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Abstract

\Ve prove that if t'he dass of tHings obtained by embedding a 2­
dimensional R 2 into R,4 by the projeetion method admits Ioeal rule
then the embedding fiust be based on quadratie irrationality, and non­
degenerate in same sense. Absense of Ioeal rule for the dass quasiperi­
odie tHings having 12-fold symmetry is proved.

Introduction

In this paper we study the loeal strueture of quasiperiodic tHing obtained
from the projeetion method. \Vhen E is a k-dimensional suspaee of an Eu­
didean spaee JRn equipped with a base there is a dass of tilings associate with
E. The question is when this dass of tilings has loeal rule, or in the terminol­
ogy of De BruijoJoeal eriteria. This problem has been investigated by many
authors (cL [LL[B),[dBl],[dB2],[K],[IS][LPSl},[LPS2J). In partieular, Levitov
in [L] introdueed the definition of loeal rules and found a neeessary eondition
for the existence of loeal rules, ealled the SI eondition. From the SI eondi­
tions it follows that the dass of planar quasiperiodie tilings having rn-fold
symmetry has loeal rule only if rn = 5, 8~ lO~ 12. Absence of Ioeal rules for the
dass of tilings having 8-fold symmetry is established by Burkov [B] and de
Bruijn [dB2]. For the dass of quasiperiodie tHings having 5-fold and lO-fold
symmetry existenee of Ioeal rules is proved by De Bruijn (cf. [dB],[LelJ).There
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remains the 12-fold symmetry case. In this paper we prove that this dass
of tilings does not have local rules, even "weak loeal rules" in the sense of
Levitov.

In the ease n = 4, k = 2 Levitov eonjectured that if the dass of tilings
associate with E has loeal rule then E is based on quadratic irrationality
and non-degenerate. Here we prove this hypothesis. In partieular the case
of 8-fold symmetry follows at onee from this theorem.

The paper is organized as follow.In §1 we introduce definitions and pre­
liminary facts about the strip method and the cut method. Here we follow
the wonderful paper [ODK}, some new facts are presented in §1.5. In §2 we
reprove a Levitov's theorem about the SI eonditions by a different method
and diseuss different definitions of the SI condition. §3 is the chief part, we
eonsider the eas~ k = 2, n = 4. In §4 we treat the dass of quasiperiodic
tHings having 12-fold symmetry.

Acknowledgements Part oI this work was done while the author was
a research fellow at the Steklov Institute for Mathematies in Moscow. He is
sincerely grateful to his ad,visor, Professor S.P.Novikov. The author thanks
the Max-Planek Institut für !vlathematik for support and hospitality.

1 Basic definitions and preliminary facts

1.1 Tilings and Local rules

A tiling 01 lRk is a family of k-dimensional polyhedra whieh covers lRk with­
out holes and overlaps such that up to translations there are only a finite
number of polyhedra in this family.A polyhedron of this family is ealled its
tiIe.Two polyhedra are eongruent if the seeond is a translate oI the first. The
classes of eongruent tiles are called prototHes. A tHing is ealled special if the
intersection oI every two its polyhedra is a eommon facet of lower dimension,
if not empty. In this paper tilings are always assumed to be special unless the
ease of family <9 and its refinements that appear later. An r-map is a family
of polyhedra lying inside a ball with radius r. Two r-maps are eongruent if
the seeond is a translate of the first. If T is a tHing then an r-map of T is
the subfamily of tHes Iying inside some ball with radius r.

A finite set of r-maps is ealled a Ioeal rule 01 radius r, or simply a Ioeal
rule when we do not eare about the radius of this Ioeal rule. A tiling T
satisfies a IDeal rule A 01 radius r if every r-map of T is eongruent to one of
A. A Ioeal rule is ealled quasiperiodie if it is not trivial, i.e. at least one
tHing satisfies it , and every tiling satisfying it has to be quasiperiodic. The
exact definition of quasiperiodieity will be given later in section 1.3.

A family T oi tHings admits a IDeal rule A 01 radius r if T is the set of
all tilings satisfying this Ioeal rule.

Two tilings have the same IDeal structure if every r-map of the first is
congruent to an r-map of the seeond and eonversly, every r-map of the second
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is congruent to an r-map of the first. This must holds for evevry r > 0 (while
in the definition of local rule a radius r is fixed).

If T is a set of tilings the closure T of T is the set of all tilings T such
that every r-map of T is congruent to an r-map of a tiling from T, for every
r > O.A set T of tilings is closed if T = T. It is evident from definitions that
if T admits a local rule then T must be closed.For a set T of tilings denote
by T(r) the set of all tilings T such that every r-map of T is eongruent to an
r-map of a tiling from T. Then T C T(r) C T(r') for every 0 < r' < r, and
T = nO<rERT(r). Also note that T(r) = T(r) and a set of tiling T admits
a loeal rule of radius r iff T = T = T(r).

1.2 k-planes

In the Euclidean spaee IRn with origin 0 we fix a standard basis CIl"" Cn •

Let zn be the integer lattiee. For a set of veetors VI, ••• , Vm from IRn let

Pol(vt,.:.,Vm ) = {I~ >';v; I>.; E [o,ll}
1=1

The set 1 = Pol(ct, ..... , cn ) is called the unit cube. Let M j be the set of
multi-indices (il' •.. , i j ) such that 1 ::; i 1 < i 2 < ... < i j ::; n. If J E Mj

let Je be the multi-index of !v!n-i such that J U Je is {I, 2, ... , n}. For J =
(iI, ... , i j ) E Mi the set 11 = Pol(cin" . ,Cij) and its translates by integer
veetors (i.e. vectors from zn) are called j-facets of the lattice zn.

Suppose Eis a k-dimensional subspace of IRn
. Eis ealled totally irrational

if there are 00 integer points lying on E except O. Let E.l. be the (n - k)­
dimensional subspace perpendicular to E and p be the projector along E.l.
on E , pl. be the projection on El. along E. Put ei = p(cd ,et = p.l.(ed, i =
1, ... , n. A set X is ealled a p-prism (ar simply a prism ) if X = p(X) +p.l.(X).

E is ealled rational (resp. quadratic) if it is spanned by k veetors VI, ••• , Vk

with coordinates belonging to Q (resp. QVd, where d is a natural number).

A k-plane means a k-dimensional plane. Denote Ur the ba.ll in E with
center at 0 and radius r.

1.3 The projection method

Let UB briefly recall the projection method used to construet quasiperiodic
tilings. The reader is referred to {dBl,ODK,GR] for full expositions on these
subjects.

Suppose E be a k-dimensensional subspace in IRn
. For simplicity we

a.ssume the following eondition of genericity holds true :

(*) Every k vectors from {eI, . .. ,en } are linear independent.

This condition is equiva.lent to :
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(*')Every n - k vectors from {er, ... , e;} are linear independent (cf
[ODK]).

In fact this condition is not essential but it will be more convenient for
uso The set of all subspaces E satisfying trus condition form a dense open
subset of the Grassmanian Gn,k.

We obtain a strip in JRn by shifting the cell , along an affine k-plane
parallel to E:

Sa= E+,+a,o E E.L

It is proved in [ODK] that for translation ° s.t. the boundary of the strip
does not contain any point of zn (in this case ° is called regular) the strip
contains exactly a unique k-dimensional surface buHt up of k-facets of the
lattiee zn lying in Sa. This su~face goes through all the vertices of the lattice
zn falling inside Sa and has an obvious polyhedral structure. By projecting
along E.L on E this polyhedral structure we get a tiling Ta of E. Note that
there are no overlaps: the restrietion of p on this surface is one-to-one. The
prototiles are the projections pe'n) of k-dimensional faeets of the lattice zn.
A point ° E E.L is called irregular if it is not regular. Denote Ir the set of
all irregular points. This set is of measüre 0 and is described below in 1.4.

There are many definitions of quasiperiodic tHings but perhaps all the
authors agree that Ta is quasiperiodic for regular o. One wishes to see,
wether the set TE of all tilings Ta for regular a admits loeal rule or not.
Unfortunately the set TE is never closed unless E is rational. So the question
should be formulated as follow: when the closure Ti admits a loeal rule of
same radius? Atrivial example is when E is rational then Ti = TE and TE
admits loeal rules.

For the same reason we will ~onsider a tiling T quasiperiodic if T is
eongruent to a tiling from TE for some E. How big is the closure 1E is
discussed in the following seetions.

1.4 The cut method

Let 's now consider another construction of these tilings, known as the cut
method [ODK].This eonstruction is essential for uso

Put PI = P(ir), Pt = -P:l(iIc) and CI = PI+P!, CI,e = CI+~,I E Mk •

Eaeh CI,e is a prism. If a k-plane E+o interseets with a prism CI,e
then the intersection is congruent to PI. For a prism X we define 81l (X) =
p(X) +8(p.L(X)) and 8.L(X) = ß(p(X)) +p.L(X) where 8Y is the boundary
of the set Y in E or in E.L . The sets 8 11 (X) and 8.L(X) are ealled resp. the
parallel and the perpendicular boundaries of prism X. The parallel (resp.
perpendicular) houndary of a family of prisms ,hy definition, is the union of
the parallel (resp. perpendicular) boundaries of all the prisms of this family.

Consider the family" = { CI,e,I EMJ" ~ EZ"}. Its parallel and per­
pendicular boundaries are denoted respectively by Band Bl.. This family
covers the whole JRn without overlaps and holes, i.e. it is a partition of lRn.
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This partition is called "oblique periodic tiling" of /Rn in (ODK] because

it is invariant under translations from zn. The union of ( ~ ) prisms CI,

] E Mk is a fundamental domain of the group zn. One can regard this union
as arearrangement of the unit cell,. Every k-plane E +a ,where E +a does
not meet B, inherits a unique tiling from the family O. The equivalence
between the cut method and the projection method is now stated as follow:
a E E.L is regular if and only if E + a does not meet the parallel boundary
B, in this case the inters~ctionsof E +a with prisms from 0 define a tiling
on E +a and by projecting on E we get the tiling Ta.

The set Ir of irregular points is p.L (B ). Let f f for J = (j}, ... ,jn-k-d E
Mn - k- 1 be the (n - k - l)-plane spanned by et, . .. , ef:_Ic_t' Then the set

of irregular points in E.L is the union of ( n _ ~ _ I ) families of parallel

(n - k - 1)-planes, each of the form f f + p.L (zn) (cL [0DKD. Each family is
dense in E.L but the union of its melnbers has measure O.

A seetion f2 will be referred to as a k-dimensional surface in JRn such that
the restriction Pln : f2 t-t E is a homeomorphism. If the seetion f2 does not
meet the parallel boundary B then by projecting the intersection of f2 with
the perpendicular boundary B.l ·we get a tiling Tn of E. Let Sn be the set of
all prisms from 0 meeting f2 then Tn is simply the projection of Sn on E.

An important example is the case when f2 = E + a where a is regular.
Then Sn is the set of all prisms from V which meets E +a. If Cl,' .. ,Cm is a
finite collection of prisms from Sn then the projections on E.L of Cl, ... ,Cm

are (n - k)-dimensional polyhedra having non-empty interior intersection,i.e.
their interiors have non-empty intersection.

1.5 More about the cut Inethod

Denote ]( = _p.l(,). It is an (n - k)-dimensional polyhedron. Then all Pf
are contained in J(. Suppose T is a tiling of E with prototiles PI,l E M k •

A lift of T is a lllap I: { ti les of T} -? {prisms [rom V} such that for every ti le
P of T we have p(/(P)) = P. If 11 E E.L n zn, 1] # 0 and p(C) = P then
p(C +1]) = P. Hence if E.l is not totally irrational and T has a lift then it
has many lifts.

Suppose I is a lift of T and P1, P2 are two neighboring tiles of T sharing
a common (k - 1)-dimensional facet. Then Cl = I(PI)' C2 = I(P2 ) have non­
empty intersection if and only if p.l(Cl)' p.l(C2 ) have non-empty intersection.
Both p.l (Cd, p.L (C2 ) are (11 - k)-dimensional polyhedra lying in E.L.

Lenlma 1.5.1:1/ p.l(Cd Iws 1l0n-e1npty interseetion with the interior 0/
Q = p.L (C2 ) then Cl +1] lIDes not meet C2 for evenJ 11 E E.L n zn und 11 :I o.
Proof:Suppose Cl + 1] meets C2 then p.L(Cd + 11 meets Q. It follows that
QO +1] meets QO where QO is the interior of Q. Since Q is congruent to Pf
for some I, which , in turn, is contained in ]( we conclude that ](0 + 1J has
non-empty intersection with ](. Lemma V. 2 of (ODK] asserts that 1] = 0.0
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A lift I of a tiling T is called conneeted if for every pair of tiles PI, P2

sharing a common (k-l)-facet the polyhedra p.l(/(P1 )), p.l(I(P2 )) have oon­
empty interior intersection. Gf course in this case I(Pd,/(P2 ) roust have
non-empty intersection. The following is a consequence of lemma 1.5.l.

Proposition 1.5.2:lf two connected lift 11,/2 of a tiling T coincide at some
tile, i.e. 11(P) = 12(P) for some tile P of T then they are equal, 11 = 12 •

Suppose X is an open subset of E. Then p-I (X) is the sum X + E.l.
Consider the set of all prisms of the family 0 lying inside X + E.l. By
projecting the parallel boundaries of these prisms on E.l we get a subset
Ir(X) of Ir. If a and ß are regular and both belong to the same connected
component of E.l \ Ir(X) then Ta coincides with Tß inside X. In the case
when X is bounded, say X = Ur, the set Ir(X) is a closed subset of E.l
of codimension 1 and E.l \ Ir(X) consists of (n - k)-dimensional polyhedra
without boundary.

Proposition 1.5.3:lf n is a seetion not meeting B +U2r then the tiling Tn
belongs to TE (r). Other words} every r-map of Tn is a translate of an r-map
0/ a tiling from TE.

Proof:Let X = Ur + X where X is a point of E. We have to prove that
there is a tHing Ta for regular Q' such that Tn = To inside X. Consider
Ir(X). Ir y E B n (E.l + X) then y + U2r C B + U2r , hence ODe sees easily
that Ir(X) + X C B + U2r • As Ir(X) divides E.l ioto many connected
components, the set Ir(X) + X divides E.l + X iota connected components
which project (by p.l) on the correspooding connected components of E.l
divided by Ir(X), and n n (E.l + X) must lie in one of these connected
component. If we take Q' be a regular point lying inside the projection on
E.l of this connected component then obviously Tn = To inside X. 0

A sequence 0/ tilings Tl, T2 , ••• of E converges to a tiIing T if for every
r > 0 there is a natural number N such that for i > N the tiling Ti coincides
with T inside the ball Ur.

If Q' E Ir is an irregular point then there are several hyperplanes (i.e.
planes of codimension 1 in E.l) from Ir going through o. They divide E.l
into many parts. If 01, 0'2, ... are regular, belong to one part and the sequence
O'i converges to 0' then it is easy to see that To ; converge to a tiling, called
the quasiperiodic tiling defined by 0 and this part. This tiling depends only
on the part containing 0i but not on concrete points Q'i. A rigorous proof of
this fact is presented in [LPS2].

Remark:One can prove that two diferent parts define different tilings.

When we say that a quasiperiodic tiling defined by an irregular Q' we mean
that it is defined by er and one part of E.l divided by hyperplanes from Ir
going through 0'. \Ve see that every regular 0 defines a unique quasiperiodic
tiling while an irregular 0' defines many, more than one but a finite number,
of quasiperiodic tilings. If T is a quasiperiodic tiling defined by some 0

(regular or not) then T has a connected lift and every connected lift I of T
has the following property: For every finite oumber of tiles Pb P2 , ••• , Pm of
T the polyhedra P.L(I(Pl)), p.l(I(P2 )), •.• , p.l(/(Pm )) have non-emty interior

6



intersection. In particular, all the projections p.l(P) where P are tiles of T
have a common point, this common point is unique.

A section n is reduced to planar seetion if there is Q' E E.L if far every
x E E the segment [n(x), x + 0'] does not meet the parallel boundary B or
meets B only at point x + 0'. Here O(x) is the point of n lying upan x,i.e.
n(x) = nn p-l(X). A section 0 is reduced to planar section if and only if
the projections of all the prisms from So on E.L have a common point.

Proposition 1.5.4:IfT is a tiling from TE then after a shift T is coincident
with a quasiperiodic tiling defined by Q' E E.L, not necessarily regular.

Proof:After a shift we mayassurne that 0 is a vertex of T. We can choose
regular Q'i in !( such that TO'i coincides with T inside the ball Ur with radius
r = i. Because!( is a compact set, after selecting a subsequence, we may
assume that the sequence of points Q'i converges to a point 0' in !(. Then
obviously T = limTQ'i' If Q' is regular then T == Ta. Ir Q' is not regular,
again by selecting a subsequence we mayassume that all Q'i belang to the
same part of E.L divided by hyperplanes from Ir going through a. Then Ta;
converge to the quasiperiodic tiling defined by this part. 0

As a consequence of propositions 1.5.2 and 1.5.4 we get the following.

Proposition 1.5.5:1/ a tiling Ta 0/ a seetion n not meeting B belongs to 'Ti
then n is reduced to a planar section.

To prove that Local rules do not exist by the above propositions it suffices
to prove that for every r > 0 there is a section not meeting B + Ur and not
reduced to planar section. This is the main idea for all the proves below.
Every proof is based on this idea.

2 The SI-condition

2.1 On the set B + Ur

Let hJ for J == (jl,"" jn-k-d E Mn- k - 1 be the (n - k - 1)-dimensional
subspa.ce spanned by cil"'" Cjn_k_l' Gf course hJ is a rational subspace
and p.L(hJ ) = If. The set hJ + zn is a locally discrete family of parallel
(n - k - 1)-planes in m.n . Here locally discrete means that every compa.ct
meets only a fini te number of (n - k - 1)~ planes from this fami ly. This follows
from the rationali ty of hJ . A set of the type hJ +Ur + ~ for ~ E zn is called
a wall 0/ width r. Each wa.ll is a set of dimension n - 1 and is contained in
a unique (n - l)-plane. The set W J(r) == hJ +Ur +zn is a farnily of walls.

There are ( Tl _ ~ _ 1 ) families of walls. Denote W(r) the set of all walls,

W(r) = UW J(r), J E Aln - k- 1 , it is a closed subset of Rn. The following
proposition is very important for uso

Proposition 2.1.1:For every.r > 0 there is r' such that B + Ur is contained
in the union of all the walls 01 width r', B + Ur C W(r').
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Proof:Because W(r') is invariant under translations by zn it is sufficient
to prove that there is r' such that for every I E MI; the set all (CI) + Ur
is contained in W(r'). Suppose Q is a facet of Pf then Q is a polyhedron
(in fact, Q is a parallelepiped) lying in a hyperplane ff + pJ.(~) for some
~ E zn and J E M n -k-l' Since p.L( hJ ) = ff, ker(p.L)= E and Q is a
compact set, there is Tl > 0 such that Q C hJ + ~ + Urt .Because there
is a finite number of CI for 1 E A1k and each CI has a finite number of
facets, we can choose rl such that for every facet Q of a prism CI ,1 E Mk

we have Q C UJEMn_k_l (hJ + Urt + zn).Thus we have Q + Ur + PI C

UJEll1n_k_l (hJ +Ur+rt+r2 +zn) where r2 = max /E A1
k
(diameter of PI). This

meaus that DII(CI) + Ur is contained in W(r') where r' = r + rl + r2. 0

The set B +Ur is very complicated, hut the set W(r) is more easily to
deal with.

2.2 The case n = k + 1

In this case it is known that TE does not admi t Local Rule (cf. [LJ). We reprove
this theorem in order to illustrate the method used here.

Proposition 2.2.1: Suppose E is a totally irrational k-subspace of Rn with

n = k + 1. Then TE does not admits loeal ru/e.

Proof:When n = k + 1 proposition 2.1.1 states that B + Ur is contained
in zn + Url for same r'. For a fixed r > 0 we have to find a section n not
meeting zn +Ur and not reduced to planar section. E.l is a line and the set
of regular points is dense in this line. Because E is totally irrational, two
sets Ur+1 and Ur+1 +~ where ~ E zn and ~ f 0 have no intersection. Hence
there is a segment V = [0', ßl in El. containing 0 such that V +Ur+1 does not
meet any Ur + ~ for ~ E zn and ~ f o. \Ve can choose a to be regular. The
boundary of V + Ur+1 consists of two parts: a + Ur+1 and its complement,
denoted by Y. Consider the k-dimensional surface rr which coincides with
E + a outside Ur +1+E.l , while inside Ur +1+EJ. it coincides with Y(see fig.1)

~
r-"":"~---~---""(""-l. -.;...----t----- I

--"------ -------

Fig.1

Then .0' is not a section hut it is easy to deforrn the part Y of n' inside
V + Ur+1 such that the obtained surface n is a section not meeting Ur.
Obviously .0 does not rneet zn +Ur and n is not reduced to planar section.O
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2.3 SI condition

Definition:E satisfies the SI condition if for every J E Mn - k- l the space
hJ + E contains a rational (n - k).dimensional subspace.

Note that hJ + E always contains a rational (n - k - 1)-dimensional
subspace, it is hJ . The reason why this condition is called SI (abriviation of
self-intersection) is explained below.This was first introduced by Levitov [L]
in another interpretation.

Proposition 2.3.1:I/ E does not satisfy the SI condition then there exisls
J E Mn - k - l such that every two different walls from W J (r) do not have
intersection.

Proof:Suppose hJ + Ur + eintersects with hJ + Ur for some eE zn. Then
eE hJ - hJ +Ur - Ur = hJ + U2r C hJ +E. If edoes not belong to hJ then
hJ1 espan a rational (n - k)-dimensional subspace of hJ + E, but if eE hJ

then hJ + e= hJ and the walls hJ + Ur + ~,hJ + Ur are the same.D

Lemma 2.3.2: There is aI-plane {i.e. a line} h in E.l not going through
any interseetion point 0/ every two hyperplanes from Ir.

Proof: Suppose X is the set of all points lying in at least two hyperplanes
from Ir. Then X is the union of a countable number of planes of codimension
2 in E.L. Choose an arbitrary I-dimensional subspace h' of E.l. Then h' +X
is the union of a countable number of planes of codimention 1. Hence ( by
Baire's category theorem or by counting Lebesgue.measure) h' + X can not
cover the whole E.l. Choose a point x in E.l not belonging to h' + X then
the line h = x + h' is a line to find.D

Theorem 2.3.3:IfTE admits ioeal rule then E satisjies the SI condition.

This theorem was first proved by Levitov [L]. \Ve present here another
prooL

Proof:Suppose E does not satisfy the SI condition. For every r > 0 we will
construct a section n not meeting W(r) and not reduced to a planar section.

Choose a line h as in lemma 2.3.2, we will find such a section in F = E+h.
For this purpose consider the intersections of all the walls with F. For each
J E Mn - k - 1 there is a family of walls W J(r). If ~Vh ~V2 are two walls of
different families then by lelnma 2.3.2 the restrietions of these two walls on
F do not have intersection: (lVI n F) n (~V2 n F) = 0. Now choose an
index J E Jvln - k - 1 a.s in proposition 2.3.1 and suppose W is a wall from
W J(r). Then ~V n F is a compact set congruent to ß+ Ur for some ß E F.
By proposition 2.3.1 and letTItTIa 2.3.2 the set W n F does not meet the
intersections of other walls with' F. Because the union of all the walls is a
closed subset of E.L, there is a neighborhood of ~V n F in F which does not
meet the interseetions of any other walls with F. vVe are in the situation like
that of the case n = k + land a trick like that of the proof of proposition
2.2.1 yields the result.D
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2.4 Relation with the SI eondition of Levitov

For each i E {I, 2, ... , n} let L, be the (n - 1)-dimensional subspace spanned
by (n -1) vectors from Cl, ... , cn without Ci. Then the family ~i = Li +zn =
Li + m6i, mEZ is a family of equidistant (n - 1)-planes of IRn. The inter­
section of ~i with E is a family of equidistant parallel planes of codimension
1, called the i-th grid of E. In general every k planes of codimension 1 have
exactly one intersection point. Due to the genericity (*) we see that every
k grids have interseetion point different from O. We say that E satisfies the
Levitov SI eondition iff every (k + 1) grids have intersection point different
from 0, i.e. there are (k + 1) planes of eodimension 1, one from eaeh grid,
having interseetion point whieh is not O.

E ean be spanned by k veetors with coordinates:

VI = (vn, Vl2, ... , VI n)

V2 = (V21l V22, .•• ,V2n)

Vk = (Vkl' Vk2,' .. , Vkn)

For I = (i l , ... ,ik ) E Mk let Al he the determinant of the matrix consit­
ing of k eolumns i ll ... , ik •

Proposition 2.4.1: The following conditions are equivalent:

a)E satisfies the SI condition.

b)E satisfies the Levitov SI condition.

c)For every (k + 1) indices {illi2l ... ,ik+l} from {l,.2""Jn} J (k + 1)
numbers Al-i, j = 1, ... , k + 1 are linear dependent over Q.

Here I - j is the set of k indices from {ill i 2, , i k+]} without i j •

Proof:l <=} 2. Consider for example J = (k+2, ,n), then Je = (1,2, ... , k+
1). There is a vector V = (A]6] + ... + Ancn) E E such that hJ and V

span a rational spaee iff there are real numbers an-k+l,' .. ,an, b such that
ak+26k+2 + ... + anCn +b(A]c] + ... + Ancn) belongs to zn, and bmust not be
zero. This holds iff bA], ... ,bAk+1 are integers, that iS l iff ~], ... ,~k+] and
E have a common point bv.

3 <=} 2. This follows from the definition of determinants.D

Note that the last eondition is more convenient to verify when a eoncrete
E is given.

2.5 Classes of tilings with the same loeal strueture

Note that when El. is not totally irrational then in TE there are tilings which
are not locally equivalent, that is, they have not the same loeal structure.
To find a subcIass of TE having the same local strueture one ean proceed as
follow. LetZ{E) denote the s]uallest rational subspace of lRn containing E.
the following proposi tion is well-known (eq L] ,[LPSI]):
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Proposition 2.5.1:Suppose er and ß are regular and (0: - ß) E pol(Z(E))
then Ta and Tp have the same IDeal strueture.Eol is totally irrational if and
only if Z(E) = lRn

•

For a. point 8 E Eol / pol (Z(E}) = !Rn / Z(E) ( we regard fJ also as a point of

Eol) eonsider the dass T E;6 of tilings of type Ta where Q E (8 + pol(Z(E)).
The dosure T'E;6 of TE ;6 is the set of all the tilings ha.ving the same loeal
strueture as that of a fixed oue Ta of TE;6.

Example.Consider lR5 with basis Ci and aetions of group Zs =< 9 I g5 =
1 > by g(ei = ci+d. Then JR5 deeomposes into three invariant subspaces
E,E, and ß. Here ß is aI-dimensional subspace on whieh 9 aets as identity,
Eis a quadratie (over QJ5) 2-plane on which 9 aets as rotation by 72° and E
is the eonjugation of E, on E 9 aets as rotation by 144°. Here Z(E) = E +E,
and Eol / pol(Z(E)) = lRn / Z(E) = ß = IR. So for eaeh fJ E ß = ffl there is a

dass of tHings TE ;6 having the same loeal strueture. When 8 = 0 this dass
of tilings is the dass of Penrose tilings , it is proved by de Bruijn that TE;S

admits loeal rules when 8 = o. By a result of Ingersent and Steindhart it
follows that if TE;6 admits loeal rule then 8 = p + qr where p, q are integers
and T is the golden ratio, r = (1 +J5)/2.In [LeI] we prove that if a= p + qr
then the dass T'E;6 does admit loeal Tule. Henee a eriterion for this ease is
found.

The structure of the closure T'E;6: Consider the intersection of B with
a+ p.L(Z(E)). Ir there is a regular Q in a+pol (Z(E)) then this intersection
is the union of several families of parallel planes of eodimension 1 in 8 +
pol(Z(E)). Suppose Q is an irregular point of a+ pol(Z(E)), then there are
several planes of eodimension 1 froln a+ p.l(Z(E)) going through Q. They
divide 8+ p.L( Z(E)) into many parts and eaeh part,by eonsidering the limits,
defines a unique quasiperiodie tilings. As in seetion §1.5. One ean prove that
every tiling of TE ;6 is defined in such a way. Note that the union of all TE ;6

with aE ~ is not TE, but only a subset of TE. '

Proposition 2.5.2: If n is a section lying in 8 + Z(E) and not meeting
B + U2r then the tiling To defined by this section belongs to the class TE ;6(r),
that is, every r-map olTo is a translate 01 an r·map of a tiling from TE ;6-

The proof is like in the previous ease and we omit it.

Theorem 2.5.3:1f TE;6 for some a E Eol admits loeal rule then E satisfies
the SI eondition.

Proof:ln the proof of theorem 2.3.3 one should ehoose the line h lying in
8+ Z(E).O

2.6 The case dinl(Z(E)) = k + 1

We reeall that Z(E) is the minimal rational subspace of Rn eontaining E.
The following proposition is a generalization of proposition 2.2.l.

Proposition 2.6.1:lfE is a totally irrational k-dimensional subspaee of JRn
sueh that dim(Z(E)) = k + 1 then E does not satisfy the SI eondition, henee
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TE does not admit loeal rule.

Proof:Let Vb" ., Vk+l be integer vectors which span Z(E). There must be
n - k - 1 vectors from {Cl,"" cn}, say ck+2,' .. ,cn which together with
VI, • .. , Vk+l span JRn. Then every integer vector eE zn can be expressed
uniquelyas a linear combination of VI,'" ,Vk+l, Ck+2,' .. , cn with rational co­
effidents. If Ck+2, ... , Cn ,E span aspace eontaining an (n - k )-dimensional ra­
tional subspaee then there is a vector v E E C Z(E) such that v, Ck+2, ••. , Cn

span a ratioanal spaee. That is, there are A.I:+2,"" An, A E IR such that
AV + Ak+2C.l:+2 + + Ancn E zn. Let AV = AlVI +... + A.I:+1 Uk+l' Then
we have Al vI + + ..\,1:+1 Vk+l + A,I:+26,1:+2 + ... + ..\ncn E zn. Hy the above
observation we see that all Ai are rational, that means AV is rational. Henee
E eontains a rational vector whieh is contradict to the total irrationality of
E.D

3 2-dimensional tilings

In this section we will present a stronger necessary condition for 2-dimensional
tilings in JR:t. There are only a eountable number of E subject to this eon~

dition, while there are a eontinuum number of E satisfying the SI eondition.
In the whole section we assume that E is a totally irrational 2-dimensional
subspace of JR:t and dimZ(E) = 4.

3.1 On the Grassmanian G4,2 and non-degeneration

Suppose E in JR:t satisfies the SI condition. This means for every i = 1,2,3,4
the spaee spanned by Ci and E eontains a rational 2-dimensional subspaee,
denoted by Fi . This 2-plane Fi is defined uniquely beeause Z(E) = JR:l. Let
fi be the interseetion of Fi and E. This must be al-dimensional subspaee
(=aline).

The set G4 ,2 of all 2-dimensional subspaees of JR.4 ean be parametrized as
follow: Each 2-dimensional subspace E is determined by two linear equations

a)A) + a2A2 + U3A3 +a4A4 = 0
bIA) + b2..\2 + b3A3 + b4 A.. = 0

where Ai are coordinates of points in JR4 and regarded here as variables while

(
ai a.)

ai, bi are real numbers. Let A ij = det b
i

b; . Then

(1)

Conversely every six numbers Al, I E M2 satisfying (1), not all zeros, define
a 2-din1ensional subspaees of JR4. Two collections AI, Al define the same
2-plane if and only if there exists areal number A such that AI = AA[.
Other words, the Grassmanian G4 ,2 is a quadrie in the projective spaee lRp5
defined by equation (1) (cf. for exampIe (GRJ). Projective coordinates of
Fi js denoted by (Fdl' A subspaee is rational if and only jf its projective
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coordinates, after multiplication by a same number, are rationaLE intersects
Fi by line, hence E and Fi are not in generic position. The set of all 2­
dimensional subspaces with projective coordinates AI having intersection of
dimension greater or equal 1 with Fi is defined by the following equation

(Fi)12 A34 - (Fih3A24 + (Fi)14 A23 + (Fih3A 14 - (Fi h4A13 + (Fih4A12 = 0
(2;)

Definition:Suppose E satisfies the SI condition. E is calied non-degenerate
if four planes F iJ regarded as vector in IR!' are linear independent.

Lemma 3.1.1: If E is degenerate then there is a continuo'US non-constant
curve E(t), t E IR. in G4 ,2 such that E(O) = E and all 2-planes E(t) intersect
F i by lines,that is dim(E(t) n F i ) 2:: 1, i = 1,2,3,4.

Proof:(2;) are linear equations on AI' If (Fih are not linear independent
then these equations define a projective space X of dimension greater or equal
2 in JRp5. The intersection of X and the quadric defined by (1) contains E.
If E is not an isolated point of this intersection then the intersection contains
a curve going through E and we are done. Hut if E is an isolated point, then
the projective subspace X have tangent point E with the quadric deflned by
(1). Because both X and the quadric have rational coefficients and degree
of X is 1, it is easy to see that their tangent point must be a rational point,
this contradicts the fact that E is totally irrational.O

3.2 Main theorem

Theorem 3.2.1: Suppose E is a 2·dimensional subspace ofJR4. If7E admits
local roje then E is quadratic and non-degenerate.

Note that when E is quadratic then E satisfies the SI condition (see [LJ
or [LPS1J).\Ve divide the proof into several cases.

Proof: The case E.l intersects Pi by Jines. This case is essential. An exam­
pIe of this case is the 8-fold symmetry case considered by Burkov [BJ,Beenker,
and De Bruijn (dB2J see also examples below. In this case Pi is a prism,
Fi = fi + fi.l where f;,.l = Fi n E.l.

Let F = U~~1(Fi + Z4), this is a set of 2-planes in JR4. Then W(r) =
F + Ur' For every r > 0 we have to eonstruet a section n not meeting
B + Ur and not redueed to planar seetion. In fact here we will eonstruet
n not meeting B + Ur such that the projection p.l(fl) is not a bounded set
in El.. This is of course a stronger assertion. The idea is as follow. Let
Ur(t) be the image of Ur under the projeetor on E(t) along E.l. That is
Ur(t) = (Ur + E.L) n E(t). vVe will eonstruet a continuous map if> : lR4 ~ JR4
satisfying :

a)preserving fibers, that is, ljJ(x + E.l) = X + E.l for every X E E.

b)not far from the identi ty, t hat is, there is a constan t sueh t hat IqS( x) ­
xl < constant for every x E JR4.

c)qS(F+Ur) = F +Ur(t) and 4>-1(F+Ur(t)) = F +Ur far a number t > 0
such that E(t) =I E.
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If such rP exists. Choose a point a E Eol such that a +E( t) does not meet
F, and hence does not meet :F +Ur(t). Consider n = cP(a +E(t). Then by
a) n isa section, by b) the set pol (n) is not bounded and by c) section n
does not meet F +Ur. That is n is the seetion to find.

Ster l.Fix r > O. We call a big wall a set of type Fi+~+Ur where ~ E Z4.
Each big wall is contained in a unique 3-plane. There are 6 prisms Cr which
together form a fundamental domain of group Z4. Each Cr intersects with a
finite number of big walls. The 3-planes going through these big walls divide
CI into smaller prisms, each smaller prism has the same projection on E as
Cr has. Other words, P/ is divided into smaller polygons and the division
of CI is just the colleetion of the sums of each smaller polygon with PI. By
this way we divide all six prisms CI into smaller prisms and spread out this
division to all the other prisms of 0 just by translation. Denote Or the
new family of prisms, it is ealled a refinement of 0. Let B r be the parallel
boundary of Oro From the construction one sees that (F +Ur) C Br, but
B r C F +Ur' for a large r ' . If X E Ethen the 2-plane X +Eol is divided into
polygons by the intersections with Er' There are only a finite number, up
to translations, of different polygons in the intersection of x + Eol with B r •

Step 2.For a fixed r we ean parametrize the eurve E( t) such that the
distanee between y and p (y) is less than t for every y E Ur+1(t). Consider
the intersection of a fiber x + Eol with the set of all big walls W = F + Ur'
First eonsider the intersection with a big wall (x +Eol) n (Fi +e+Ur)' Both
are prisms, and F i + ~ + Ur = (Iiol) + (li + Ur) + e. It is easy to chech that
x +Eol and Fi +~+Ur have non-empty interseetion if and only if X is lying in
the ball p(e) +Ur and in this case the intersection is the line x +Il +pol (e)
whieh is parallel to liol. Hence the interseetion of x + Eol with F + Ur is
the union of 4 families of parallellines. These 4 families divide x + Eol into
polygons. There are only a finite number of polygons in this division, up to
translation.

Ster 3. Lemma 3.2.2: The 2-plane x + Eol has non-empty intersection

with Fi+~+Url if and only if it has non-empty interseetion with Fi+~+Url(t).
111 the case the intersections are not empty both are lines and the distance
between them is less than t.Here r' is any number between rand r + 1.

The proof is quite easy and we on1it it.This lemma means that the two
system of lines are very elose to each other when t is small.

We call the line (x + Eol) n (Fi +e+ Ur(t)) the corresponding line of
(x +Eol) n (Fi + ~ +Ur), if both are not empty.

Step 4.Lemma 3.2.3: 11 three lines from the intersection of x +Eol with
:F + Ur intersect at a point then their corresponding lines also intersect at a

point.

Proof:If three lines (x+ Eol )n(Fi+~i+Ur ), i = 1,2,3 intersect at a point then
pol(~;) +Il also intersect at a point. But in this case, due to the fact that
E is totally irrational and Fi are rational, ei are interger points, one easily
prove that the three 2-planes Fi +~i, i = 1, 2, 3 interseet at a point. From this
it follows that three corresponding lines (x +Eol) n (Fi +ei +Ur (t)), i = 1, 2, 3
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intersect at a point.O

If two lines {rom (x + E.l) n (:F +Ur) intersect at a point v then the
intersection point of the two corresponding lines is called the corresponding
vertex of v. The lenuna guarantees that the definition is correct.

Ster 5. The system of line (x + EJ.) n (:F + Ur) divides x + E.l into
polygons. If we choose t very small then the system of corresponding lines
divides x +EJ. into polygons in a similar manner. This means that if we take
the set of vertices of a polygon, then the convex hull of the corresponding
vertices is a polygons of x +EJ. divided by the corresponding system of lines.
Now we define a map 'ljJ : (x + E.l) -+ (x + EJ.) as follow. Ir x is a vertex
of a polygon of x +EJ. divided by the system of lines (x + EJ.) n (:F + Ur)
then let t/J(x) = the corresponding vertex. For a convex polygon with vertices

Vb' .. ' Vm define its center as the unique point v such that iJVt+... +VV;;: = Ö.
The center is unique and lying inside the convex polygon. We have defined
1/J for vetices of polygons and now can define t/J for centers of polygons, just
take the center of the corresponding polygon. By connecting the center with
each vertex of a polygon, we get a linear simplicial structure of x + EJ. and
spread the map t/J on x + E.l by linearity.

The map t/J is defined on R4. I t satisfies all three properties a), b), c)
listed above , but unfortunately it is not continuous. However the set of
continuous points of lj; is a "big" one.

Step 6.The boundary of the projection of a big wall of width r is two
parallel lines. Denote v:. the union of all such boundaries of the projections
of all the big walls of width r. This is the union of 4 families of lines, each
family consists of a countable number of parallel lines.

Lemma 3.2.4: Suppose y E JR4 such that p{y) = x does not lie in l/,.,
then there is a neighborhood 0/ y in 1R4 such that ljJ is continuous in this
neighborhood.

Proof:Suppose Pb' .. ' Pm are polygons of (x +EJ.) n (:F + Ur) containing
y ( including the case when y lies on the boundary of some polygon). Each
side of a polygon is a segment of the intersection of x + EJ. with a big wall.
Let W1 , • •• , Wp are those big walls whose intersection with x +EJ. containing
a side of oue of PI,.' . , Pm. Then x is lying inside in the intersection X of
the projections of these big walls on E, but x is not lying on the boundary
of X due to the condition of the lemma. The union of all the sets X +
Pi, i = 1, ... , m is a neighborhood of y and obviously ljJ is continuous in this
neighborhood.O

Step 7. For a fixed nUlnber r we can construct a map 'lj;. If we choose
another, say r', r < r' < r + 1 then we can construct in a similar way another
map t/J', with properties:

i)preserving fi bres

ii)It/;'(x) - xl< t

iii)lj;'(F+Ur) = :F+Ur(t), l/J,-1 (F +Ur(t)) = :F+Ur and if y is an interior
point of a polygon of x +EJ. divided by the system of lines (x+ E.l )n(:F+Ur)

15



then 1/J'{y) is an interior point of the corresponding polygon. This fonows
from the fact that ,p' is bijective, and when r' > r the division of x + Ei
ioto polygons by the system of lines (x + E.L) n (:F + Url) is finer than the
division by the system of lines (x +E.l) n (:F +Ur)'

Now for each y E ~ we can choose an r',r < r' < r + 1 such that the
map 'Ij;' is continuous in a neighborhood of y. The space JR:I is covered by
such neighborhoods. Choose a subfamily of neighborhhoods which is locally
finite and by using the partition of unity with respect to this locally finite
family we can glue all the continuous maps ,p' in these neighborhoods and
get a continuous map 4>. It is easy to check that this map ifJ satisfies an three
properties a),b),c). The theorem for the case when E.L intersects Fi by lines
is proved.

The general case. Choose a 2-dimensional subspace E' in the curve E(t},
it intersects Fi by lines.Suppose E n E' = {O}. Denote 1r and 'Tr' resp. the
projection on E and E' corresponding to the decomposition JR:4 = E + E'. A
2-dimensional surface f2 is called a 1l"-section if the restriction of 'Tr on f2 is a
homeomorphism between f2 and E. A 7r-fiber is a set of type x + E'. Then
the proof of the previous case yields the following: for every r > 0 there is
a 7l"-section f2 which does not meet :F + Ur and the projection 7r'(f2) is not
bounded, or equivalently, the projection p.L(f2) is not bounded.

Now consider the cut method of pair (E,E'). That is, in the construction
of family 0, instead of Ei we use E', We get 6 new 1r-prisms Cj. These
six 1r-prisms and their translates by integer vectors cover the whole JR:4, but
may be with overlaps. When E' = Ei or when E' is near to Ei there are
00 overlaps. But we can always get a tiling of JR:4 : the superpositions of all
the 7r-prisms of type Ci + ~,~ E Z4 divide JR4 into covex polyhedra, each is
a 7l"-prism. The collection of an these polyhedra is a tiling of JR4, denoted
by 0'. This tiling is invariant under translations from Z4. The parallel
boundary of this family is denoted by B', As in the case E' = Ei the set
B' + Ur is a subset of :F + Url for some rl' We can also refine the family
CJ' as in the case of CJ by the set :F.+ Ur to get a family 0' r with parallel
boundary B~. Note that when T tends to infinity, the maximal diameter of
the projection 7r'(C), C E Q'(r) tends to zero, while the refinement does not
affect the projections 7r(Cl: these projections are always the same, and up
to translations there are a finite number of them.

For every r > 0 choose Tl such that B~ is contained io :F +Urt • By the
previous construstion there is a 7r-section f2 not meeting :F + UT} and hence
not meeting B~. Let S be the set of all 7l"-prisms from 0'r meeting f2. By
projecting (along E') on E the collection S we get a tHing T, whose tiles
are convex polygons. We divide each tile of T into triangles by putting. some
diagonals arbitrarily. The result is a simplicial structure of the 2-dimensional
plane E. For every vertex v of T define <p(v) be the point of f2 lying upon v,
that is <p(v) = f2 n 7l"-I(v). Then we spread the map t.p on the whole E by
linearity using the simplicial structure. The surface <p(E) is of course lying
inside the union of an prisms from S, it consists of triangles and defines the
same tiling as n. Each triangle is contained in a prism of S. Because the size
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of the projection on E' of prisms from 0'r tends to zero when r --t 00, the
2-plane containing the tri angle tends (uniformlyon the set of all triangles )
to a plane parallel to E. Hence when r is sufficiently large, the surface ~(E)

is a section with respect to p. Is is a section to find.

Now suppose E intersects E' by line,E n E' = h. Note that among
FI , F2 , F3 , F4 there may be coincident 2-planes. If Fi and Fj intersect by a
subspace of dimension 2:: 1 then they are coincident. In fact if Fi n Fj = I is
a line then 1+ E contains both Fi and Fj , hence dimZ(E) = 3.

Gase a). There are :3 different 2-planes from F}, F2 , F3l F4 , say FI, F2 , F3 •

Since the intersection of two rational space is a rational spa.ce, two of the three
2-planes FI , F2 , F3 , say Pli F2 do not go through h. In this case because FI , F2

intersect E,E' by lines we see that both FI , F2 are contained in E +E' which
is a 3-dimensional space while FI , F2 span a 4-dimensional space. So this
case is impossible.

Gase b). There are only two different 2-planes from F}, F2 , F3 , F4J say
F}, F2 • \Ve can choose VI E FI ; V2 E F2 such that VI, V2, E span FI + F2 = ~.

Then E" spanned by VI, V2 is a 2-dimensional space intersects all Pi by lines
and E n E" = {O}.

The theorem is completely proved.O

Example. As an application of the theorem consider the following case.
The group Zs =< 9 I g8 = 1 > acts in ~ by g(cd = c2,9(c2) = C3, g(c3) =
C4, g( C4) = -Cl. The space JR4 decomposes into two invariant 2-dimensional
subspaces E and, E.L, on E 9 acts as rotation by 450 and on E.L by 1350

.

A tiling of TE is called a quasiperiodic tiling having 8-fold symmetry. This
dass of tilings has been investigated by Beenker and Burkov. In this case E
satisfies the SI condition so theorem 2.3.3 does not say any thing about this
dass. Burkov [B] and De Bruijn [dB2] proved that this dass does not admit
loeal rule. Here this ean be obtained directly from the theorem, because E
in this ease is degenerate.

3.3 On the non-degeneration

Suppose .JR4 = E ffi E', Z (E) = .JR4 and HI , ... , Hmare rationa/2-dimensional
subspaces of ffl4 such that dim(E n Hi ) = dinl(E' n Hd = 1, i = 1,2, ... , m.

Proposition 3.3.1: The following are equivalent:

a) There is a non-constant curve E(t), t E IR in G4 ,2 such that E(O) = E
and aU E( t) intersects Hi , i = 1, ,1n. by lines.

b) m vectors (Hi)I' i = 1,2, ,111 form a subspace of dimension ~ 3 in
JF{3.

c) There is a linear transformation <p : JR:4 --t 1R4 such that ~(E) = E'
and c.p(H;) = H j , i = 1,2, ... ,nt.

Proof:a) {::} b).See lelTInla 3.1.1

b) {::} c) Note that up to a multiple there is a unique linear transformation
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cp such that cp(E) = E' aod cp(H;) = H; for i = 1,2,3. Choose coordinate
system Xt, X2 on E such that Ht n E is given by Xl = O,H'l n E ia given
by X2 = 0, H3 n E is giveo by Xl + X2 = O.Then choose coordinate system
YI, Y2 00 E' such that HI n E' is given by YI = 0,H2 n E' is given by Y'l = 0,
H3 n E' is given by Yt + Y'l = 0. Suppose H is a rational 2-dimensional
of IR:! intersecting E,E' by lines. Then H n E is given by Xt + aX2 = °
and H n E' by YI + by2 = °where a, b are real numbers. Consider tbe
eoordinate system of JR4 giYen by X t , X 2, YI, Y'l' In this coordinate system
the projeetive eoordinate of H 1, H 2, H3, H are as below (here we write six
numbers H12 , H I3 , H I4 , H23 , H24 , H34 ):

HI : (0,1,0,0,0,0)

H2 : (0,0,0,0,1,0)

}{3 : (0,1,1,1,1,0)

H : (O,I,b,a,ab,O)

It is easy to see that veetor }{ is a linear eombination of H t , H 2 , H3 if aod
only if a = b, tbat is , if and ooly if cp(H) = H.O

Tbe proof of theorem 3'.2.1 gives tbe following.

Proposition 3.3.2:Suppose JR.4 = EEBE', Z(E) = JR:i, E is totally irrational
and HI, ... ,Hm are 2-dimensional subspaces of JR:4 satisfying one 0/ the three
equivalent conditions 0/ proposition 3.9.1. Let 1-t. = Ui=l,...,m(Hi + Z"). Sup­
pose r > 0 is fixed. Thenfor suiJiciently small t > °there is a continuous
map 4> : JR4 ~ JR:f satisfying:

a)preserving fibersJ that iSJ <jJ(x + E') = X + E' for every x E E.

b)not far from the identitYJ that iSJ there is a constant such that 14>(x) ­
xl < constant for every x E JR4.

c)<jJ(1f. + Ur) = 1f. + Ur(t) and 4>-1(1f. + Ur(t)) = 1f. + Ur .

Here Ur(t) is the ball in E(t) lying upon Ur, i.e. Ur(t) = E(t) n (Ur +E').

4 Tilings having 12-fold symmetry

4.1 Description of the tilings

Let 's eonsider lR6 wi th basis t:i, i = 1, ... ,6 and action of group Z12 = <
9 I 912 = 1 > in JR!3 by 9(t:i) = Ci+l, i = 1, ... ,5, g(C6) = -Cl' Then U
falls into three invariant 2-dimensional subspaces E,E and ~ where ~ is a
rational subspaee on which 9 acts as rotation by 90°, E is a quadratic (over
QJ3) on which 9 aets as rotation by 300 , E is the conjugation of E, on E
9 acts as rotation by 1500

• A tiling belongs to TE is called a quasiperiodic
tiling having 12-fold symmetry.The prototiles, up to rotations, are listed in
fig.2.

Here are vectors that span E,E and ß.

E is spanoed by (2, V3, 1,0, -1, -V3) and (0,1, V3, 2, V3, 1).
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E is spanned by (2, -y'3, 1,0, -1, V3) and (0,1, -V'3, 2, -y'3, 1).

ß is spanned by (1,0,-1,0,1,0) and (0,1,0,-1,0,1).

Let ei(resp. ei,ei) be the projectioo of Ci on E(resp. on E,ß). 00 the
planes E,E,ß these vectors looks like in fig.3.

Figure 2

Figure 3

One can check easily that OE satisfies the SI condition. Here the set M 3

has 20 elements. Note that p.L(Z(E)) is cootained in Ir.The subspace hJ+E
contains Z(E) for J = (1,3,5) and J = (2,4,6). Let M~ be the subset of M3

not containing (1,3,5) and (2,4,6). Then M~ has 18 elements and for every
J E M~ the space hJ + E contains a unique rational 4-dimensional subspace
PJ . For example when J = (1,2,3) then FJ is spanned by CI, C2, C3 and e2,

when J = (1,3,4) then FJ is spanned by CI, C3, C4 and e2,when J 0= (1,3,6)
then FJ is spanned by CI, C3, C6 and e2. These three 4-planes have the same
intersection with Z(E) = E EB E, the intersection is a rational 2-dimensional
space H spanned by e2 and e-2' Other FJ where J E M~ can be obtained
from these three by actions of group Zu. Note that g6(FJ ) = FJ , J E M~.

The 2-plane H intersects E,E' by lines. By actions of Z12 from H we can get
six 2-planes HI, ... ,H6 • We can choose the notation so that Hi is spanned
by ei and ei.

Let I\. be the projection of Z6 on Z(E), it is a lattice in thc 4·dimensional
space Z(E) = E + E', it is generated by 4 rational vectors. Denote A/2 be
the set of all points ~ such that 2~ belongs to A.Let 'H = l1=1 (Hi +1\./2).

4.2 Absence of local rules

Let 8 = (e·t + l2)/2, it is a point of ß.

Lemma 4.2.1:// J = (1,3,5) or J = (2,4,6) then the space hJ +E+~ does
not meet 8 + Z(E) for any ~ E JR!3.
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Proof:Note that the projection oi Z6 on ß is the discrete lattice generated
by e], e2, and tbe projections of hJ for the above J on ß are two lines going
through I-facets of this lattiee. Henee the projeetions of all the sets of type
hJ + E + ~ is eontained in the union of all the 1-facets of this lattice. Sinee
S does not lie on any I-faeet of the lattiee,by considering the projeetions on
ß one sees easily that the set S + Z(E) does not meets hJ + E + ~.D

vVe want to find a section in fJ + Z(E) = S + E + E' not meeting B + Ur
and not redueed to planar seetion. For this reason at first we study the
intersection (B + Ur) n (S +E +E').

Lemma 4.2.2:For every J E M~ the intersection 0/ FJ with 8 + E + E' is
contained in 8+ 'H..

Proof:For eaeh J E M~ we prove that FJ n (8 + E + E') is contained in
fJ + H i + ~/2 for some i = 1,2, ... ,6 and ~ E A. This ean be checked easily.
For example when J = (1, 2, 3) the intersection FJ n (8+E +E') is contained
in fJ + H 2 + ~/2 + U] where ~ is the projection oi Cl +C2 on Z(E). 0

From this lemma one sees that the intersection of B + Ur with 8+ E +E'
is eontained in S+ Ur +H.

Now in the 4-dimensional plane X = (fJ+E)+E' we have a lattice 8+A/2
which plays the role Z4,.as in §3. The 2~planes 8 + Hi intersects EJ + E and
(E' + 8) by lines, just like the 2-planes Hi intersects E,E' by lines.

Lemma 4.2.3:Six 2·planes H i satis/y all the conditions listed in proposition
3.9.1.

Praaf: The proof consists of straight verifieation. The linear map t.p : (E +
E') -+ (E + E') defined by t.p(ed = e-l, c,o( e2) = -e2 sends E onto E' and
preserves all the six 2-planes Hi •0

From this lemma and proposition 3.3.2 oue easily constructs a section S1
lying in S + E + E' not meeting B + Ur and not redueed to planar section.
Morever, the projection p.l(S1) is not bounded. Henee we get

Theorem 4.2.4: The dass 0/ quasiperiodie tilings having 12-/0Id symmetry
does not admit loeal rules.

5 Concluding remarks

l)The proof of theorem 4.2.4 can be applied to the case n > 4, k = 2 and
dimZ(E) = 4.

2) For all quadratic E one can always color all the tHings of TE such that
the resulted dass admit loeal rules. This is true even in the ease when E
is degenerate. For the exact definition of coloring and the proof we refer to
[LPS].For example~ after coloring, the classes of quasiperiodie tilings having
8-fold symmetry and 12-fold symmtry admit Ioeal rule. While the dass
quasiperiodic tHings having 5-fold symmetry admits loeal rule even witbout
any coloring.

3) In the case of 8-fold symmetry, by Main theorem (theorem 3.2.1) for a fixed
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r the set TE(r) is never coincident with TE. Nevertheless for large r this set
consists of only quasiperiodic tilings, including some periodic tHings. More
precisely for large r there is a E JR, a > 0 such that Ti(r) = U-a<t <11TE (t).
This is proved in [Le2].

4)Levitov [L] introduce the definition of weak local rules, and the proof of
the Main theorem also asserts that if E is degenerate then even weak local
rule does not exists. Combining a result of [LPS] (see also [L]) we get the
following:

Proposition:Suppose E is quadratie subspaee of JEr. The following are
equivalent:

l)E is non-degenerate.

B)T; admits weak loeal rule.

5)Loosely speaking when E is quadratic and non~degenerate, the dass 'Ti is
"not far" from having local rule. Goly modulo a "bootstrapped condition",
and in many cases one can prove the existence of local rule for TE.

6) For the case dim(E) greater than 2 we can prove an analog of theorem
3.2.1 which states that if E is a quadratic,totally irrational subspace of IRn

with n = 2k and the class of tilings TE admits local rule then E mnst be non­

degenerate. Here non~de'generation is defined only for the ca.se E is quadratic.
In this case 2~plane Fi going through Ci and 7l'"(ei) is rational where 7l'" is the
projection on E along the algebraic conjugation E of E. There are 2k such
2-planes, each intersects E,E by lines. E is called degenerate if there is a
continuous family E(t) of k~dimensional subspaces of JRn such that E(O) = E
and E(t) intersects Fi by lines.
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