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Abstract

We prove that if the class of tilings obtained by embedding a 2-
dimensional R? into R* by the projection method admits local rule
then the embedding must be based on quadratic irrationality, and non-
degenerate in some sense. Absense of local rule for the class quasiperi-
odic tilings having 12-fold symmetry is proved.

Introduction

In this paper we study the local structure of quasiperiodic tiling obtained
from the projection method. When E is a k-dimensional suspace of an Eu-
clidean space IR" equipped with a base there is a class of tilings associate with
E. The question is when this class of tilings has local rule, or in the terminol-
ogy of De Bruijn,local criteria. This problem has been investigated by many
authors (cf. [L],{B],[dB1],[dB2],[K],(IS][LPS1},[LPS2]). In particular, Levitov
in [L] introduced the definition of local rules and found a necessary condition
for the existence of local rules, called the SI condition. From the SI condi-
tions it follows that the class of planar quasiperiodic tilings having m-fold
symmetry has local rule only if m = 5,8,10,12. Absence of local rules for the
class of tilings having 8-fold symmetry is established by Burkov [B] and de
Bruijn [dB2]. For the class of quasiperiodic tilings having 5-fold and 10-fold
symmetry existence of local rules is proved by De Bruijn (cf.[dB],[Lel]).There



remains the 12-fold symmetry case. In this paper we prove that this class
of tilings does not have local rules, even “weak local rules” in the sense of
Levitov.

In the case n = 4,k = 2 Levitov conjectured that if the class of tilings
associate with E has local rule then E is based on quadratic irrationality
and non-degenerate. Here we prove this hypothesis. In particular the case
of 8-fold symmetry follows at once from this theorem.

The paper is organized as follow.In §1 we introduce definitions and pre-
liminary facts about the strip method and the cut method. Here we follow
the wonderful paper [ODK], some new facts are presented in §1.5. In §2 we
reprove a Levitov’s theorem about the SI conditions by a different method
and discuss different definitions of the SI condition. §3 is the chief part, we
consider the case ¥ = 2,n = 4. In §4 we treat the class of quasiperiodic
tilings having 12-fold symmetry.
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1  Basic definitions and preliminary facts

1.1 Tilings and Local rules

A tiling of IRF is a family of k-dimensional polyhedra which covers R* with-
out holes and overlaps such that up to translations there are only a finite
number of polyhedra in this family.A polyhedron of this family is called its
tile. Two polyhedra are congruent if the second is a translate of the first. The
classes of congruent tiles are called prototiles. A tiling is called special if the
intersection of every two its polyhedra is a common facet of lower dimension,
if not empty. In this paper tilings are always assumed to be special unless the
case of family O and its refinements that appear later. An r-map is a family
of polyhedra lying inside a ball with radius r. Two r-maps are congruent if
the second is a translate of the first. If T is a tiling then an r-map of T is
the subfamily of tiles lying inside some ball with radius 7.

A finite set of r-maps is called a local rule of radius r, or simply a local
rule when we do not care about the radius of this local rule. A tiling T
satisfies a local rule A of radius r if every r-map of T is congruent to one of
A. A local rule is called quasiperiodic if it is not trivial , i.e. at least one
tiling satisfies it , and every tiling satisfying it has to be quasiperiodic. The
exact definition of quasiperiodicity will be given later in section 1.3.

A family 7 of tilings admits a local rule A of radius r if T is the set of
all tilings satisfying this local rule.

Two tilings have the same local structure if every r-map of the first is
congruent to an r-map of the second and conversly, every r-map of the second



is congruent to an r-map of the first. This must holds for evevry r > 0 (while
in the definition of local rule a radius r is fixed).

If T is a set of tilings the closure T of 7 is the set of all tilings T such
that every r-map of T is congruent to an r-map of a tiling from 7, for every
r > 0.A set T of tilings is closed if T = 7. It is evident from definitions that
if T admits a local rule then 7 must be closed.For a set 7 of tilings denote
by 7 (r) the set of all tilings T such that every r-map of T is congruent to an
r-map of a tiling from 7. Then T C 7(r) C T(r’) for every 0 < 7' < r, and
T = NoererT (7). Also note that 7(r) = T(r) and a set of tiling 7 admits
a local rule of radius r iff 7 =7 = 7(r).

1.2 k-planes

In the Euclidean space IR with origin 0 we fix a standard basis ¢;,..., &,.
Let Z™ be the integer lattice. For a set of vectors vy, ..., v,, from R" let

Pol(vy,...,v;m) = {_z Aivi | A € [0, 1]}
i=1

The set ¥ = Pol(ey,..,€,) is called the unit cube. Let M; be the set of
multi-indices (zq,...,7;) such that 1 < 33 < 2 < ... <¢; < n. If I € M;
let I¢ be the multi-index of M,_; such that TU I®is {1,2,...,n}. For I =
(t1,...,%;) € M; the set vy = Pol(e;,,...,¢i;) and its translates by integer
vectors (i.e. vectors from Z") are called j-facets of the lattice Z".

Suppose E is a k-dimensional subspace of R". E is called totally irrational
if there are no integer points lying on E except 0. Let EL be the (n — k)-
dimensional subspace perpendicular to E and p be the projector along E+
on E , p* be the projection on E* along E. Put ¢; = p(&i) ,ef = pt(g;), i =
1,...,n. Aset Xis called a p-prism (or simply a prism ) if X = p(X)+p*(X).

E is called rational (resp. quadratic) if it is spanned by k vectors vy, ..., vk
with coordinates belonging to Q (resp. QV/d, where d is a natural number).

A k-plane means a k-dimensional plane. Denote U, the ball in E with
center at 0 and radius r.

1.3 The projection method

Let us briefly recall the projection method used to construct quasiperiodic
tilings. The reader is referred to [dB1,0DK,GR ] for full expositions on these
subjects.

Suppose E be a k-dimensensional subspace in IR". For simplicity we
assume the following condition of genericity holds true :

(*) Every k vectors from {e;,...,e,} are linear independent.

This condition is equivalent to :



(*")Every n — k vectors from {ef,...,er} are linear independent (cf
[ODK]).

In fact this condition is not essential but it will be more convenient for
us. The set of all subspaces E satisfying this condition form a dense open
subset of the Grassmanian G, 4.

We obtain a strip in JR® by shifting the cell 4 along an affine k-plane
parallel to E:
Se=E+y+a,acE?!

It is proved in [ODK] that for translation « s.t. the boundary of the strip
does not contain any point of Z" (in this case « is called regular) the strip
contains exactly a unique k-dimensional surface built up of k-facets of the
lattice Z" lying in S,. This surface goes through all the vertices of the lattice
Z" falling inside S, and has an obvious polyhedral structure. By projecting
along EY on E this polyhedral structure we get a tiling 7, of E. Note that
there are no overlaps: the restriction of p on this surface is one-to-one. The
prototiles are the projections p(+;) of k-dimensional facets of the lattice Z™.
A point a € E is called irregular if it is not regular. Denote Ir the set of
all irregular points. This set is of measure 0 and is described below in 1.4.

There are many definitions of quasiperiodic tilings but perhaps all the
authors agree that T, is quasiperiodic for regular a. One wishes to see.
wether the set 7z of all tilings T, for regular a admits local rule or not.
Unfortunately the set 7% is never closed unless E is rational. So the question
should be formulated as follow: when the closure 7t admits a local rule of
some radius? A trivial example is when E is rational then 7g = 7¢ and Tg
admits local rules.

For the same reason we will consider a tiling T quasiperiodic if T is
congruent to a tiling from 7g for some E. How big is the closure 7% is
discussed in the following sections.

1.4 The cut method

Let’s now consider another construction of these tilings, known as the cut
method {ODK].This construction is essential for us.

Put P; = p(v;), Pt = —p*(y1) and Cp = Pr+ Pi+,Cre = Cr+€,1 € M.

Each Crg is a prism. If a k-plane E4a intersects with a prism Crg
then the intersection is congruent to P;. For a prism X we define dl(X) =
p(X)+d(p*(X)) and 8+(X) = d(p(X))+p*(X) where dY is the boundary
of the set Y in E or in E* . The sets (X) and 8*(X) are called resp. the
parallel and the perpendicular boundaries of prism X. The parallel (resp.
perpendicular) boundary of a family of prisms ,by definition, is the union of
the parallel (resp. perpendicular) boundaries of all the prisms of this family.

Consider the family O = { Cr¢,J €My, £ €Z"}. Iis parallel and per-
pendicular boundaries are denoted respectively by B and B+. This family
covers the whole IR” without overlaps and holes, i.e. it is a partition of R".



This partition is called “oblique periodic tiling” of R™ in [ODK] because
it is invariant under translations from Z*. The union of 2 prisms Cj,

I € M, is a fundamental domain of the group Z". One can regard this union
as a rearrangement of the unit cell 4. Every k-plane E + a ,where E+ « does
not meet B, inherits a unique tiling from the family O . The equivalence
between the cut method and the projection method is now stated as follow:
a € Et is regular if and only if E 4+ o does not meet the parallel boundary
B, in this case the intersections of E + a with prisms from O define a tiling
on E + o and by projecting on E we get the tiling T,.

The set Ir of irregular points is p*(B). Let ff for J = (j1,...,Jn-k-1} €
M, _x—y be the (n — k — 1)-plane spanned by er,...,er . Then the set

n?r’ In=k=1

of irregular points in E is the union of ( n _Z _1 farnilies of parallel

(n — k — 1)-planes, each of the form f7 + p*(Z") (cf.]ODK]). Each family is
dense in E* but the union of its members has measure 0.

A section Q will be referred to as a k-dimensional surface in JR" such that
the restriction pjg :  +— E is a homeomorphism. If the section {} does not
meet the parallel boundary B then by projecting the intersection of ) with
the perpendicular boundary B+ we get a tiling T of E. Let Sp be the set of
all prisms from O meeting {2 then Tg is simply the projection of Sp on E.

An important example is the case when ) = E + o where a is regular.
Then &g is the set of all prisms from O which meets E+a. If Cy,...,Cisa
finite collection of prisms from Sp then the projections on E* of Cy,...,Cp,
are (n — k)-dimensional polyhedra having non-empty interior intersection,i.e.
their interiors have non-empty intersection.

1.5 More about the cut method

Denote K = —p*(v). It is an (n — k)-dimensional polyhedron. Then all Pj"
are contained in K. Suppose T is a tiling of E with prototiles P;,] € M.
A lift of T is a map I:{tiles of T}—{prisms from O} such that for every tile
P of T we have p(I{(P)) = P. If n € EtNZ" 7 # 0 and p(C) = P then
p(C +73) = P. Hence if Et is not totally irrational and T has a lift then it
has many lifts.

Suppose [ is a lift of T and P,, P, are two neighboring tiles of T sharing
a common (k — 1)-dimensional facet. Then C; = I(P,), C; = I(P2) have non-
empty intersection if and only if p*(C}), p*(C;) have non-empty intersection.
Both p(C,), p*(Cs) are (n — k)-dimensional polyhedra lying in E+.
Lemma 1.5.1:If p*(C,) has non-empty intersection with the interior of
Q = p*(C;) then C, + 1 does not meet C; for everyn € EL NZ" and 9 # 0.

Proof:Suppose C, + 1 meets C; then p~(C;) + 7 meets Q. It follows that
Q° + n meets Q° where Q° is the interior of Q. Since Q is congruent to Pj
for some I, which , in turn, is contained in K we conclude that K° + 7 has
non-empty intersection with A. Lemma V. 2 of [ODK] asserts that n = 0.0
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A lift ! of a tiling T is called connected if for every pair of tiles P, P,
sharing a common (k —1)-facet the polyhedra p{I(P;)), p*({(P;)) have non-
empty interior intersection. Of course in this case {(P;),!(F;) must have
non-empty intersection. The following is a consequence of lemma 1.5.1.

Proposition 1.5.2:If two connected lift l;,1; of a tiling T coincide at some
tile, 1.e. [y(P) = [,(P) for some tile P of T then they are equal, I, = ;.

Suppose X is an open subset of E. Then p~'(X) is the sum X 4 E*.
Consider the set of all prisms of the family O lying inside X + EL. By
projecting the parallel boundaries of these prisms on E+ we get a subset
Ir(X) of Ir. If a and B are regular and both belong to the same connected
component of EX \ Ir(X) then T, coincides with T inside X. In the case
when X is bounded, say X = U,, the set Ir(X) is a closed subset of EX
of codimension 1 and E+ \ Ir(X) consists of (n — k)-dimensional polyhedra
without boundary.

Proposition 1.5.3:If §) is a section not meeting B + U,, then the tiling Tg
belongs to Tg(r). Other words, every r-map of Tq is a translate of an r-map
of a tiling from Tg.

Proof:Let X = U, 4+ = where = is a point of E. We have to prove that
there is a tiling 7, for regular a such that Tp = T, inside X. Consider
Ir(X). If y € BN(EL + X) then y + U,, C B + Us,, hence one sees easily
that Ir(X) + X C B + U,,. As Ir(X) divides E* into many connected
components, the set Ir(X) + X divides E* + X into connected components
which project (by p') on the corresponding connected components of E+
divided by Ir(X), and @ N (E+ + X) must lie in one of these connected
component. If we take a be a regular point lying inside the projection on
E* of this connected component then obviously Ty = T, inside X. O

A sequence of tilings T\,Ts,... of E converges to a tiling T if for every
r > 0 there is a natural number N such that for 2 > N the tiling T; coincides
with T inside the ball U,.

If @ € Ir is an irregular point then there are several hyperplanes (i.e.
planes of codimension 1 in E1) from Ir going through a. They divide E+
into many parts. If oy, a3, ... are regular, belong to one part and the sequence
«; converges to a then it is easy to see that Ty, converge to a tiling, called
the quasiperiodic tiling defined by « and this part. This tiling depends only
on the part containing «; but not on concrete points a;. A rigorous proof of
this fact is presented in [LPS2].

Remark:One can prove that two diferent parts define different tilings.

When we say that a quasiperiodic tiling defined by an irregular a we mean
that it is defined by a and one part of E1 divided by hyperplanes from Ir
going through a. We see that every regular o defines a unique quasiperiodic
tiling while an irregular a defines many, more than one but a finite number,
of quasiperiodic tilings. If T is a quasiperiodic tiling defined by some «
(regular or not) then T has a connected lift and every connected lift { of T
has the following property: For every finite number of tiles Py, P, ..., P, of
T the polyhedra p(I(A)), p*({(P2)),-..,p*({(Pn)) have non-emty interior



intersection. In particular, all the projections p*(P) where P are tiles of T
have a common point, this common point is unique.

A section ) is reduced to planar section if there is @ € E* if for every
z € E the segment {Q(z),z + a] does not meet the parallel boundary B or
meets B only at point £ + a. Here }(z) is the point of Q lying upon z,i.e.
Qz) = QN p~i(z). A section ) is reduced to planar section if and only if
the projections of all the prisms from S on Et have a common point.

Proposition 1.5.4:If T is a tiling from Tg then after a shift T is coincident
with a quasiperiodic tiling defined by o € E*, not necessarily regular.

Proof:After a shift we may assume that 0 is a vertex of T. We can choose
regular o; in K such that Ty, coincides with T inside the ball U, with radius
r = 1. Because K is a compact set, after selecting a subsequence, we may
assume that the sequence of points «; converges to a point a in K. Then
obviously T = limTy,. If « is regular then T = T,. If a is not regular,
again by selecting a subsequence we may assume that all o; belong to the
same part of E* divided by hyperplanes from Ir going through a. Then Ty,
converge to the quasiperiodic tiling defined by this part. O

As a consequence of propositions 1.5.2 and 1.5.4 we get the following.

Proposition 1.5.5:If a tiling Tq of a section Q not meeting B belongs to Tg,
then Q is reduced to a planar section.

To prove that Local rules do not exist by the above propositions it suffices
to prove that for every r > 0 there is a section not meeting B + U, and not
reduced to planar section. This is the main idea for all the proves below.
Every proof is based on this idea.

2 The SI-condition

2.1 On the set B+ U,

Let hy for J = (J1,. -+, Jn-k-1) € M,_i—1 be the (n — k — 1)-dimensional
subspace spanned by ¢€;,...,€;, _,_,. Of course h; is a rational subspace
and p*(h;) = ff. The set hy + Z" is a locally discrete family of parallel
(n — k — 1)-planes in IR™. Here locally discrete means that every compact
meets only a finite number of (n — k —1)-planes from this family. This follows
from the rationality of h;. A set of the type hy + U, + £ for £ € Z" is called
a wall of width r. Each wall is a set of dimension n — 1 and is contained in
a unique (n — 1)-plane. The set W,(r) = hy + U, + Z" is a family of walls.

There are families of walls. Denote W(r) the set of all walls,

n
n—k-=1
W(r) = UWy(r),J € Ma_k1, it is a closed subset of R". The following
proposition 1s very important for us.

Proposition 2.1.1: For everyr > 0 there is r' such that B + U, is contained
in the union of all the walls of width r', B+ U, C W(r').



Proof:Because W(r’) is invariant under translations by Z" it is sufficient
to prove that there is r' such that for every I € M, the set dl(C;) + U,
is contained in W(r'). Suppose Q is a facet of Pj* then @ is a polyhedron
(in fact, Q is a parallelepiped) lying in a hyperplane fF + p*(¢) for some
£ € Z% and J € M,_4_,. Since pt(h;) = f#, ker(pt)= E and Q is a
compact set, there is r;y > 0 such that @ C hy + & + U,,.Because there
is a finite number of C; for I € M) and each C; has a finite number of
facets, we can choose ry such that for every facet @ of a prism C;,I € M,
we have @ C UJeMn_k_l(hJ + U, + Z").Thus we have Q@ + U, + P C
UJEi\ffﬂ_k_l(h-’ + Urdr 4, +2") where r; = max,p (diameter of F;). This
means that 8I(Cy) + U, is contained in W(r') where r' = r + ry + 1.0

The set B + U, is very complicated, but the set W(r) is more easily to
deal with.

2.2 Thecasen=%k+1

In this case it is known that 7g does not admit Local Rule (cf.[L]). We reprove
this theorem in order to illustrate the method used here.

Proposition 2.2.1: Suppose E is a totally irrational k-subspace of R" with
n=k+1. Then Tg does not admits local rule.

Proof:When n = k + 1 proposition 2.1.1 states that B + U, is contained
in Z"™ + U, for some r’. For a fixed r > 0 we have to find a section  not
meeting Z" + U, and not reduced to planar section. Et is a line and the set
of regular points is dense in this line. Because E is totally irrational, two
sets U,41 and U, 4y + € where £ € Z" and £ # 0 have no intersection. Hence
there is a segment V = [a, 8] in E* containing 0 such that V 4+ U,4; does not
meet any U, + € for £ € Z" and € # 0. We can choose a to be regular. The
boundary of V + U, consists of two parts: « + U, 4, and its complement,
denoted by Y. Consider the k-dimensional surface Q' which coincides with
E + « outside U, 4, +E* , while inside U, +E* it coincides with Y (see fig.1)

7 frw N\
i I

Fig.1
Then ' is not a section but it is easy to deform the part ¥ of Q' inside

V + U,4; such that the obtained surface © is a section not meeting U,.
Obviously € does not meet Z" 4 U, and €2 is not reduced to planar section.O



2.3 SI condition

Definition:E satisfies the SI condition if for every J € M,_x_1 the space
hy + E contains a rational (n — k)-dimensional subspace.

Note that h; + E always contains a rational (n — k — 1)-dimensional
subspace, it is hy. The reason why this condition is called SI (abriviation of
self-intersection) is explained below.This was first introduced by Levitov (L]
in another interpretation.

Proposition 2.3.1:/f E does not satisfy the SI condition then there ezists
J € M,_i—y such that every two different walls from Wj(r) do not have
intersection.

Proof:Suppose hy + U, + £ intersects with h; + U, for some £ € Z". Then
Echy—h;+U ~U, =h;+U, Chy+E. If £ does not belong to hy then
hj,€ span a rational (n — k)-dimensional subspace of h; + E, but if £ € hy
then hy + € = hy and the walls hy + U, + £,h; + U, are the same.O

Lemma 2.3.2:There is a 1-plane (i.e. a line) h in EX not going through
any intersection point of every two hyperplanes from Ir.

Proof: Suppose X is the set of all points lying in at least two hyperplanes
from Ir. Then X is the union of a countable number of planes of codimension
2 in E*. Choose an arbitrary 1-dimensional subspace A’ of E*. Then A’ + X
is the union of a countable number of planes of codimention 1. Hence ( by
Baire's category theorem or by counting Lebesgue measure) A’ + X can not
cover the whole E*. Choose a point z in E* not belonging to A’ + X then
the line h = z + &' is a line to find.0O

Theorem 2.3.3:If T admits local rule then E satisfies the SI condition.

This theorem was first proved by Levitov [L]. We present here another
proof.

Proof:Suppose E does not satisfy the SI condition. For every r > 0 we will
construct a section {2 not meeting W(r) and not reduced to a planar section.

Choose a line k as in lemma 2.3.2, we will find such a sectionin F' = EF+h.
For this purpose consider the intersections of all the walls with F'. For each
J € M, _i_ there is a family of walls W;(r). If W, W, are two walls of
different families then by lemma 2.3.2 the restrictions of these two walls on
F do not have intersection: (W, N F)n (W, N F) = B. Now choose an
index J € M,_x_, as in proposition 2.3.1 and suppose W is a wall from
W;(r). Then W N F is a compact set congruent to § 4+ U, for some § € F.
By proposition 2.3.1 and lemma 2.3.2 the set W N F' does not meet the
intersections of other walls with F. Because the union of all the walls is a
closed subset of E*, there is a neighborhood of W N F in F which does not
meet the intersections of any other walls with F'. We are in the situation like
that of the case n = k£ + 1 and a trick like that of the proof of proposition
2.2.1 yields the result.O



2.4 Relation with the SI condition of Levitov

For each: € {1,2,...,n} let L; be the (n — 1)-dimensional subspace spanned
by (n—1) vectors from €y,...,&, without ;. Then the family £; = L;+Z" =
L; + me;;m € Z is a family of equidistant (n — 1)-planes of R". The inter-
section of £; with E is a family of equidistant parallel planes of codimension
1, called the :-th grid of E. In general every k planes of codimension 1 have
exactly one intersection point. Due to the genericity (*) we see that every
k grids have intersection point different from 0. We say that E satisfies the
Levitov SI condition iff every (k + 1) grids have intersection point different
from 0, i.e. there are (k + 1) planes of codimension 1, one from each grid,
having intersection point which is not 0.

E can be spanned by & vectors with coordinates :
my = (Ulla V12y -+« vln)

Uz = (U21: Vg2y - ,’Uzn)

U = (vkl, Vk2y .-+, vkn)

For I = (%4,...,1k) € M let A; be the determinant of the matrix consit-
ing of k columns zy,...,1.

Proposition 2.4.1:The following conditions are equivalent:

a)E satisfies the SI condition.

b)E satisfies the Levitov SI condition.

c)For every (k + 1) indices {i1,15,...,2541} from {1,2,... .0} , (k+1)
numbers Aj_;, 7 =1,...,k+ 1 are linear dependent over Q.

Here I — j is the set of k indices from {1y,%2,...,7¢41} without ¢;.
Proof:l & 2. Consider for example J = (k+2,...,n),then J° = (1,2,...,k+
1). There is a vector v = (Mg, + -+ + Ae,) € E such that h; and v
span a rational space iff there are real numbers a,_z41,...,4a,,b such that
Akp2€kt2 + o+ AnEn +0( M€ + -+ Ag,) belongs to Z™, and b must not be
zero. This holds iff bAy,...,bAgy are integers, that is, iff £y,...,Lsyy and
E have a common point bv.

3 & 2. This follows from the definition of determinants.O

Note that the last condition is more convenient to verify when a concrete
E is given.

2.5 Classes of tilings with the same local structure

Note that when E* is not totally irrational then in 7¢ there are tilings which
are not locally equivalent, that is, they have not the same local structure.
To find a subclass of 75 having the same local structure one can proceed as
follow. Let Z(E) denote the smallest rational subspace of R" containing E.
the following proposition is well-known (cf[L],[LPS1]}):
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Proposition 2.5.1:Suppose a and f are regular and (a — fB) € p*(Z(E))
then T, and Ty have the same local structure.EL is totally irrational if and
only if Z(E) = R".

For a point § € El/pl(z(E)) = R"/zE) ( we regard § also as a point of

E*') consider the class T of tilings of type T, where a € (6§ + p*(Z(E)).
The closure 7g;s of Tg,s is the set of all the tilings having the same local
structure as that of a fixed one T, of 7.

Ezample.Consider R® with basis ¢; and actions of group Zs =< g | g° =
1 > by g(e; = €iy1)- Then IR® decomposes into three invariant subspaces
E,E, and A. Here A is a 1-dimensional subspace on which g acts as identity,
E is a quadratic (over Q\/g)_ 2-plane on which ¢ acts as rotation by 72° and E

is the conjugation of E, on E g acts as rotation by 144°. Here Z(E) = E+E,
and EL/p*(Z(E)) = R"/z@E) = A = IR. So for each 6 € A = IR thereis a

class of tilings 7z, having the same local structure. When § = 0 this class
of tilings is the class of Penrose tilings , it is proved by de Bruijn that Tz
admits local rules when § = 0. By a result of Ingersent and Steindhart it
follows that if 755 admits local rule then § = p 4 qr where p, ¢ are integers
and T is the golden ratio, 7 = (1 +v/5)/2.In [Lel] we prove that if § = p+ ¢
then the class 75 does admit local rule. Hence a criterion for this case is
found.

The structure of the closure Tgs: Consider the intersection of B with
§ + pL(Z(E)). If there is a regular « in § + p~(Z(E)) then this intersection
is the union of several families of parallel planes of codimension 1 in é +
p1(Z(E)). Suppose « is an irregular point of § + pt(Z(E)), then there are
several planes of codimension 1 from § + pt(Z(E)) going through a. They
divide § + p1(Z(E)) into many parts and each part,by considering the limits,
defines a unique quasiperiodic tilings. As in section §1.5. One can prove that
every tiling of Tz, is defined in such a way. Note that the union of all Tz
with § € A is not Tz, but only a subset of 7. ‘

Proposition 2.5.2: If Q is a section lying in § + Z(E) and not meeting
B + Uy, then the tiling Tq defined by this section belongs to the class Tgs(r),
that is, every r-map of T is a translate of an r-map of a tiling from Tg,s.

The proof is like in the previous case and we omit it.

Theorem 2.5.3:1f Tg,s for some 6 € EX admits local rule then E satisfies
the SI condition.

Proof:In the proof of theorem 2.3.3 one should choose the line A lying in
§+ Z(E).O

2.6 The case dim(Z(E)) =k +1

We recall that Z(E) is the minimal rational subspace of " containing E.
The following proposition is a generalization of proposition 2.2.1.

Proposition 2.6.1:If E is a totally irrational k-dimensional subspace of IR"
such that dim(Z(E)) = k + 1 then E does not satisfy the SI condition, hence
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TE does not admit local rule.

Proof:let vy,...,vr4; be integer vectors which span Z(E). There must be
n — k — 1 vectors from {ey,...,€,}, say €x41,...,En Which together with
v1,..., V41 span R". Then every integer vector { € Z" can be expressed
uniquely as a linear combination of vy, ..., vy, Ex42,. - -, En With rational co-
efficients. If x42,...,€n,E span a space containing an (n— k)-dimensional ra-
tional subspace then there is a vector v € E C Z(E) such that v,e542,...,¢,
span a ratioanal space. That is, there are Aiy2,...,An, A € IR such that
AV 4+ Apyo€ipa + - + An€n € Z". Let \v = \jvy + -+ + /\k+1v;¢+1. Then
we have Aju; + -+ + Ap1Vkgr + Arp2€rpz + - + AnEq € Z%. By the above
observation we see that all A; are rational, that means Av is rational. Hence
E contains a rational vector which is contradict to the total irrationality of
E.O

3 2-dimensional tilings

In this section we will present a stronger necessary condition for 2-dimensional
tilings in [R*. There are only a countable number of E subject to this con-
dition, while there are a continuum number of E satisfying the SI condition.
In the whole section we assume that E is a totally irrational 2-dimensional

subspace of R* and dimZ(E) = 4.

3.1 On the Grassmanian G432 and non-degeneration

Suppose E in R? satisfies the SI condition. This means for every i = 1,2,3,4
the space spanned by ¢; and E contains a rational 2-dimensional subspace,
denoted by F;. This 2-plane F; is defined uniquely because Z(E) = IR*. Let
f; be the intersection of F; and E. This must be a 1-dimensional subspace
(= a line).

The set G4, of all 2-dimensional subspaces of R* can be parametrized as
follow: Each 2-dimensional subspace E is determined by two linear equations
1A + azh; + azdz3 +ady =0
biA1 + baAz + b3As + by Ay =0

where ); are coordinates of points in JR* and regarded here as variables while

a;, b; are real numbers. Let A;; = det (z' Z’) Then
i U5
Aj2Azs — A1zAss + AjAys =0 (1)

Conversely every six numbers A;, I € M; satisfying (1), not all zeros, define
a 2-dimensional subspaces of R*. Two collections A;, A} define the same
2-plane if and only if there exists a real number A such that A; = AAJ}.
Other words, the Grassmanian Gy, is a quadric in the projective space RP®
defined by equation (1) (cf. for example [GH]). Projectivé coordinates of
F; is denoted by (F});. A subspace is rational if and only if its projective
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coordinates, after multiplication by a same number, are rational.E intersects
F; by line, hence E and F; are not in generic position. The set of all 2-
dimensional subspaces with projective coordinates A; having intersection of
dimension greater or equal 1 with F; is defined by the following equation

(Fi)12Asq — (Fi)13A24 + (Fi)1aAos + (Fi)azAra — (Fi)2aArs + (F)asArz = 0
(2:)
Definition:Suppose E satisfies the SI condition. E is called non-degenerate
if four planes F;, regarded as vector in IR® are linear independent.

Lemma 3.1.1: If E is degenerate then there is a continuous non-constant
curve E(t),t € R in G4, such that E(0) = E and all 2-planes E(t) intersect
F; by lines,that is dim(E(¢)N F;) > 1,1 =1,2,3,4.

Proof:(2;) are linear equations on A;. If (F}); are not linear independent
then these equations define a projective space X of dimension greater or equal
2 in JRP®. The intersection of X and the quadric defined by (1) contains E.
If E is not an isolated point of this intersection then the intersection contains
a curve going through E and we are done. But if E is an isolated point, then
the projective subspace X have tangent point E with the quadric defined by
(1). Because both X and the quadric have rational coefficients and degree
of X is 1, it is easy to see that their tangent point must be a rational point,
this contradicts the fact that E is totally irrational.0

3.2 Main theorem

Theorem 3.2.1: Suppose E is a 2-dimensional subspace of R*. If Tg admits
local rule then E is quadratic and non-degenerate.

Note that when E is quadratic then E satisfies the SI condition (see [L]
or [LPS1}).We divide the proof into several cases.

Proof:The case E* intersects F; by lines. This case is essential. An exam-
ple of this case is the 8-fold symmetry case considered by Burkov [B],Beenker,
and De Bruijn [dB2] see also examples below. In this case F; is a prism,
F; = fi + f+ where f* = F,NEL.

Let F = UIZ{(F; + Z%), this is a set of 2-planes in JRY. Then W(r) =
F + U,. For every r > 0 we have to construct a section §} not meeting
B + U, and not reduced to planar section. In fact here we will construct
 not meeting B + U, such that the projection pt(Q) is not a bounded set
in E+. This is of course a stronger assertion. The idea is as follow. Let
U,(t) be the image of U, under the projector on E(t) along E*. That is
U.(t) = (U, + E+)NE(t). We will construct a continuous map ¢ : B! — R*
satisfying :

a)preserving fibers, that is, ¢(z + Et) = z + E* for every z € E.

b)not far from the identity, that is, there is a constant such that |¢(z) —
z| < constant for every z € R*.

))(F+U,)=F+U.(t) and ¢~ (F+U,(t)) = F+ U, for a number ¢t > 0
such that E(¢) # E.
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If such ¢ exists. Choose a point a € E* such that o+ E(t) does not meet
F, and hence does not meet F + U, (t). Consider ? = ¢(a + E(t). Then by
a)  is a section, by b) the set pt(f) is not bounded and by c) section {2
does not meet F + U,. That is ( is the section to find.

Step 1.Fixr > 0. We call a big wall a set of type F;+£+U, where { € Z*.
Each big wall is contained in a unique 3-plane. There are 6 prisms C; which
together form a fundamental domain of group Z*. Each C; intersects with a
finite number of big walls. The 3-planes going through these big walls divide
Ct into smaller prisms, each smaller prism has the same projection on E as
Cr has. Other words, Pj- is divided into smaller polygons and the division
of Cj is just the collection of the sums of each smaller polygon with P;. By
this way we divide all six prisms C} into smaller prisms and spread out this
division to all the other prisms of O just by translation. Denote O, the
new family of prisms, it is called a refinement of O. Let B, be the parallel
boundary of O,. From the construction one sees that (F 4 U,) C B,, but
B, C F+ U, for alarge r’. If z € E then the 2-plane z + E* is divided into
polygons by the intersections with B,. There are only a finite number, up
to translations, of different polygons in the intersection of z + E with B,.

Step 2.For a fixed r we can parametrize the curve E(t) such that the
distance between y and p(y) is less than t for every y € U,44(t). Consider
the intersection of a fiber z + E+ with the set of all big walls W = F + U,.
First consider the intersection with a big wall (z + E*)N(F; + £+ U,). Both
are prisms, and F; + &£ + U, = (f*) + (f; + U,) + £. 1t is easy to chech that
z+E* and F;+¢ 4 U, have non-empty intersection if and only if z is lying in
the ball p(€) + U, and in this case the intersection is the line z + f{* + p*(¢)
which is parallel to f*. Hence the intersection of z + E* with F + U, is
the union of 4 families of parallel lines. These 4 families divide z + E* into
polygons. There are only a finite number of polygons in this division, up to
translation.

Step 3. Lemma 3.2.2:The 2-plane z + EL has non-empty intersection
with F;+£+U, if and only if it has non-empty intersection with Fi+£+U.(t).
In the case the intersections are not empty both are lines and the distance
between them is less than t.Here r' is any number between r and r + 1.

The proof is quite easy and we omit it.This lemma means that the two
system of lines are very close to each other when ¢ is small.

We call the line (z + Et) N (£ + € + U,(t)) the corresponding line of
(z + E+) N (F; + £+ U,), if both are not empty.

Step 4.Lemma 3.2.3: [f three lines from the inlersection of T + E+ with
F + U, intersect at a point then their corresponding lines also intersect at a
point.
Proof:If three lines (z+E+)N(F;+&+ U, ),7 = 1,2, 3 intersect at a point then
pt(&) + fi* also intersect at a point. But in this case, due to the fact that
E is totally irrational and F; are rational, §; are interger points, one easily
prove that the three 2-planes F;+¢;,2 = 1,2, 3 intersect at a point. From this
it follows that three corresponding lines (z + EY)N(F;+ &+ U.(t)),1 =1,2,3
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intersect at a point.0

If two lines from (z + EY) N (F + U,) intersect at a point v then the
intersection point of the two corresponding lines is called the corresponding
vertex of v. The lemma guarantees that the definition is correct.

Step 5. The system of line (z + E*) N (F + U,) divides z + E* into
polygons. If we choose ¢t very small then the system of corresponding lines
divides £ + E* into polygons in a similar manner. This means that if we take
the set of vertices of a polygon, then the convex hull of the corresponding
vertices is a polygons of z + E* divided by the corresponding system of lines.
Now we define a map ¥ : (z + E*) — (z + E*) as follow. If z is a vertex
of a polygon of z + Et divided by the system of lines (z + Et) N (F + U,)
then let ¥(z) = the corresponding vertex. For a convex polygon with vertices
vy,. ..,V define its center as the unique point v such that 7o, +- - -+ v, = 0.
The center is unique and lying inside the convex polygon. We have defined
¥ for vetices of polygons and now can define ¢ for centers of polygons, just
take the center of the corresponding polygon. By connecting the center with
each vertex of a polygon, we get a linear simplicial structure of z + E and
spread the map ¥ on z + E* by linearity.

The map 4 is defined on R*. It satisfies all three properties a), b), )
listed above , but unfortunately it is not continuous. However the set of
continuous points of ¥ is a “big” one.

Step 6.The boundary of the projection of a big wall of width r is two
parallel lines. Denote V; the union of all such boundaries of the projections
of all the big walls of width r. This is the union of 4 families of lines, each
family consists of a countable number of parallel lines.

Lemma 3.2.4: Suppose y € R* such that p(y) = = does not lie in V,,
then there is a neighborhood of y in IR* such that 1 is continuous in this
neighborhood. -

Proof:Suppose Py,..., P, are polygons of (z + Et) N (F + U,) containing
y { including the case when y lies on the boundary of some polygon). Each
side of a polygon is a segment of the intersection of z + E+ with a big wall.
Let W, ..., W, are those big walls whose intersection with z + E* containing
a side of one of Py,..., P,. Then z is lying inside in the intersection X of
the projections of these big walls on E, but z is not lying on the boundary
of X due to the condition of the lemma. The union of all the sets X +
P,,i=1,...,m is a neighborhood of y and obviously ¥ is continuous in this
neighborhood.O

Step 7. For a fixed number r we can construct a map . If we choose
another, say ', r < 1’ < r+1 then we can construct in a similar way another
map ', with properties:

i)preserving fibres

i)' (z) — z| <t

i) (F+U,) = F+U,(t), ¢ (F+U.(t)) = F+U, and if y is an interior
point of a polygon of z+E* divided by the system of lines (z+E+)N(F+U,)
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then v¥'(y) is an interior point of the corresponding polygon. This follows
from the fact that ¢ is bijective, and when ' > r the division of z + E+
into polygons by the system of lines (z + E+)} N (F + U,) is finer than the
division by the system of lines (z + E+) N (F + U,).

Now for each y € IR* we can choose an r',r < r’ < r 4+ 1 such that the
map ¥’ is continuous in a neighborhood of y. The space R* is covered by
such neighborhoods. Choose a subfamily of neighborhhoods which is locally
finite and by using the partition of unity with respect to this locally finite
family we can glue all the continuous maps 1’ in these neighborhoods and
get a continuous map ¢. It is easy to check that this map ¢ satisfies all three
properties a),b),c). The theorem for the case when E* intersects F; by lines
is proved.

The general case. Choose a 2-dimensional subspace E' in the curve E(t),
it intersects F; by lines.Suppose E N E’ = {0}. Denote = and = resp. the
projection on E and E' corresponding to the decomposition R* = E+E’. A
2-dimensional surface 2 is called a 7-section if the restriction of # on Q2 is a
homeomorphism between ! and E. A w-fiber is a set of type = + E’. Then
the proof of the previous case yields the following: for every r > 0 there is
a m-section () which does not meet 7 + U, and the projection 7'(Q2) is not
bounded, or equivalently, the projection p*(f2) is not bounded.

Now consider the cut method of pair (E,E’). That is, in the construction
of family O, instead of EY we use E’. We get 6 new m-prisms CT. These
six w-prisms and their translates by integer vectors cover the whole R*, but
may be with overlaps. When E’ = E* or when E' is near to E* there are
no overlaps. But we can always get a tiling of IR* : the superpositions of all
the 7-prisms of type CT + £,¢ € Z* divide R* into covex polyhedra, each is
a m-prism. The collection of all these polyhedra is a tiling of R*, denoted
by O'. This tiling is invariant under translations from Z*. The parallel
boundary of this family is denoted by B’. As in the case E’ = E* the set
B’ + U, is a subset of F + U,, for some r,. We can also refine the family
@' as in the case of O by the set F + U, to get a family O, with parallel
boundary B;. Note that when r tends to infinity, the maximal diameter of
the projection 7'(C),C € O'(r) tends to zero, while the refinement does not
affect the projections 7(C): these projections are always the same, and up
to translations there are a finite number of them.

For every r > 0 choose r; such that B/ is contained in F + U,,. By the
previous construstion there is a 7-section £} not meeting F + U,, and hence
not meeting B!. Let S be the set of all #-prisms from ¢, meeting Q. By
projecting (along E’) on E the collection S we get a tiling T, whose tiles
are convex polygons. We divide each tile of T into triangles by putting some
diagonals arbitrarily. The result is a simplicial structure of the 2-dimensional
plane E. For every vertex v of T define ¢(v) be the point of Q2 lying upon v,
that is ¢(v) = QN 7~1(v). Then we spread the map ¢ on the whole E by
linearity using the simplicial structure. The surface ¢(E) is of course lying
inside the union of all prisms from §, it consists of triangles and defines the
same tiling as (0. Each triangle is contained in a prism of §. Because the size
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of the projection on E’ of prisms from (', tends to zero when r — oo, the
2-plane containing the triangle tends (uniformly on the set of all triangles)
to a plane paralle] to E. Hence when r is sufficiently large, the surface ¢(E)
is a section with respect to p. Is is a section to find.

Now suppose E intersects E’ by line, EN E’ = h. Note that among
F\, Fy, F3, Fy there may be coincident 2-planes. If F; and F; intersect by a
subspace of dimension > 1 then they are coincident. In fact if F; N F; = [ is
a line then ! + E contains both F; and F; , hence dimZ(E) = 3.

Case a). There are 3 different 2-planes from F\, Fa, F3, Fy, say Fy, F3, F3.
Since the intersection of two rational space is a rational space, two of the three
2-planes Fy, Fy, I, say Fy, F, do not go through A. In this case because F}, F;
intersect E,E’ by lines we see that both Fj, F; are contained in E + E’ which
is a 3-dimensional space while Fi, F; span a 4-dimensional space. So this
case is impossible.

Case b). There are only two different 2-planes from Fy, Fy, Fa, Fy, say
Fy, F,. We can choose v; € Fy;v; € F; such that vy, vy, E span Fy+ F; = R*.
Then E” spanned by vy, v, is a 2-dimensional space intersects all F; by lines
and ENE” = {0}.

The theorem is completely proved.O

Ezample. As an application of the theorem consider the following case.
The group Zg =< g | ¢® =1 > acts in R* by g(&1) = €2,9(¢2) = €3,9(ea) =
€4,9(e4) = —€1. The space R* decomposes into two invariant 2-dimensional
subspaces E and. E', on E ¢ acts as rotation by 45° and on Et by 135°.
A tiling of 7% is called a quasiperiodic tiling having 8-fold symmetry. This
class of tilings has been investigated by Beenker and Burkov. In this case E
satisfies the SI condition so theorem 2.3.3 does not say any thing about this
class. Burkov [B] and De Bruijn [dB2] proved that this class does not admit
local rule. Here this can be obtained directly from the theorem , because E
in this case is degenerate.

3.3 On the non-degeneration

Suppose R* = E®FE’, Z(E) = R* and H,,..., Hyare rational 2-dimensional
subspaces of R* such that dm(EN H;) =dim(E'N H;))=1,:=1,2,...,m.

Proposition 3.3.1: The following are equivalent:

a) There is a non-constant curve E(t),t € R in G4, such that E(0) = E
and all E(t) intersects H;,1 = 1,...,m by lines.

b) m wectors (H;);,1 = 1,2,...,m form a subspace of dimension < 3 in

RS.

¢) There is a linear transformation © : R* — R* such that ¢(E) = E/
and o(H;) = H;,1 =1,2,...,m.

Proof:a) & b).See lemma 3.1.1

b) & c) Note that up to a multiple there is a unique linear transformation
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@ such that ¢(E) = E’ and ¢(H;) = H; for i = 1,2,3. Choose coordinate
system z,,z, on E such that H, N E is given by z; = 0,H; N E is given
by z, = 0, Hy N E is given by z; + z, = 0.Then choose coordinate system
Y1,y on E' such that H; N E’ is given by y; = 0,H,; N E’ is given by y; = 0,
H; N E' is given by y; + y2 = 0. Suppose H is a rational 2-dimensional
of R! intersecting E,E' by lines. Then H N E is given by z, + az; = 0
and HNE' by y; + by, = 0 where a,b are real numbers. Consider the
coordinate system of R* given by z,,7,,1,y;. In this coordinate system
the projective coordinate of H;, H,, H3, H are as below (here we write six
numbers H,z, HlSa Hlds Has, HN, H34)2

H, : (0,1,0,0,0,0)

H, : (0,0,0,0,1,0)

Hjz: (0,1,1,1,1,0)

H : (0,1,b,a,ab,0)

It is easy to see that vector H is a linear combination of H,, H,, H; if and
only if @ = b, that is , if and only if p(H) = H.O

The proof of theorem 3.2.1 gives the following.

Proposition 3.3.2:Suppose R* = EQE’, Z(E) = R*, E is totally irrational
and Hy,..., H,, are 2-dimensional subspaces of R* satisfying one of the three
equivalent conditions of proposition 3.8.1. Let H = U=y, .m(Hi + Z*). Sup-
pose r > 0 is fized . Thenfor sufficiently small t > 0 there is a continuous
map ¢ : R* — R?* satisfying:

a)preserving fibers, that is, ¢(x + E') = z + E' for every x € E.

b)not far from the identity, that is, there is a constant such that |¢(z) —
z| < constant for every z € R*.

Jo(H+U,)=H+Ut) and 7" (H+ U, (})) =H+ U, .
Here U,(t) is the ball in E(t) lying upon U,, i.e. U,(t) = E(t)N{U, + E).

4 Tilings having 12-fold symmetry

4.1 Description of the tilings

Let’s consider IR® with basis €;,# = 1,...,6 and action of group Z,;; =<
g | ¢*=1>in RE by g(e;) = €i41,4 = 1,...,5,9(e6) = —&1. Then R®
falls into three invariant 2-dimensional subspaces E,E and A where A is a
rational subspace on which ¢ acts as rotation by 90°, E is a quadratic (over
Q+V/3) on which g acts as rotation by 30°, E is the conjugation of E, on E
g acts as rotation by 150°. A tiling belongs to Tz is called a quasiperiodic
tiling having 12-fold symmetry.The prototiles, up to rotations, are listed in
fig.2.
Here are vectors that span E,E and A.

E is spanned by (2, V3, 1,0,—1,—\/5) and (0,1, V3,2,V3, 1).
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E is spanned by (2, —3,1,0, —1,\/5) and (0, 1,—v3,2, -3, 1).
A is spanned by (1,0,-1,0,1,0) and (0,1,0,-1,0,1).

Let ei(resp. €;¢€;) be the projection of ¢; on E(resp. on E,A). On the
planes E E A these vectors looks like in fig.3.

:

Figure 2
o5 A4 e, 6%
% e,

Figure 3

One can check easily that E satisfies the SI condition. Here the set M;
has 20 elements. Note that p*(Z(E)) is contained in Ir.The subspace h;+E
contains Z(E) for J = (1,3,5) and J = (2,4,6). Let M} be the subset of M3
not containing (1,3,5) and (2,4,6). Then M3 has 18 elements and for every
J € M} the space h; + E contains a unique rational 4-dimensional subspace
F;. For example when J = (1,2,3) then F; is spanned by &,,e3,£3 and ey,
when J = (1,3,4) then F; is spanned by ¢, ¢3,£4 and ez,when J = (1,3, 6)
then F; is spanned by €;,€3,€6 and e;. These three 4-planes have the same
intersection with Z(E) = E @ E, the intersection is a rational 2-dimensional
space H spanned by e; and é;. Other F; where J € M} can be obtained
from these three by actions of group Z,;. Note that ¢8(F;) = F;,J € Mj.
The 2-plane H intersects E,E’ by lines. By actions of Z,;; from H we can get
six 2-planes Hy,..., Hs. We can choose the notation so that H; is spanned
by e; and é;.

Let A be the projection of Z° on Z(E), it is a lattice in the 4-dimensional
space Z(E} = E + E’, it is generated by 4 rational vectors. Denote A/2 be
the set of all points £ such that 2¢ belongs to A.Let H = US_,(H; + A/2).

4.2 Absence of locai rules

Let § = (€7 + €2)/2, it is a point of A.

Lemma 4.2.1:If J = (1,3,5) or J = (2,4,0) then the space hy + E + £ does
not meet § + Z(E) for any € € RS,
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Proof:Note that the projection of Z® on A is the discrete lattice generated
by €3, €2, and the projections of h; for the above J on A are two lines going
through 1-facets of this lattice. Hence the projections of all the sets of type
hy + E + £ is contained in the union of all the 1-facets of this lattice. Since
& does not lie on any 1-facet of the lattice,by considering the projections on
A one sees easily that the set § + Z(E) does not meets h; + E + £.0

We want to find a section in § + Z(E) = § + E + E’ not meeting B + U.
and not reduced to planar section. For this reason at first we study the
intersection (B + U,)N (6 + E + E').

Lemma 4.2.2:For every J € Mj the intersection of Fy with 6 + E 4+ E' is
contained in 6 + H.

Proof:For each J € M} we prove that F; N (6 + E + E’) is contained in
§+ H; +¢/2forsomet =1,2,...,6 and £ € A. This can be checked easily.
For example when J = (1,2, 3) the intersection F;N(§+E+ E’) is contained
in 6§ + Hy + £/2 4+ U, where £ is the projection of £y + &, on Z(E). O

From this lemma one sees that the intersection of B + U, with §+ E+ FE’
is contained in § 4+ U, + H.

Now in the 4-dimensional plane X = (§+E)+E’ we have a lattice §+A/2
which plays the role Z* as in §3. The 2-planes § 4+ H; intersects § + E and
(E’ + 6) by lines, just like the 2-planes H; intersects E,E’ by lines.

Lemma 4.2.3:5iz 2-planes H; satisfy all the conditions listed in proposition
3.8.1.

Proof: The proof consists of straight verification. The linear map ¢ : (E +
E’) — (E + E’) defined by ¢(e;) = é1,¢(e2) = —€; sends E onto E’ and
preserves all the six 2-planes H;.O

From this lemma and proposition 3.3.2 one easily constructs a section §2
lying in 6§ + E + E’ not meeting B + U, and not reduced to planar section.
Morever, the projection p* (1) is not bounded. Hence we get

Theorem 4.2.4:The class of quasiperiodic tilings having 12-fold symmetry
does not admit local rules.

5 Concluding remarks

1)The proof of theorem 4.2.4 can be applied to the case n > 4,k = 2 and
dimZ(E) = 4.

2) For all quadratic E one can always color all the tilings of 7 such that
the resulted class admit local rules. This is true even in the case when E
is degenerate. For the exact definition of coloring and the proof we refer to
[LPS].For example, after coloring, the classes of quasiperiodic tilings having
8-fold symmetry and 12-fold symmtry admit local rule. While the class
quasiperiodic tilings having 5-fold symmetry admits local rule even without
any coloring.

3) In the case of 8-fold symmetry, by Main theorem (theorem 3.2.1) for a fixed
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r the set Tg-(r) is never coincident with 7g. Nevertheless for large r this set
consists of only quasiperiodic tilings, including some periodic tilings. More
precisely for large r there is a € R,a > 0 such that Tg(r) = U_a<,<,,—7_}3(_¢).
This is proved in [Le2].

4)Levitov [L] introduce the definition of weak local rules, and the proof of
the Main theorem also asserts that if E is degenerate then even weak local
rule does not exists. Combining a result of [LPS] (see also [L]) we get the
following:

Proposition:Suppose E is quadratic subspace of R*. The following are
equivalent:

1)E is non-degenerate.
2)Tg admits weak local rule.

5)Loosely speaking when E is quadratic and non-degenerate, the class 7% is
“not far” from having local rule. Only modulo a “bootstrapped condition”,
and in many cases one can prove the existence of local rule for 7g.

6) For the case dim(E) greater than 2 we can prove an analog of theorem
3.2.1 which states that if E is a quadratic,totally irrational subspace of IR"
with n = 2k and the class of tilings 7z admits local rule then E must be non- -
degenerate. Here non-dégeneration is defined only for the case E is quadratic.
In this case 2-plane F; going through ¢; and =(g;) is rational where = is the
projection on E along the algebraic conjugation E of E. There are 2k such
2-planes, each intersects E,E by lines. E is called degenerate if there is a
continuous family E(¢) of k-dimensional subspaces of IR" such that E(0) = £
and E(t) intersects F; by lines.
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