lcrnnla

2.3 also gives thc uniquencss of X±(/L) because X±{tL) is gCllcratcd by thc irreducible

~n-nlocluleof Te~ ,e (V (A)) consisting of n-singular vectors of weight tt.
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We clairn that X±(I") is a rcdllciblc gn-ruodulc. ASSlUl1C the contrary. Then X±(tL) ~

V(fL). Sinee V(;\)V ~ V(;\), LClulua 2.6 implics that sequence (2.3) splits. Thereforc

Y±(fL')V ~ Y±(tL'), whieh gives Y±(fL') ~ V(rL'). In this way f'~,(}(V(;\)) ~ V(J-L) EB V(J-L').

Consider now a BGG-resolution of V(;\)

... -+ MI -+ M(;\) --+ 0 .

By Lenllua 2.4(a), f'~ (j is an exact funetor, thercfore,

(2.4)

is aresolution of V(I") EB V(J-L'). Noting that our argluncnt in the proof of (a) iInplies

{A ± eil eA±e:i = BA} = {fL, {L'}, wc see that LClllIua 2.5 gives t hc existence of an exact

sequence

o--+ M(IL) -+ f't>.,e(M()..)) --+ M(IL') --+ 0 .

Applying now Leluma 2.7 to thc obvious subcolnplex of (2.4) which is a BGG-rcsolution

of V (lL) we obtain t hat M (tL') is a snbquotient of f't>. ,e (M 1 ) . T his forces the cxistence

of a wcight v for which M(v) is a subquotient of AI 1 anel tL' = IJ ± Ck for S0111e k.. But

then IJ ::; b ;\ and BV = BA, which (a.', ouc checks iInmediately) contradicts thc cqllality

v = 11/ =F Ck. This contradiction proves that X±(IJ.) is indced a rcducible gn-rnodulc.

Lenllna 2.3 iInplies now that thc rniniInal gn-subrllodule of X±(rL) is isomorphie to

V (J-L') and that any singular vcctor in f'e~ ,e (V (;\)) belongs to X± (J-L). This gives thc inclc

composability of T~,(}(V(;\)) and the fact that V(,L') is tbe only irreduciblc gII_Sllbll1odulc

of T8~ 8' Finally the cOlltragredicncy of Tf>. (}(V(;\)) iInplies that V(fL') is also thc only, ,
irredllciblc gn_quotient of f't,(j(V(;\)), 0

Corollary 2.1. Let;\ E A+. If#() ~ #()>.. anel Ö= ÖA , thcn f't.,e(V(;\)) is an irrcducible

gn-module.

PROOF. If t8~,(j(V(;\)) is rcclucible, thcn #f'fi(A) = 2 by Proposition 2.2. But this

iruplies #()>.. > #() which coutracIicts to the condition #0 2:: #()>... D

2.4. The functors H'b/ p ( .) and the multiplicities m}, (,x, tt)

In thc proofs of thc lnain rcsults it will be convcnient to consider thc following twisted

version of the cohonlology of induced OCIp-nlodules:

H~/P : pn-mod f ........,. gn-modf

H~/P(V) := fJi(G/p, OCIP(V*))* .
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Since HO(GIP,oc/p(V*)) is a lowest weight lllodule, see 1.2, Hg/p(Vp(A)) is a high

cst weight llloelllie whenevcr Hg/p(Vp(A)) i= O. Furthermore, the canonical isorllorpisrns

Vp(A)* = Vp(-Wfn(A)) anel V(IL)* = V( -wm(rL)) itnply

for i i= 0 or JL i= A

for i =°anel JL = A .

Lemma 2.8. If 1n~(A, /1') i= 0, thcn tllcrc cxist 71J E Wund ßI, ... ,ßk E ~+, ßp =j:. ßq, so

tlta t IL = W (A) - LI} ßp anel i is equfd to thc minünal lcngtll .e (7lJ 0 W p) of e1enwnts in t11c

coset wO WP whcre p = LieP.

PROOF. CJc/p(Vp(A)*) ha..'3 a go-sheaf filtration with factors O(G/P)red(VpO(v)*) wherc

1/ runs ovef a subset of the set A+ suppS' (nI)' By the Borel-WeH-Bott theorern (applied

to O(G/P)rod (Vpo(v)*)) Hb/p(Vp(A)) has a go-rnodule filtration with factors VOCw1/(v +
Po) - Po)), where W1/ is such that 'lU y (11 + (Ja) E At and i = f(wv 0 WP). Therefore, if

1n~(A, JL) =j:. 0, then lL = wv(v + Po) - Po = Wv(A) + wv(Li ai + Po) - Po where D:i E ~ -,

at i= a s· But obviously wv(Li ai + Po) - Po = ~pßp for some ßI, ... ,ßk E ~+, ßp i= ßq.

Setting 'IV := W v we cOlllplete thc proof. 0

Corollary 2.2. If'fn~(A, IL) i= 0, tlwn JL :Sb A. Thc equality JL = A is possible only when

W(A) = A for S011]e 'W E W, 'IV (j. WP. 0

Corollary 2.3. IE'nl,~(A, J--L) #- 0, thc pair A, JL satisfies the conditions oE LenHna 2.1. 0

3. Proofs of the Main Results

3.1. Proof of Theorem 1

The relations (1.7)-(1.16)4 irnply that for each k = 1, ... ,11, - 1 ak preserves H>.. and

furtherrllore that its restrietion a~ to 11>.. is strictly lowcr triangular for any linear order of

the basis eY for 11 :::;b A which is cornpatible with the partial order :::;b. Therefore id +a~ is

invertiblc for all k. Fllrthennorc, if 1)1 i= 0, we have the tower of natural projections

,,-1 n-'J 2 1

G/P(I))~ G/pn-2 1Ä ...~ GIF I ~ SpecC ,

4The prüofs of Theorems 2--4 are completely independent. of Theorem 1 so we can use Theorems 2-4
t.o prove Theorem 1.
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where Liepr = pI n.·· n pk n pl-l n.·· n pr for f - 1 ::; r ::; n - 1, Liepr = pI n ... n pk

for k < r < f - 1, and Lie.P'· = pI n ... n pr for 1 ~ r ~ k. Set Pv := ]J~ 0 ... 0 p~-I. Thc

fact that

R'(Pv)*(OG/P(v)(Vp(/I)(W~~v)0 wm(v)))) =

R' (p~) * (R' (p~) * (... (R' (]J~ -1) * (0 G/ P (v) (Vp(/I) (Wf~v) 0 Wm (V) )))) ... )))

iInplies

for VI # 0. But if lJl = 0,01' lJn = 0, Thcorclll 2 applied to OG/P(v)(Vp(v)(wfr~v)0 'llJm(IJ)))

gives

Thcrefore

is Cl well-defined isolllorphisIll for any A E A+, and

In order to prove (1.6), note that any v E A+, lJ::;b A,

L (Lv,~ChV(jL) = EchOG/p(v)(Vp(v)(w~v) 0 wm(lJ))) = a(v) .
~StlV

This is a systenl of linear equations whosc nuürix is thc Inatrix of a>' and whosc right

hand-siele is the vector-cohunn (a(lJ)) for lJ ~(l A. By solving this SystCIll we obtain in

particular (1.6). Ir Al = °01' An = 0, then respectively lJl = 0 01' lJn = 0 for nny lJ ~(l A,

lJ E A+, anel thus al1-l.\ = id, which lneans that

chV(A) = a(A).

o

3.2. Proof of Theorem 2 and Corollary 1

Let p = Lie P = t Eflt where u is thc recluctive part of p. Consider an elernent Z E ~o

such that a(z) = 0 for each siInple root a of b which is a root of u and a(z) = 1 for each

siIllple rüot of b which is not a rüot of t1. Clearly z is uniclue up to addition of elClnents

frorn thc center of go.
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TheorClll 2 is obviously equivalent to Corollary 1, so an wc nccd to prove is that

1n~('\, J-L) = 0 for an JL E A+, i ~ O. Assuming to the contrary that rn~('\, JL) i- 0 for

somc JL anel S0111C i ~ O. Then, by Coro11ary 2.3, thc pair '\,fL satisfies the condition of

Lenulla 2.1 and thus ,\ = J-L + L:j O'j as in Lenllna 2.1. The fact that A is p-typical inl

pEes that a11 0'-] are roots of u. On the other hand, JL = w(,\) - L p ßp as in LClluna 2.8.

Therefore

A - w(.-\) = 2: a j - 2:ßp .

j p

Let 'i = f(w . WP) i- O. Then (.-\ - w('\))(z) > 0 since .-\ is p typical. But L: j etj(z) = 0

and L p ßp(z) 2: 0, and thus (I:.i D:j - L p ßp)(z) ::; O. This shows that necessarily i =

e(w . WP) = O. In this case an aj's are fOotS of u and

(3.1) .-\(z) = J-L(z) .

Wc claiIn that (3.1) is contradictory. Indccd, a..<:; it is easy to sec, thc canonical sllrjection

of pIT-n1odules (1.2) induces by duality a canonical surjection of gIT-1nodules

such that thc natural eliagraln

(3.2)

U(g) ®U(p) Vp (.-\)

V(A)

/' pr

is COllllllutative. But this Ineans that ~(z) < .-\(z) for any ~ E supp(ker pr) anel in particldar

that Il(Z) < .-\(z). This contradiction finally givcs m~(A,fL) = 0 for all i 2: O. 0

3.3. Proof of Corollary 2

Note first that Theorel11 2 is obviously equivalent to thc statCll1Cnt that for any A E A+

which is p-typical in 9,

(3.3)
Hg;p(Vp(.-\)) = V(.-\) ,

Hb; p(Vp('\)) = 0 for i > 0 .

lVloreover wc clairll that thc functor

(3.4)
(8)') (8)' )HO . (pIT _ rnod) P .........., (gIT 11lod) ,P

CI? . f - f
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is thc dcsirecl equivalcnce of categories. First of all, using Proposition 1.1 one verifies

irnlllcdiately that if a sirnple finite-clinlcnsional pn-rnodule Vp ("\'), considered as a. U(~o +
pss)-Illodule, affords thc central character 0; ofVp("\), then"\' E A+,"\' is p-typical in 9 anel

V(.,\') afforcls the central character 0>". This, together with the observation that (because

of (3.3)) thc gn_cornposition factors of H&/p(Vp) for any objcct Vp of (pfl_nIod)jO;) have

thc sarne highcst weights as the COlllposition factors of Vp itsclf, iInplics in particular that

Hg/p is ineleccl a well-elefincd functor bctwcen the abovc categories.

Thcre is also a natural "localization functor"

Indeed, if V is an object of (gn_nlod)j°>"P), let V(p) denote thc interscction of all pn_

subnloelules of V which gencrate V as a gn-nlodule. Clearly V (p) is a canonical pn_

subnlodule of V anel we set Lp(V) := V(p).

Thc fact that L p anel Hg/ p are 11lutually inverse functors is establishcd by a straight-

forward checking which we leavc to thc reader. D

3.4. Proof of Theorem 3

Wc start with the following two lenunas.

Lemma 3.1. IE Q' and .,\ are aso in TheorenJ 3 and k < n, thcn

(3.5)

for any tL E A+ .

PROOF. Let K '-+ G be the parabolic subsupergroup with e:= LieK = pk n ... n pn-I.

Consider the double bUlldlc
GIL

p/ ~q

GIPI CIK,

whcrc L is thc parabolic subsupergroup of G with [ = Lie L = pI n t Notice that .,\ is

[-typical in pI and thercfofc by (an obviollS relative version of) ThcorcIll 2,

Rip*OC/L(V(("\)*) = 0 for i > 0 anel ROp*OC/L(V((A)*) = OC/Pl (Vpl ("\)*). Thcrefore

Hb/L(Vr(.,\)) = Hb/PI (Vpl(A)) for all j 2:: O.

Let us describe now the COIllposition factors of thc gTI-linearized OC/K-nlodules

Ri(hOC/L(V(("\)*) for all i. Clearly for each tL thc nlultiplicity of OC/K(Vr(tL)*) in
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Riq*OC/L(l/i("\)*) equals n1~,n_k("\' rL). Furthennore, Corollary 2.2 (applied to G = K 1

P = L) iInplies that any JL with 7n~,n_k("\, fL) i=- 0 is ~-typical in g. Therefore,

Hi(GjK, Riq*Oc/L(Vr("\)*)) i=- 0 for all j > 0 anel (by Leray's spectral sequence),

This Ineans that the rnultiplicity of HO(GjK, OC/K(Ve(IL)*))* in HO(GjK,

Riq*OG/L(V{("\)*))* is n1~,n_k("\' JL). But since HO(GjK, OC/K(Vt{tL)*))* is nothing but

'/(fL) and sillce the llluitiplicity of V(JL) in Hb/L(l/i("\)*) is 1n
i (,,\, JL), we have established

(3.5). 0

Leuuna 3.1 irnplies that it snffices to prove Thcorenl 3 nnder thc assulnption that

a = Cl - En . This asslunption will bc valid throughout thc rest of the proof.

The following lenuna is a luore specific version of Corollary 2.1.

Lemma 3.2. Let A E A+, #() 2: #8\ e= e\ and 0t (,,\) = {A + ci} (1'cs]Jcctively

0;("\) = {,,\ - Ei}) fo1' SOllle i. If,,\ is pi-l-typical (1'cspcctively,,\ is pi-typical) in g, thCll
A±

Te>. e(V("\)) = V(,,\ ± cd·,

PROOF. Corollary 2.1 ilnplics that Tf>. e(V(A)) = 0 01' i'f>. e(V("\)) ~ V(A ± ci)', ,

Thereforc all we Heed to provc is that t8~,B(V("\)) i=- O. We will do it for Ti;.,o(V("\)) allel

we willleave the case of T8~,8(V("\)) (which is cornplctely sirnilar) to the reader.

Put P ;= pi-I. Since A is p-typical, TheorClll 2 iInplies Hg/p(Vp(A)) = V(A). Thereforc

Hg/ p (Vp(A)0E)O ~ Ti;.,e(V("\)). Furthenllore there are the following exact sequences of

P-IllOdulcs;

Since nt(.-\) = {A + Ei}, we have Oll. i= () for all cOlnposition factors Vp(l-L) of Vp("\)0Vp(cl)

01' of (Vp(A)0Vp(ci))jVp(A + cd. Thercforc for any j,

allel
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In this way (3.6) yields

for any j, and (3.7) yielels

for any j. In particular

But Hgjp(Vp(A + ci)) i= 0 becausc we havc a canonical surjcction Hgjp(Vp(A + E:d) -+
V(A + ci) (induccd by thc canonical gfI-injection

and this proves the Lcrnrna. (Wc proved also that nnder thc conditions of thc Lcrnllla,

o

Now wc can turn to thc actual proof of Theorenl 3. The plan is as follows. Wc will first

cstablish Proposition 3.1 which is a weak version of TheoreIll 3(a). Then we will prove

Theorenl 3(b) anel (c), anel only after that we will cOlnplctc thc proof of Theorclll 3(a).

Wc start with

Proposition 3.1. JE A is as in Theorcnl 3(a) (and Cl: = E:l - E:n ) thcn (1.8) and (1.9) hold,

and Eurthennore

PROOF.

Clairn 1. /f A is as in Theorem 3(a) then there is an exact sequence 0/ gIT-sheaves

where 1nOTe generally OCjP(v)fJ is the generalized eigenspace 0/ eigenvalue () in the gIT-shen/

Oc/p(v).
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Indeed, the exact sequence of (~1 )Il_tllOdules

gives rise to the exact sequence

(Note that E' := Vp\ (E2) is tautological representation of ~ + p~s, dinl E' = 11, -1 + (n -l)E

anel Vpl(A-Ed®VpI(E2) is defined as in 2.3 with E replaced by E'). But A-ci anel e;t-a

satisfy the conditions of Letnma 3.2 applicd to ~ + ~;,<j (~+ ~;s is ison1orphic to a trivial

central extension of q(E'), so Letnn1a 3.2 is obviously valid) because A-EI is pI n~n-typical

in pt, #e;;-E:t = #e;t-O, and 0;'\-0 (A - Ed = {A - O'}. Thercfore by LCtnn1a 3.2,
pI

Noting that (jA-gl +cr #- (jA for 1 < l' < 11" we obtain

and wc have established Claitn 1.

Clain1 1 in1plies iuunediately the existence of the following exact sequence

(3.9)

. . ~ 0.\
... --+ HG/pt (Vpl (A)) --+ HG/pi (Vpl (A - Et})0E) --+

--+ Hb/pt (Vpl (A - 0')) --+ H~/~l (Vpl (A)) --+ ...

Since A - Cl is pI-typical in g, (3.9) yields the gIl-isot110rphisrIls

(3.10)

anel the exact sequence

(3.11) 0 --+ Hblpt (Vp1(A - a)) --+ HgIp t(Vpt(A)) ~

--+ (Hg/pI (Vpt (A - ed)®E)O.\ --+ I/glpt (Vpl (A - 0')) --+ O.

This is sufficicnt to concluele that (1.8) and (1.9) hold. Indeed, (3.10) gives (1.9) cli

rectly; Corollary 2.2 anel (3.10) imply ·rni(A,). - a) = 0 for i > 0, anel, by noting that
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(Hg / pi (Vp1 (,X - cd )®E)(J>' = t(J-i;.~(fl,(J>' (V (,X - cd) , we obtain froln 3.11 and Proposition

2.2(cl) that rnO(,X,'\ - (~) = l.

In order to establish (3.8) notiee that

iIn W.\ ~ Hg / P 1 (Vp1 (,\) ) / Hb/P 1 (Vp1 (,\ - Q))

and that thcrefore it suffices to prove

Clainl 2. For any J-L E A+, tt =1= '\,

As we already note<!

aud rnoreover thc exact sequence

(3.12)

induced by (3.11) is nothing but (2.2), where

and

By Proposition 2.2(d), iIn W.\ is thc uniquc llighest weight sublnodule in Te-i;.-tl ,(JA (V('\ 

cd) of highcst weight'\. Sincc TB-t-tt BA (V('\ - cd) is contragraclicnt, there is a uniquc
I

projcction

where B.\ ~ (im W.\) v.

We clailn now that

where T.\ : ilnW.\ ---4- V('\) is the canonical projection. Indced, s.\(kelT.\) 4 B.\ but

[s.\(kcrT.\) : V('\)] = O. Sincc B.\ has a uniquc gn-irrcducible sublnoclulc isolnorphic to

V('\) (which corrcsponds to thc unique irreducible quotient of iln W>.. isonlorphic to V('\)
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(see Proposition 2.2(cl)) we have llecessarily s,\ (ker T,\) = 0 01' equivalently kcrT,\ C kers,\.

This llleans that the lllap

is a well-defilled projcction. Thcrefore (3.12) gives

(3.13)

for any Il E A+. But since S,\jV(A) ~ (kerr,\)V we have

(3.14) [S,\jV(A) : V(/-l)] = [kcrT,\ : V(/l')] .

(3.13) and (3.14) givc now ClaiIll 2 inllllcdiately. This cOIllpletes the proof of Proposition

3.1.

PROOF OF THEOREM 3(8).

We start with thc claiIn that if 0 #- A E A+ is a = EI - En-atypical, then

for all j. Indeed, consider the double bundle

o

CjS
~pn-1

Cjpn-1 1

S being the parabolic subsupergroup of C with Lie S = 5 := pI n pn~l. Since A =
(All' .. 1 An = -Ad with Al > A21 An-I> Anl A is s-typical in pI and pn-I. 1'herefo1'e (by

an obvious relative version of Theorelll 2)

ROP; ()G / S ( Vg ( A) *) = 0 G / pi (Vp 1 ( A)*) 1

R°]J~-IOG/s(~(A)·) = 0C/PII-l (Vpn-I (A)*) ,

and (by the Leray spectral sequence)

In the rest of the proof of ThcorClll 3(b) we will assuille that Al > A2 + 1 and An =
An - 1 - 1 since our clainl irnplies that it is sufficient to prove TheorClll 3(b) uncler these

conditions.
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Obviously Slt>. (A - cd = {A} and (JA-e l +ei i=- BA for 1 < i < n, and thus Proposition
pI

2.2(c) iInplics

Therefore

(3.15)

Furthennorc, by Leillilla 3.1,

(3.16)

which Incans that An = JL~ whcn rni (A - Cl, JL') i=- O. In this way, if 11l,i (A - Cl, JL') =f=. 0,

Lenuna 3.2 applies to JL' with i = 11, anel to ();= (JA = (}Jl.'+gll, aud thu..'3 fe-t~E' e>.(V(JL')) ~,

V(t-t' + cn)' This, togethcr with (3.15) anel (3.16), gives ru] (A - CI, JL') = rni (A, !L' + cn) =

rn~ 1 (A - CI, JL'). But clearly rn~ 1 (A - Cl, JL') = rn~ 1 (A - CY, JL' + En ), anel therefore, "

whcnever rni (A-Cll!L') f:. O. Since it is obvious that 171,i (A-Cl, !L') i=- 0 iff rni (A, JL' +En ) =f=. 0,

setting {L := {l' +en we obtain (1.13) for k = Tl, which is all we nced to prove Theoren1 3(b).

PROOF OF THEOREM 3( C). It is based on several preliIninary assertions.

Lemma 3.3. Lct 1/ E A~l and VI = V2 > O. TllCll for any JL,

(3.17)
i( ) i- 1 ( )m 1/,ll = r11. 1,0 V, JL

rnO(v, /1) = °.
iE j ~ 1,

PROOF. Let r : G/ R ---+ G/ pI be tbe canonical submersion, where R is the parabolic

subsupergroup with Lie R = t := pI n p2. Consider the exact triangle

(3.18)

in the (bounded) derived category of sheavcs of tJc/pt-luodules, where f( r",Oc/R(Vr(II)"')

is clcfinecI sinlply as thc quotient R' r ... tJC/R(Vr(V)*)jtJc /pI (Vpl (1/)*). Fixing an appropri

ate representativc for R' r*Oc/R(Vr(1/)*) in the derived category, wc can consider (3.18) as
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an exact sequence of cornplexes of Gc/pl-rnodules (OC/PI (Vpl (v)*) being a trivial cOlllplex

conccntrated in degrce 0). (3.18) gives rise to the long exact sequellce of hypcrcohornology

(3.19)

We will now allaly~e this sequence and show that it ilnplies (3.17),

Note first that lliIi (GIPl,R'T*(]C/R(Vt (lJ)*)) = 0 for all i. This is an ilnlnediate COll

sequence of thc fact that thc sheaf of OC/R-nlodules OC/R(Vr(V)*) is acyclic, i.e. all its

COhOl1l0Iogy groups vanish. The latter can bc established by the technique of DClna~ure

reflections developed in [P3) (see also [P4]) which gives that

(W12 pennuting IJI aud V2) for each i, and thus that

Consider next thc spectral sequence with sccond tenn

E~,q=Hq(GI PI, 7-{.p(iY T*OC/R(Vr(vt'))) which abuts to W+q(GIpI, f( T*OC/R(Vr(V)*))

(and whcre HP (.) dcnotes the pth cohorllology sheaf of a cOlnplcx of shcavcs). Wc havc

1-lP (il." T*OC/R(Vr(IJ)*))) = RPT.OC/R(Vr(v)*) = OC/PI (H~I/R(Vr(IJ))*) for p > 0,

ROT*OC/R,(Vr(v)*)IOc/PI (Vpl (v)*) = OC/PI (H~I /R(Vr(IJ)*)IVpl (11)*) .

It is crucial to observc that thc gn_colnposition factors of H~I / R (Vr (IJ))· for k > °allel

H~l/R(Vr(V))* jVpl(V)*) have pl-typical highest weights, The reader will easily verify this

tlsing Corollary 2.2. Therefore, by Theorelll 2, Hq(GIP!' H.P(R'T*OC/R(Vr(V)*))) = 0 for

all q > 0 anel all p, anel furtherrnorc

Since lliI' (G j pI, OC/pI (Vpl (v)*)) = H· (GIpt, Gc /pI (Vpl (v)*)) 1 the cobouuclary rnaps in

(3.19) provide us with isolllorphislllS
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for j 2: 1, anel 1110reovcr HO(G/Pl, ROr*Oc/R.(~(v)*))= O. Therefore if J-L i= v,

1ntC/(lJ, J-L) = [H~~:R(Vt(lJ))* : Vpl (tt)*]

= [Ho(G/pt, 1li - l (il" T*OC/R.(Vt(TJ)*))) : V(tt)*]

= [Hi(G/pl,OC/PI(V(V)*)): V(rt)*]

= 7ni (IJ, lt)

for j 2: 1, aud

o

Lemma 3.4. Let TJ = (VI"'" vn ) E A+, VI > V2 + 1, Vk-I > Vk + 1, VI + 1Jk = 0 for SOlne

"+ -k. Then Tev ,(V+t:k (V(v)) - O.

PROOF. Clcarly ntV+t:k (v) = {v + Ek} and thus, assunüng that Ttv,el'+t:k (V(v)) i= 0 we

havc Te+:' ev+t:k (V(lJ)) ::: V(v + ck) by Proposition 2.2(c). That iInplies,

and
o A+ 0

Hc /pt (Vpl (v + ck)) ~ Tel' ,ev+t:k (Hc /pt (Vpl (IJ))) .

Since lJ + Ck is pl-typical in g, Hg/pI (Vpl (v + Ek)) = V(IJ + ck), which gives

TB~,Bl'+t:k(Hg/pt(Vpt(IJ))) ~ V(IJ+ck). But Proposition 3.1 ilnplies that

Furthennore, te~,eV+t:k (V(v - Cl + C}J) = V(IJ + ck) by LClnula 3.2 . Since T::',Bl'+t:k is an

exact functor, if te~,BV+t:k (V(v)) ::: V(lJ + ck) then

which contradicts

"+ °Tel',f}V+t:k (HG/pI (VpI (IJ)) = V(TJ + Ek)'

This contradiction proves that Te~ ev+t:k (V(v)) = O.,

Corollary 3.1. Ir v is as in LenllllR 3.4, then (Oc/pt (Vpl (v)0E))e
l'

+t: k = O.
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Lemma 3.5. Let A E A+ satisfy tbe conditioll oI Thcorcnl 3(c). Then 7n i (A, J-L) =J. 0

implies l1,1 = Al - 1, l1,n = An + 1.

PROOF. It gocs by induction on n. Asslllne that thc claiIn of thc Lcrllrna is truc for

all 17, < no but is wrong for n = no. Fix corrcsponding weights AO and J-L0 such that

7ni
(AO, l1,°) =J. 0, A~ = Ag + 1, A~o + 1 = "\~0-1' Ij,~ = ,,\~ - k, J],~o = ,,\~o + l, l > 1,

where k ::; .e anel k is miniInal possible. (Thc case e ::; k, k > 1 is cOlnplctely silllilar and

requires no separate consideration.) Assurnc also that J1,0 =J. 0, anel thereforc J1,~ > O. Our

assulnption ilnplies

(3.20)

Furtherillore,

However,

(3.21)

for a ccrtain v E A+. Inclced, since #(j~0+€1 2:: #f)~o (because J1,~ + J1,~0 2:: 0) anel
- 0+ - 0 C ( (0) A, )81•

O
+!1

f)~ ~t = (j~, orollary 2.1 irnplies that Oc/pt Vpl,,\ 0E is an irreclucible g-

linearizeel Oc/pl-nloclule, which 1s equivalent to (3.21). Mon~over Proposition 2.2(b) givcs

v = ,,\0 + Ej, and (3.20) and (3.21) yield rni(lJ, 11,0 + cd =1= O.

Wc will considcr the following possibilitics for IJ;

(i) IJ=,,\O+cl,

(ii) v = "\0 + C2,

(iii) v=,,\o+Cj, 3::;j::;no-2,

(i v ) IJ = ,,\0 + Cn° - 1 .

Case (i) is inlpossiblc because ,,\0 + Cl satisfies thc conelition of Theorern 3(b) aud thus

necessarily J-L?10 = IJnO - 1 = ,,\~o - 1, i.c. e= 1 which is a contradiction.

If IJ is as in (ii), thcn v satisfies thc conclition of LenlIna 3.3. Therefore (since 1r1,i(v, /-1,0 +
Cl) =1= 0) i > 0 and m i (v,l1,o+Ed = 171·;~01(lJ,J-L°+Ed. By TheorCln 3(b) (applied to l)+p~s)'

i-I ( 0 ) i-I ( 0)rn1 0 v, l1, + Cl = 17'1, 1 1 V + Cn 0 - C2, /-1, + Cl,, ,

anel since 171;~/(V + Eno - E2, J],0 + cd =1= 0, we obtain VnO + 1 = J],~o. This together with

thc cquality Ano = VnO gives e= 1 which is a contracliction.
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D

Let us now consieler case (iv). Corollary 3.1 and (3.21) iIuply Ag = Ag - 1 = A~ - 2.

Furthennore v satisfies the condition of Theorenl 3(b) anel thus Ul,i(l/, f-j0 +cd = rni 0(1/ +,

CnO -Cl, 11.° +cd. Since rni,O(lJ+cno -CI,p.,°+CI) f. 0, we have IJl-1 = f-j~ + 1. Howcvcr,

v + cno - Cl satisfies the conelition of ThcorCnl 3(C) ovcr the rcdllctive part of pI, anel thus

by thc induction assurnption 1/nO + 1 = 11~~0 -1. But l/nO = A~o anel VI = A~ givc p.,~ = A~ - 2,

IL~o = Ano + 2, anel using this the reader will check imlnediately that #()(Jl-o+t:d > #()Jl-
0

anel #()V = #()>"o which contradicts #()JlO = #()>..o anel #()V = #()Jl-°+t:t. This 111cans that

(iv) is also irnpossible.

It relnains to consider casc (iii). In this ca...'ie we notice that the weight IJ satisfics thc

conclition for A in TheorClll 3(c) anel 1n i
(IJ, IlO + cd f. o. Furthennon~ IJI - p.,~ - 1 = k - 1,

I/no - IL?to = l, which is an obvious contradiction to thc Ininirnality of k. This proves

Lenuna 3.5 for the case IlO i= O. Thc casc IlO = 0 can bc done in the salne way by using
. +. '"'+the functor T() 0+ lustcad of T, 0+ .Jl- E:t ()" ,()IL q

We can now cOInpletc thc proof of TheorcIu 3(c). The observation that n->'-t'l (A) =
B

p1

{A - Cl} anel ()>"-t:i i= ()>"-E:l for i f. 1 iInplies via Proposition 2.2(c) thc existence of an

isoIllOrphis111 of g-lincarizecl Gc /pl-Illoelllles

Thcrcfore

TB~ ,B>'-~l (Hb /pt (Vpl'(A))) ~ Hb/ pt (Vpt (A - cd)

for any i 2:: O. LCl1uua 3.5 iIuplics n;>.-el (fL) = VL - En } for any 11. with Tn
j (A, /L) f. 0 for

some J. Morcover, by LClnnul 3.2,

Thus 1ni
(,,\, fl) 1ni (A - Cl, Il - cn) for any i ~ O. However, by LenlIlla 3.3, mi(A 

cI, 11 - cn) = 1n~-01 (A - cl, p., - cn) for i > 0 and, by TheoreIn 3(b), rn~-OI(A - cl, I), - cn) =, ,
1n~-/(A - cI, f-j - cn)' But obviously rn~-ll(A - cI, 11 - cn) = rn~-II(A - Q, f-j). Finally,

, "

1nO(A - Cl, fl- cu) = 0 by LClUIua 3.3 anel thus 1nO(A, p.,) = O. Thc proof of TheoreIIl 3(c)

is c0l11plctc.

PROOF OF THEOREM 3(A).

Using Proposition 3.1, Thcorern 3(b), (c) anel ThcoreIll 45 one verifies straightforwardly

SThe proof of Theorem 4 is prcsentcd in 3.5 and is complctely independent of Theorem 3.
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Lemma 3.6. Let,x E A+ satisfy tllc cOlldition of Tlworem 3(a) (with k = n).

(a) L:i~O 711,i(,x, rt) :::; 1 for any IL with #/J- = #,x.

(b) IfLi?orni()..,lt) > 1, thenL:i?Orni()..,/L) = 2andJL= )..1, wlwrc)..';= w()..-)..la) E

A+ for an appropriatc w E W.

D

In order to prove (1.10) and (1.11) (which is all wc nced to conlpletc thc proof of

Thcorclll 3(a)) it suffices to establish

Proposition 3.2. Let 'Ij; >. : Hg/pI (Vp1 (,x)) -f 'i't>._t: 1 ,8'" (V ().. - ed) bc tllC 11lap introduccd

in tlw proof of Proposition 3.1.

(a) There is the following cOlnplcx of gIT-rnodules:

(3.22) o ---+ V ().. - a) --+ iln'Ij;>. --+ V ()..) -f 0

(b) If[Hg/pl(Vpl().. - a)): V()..I)] = 0 (nl0d 2), (3.22) is an exact scquencc.

(c) If[Hg/p1 (Vpl ().. - a)) : V()..')] = 1 (nlod 2), the cohomology of the conlplcx (3.22)

is isonlorphic to V ()../).

P ROO F. (a) inllllecl iately fo llows froHl Proposition 2.2 (cl) . We will prove (b) and (c)

togcthcr.

Step 1. We consider first thc ca...';c when A is "p 1 n pn-l" -gcncric, i.c. when Al - A2 » 0,

An-l - An »0. In this case Borel-Weil-Bott's thcorcrn appliecl to thc quoticnts of the

canonical go-sheaf filtration on OC/Pl (Vpi (A - a)*) cnsures that

Thus, we havc to prove that accordillg to (b) the c0111plex (3.22) is exact. Since A is

"pI n pH-l-generic", Hb/pl(Vpl(A - a)) = °for i > 0, and thcrcforc according to (3.11)

iln'lj;). = Hg/pI (Vpl(A)). So we have to show that rnO(A, IL) = 0 for It =J:. A, A - a. ASSllllle

that rnO(A, /l) I- 0 for SOOle /L =J:. A, A - a. Then B). = BIt, anel Corollary 2.3 iInplics that

lL = A - L: ßiE 6.+ ßi. Since Al - A2 » 0, An-1 - An » 0, we have IL = A - ta - "L: j aj, with

aj = 0 01' aj = ejl - ej'l' 1 < ]1 < ]2 < n. Furthermore

and thercfore CJC/PI(Vpl(A)®E*)8/l-t:1l i=- O. This provcs that t ::; I, because for t > 1

LenlIna 2.2 iOlplies f}).-f:i = BIJ,-c n for at least for Olle i , i i=- 11 , which cOlltradicts LClllIna
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2.1. On the other hand, it is obviotls that t ~ 1 since Hg/ pI (Vpl (A)) is a quotient of

thc generalized Vcnna rnodulc U(g) ®U(pl) Vpl (A). Thus t = 1. Furthcnnore, clearly thc

(pI )Il-ll1odule lllUltiplicity of Vpl (tL) in U(g) 0u(pt) Vpl (A) i8 not cqual to zero and therefore

Vpl (rL) i8 a subqllotient of thc (pI )Il_rllodule [U(g) 0U(pl) Vpl (A)]-l1 wherc thc subscript

-1 refers to thc canonical Z-grading of the gcneralized Vernla llloduie. But note that

as a (,,1 )Il_rllodulc. Using now Corollary 2.1 for pI the reader will verify that IL neccssarily

equals A - a.

Since we havc showed alrcady (Hg/ p(Vpl (A)) : V(A)] = 1 and [Hg/ p1 (Vpl (A)) :

V(A - a)J = 1, wc havc the exact sequence

for a "pI npn-l-generic" A.

Step 2. Now we will considcr the cOlllplexes

(3.23)

(3.24)

o ---1 V(A) ---1 iIn 7/J>.+0. ---1 V(,x + a) ---1 0,

o ---1 V (,x - a) ---1 iIn 7/J >. ---1 V (,x) ---1 0

anel will show that if thc cohornology of (3.23) is zero or is isorllorphic to V().'), thcn the

cohornology of (3.24) is zero or is isorl1orphic to V(,x'). Consider first the cxact sequellce

(3.25)

The canonical surjection P>. : Hg/pI (Vpl (,x)) ---1 V()') and the injection V(,x) y itn7/J>.+o.

inc!llce frolll (3.25) thc complcx of gIl-rnodulcs:

Hs cohorllology Q>'+0. is a contragraelicnt gIl-n1odnle allel thcrc is an exact sequence

o ---1 irn 'I/J>..+o/V().) ---1 Q>.+o ---1 kcrp,\ ~ O.

If the COhOIllOlogy of (3.23) is zero, then (irn'l,b,\+o)/V(,x) ~ V(,x + a). Since [Q>..+o. :

V().+a)] = 1, Q,\+o./V().+a) :::::: kerp,\ i8 contragradient. But itn'l,b,\ has only two n-singular
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l)-subruoelules: v" anel V"-O' Thercforc 'I/;,,(kerp,,) is inelecornposablc and has a uniquc

irreclucible subnloclu1c isolllOrphic to V(A-a). Then by thc contragTadiency ofkerp", kerp"

has a subrnodule P isornorphic to 'I/;,,(kcrp,,)V, such that 'I/;,,(P) = V("\ - a). Thcrefore, if

['I/;" (kcrp,,)/V(A-a) : V(/L)] i- 0, then [kerp" : V({L)] ;::: 2. This ilnplics that I), could bc only

equal to A', and we have cither 'I./J.x(kerp,,)/l7(,,\ - a) = 0 01' 'I./J,,(kerp,,)/V(,,\ - a) ~ V("\').
\

If thc COhOlllOlogy of (3.23) is isornorphic to V (A'), then thc contragrad iency of Q"+0 anel

indecorllsability of im'l/;"+o/V(A) irnply that kerp" has a contragradient subrllodule V" such

that kerp"/U,, is isoIllorphic to V(A'). Thc Il1ultiplicity of each irreducible cOIl1poncnt in

U" equals 1 by LelnIIla 3.5. Thereforc U" is senü-siluple anel 'I./J" (V,,) is scrni-sill1ple. Hence

'I/;,,(V,,) = V(A - a). But then 1{1,,(kerp,,) is isoIllorphic to V(A - a) 01' 'I/;,,(kerp,,)/V(A - a)

is isoIllorphic to V(A'). In thc first case the cohornolob'1' of (3.24) is zero, in the second

case it is isolllOrphic to V(A').

Stcp 3. Stcps 1 anel 2 iInply that the cohonlOlogy of the cOIl1plex

o-t V(A - a) -1 inl7P" -1 V(A) -t 0

is either zero 01' isoInorphic to V (A'). Incleed, assuille this is false for SOIIle A. Thcn by

Stcp 1 thcre is a InaxiIual k E Z+ such that for A + ka it is not tl'ue. But thcn Step 2

irnplics that it is false also for A + (k + l)a. Contraclictioll.

Step 4. Thc following lcInIIla is all we need to cOInplcte thc proof of Theorenl 3(a).

Lemma 3.7. Lrni(A,"\') = 0 or 2 for alJ.Y"\ E }\+.

i2::0

PROOF. It follows froI11 LeI1uua 3.6 that

Assurne that Lenlrna 3.7 is true for all 1'1,' < n = diIn E hut is false for n. (Easy C0I11puta

tions verify that the LCIllIlla is true for n = 2,3 so n;::: 4.) Let A = (A1JA2, ... ,An-l,An)

bc a weight for which L'tni(A, A') = 1. Since n is minimal, A satisfies thc conclition of

i 2::°
TheoreIn 3(a) with a = Cl - Cn, Lc. Al + An = 0, Al > A2 + 1, An-I> An + 1. Without

1055 0 f gellerali ty 0 ne cau assUIne that A2 + An-1 ;::: O.

Let first "\2 i- O. Considcr v = ..\ + C2. Then by LCIllrna 3.2,

" (}V
OC/PI (V(..\)0E) ~ OC/PI (V(v)) ,

T()~, f}v (V(..\')) ~ V(v') .,
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for k i= )
for ), ) = 0, I, ... ,n - 1 .

Thereforc mi(A,A') = 7n i (11, 1/) for any i 2:: O. Thus I:i;:::o7n i (v,v') = I, V1-V2 < A1-A2:

Vn-1 - Vn = An-1 - An' But we ean repeat this proecclure several tiIllCS by considering

v' = v + E2, v" = v' + €2, etc. We obtain finally v(r) which cloes not satisfy the eonclitiollS

of Theorem 3(a), anel this is a eontradietion.

Let now A2 = O. Then A2 + An~I 2:: °iInplies An -1 =°anel thus A = (a, 0, ... ,0, -a),

A' = (0,0, ... ,0). For a = 2 one verifies inunecliately that

ehV(A) = eh(S2(g) EB rrS2(g)) - 2ehV(O, ... ,0).

Binee ehV(A) is divisible by 2(1 + E), we havc I:i;:::O 7ni (A, 0) = 2. Moreover, for A =
(2,0, ... ,0, -2) the 1110elule '!,V>. (kerp>.) is indeeomposable anel can be deseribcel by thc

exaet scquenee

o~ V(A - a) ~ '!,V>. (kerp>.) ~ V(A') ~ °.
But then a siInple argllIllent shows that the StUlle is trlle for A+ a, 1.C. thcre is .a short

exact sequenee

Indeeel, if this is not true, thcn '!,V'\+o(kerp'\+oJ :::: V(A), and the exaet sequenee

inlplies the contragracl icney of ker p>. (as in the proof of step 2), whieh in turn inlplies the

sCll1i-shnplieity of ker]J>. bccausc any irreclucible eOlnponent of ker P>. has llluitiplicity 1.

This contradiets to the indeeülllposability of 'IjJ>. (kerp>J.

This arglunent ean be repeated für any A + ka, unless mO(A + (k - l)a, A') i= 2. Thus

thc Lenuna is trllc for A= (a, 0, ... ,0, -a) where a :S n - 1. But for a 2:: n the reader will

verify inunediatcly that the argllInent in Step 1 gives mi(A, 0) = 0 für all i 2:: O. Thc proof

of Theorclll 3(a), and thus also of Thcorenl 3, is cOlllplete. 0

3.5. Proof of Theorem 4

It suffices to consider thc ease when P = pI sinee both statCInents of thc theorenl are

syuunetric with respeet to thc intcrchange üf pi and pn-I.

(a) It is a classical fact that

(3.26)

. k kk>l< {O
HJ (lP(Eo), 0Pn-I(C) = II S (N(G/ pi )red/G/pI)) = C
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Consider the spectral sequence with tenn Ei,q = Hp+q (IP(Eo), SP(Ntc/pi )red/C/pI) ). 1t

abuts to H"(IP(Eo), (JC/pt). But (3.26) ilnplics now that this sequencc collapscs at the

tcnn Ef,q. 1ndecd all linear maps

neccssarily equal zero since they are cvcn (parity preserving) linear nlaps. This gives (1.15)

ilnlllCdiately.

(b) The injection of pl-rl1odlllcs

VI' I (1, 0, ... , 0) 0c VI' 1 ( -1, 0, ... , 0) y V (1, 0, ... 1 0) ®c VI' 1 ( -1 , 0, ... , 0)

gives rise to thc following cxact sequcnce of G-linearized Oc/p,-luodulcs

(3.27) °-r E := End((Jc/pl (1/1'1 (-1,0, ... ,0))) -r

--7 V(l, 0, ... ,0) 0c OC/PI (Vpl (-1,0, ... ,0)) -t OC/PI VI'I (-1,1,0, ... ,0)) -r °.
We claim that

i 1 _ { V(O, ... ,O,-l)
H (GIP ,OC/pt(Vpl(-1,0,,,,,0))) - ° for i = °

for i > °.
The vanishing of aU higher coholnology groups of Oc / pI (VI' 1 ( -1, 0, ... , 0)) follows directly

fronl the observation that (OC/PI (Vpl( -1,0, ... , O)))red ~ Op(EO) (1) E9 rrOIP'(Eo) (1), where

(OC/Pl(Vpl(-l,O, ... ,O)))red is the restrietion of OC/Pl(Vpl(-l,O, .. ,,0)) to IP(Eo) =

(GIpI )red and Op(Eo) (1) is thc line bundlc dual to the talltological bundle on IP(Eo).

Indeed, this ilnplies that Oc / pt (VI' 1 ( -1,0, ... 1 0)) has a Gred-equivariant sheaf filtration

with adjoint factors

(3.28)

for i = 0,1, .. . ,11, - 1, and it is weIl known that the 11igher cohorl1010gy of all thc sheaves

(3.28) vanishes. The isonlorphislll

v (0, ... , 0, -1) = HO (GIp I
, 0 G/ pI (VI' 1 ( -1, 0, ... , 0) ))

is nothing but thc canonical injectiol1
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see 1.2. Thc lattcr is neeessarily an isomorphisIll because a straightforward calculation

vcrifics that

(3.29) Ech 0 c / pI (Vpt ( -1, 0, ... , 0)) = ehV (0, ... , 0, -1) ,

and the left-hand side of (3.29) is nothing but eh HO(GIPI, Oc/pt (Vpl (-1,0, ... ,0))) since

all higher COhOlllOlogy gTOUpS of OG/pI (Vpl (-1,0, ... ,0)) equal zero.

Thcrcforc thc long cxaet scquenec of eoholllologics of (3.27) givcs

(3.30) °-+ HO(Glpl, E) -+ V(l, 0, ... ,0) ®c V(O, ... ,0, -1) = 9 ffi I1g-+

-+ HO (G Ip I
, 0 C / P 1 (Vp1 ( -1, 1J 0, ... J 0) )) -t H 1

( GIp I
, E) -t 0

anel

(3.31)

for j ;::: l.

Consider now the exaet sequence of G-linearized Oe / pl-Illodules

(3.32)
d°-t tJG/Pl EBIItJG/pt -+ E -+ Oc/pt ml10C / p l -t 0,

cl being thc inclusion of thc shcaf of diagonal endoIllorphislllS into thc sheaf of endo

lllorphislns. It is obvious froln thc claiIn of (a) that the following two statcIllents are

equivalent:

(i) all coboundary 11l0rphisillS in thc long cxact scqucncc of coholnologies of (3.32) are

isolllorphislns j

(ii) HO(GIPI, E) ~ Hn-l(GIPI, E) ~ V(O, . .. ,0) (= Cl+~ = C EB I1C),

Hi(GIpt, E) = 0 for i = 1, ... , n - 2.

Via (3.30) and (3.31), (ii) iInplies that

(3.33) i 1 { 0H (GI? ,tJG/ p l(Vpl(-l,l,O, ... ,O))) =
V(O, .. . ,0)

für i = 1, ... , Tl, - 2

for i = 11 - 1

and that thcrc is an exact sequencc

(3.34)
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But (3.33) anel (3.34) are precisely equivalent to the clairn of Theorenl 4(b). Thcreforc

(since (i) anel (iii) are equivalent) it suffices to establish (i), anel this is what we will do in

the rest of the proof.

In order to prove (i) it is cfllcial to note that the cxact sequence (3.34) when restricted

to G' /(Pl )', G' heing thc Lie subsupcrgroup Q(E') for any [I-invariant linear sllbspacc E'

of E (anel (PI)' being the stabilizer of a IT-invariant subspace in E' of dinlension 1 + e:),

goes into the sanle cxact sequence hut defined for G' /(P 1
)'. In other words, we have thc

COlllIllutative cliagraIll

(3.35)
o

o ----7) 0C' I(Pl)' EB flOc' /(Pl)'

--.-7) 0

----7) 0,

where CCI/(Pl)1 := cnd( 0CI (PI)' (V(pl)1 (1, 0, ... ,0))), (p1)' = Lie(pl )'.

Our next observation is that TO inchlces iSOI110rphisms on all cohorIlology groups except

the top olles. Inelecd, by consiclcring the canonical filtrations on GCI pi and OCI(PI)' one

reduccs this statcluent to the clahn that thc cOInposition

induccs an isorIlorphisln

for any j < 11, - 1. Hut this lattef claill1 is weIl known anel easily verifiable.

Clearly, we cau now finish the proof of (b) by induction Oll n. Thc third ancl final

observation neeelcd is that (i) is indeed truc for 11, = 3. Note first that for any n (n 2: 2)

(3.36)

This is because V(O, ... 1 0) is obviously a gIl-subrnodule of HO(G / pI, t:) and thc sequcnce

(3.30), together with the weIl known fact that V(O, ... 1 0) is the Inaxirnal trivial sllbll10clulc

of 9 EB ITg, iInplics (3.36) inunediately. For 11, = 3 we obtain now by Serre duality (sec [Pl]

01' [M3]) that H 2 (G/ [>1 , c) = V (O, 0,0) beca.use the elualizing sheaf on G/ pI is isomorphie

to GC/PI aud t: is self-dual. But

Echt: = 2chV(O, 0,0) 1
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anel, since by the above, eh IJO(G / PI, E) + chH2 (G / PI, E) = 2chV(O, 0, 0), wc have neccs

sarily

This establishcs (ii) for n = 3 anel thercfore also (i) for n = 3. In order to finish thc proof

of (i) for n > 3 it renlains to eonsider the diagralll whose rows are the long exact sequenees

corresponding to the rows of (3.35) and to do sonlC straightforward diagrarn ehasing. This

ean be left to thc reader. In this way we have cornplcted thc proof of Theorenl 4(b) for

Tl, ~ 3. (For n = 2, Theorern 4(b) is obvious.)

(c) The proof is a trivial calculation bascd on Borel-Weil-Bott's thcorcrn for tbc projcc-

tive line. 0
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