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1. Introduction

In this paper we introduce a oue-dimensional family of stratifications on tbe Jacobian of any
hyperelliptic curve and show how it appears naturally in different situations. Some stratifications of
Abelian varieties, in particular of Jacobians, have been used and studied in algebraic geometry, in
connection with linear systems of (special) divisors on curves. For example, let r be a hyperelliptic
curve with hyperelliptic involution P I--+' pu and let P bc a Weierstraß point on it. Then Gunning
(see [Gu]) considers for 111 = 0, ... ,9 the subsets Jm(r, P) of the Jacobian of f, Jac(r), defined by

where {D} denotes the dass of all divisors linearly equivalent to D, viewed as a point of Jac(f).
He shows that they define a stratification of the Jacobian of f.

This stratification generalises in a natural way, specific to hyperelliptic J acobians, to the case
where P is any point on tbe curve r. Ir the point corresponding to P under the hyperelliptic
involution is denoted by pu, then we define for 111 and n positive, 7n + n ~ 9 = genus (r),

Jm.n(r, P) = {{D} I D = g~~n P; + mP + "pu - gP, P; E r \ {Po PU} and i f j => P; f Pi }.

Remark that in the case P = pu considered by Gunning, one has Jm(r, P) = Jm-i,i(r, P) for
any i ~ 7n. In the opposite case P f; pu however, all Jm,n(r, P) are disjoint and we show that

they stratify Jac(r), with i + 1 strata of codimension i, (in total (g+1~g+2) strata) and it is shown
how they relate. Ir the chosen point PEr is replaced by pu then one obviously obtains the same
stratification, up to a translation; therefore the family of stratifications is essentially parametrised
by r / a, i.e., by IP 1

.

lt is easily deduced from [SW] that the stratification considered by Gunning arises in the con­
text of an infinite-dimensional Grassmannian, Cr, introduced by Sato (see [88]). The Grassmannian
Gr can be defined a.s the set of all spaces of formal power series in one variable z (which Sh01I1d be
thought of as being large) which have an algebrajc base of the form

{Wo (z ), Wl (z), W2 (z), ...},

where
"i

L
j=-oo

with i = Si for i sufficiently large. To such a plane W there is associated the (ordered) subset
Sw = {80, 81, ... ,} of the integers, which has the property that Si = i for i sufficiently large. Each
such sequcncc defines in a natural way a (non-empty) sn bsct Es C Gr, defined a.s

Es = {W E Gr ISw = S}.

These (non-intersectillg) subsets can be shown to be the strata of a. stratification of Gr (see [PS]). To
relate this stratification to Gunning's stratification, the Krichever map is used. Roughly speaking
this map associates to a point in the Jacobian the faIuily of all sections of its corresponding line
bundle, which are hololllorphic except at the marked point P E f. This family is identified with an



element of Gr by using a trivialisatiOlI of the line bundle. The point is that although this element
of Gr depends on the triviaJisation, the stratum it belongs to is independent of it, hence we may
use the Krichever map to relate both stratifications: we show that (different) strata are mapped
into (different) strata so that we may think of the stratifications considered by Gunning as being
induced by the natural stratification of Gr via the Krichever Inap.

The natural question arises whether the stratifications by the su bsets Jm,n(r, P) can for every
PEr be obtained in this way by an appropriate generalisation of the Krichever map. The answer
is affirmative and the generalised Krichever lllap we introducc, associates now to cach point in
Jac(r) two points in Cr, Le., a point in the product Cr X Cr, which is equiped with the product
stratification. In the special case that P = po the map reduces to 30 diagonal map (i.e., both
points are the same) giving the ordinary Krichever map on each component. We also show that
the stratification on Cr X Cr can be weakened to a coarser stratification, which still induces the
fanlily of stratifications. This coarser stratification shows up when considering the so-ca1led K-P
hierarchy on thc Grassmannian (see [55], [SW] and [DJMK]).

This K-P hierarchy, in particular a (listinguished vector field of it, determines a special family
of vector fields on Jac(r), depending on the marked point P on r. As is well-known from the
theory of integrable systems, every meromorphic function on Jae(r) admits fanlilies of Lallrent
solutions describing the funetion on the integral eurves of t11e vector field (see [AvM2]). Taking
one or several functions a deeomposition of Jac(r) is given by fixing the way these solutions blow
up. This decomposition may be a stratification. We will show that t11e ehoiee of the very special
vector field cOining from the K-P hierarehy and a natural choice of functions eoming from the
symmetrie functions on thc eurve, gives for eaeh choice of the Inarked point P on the curve, indeed
a stratifieation whieh eoineides again with the stratifieation by the subset Jm,n(r, P), thercby
providing us with a very explicit description of the former stratifieationsj in partieular the leading
behaviour of the Laurent solutions to the differential equations which deseribe the vector field will
be computed explieitely by introducing 30 pair of tau funetions whieh corresponds to the extended
Krichever map.

The text is organised as follows. In 5ectiOlI 2 SOlne prelitninaries about hyperelliptic eurves and
their Jacobians are recalled and the stratifications are introdueed. We give a detailed description of
them since tItey are fundamental for the whole paper. 5ection 3 deals with the 5ato Grassmannian,
which is also recalled, together with its stratification. The Krichever map is explained and extended
as needed for our purposes, leading to the main result relating the two stratifications. In the end
the coarser stratification is discussed in the context of the K-P hierarchy. In the final Section 4,
we look at special vector fields on the Jacobian, associated to a point on the curvej the relation
between Laurent solutions to the vector field and stratifications of the Jacobian is explained and
related to the stratification in Section 2, relying heavily on same results obtained in Section 3.

All my thanks go to M. Adler, L. Haine and P. van Moerbeke far scveral usefnl discussions
on K-P theory, anel for giving me access to some unpublished results, wItich were indispensible for
a dear understanding of the subject. The hospitality of Brandeis University and the Max-Planck
Institut für Mathematik is also greatly acknowledged.
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2. The algebraic description of the stratification

In this section we introduce a natural family of stratifications on tbe Jacobian of a hyperelliptic
curve, parametrised by a point on the curve. In the first paragraph we recall some basic results
about byperelliptic curves and their Jacobians (see [GH] or [R]). The stratification is introduced in
the second paragraph and its structure is described.

2.1. Preliminaries
Let r be a smooth curve of genus gwhich is hyperelliptic, Le., r carries an involution er: r ---*

r, Q 1---7' er(Q) = QU , er2 = Id, the so-called hyperelliptic involution. This inval uti on has 2g +2 fixed
points, the Weierstraß points of r, which a.re also the branch points of any 2: 1 cover 1r: r ...... }pI.

Such a cover gives rise to an equation y2 = I(x) for (an affine part of) rj the degree of f is 2g + 1
or 2g +2 according to whether or not 00 E }pI is the image of a Weierstraß point, Le., according
to whether p-l (00) contains one point (with multiplicity two), or two points. These two points
correspond under er, which is given in terms of the coordinates x, y by (x, y) 1---7' (x, -y).

The group of divisors D = L: Ci Pi (Pi E r) on f is denoted by Div(r) and (T extends
finite

linearly to Div(r) giving an involution D 1---7' DU. There is associated to each meromorphic function
1 E M(f) its divisor of zeroes minus its divisor of poles, denoted by (I); obviously the map
(.): M (f) ---* Div(r) is a homomorphism. In tbc sa.me way (w) is defined for any meromorphic
differential and one has (lw) = (I) + (w). For example, let PEr and let

de" J
y2 = f(x) = rr (x - x(Bi ))

i=l

be an equation for r such that x(P) = 00. Then

deg J 2

(y) = L Bi - de;1 (P + PU) and (x) = L (O,(-l)iJI(O)) - (P +PU). (1)
i=1 i=1

Also
29+1 29+2

(dx) = L Bi - 3P or (dx) = L Bi - 2(P + PU),
i=l i=l

according to whether P = pu or P -f; pu (in that order).

We introduce the spaces L( D) and O(D) for D E Div(f) as

L(D) = {f I f meromorphic function on f anel (I) + D ~ O},

'o(D) = {w Iw meromorphic differential on rand (w) + D ~ O}.

(2)

Their dimensions are rehl-ted by the Riemann-Roch formula which states (for algebraic curves) that
for any D E Div(r),

dim L(D) = dim f!(-D) - 9 +1 +deg(D), (3)

the degree of a divisor being defined as deg(L: Ci Pd = L: Ci. In particular, since every holomorphic
function on r is constant, the space ,0 = ,0(0) of holomorphic differentials has dimension 9 and by
(1) and (2) has in our case a base

{
dx xdx X9-1dX}, ,... , ,
y y y

4
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when y2 = f( x) is an equation for r as above. Remark that it follows from (3) a.nd (4) that if
Pi (i = 1, ... , n :::; g) are such that i f j => Pi f; Pi then

dimf! (t Pi) = 9 - n.
1=1

For their meromorphic analogues with poles at P and pu only we have

dim l1(kP +IpU
) = 9 + k +1- 1 for k > 0, 1 2: o.

(5)

(6)

To see this in case P f pu, first remark that (1) and (2) imply that xidx has a pole of order i +2
at P and at pu (and no other poles), while x 9+idx/y has at these points poles of order i +1. This
gives one differential form with a single pole at P and pu and for any n > 1 two differential forms
with a pole of order n at these points. Sincc the first set of forms is even with respect to (1 and
the other set is odd they are all independent (and independent from the holomorphic differentials).
They are maximal independent, since having another independent form with poles only at P and
pu would result in having a meromorphic differential form with a single pole, which contradicts
the fact that the sum of the residues of a differential form over all its singular points is always O.
This leads to (6) in case P f pu, the proof for the case P = pu is very shnilar.

On the group Div(f) one introduces the notion of linear equivalence by D "'I D' irr D-D' = (I)
for some meromorphie function ! on rand the dass of D is written as {D}. The homomorphism
deg descends to a homornorphism

d
Div(r) 7l

egl: ......
""I

and its kernel, ker degl' is called the Jacobian of r, .J ae(r). In the present ease of hyperelliptie eurves
there is a very explieit descriptiOIl of the linear equivalenee relation as we state in the following
lemma.

Lemma 1. Let r be a hyperelliptic curve of genw. 9 with involution (1 and let PEr fixed. Then
1) D 1 + Df "'I D 2 + Dz for any D}, D2 E Div(r) 01 the same deg7"€e,
2) if L:f:;;:l Pi ""I L:f:;;:t Qi, then 2:f=l Pi = Lf:;;:l Qi or Pi = pr for some i f; j,
3) ifdegD = 0 then D ""I 2:f:;;:l(Pi - P) for some Pi E r.

Tbe notion of linear equivalenee is natural from the basic relation betwcen divisors and (holo­
morphic) line bundles on a smooth curve: if a divisor D has local defining funetions (!a)aEI for
some cover (Ua)aEI of the eurve, then the transition functions of a line bundle [D] are given by
lo/Iß on uon Uß, and it is a fundamental fact that the line bundle [D] is determined by the (linear)
equivalenee class {D}j also every line bundle is the line bundle of a divisor. To a meromorphic
secti011 <p of [D] there is associated i t8 divisor (<p) and there exists a seetion <p for wh ich (<p) = Dj
fixing such a seetion shows that L( D) is isomorphie to thc veetor spaee of holomorphie seetions of
[D], in partieular these spaces have the same dimension.

Let the dcgree of a line bundle be defined as the degree of its corresponding divisor anel denote
for any d E 7l. the set of 311 line bundlcs of degree d by Pied(f). Then it follows that for any d E 71..,
Picd(r) is isomorphie to Jac(r) via {D} 1----+ [D + "Dd] where "Dd is any fixed divisor of clegree d.
Except for d = 0 there is no eanonieal choice for "Ddi jf howcver - as in the present paper - the
curve has a marked point P then oue is led to the natural ehoice Vd = dP, used exc1usively in the
sequel.

5



2.2. The stratiflcation
We now introduce a decomposition of Jac(f) with respect to an arbitrary fixed point P on tbe

(hyperelliptic) curvc f. Let I g denote the set

I g = {(m, n) E IN X lN I 0 ::; m + n ::; g}

which we order by (m, 71) ::; (m', 71') iff 11l. ::; 7n' and n ::; 71'. Then for (m, n) E I g we define a
subset Divm,n(f, P) of Div(f) by

the term gP is introduced here in order to make every element in Divm,n(f, P) of degree O. We
denote

9 g-n

Divo(f, P) = U U Divm,n(f, P).
n=Om=O

and show in the following lemma that 11'": ker deg ~ kerl restricts to a bijection 71'": Divo(f, P) ~
Jac(r).

Lemma 2.
1) For any (711,71) E I g the restrietion of7l'" to Divm,n(r,p) is injective.
2) If P =I pu, then the subsets 1I'"(Divm,n(r, P)), (71l., n) E I g are all disjoint.
3) If P = pu, then Divm+t,n(f, P) = Divm,n+l(f, P) if 7n + n + 1 ::; g. In this case the 9 + 1

subset..... 1I'"(Divm ,o(f, P)), 0 ::; 711 ::; 9 are all disjoint.
4) 1I'"( Divo(f I P)) = J ac(f).

Proof
Suppose that P "# pu and that we are given D E Divm,n(f, P) and D J E Divk,l(f, P), with

say 7l}. ~ k. Then canceling k terms P it follows that we are asked for a merou~orpbic function f on
f with at most 9 poles Pi, DO two of which correspond under the hypcrelliptic involution. Using (5)
and the Riemann-Roch formula (3) the function f must be constant, hence D = D J

• This proves
1) and 2), and since the first part of 3) is obvious, also 3).

To prove that 1I'"(Divo(f, P)) = Jac(f) we need to show that every divisor D of degree zero is
linear equivalent to a divisor inside one of the sets Divm,n(f, P). By Lemma 1, D "'I L:f=l (Pi - P),
for some points Pi E f, but by the same leul1na every occurence of Q +QU can be replaced by
P + pu, so that eventually it lUust belang to one of the sets Divm,n(r, P). I

We' now prove that the sets Jm,n(r, P)~(1I'"(Divm,n(r, P)) (or Jm(r, P)~f1l'"(Divm,o(f,P)) in
case P = PU) define a stmtification of Jac(r), meaning that they are disjoint differentiable mani­
folds, whose boundary is a finite union of lower-dimensional sets J",t(f, P) (resp. J,,(f, P)). To this
aim we first nccd to explain the differential, or even complex, structure of Jac(f). It is one of the
oidest and lUOSt profound results in the theory of algebraic curves that Jac(f) has the structure of
a complex (algebraic) torus Cg

/ A, where A is a lattice of lummal rank in cg. In fact, it was first
defined as a complex torus and shown (by Abel) to correspond to the above definition. We sketch
the construction oftbe analytical object. Choose a basis Al, ... ,Ay,Bl, ... ,By for Hl (f,71) such
tl1at the intersection indices between the cyc1es obey Ai . A j = Bi . Bj = 0 and Ai • Bj = Oij. Let
{Wt,··· ,Wg} bc the normalised basis of holomorphic differentials for which JAi Wj =Oij. Then the

2g columns of thc matrix (I9 Z), where Zij = JBi Wj, define alattice A in Cg
, which turns out to be
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of maximal rank. Thc quotient Cg
/ A is a complex torus, which is up to isomorphism independent

from the choice of basis for Ht (r, 7l). To link this torus with Jac(f) defined above, one introduces
the A bel map A: Jac(r) ----. Cg

/ A by

and proves that it is a well-defined isomorphism (Abel'$ Theorem).

The subsets Jm,n(r, P) and Jm(r, P) introduced above can thus be seen as subsets of a complex
torus under the Abel isomorphism anel we will identify them with their image, writing Jm,n(f, P)
for A(Jm,n(r, P)) since HO confusion can arise. We show that they are submanifolds of the torus
and fit together such that they define a stratification of it. We give separate theorems for the cases
P f; pu and P = pu.

Theorem 3 I/ P f; pu then Jac(r) i$ stratified by the (g - 7n - n)-dimenBional $tlbmani/old."
Jm ,n ( r, P), toho$e clostl re i.5 given by the (finite) union

Jm,n(r, P) = U Jk,l(r, P).
(k,l)?:(m,n)

Each stratum Jm,n(r, P) has ttoO botlndary components tohich are translates 0/ each other by

(7)

(mod A).

More generally, all i + 1 s17YJta 0/ dimen.sion 9 - i are trans[ates 0/ each other by ne /or some
n E {I, ... ,i}. The clo$ure$ 0/ the (g -1 )-dimensiona[ B17uta Jl,o(f, P) and JO,l (r, P) are 17nnB[ate$
0/ the theta diuis07' and are tangent a[on9 their intersection h ,I (f, P).

Proof
We first show that each Jm,n(f, P) is a submanifold of Jac(f) of dimension 9 - 7n - n. Let

d = 9 - 7n - n > 0 (otherwise there is nothing to prove) and consider the d-fold symnletric product
of f with itself, denoted 0~r. This space is known to have a (complex) differential structure,
with coordinates which derive from coordinates on f. Namely, on a neighborhood of a generic
point (PI,".' Pd) E 0~r for which all Pi are distinct, the coordinates Zi centered at Pi serve as
coordinatesj when two or more of the Pi coincide however, their corresponding coordinates necd
to be replaced by tbe symmetrie functions of these coordinates, for example, if Pt = P2 then take
Zt + Zz and ZtZ2 instead of Zl and Zz. It is dear tha.t as a subset of the torus, Jm,n(f, P) is given
by the inlage of the (A bel map-like) map A., defined by

(1110<1 A),

on the open set Ud C ®~r for which all Pi f/; {P, PU} a.nd i f; j => Pi t Pi. Therefore it
suffices to show that the Ja.cobian of this map is nowhere singular on Ud. Ir the holomorphic
differentials Wi are written as f( Zj )dzj around P;, then the Jacobian matrix of .A., has at the
generic point (PI, . .. , Pg) entries fi( Pj ) and its rank is maximal since otherwise there would be at
least a (g - r + 1)-dimensionaJ family of holomorphic differentials vanishing at the T points Pi in
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contradiction with (5) and the domain of A". If some of the points Pi coincide we arrive at the
same conc1usion (including multiplicities): if, say, Pt occurs 11 times then the the i-th column of
the matrix is to be replaced by the (i - 1)-th derivative of li, evaluated at Pj j then the rank being
not maxitnal would nlCan that there is a (g - r + 1)-ditnensional family of holomorphic differentials
vanishing n times at PI and vanishing simply at the other points, again in contradiction with (5).

We now compute the boundary Jm,n(r, P) of the strata Jm,n(r, P). Since Jac(r) is given
under the Abel isoll10rphism A the quotient topology coming from ®~r, it is sufficient to compute
the closure of each subset Jm,n(r, P) for this topology (recall that we identified Jm,n(r, P) with
its image A(Jm,n(r,p))). Let us define the set

{

g-nl-n }

Km ,n (r, P) = ?= Pi +1rl P +npa - 9 P I Pi Er,
1=1

which is compact sinee it is just ®~-m-nr. By eontinuity of if, its image if(!(m,n(r, P)) is also
eompact, hence c10sedj obviously it is contained in Jm,n(f, P) henee Jm,n(r, P) = 11'"( Km,n(r, P))j
moreover

;rr(Km,n(f, P)) = U Jk,l(r, P).
(k,l)~(m,n)

which proves (7).

Thus the different strata fit together as dictated by the partial order:::; on I g : if we represent
the different spaces Jm,n(r, P) by Jm,n, put those of equal dimension on the same horizontal line
and depict inc1usions by arrows, thon we find the following.

Ja 0,
/' "'-

J1 0 J O,1,
/' "'- /' "'-

J2 ,0 J1,1 Ja 2,

Jg,o J g-1 ,1 J1,g-1 JO,g

Rcmark that the intersection of two spaces Jm,n(r, P) and Jk,l( r, P) is given by the set J",t(f, P)
where (s, t) is the supremum of {(k, I), 2:: (m, n)} (if it exists, otherwise the intersection is empty).
Therefore it is read off immediately from the diagram aB follows: if say 1n :::; k, then draw on the
diagram a eliagonalline (of slape ]) through Jm,n anel another one (of slope -1) through Jk,li then
their intersection point (if any) corresponds to thc intersection of these lines.

There is exactly one big stratum (i.c., a stratum of maximal dimension g) namely Jo,o(r, P), and
its boundary consists of two strata of codimension one, namely J1,o(r, P) and JO,l (f, P), and so
on. Sinee

Divm,n(r, P) = Divm-l,n+l(r, P) +P _ pa

for 111 2:: 1, n 2:: 0 the sets J 1,o(r, P) and JO,l (r, P) are translates of each other by e= A{ pa - P},
namely JO,I(r, P) = J1,0(r, P) + e, and it can be shown tha.t they are translates of the theta
di visor (see below). In general each stratulll Jm,n (r, P) (except the zero-dimensional ones) has
two boundary components, Jm +1 ,n(r, P) and Jm ,n+l (r, P), which are obviously also tra.nslates of
each other by e. Therefore the sets Jm,n(f, P) of the sa.me dimension are all transla.tes of each

8



other by some integer multiple of e, for example for the points Jg,o(f, P) and Jo,o(f, P) it follows
immediately that Jo,o(f, P) = Jg,o(f, P) +ge.

In [Gu] (Chapter 4, p. 143) explicit formulas are found for calculating the intersection of two
translates of the theta divisor. These show that in general the intersection of two translates of
the Riemann theta divisor is reducible and has two components. Since in our case Jl,o(f, P) n
JO,1 (r, P) = J1 ,1 (r, P) is irreducible, these eomponents coincide, henee J1 ,o( r, P) and JO,I (f, P)
a.re tangent along J1,I(f, P). I

The corresponding theorem for P = pu is stated as follows an<! proven in the same way.

Theorem 4 I/ P = pu theu Jac(r) is stratified by the (g - 111 )-dimeusioual subsets Jm(r, P),
whose closure is giveu by the (finite) union

Jm(r, P) = UJk(f, P).
k~m

and each stratum Jm(r, P) has just one boundar'Y component. lIere the st7YJtification is simply
depieted as

Jo -t JO- 1 -t J9 - 2 -t ... ~ J1 -t Ja

Jo = Jac(r), J1 is a t7Yznslate 0/ the theta divisor and Jg is the origin in Jac(f).

I

In Theorems 3 and 4 we claimed that J1,0(f, P) and J1 were translates of the theta divisOTj this is
the divisor of the classical Riemann theta function for Jac(r), whieh is the entire function on Cg

defined as
O(z) = L: e1l"i(I,Al)e 21l"i(J,z)

lEZg

(8)

when the lattice A of Jac( r) s:! Co/ A is written as (IgA). Remark that although 0 is only defined
on Cg

, the theta divisor is well-defined as its zero locus on Jac(r). Riemann showed (see [MD that
there is a constaut 3. E Cg such that

{

0-1 }
8(Z)=O<=* 3P;Er:Z=A ~(P;-P) -E. (mod A). (9)

The important condition in the right hand side is that the sum runs over 9 - I points only. Formula
(9) leads at ouce to the cited claims.
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3. The Sato Grassmannian

We show in this section how the stratification from the preceeding section is induced by a
natural stratification of the 8ato Grassmannian via an extension of the Krichever map. In the first
paragraph we recall from [S8], [SW] and [PS] the Sato Grassmannian, its stratification and the
Krichever map, which relates tbe Grassmannian to aJgebraic curves. In tbe second paragraph, we
introduce an extension of this map in the case of hyperelliptic curves and relate both stratifications.
A coarser stratification of the Grassmannian is introduced in the last paragraphj it appears in a
natural way when the K-P hierarchy is introduced on the Grassmannian.

3.1. The Grassmannian and its stratiftcation

[n this paragraph r denotes any smooth curve of genus 9 (i.e., r needs not to he hyperelliptic),
with a marked point P on it. We also fix a srnall coordinate neighborhood (s,U) centered at P, for
which s(U) is tbe unit disk in C. Then the boundary DU is diffeomorph.ic to a drele and L2(DU ,C)
is a Hilbert space, witb a base

{ -2 -1 1 2 }... ,z , z "z,z, ... ,

where z = s-l. The Uilhert space decomposes a.s L2(DU ,C) =1t+ ffi H_, where

1t+ = {I, z, z2, ... } and H_ = {Z-l, z-2, .. .},

(the closure is here the L2-closure). Let Gr dcnote the set of all closed subspaces W C L'J(ßU,C)
which have an algebraic base of tbe form {/diEN, with

"i

/i = L Ck
zk

j;-oo

o f; C"i E C, Si < Si+1, Si = i for i suffidently large. (10)

We call Gr the (Sato) Grassmannian of L2 ( DU, C)j it is a connected t Banach manifold, Illodelled
on the Hilhert space of a11 Hilbert-Schnlidt operators H+ --+ H_. For fi as in (10) we define its
order to be Si and we associate to W the (ordered) subset Sw = {SO,Sl,S2,"'}' We call such a
subset of 71. with Si < Si+1 and Si = i for i sufficiently large, a sequence. The set of all points in Gr
which have as sequence S will be dcnoted by Es,

Es = {W E Gr I Sw = S}.

We define a partial order on sequences by S :::; 5' if tbe entries Si and S~ of Sand 5' satisfy Si ;::: s~

for all i EIN, and defi ne the length I( S) of a sequence 5 as the fini te SUIll 1(5) = L:i>o (i - Si)'

Then 5 :::; 5' obviously implies 1(5) :::; I(S'). Denoting by Us the set -

Us = {W E Gr I proj (W -+ {zi li E 8}) is an isomorphism} ,

the stratification of Gr is described as follows (see [PS]).

Theorem 5 For any sequence S, the set Es is a closed subspace of Usand ihe collection of all
Us fonns an open cover 01 Gr. The big stmtum i~q given by EN and all Es are smooth manifolds
of codimension 1(5). The closure in Gr of each Es i.1O the union of the stmta bS' for which 5' ;::: 5.

t by the last condition in (10) we singeled out thc connected component containing 1t+ of what
[PS] and [SS] call tbe Grassmannian

10



Sequences are in bijection with partitions. By a partition v we mean a finite, non-increasing
sequence of positive integers Vo 2:: VI 2:: ... 2:: V r 2:: O. The bijection is simply given by Vi = i-Si

and we see that 1(5) = E~=o Vi. Thc sequence corresponding to a partition V will be denoted by
Sv' Also we define 1(J.l) = I(SJJ) anel jJ. ::; V iff SJJ ::; Sv'

Partitions in turn are in bijection with Young diagrams, by which they are best visualisedj a
Young diagmm is a finite (left aligned) arrangement of squares such that each row has at most as
many squares as the preceeding row and the Young diagram corresponding to Vo 2:: V1 2:: ... 2:: V r 2:: 0
is given by drawing Vi squares in thc i-th row. Then the number of squares in a Young diagram
(called its weight) equals the length of its partition. For example, if v is the partition 3 2:: 2 2: 2 2:: 0
then Sv = {-3, -l,O,3,4, ...} and its Young diagram is drawn as follows.

We finally recall the Krichever map. The curve f, the point Panel a loc'al parameter s around
P being fixed, there is associated to a line bundle f. E Pic9 (f) and a trivialisation ,p of f. (say over
a neighborhood V of the closure of the coordinate neighborhood U of s), a point W(f.,,p) in Cr
as folIows. Using 4> we may trunk of sections of f. over V as functions on V, in particular such a
section determines an element of L2(ßU,C). Then W(f.,,p) is defined as the closure of the set of all
elements of L 2(ßU,C) obtained in this way from meromorphic sections of f. which are holomorphic
away from P. Then the pole which thc section has at P coincides with the order of the section at P
and in particular is independent of the trivialisation ,po It follows that although W(f., 1» depends
on t:P, the stratum of Gr it belongs to, is independent of <p. Therefore the Krichever map induees a
deeomposition (possibly a stratification) on Pic9 (f), hence also of Jac(r). We will generalise the
Krichever map in the case that f is hyperelliptic to obtain a map which inchlces the stratifications
on Jac(r) which we considered in the previous section.

3.2. Relating the stratifications

We now return to the case for which f is hyperelliptic, s a loeal parameter on a small neigh­
borhood U of a fixed point Pj tbe Crassmannian buHt using these data is just denoted by Gr. For
a point {D} E J ac(f), let f.+ be the eorresponding element in Pic9 (r) under our identifieation

Jac(r)0~] Pic9(r), Le., f.+ = (D +gP] and let L_ = f.+ ® (P - PU]j also ehoose a trivialisation
,p+ of f.+ over U and ehoose a trivialisation of L_ as ,p_ = ,p+s if P -=I pu and ,p_ = <p+ otherwise.

Then we obtain two points W+(D)n~lW(f.+,4>+)and W_(D)n4lW(f._,t:P_), each belonging to a
stratum whieh is independent of t:P±. Thus, r, P and (s,U) being fixed, there is associated to a
point in Jac(f) and a trivialisation of its line bundle a. point in Cr X Grj if P is a Weierstraß point,
then the image of this map is contained in the diagonal of Gr X Cr and we get the Krichever mapj
therefore we call our map an extension of the Krichever map. The two sequences of these strata will
be denoted by S+(D) and S_(D), since they depend on D only. We will show that the stratification
of J ac(f) with respect to P, as defined in Section 2 is induced from the product stratification on
Gr X Cr via this map.
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Proposition 6 If deg D = 0 then tlle sequences 5+(D) and 5_(D) are computed as folIows:

5+(D) = {n E 71.1 dim L(D +(g +n)P) > dim L(D +(g +n - l)P)},

5_(D) = {n E 71.1 dim L(D + (g +n + l)P - PU) > dim L(D + (g +n)P - PU)}.

Proof
Since deg D = 0, {D} E Jk,l(f, P) for some k,1 ~ 0, k + I .$ g. By Lemma 1, {D} is written

as {D g - gP} for a unique Dg = ~f~;n-n Pi + TTI,P +npu of degree g, with Pi E r \ {P, PU},
DO two Pi corresponding under (1. Let 'P be a holomorphic section of [D g ] for which (4') = Dg •

Then the map f --t /pI determines an iS01norphism between the meromorphic functions on r with
(simple) poles on the points of Dg anel an arbitrary pole at P on the one hand, and meromorphic
sections of [D g ], holomorphic away from P at the other hand. Consequently we will find a function
in W+(D) = W([D + gP],~) of order n exactly when there exists a meromorphic fUDction with
poles on D g and a pole of order n at P, i.e.,

n E 5+(D) iff dim L(Dg +nP) > dim L(Dg + (71, - I)P), (11)

which shows that 5+(D) can be read off from the dimensions dim L(Dg +TL?). The formula for
S_(D) follows immcdiately from 5_(D) = S+(D + P - PU). I

The following lemma will give 11S neat fornmlas to compute the sequences 5+ (D) aDd 5_ (D).

Lemma 7. Suppose there are gillen n .$ 9 points p), . .. ,Pn E r \ {P, PU} such that i f. j ~
Pi f:. Pj. If P f. pu, let D be a dillisor of the form D = ~~=) Pi + kP + Ipu (k, I E 71.). Then
dim L( D) is given by

. ( { max{g - n - k - 1- 1, o} + 11, + k + I +1 - 9 for k < 0 01' I < 0,
dlm L D) =

max{g - n -max{k,I},O} +n + k +1+1 - 9 for k,l ~ O.

If alternatillely P = pu, then dim L(D) is given fo1' any divisor of the form D = 2:;~1 Pi +kP
(k E 71.) by

. () {max{g-n-k-1,o}+n+k+l- gfork<0,
dlm L D =

max{g - 11, - rk/21 ,O} + TL + k + 1 - 9 for k ~ O.

Proof
We first consider the case P f:. pu. Let D = 2:~~) Pi + kP + I pu as above and suppose that

k < O. Then by (6), dim 11(-kP) = 9 - k - 1. If I is non-negative, thcn the divisor ~ Pi + I per is of

the form 2:;~11 Qi where i f:. j =} Qi f:. Qj, which amounts to 71 +llinearly independent conditions.
If I is negative then by (6), dim 11(-kP -lpU) = 9 - k -1- 1 alld thcre are n linearly independent
conditions c01uing from the points Pi (i = 1, ... ,TL). It follows as in (5) that in both cases there are
9 - n - k - I - 1 independent differentials in 11(-D) as long as this number is positive, otherwise
there are no such differentials. By Riemann- Roch,

dim L(D) = dim 11(-D) +n +k +I + 1 - g,

= max{g - n - k - 1- 1, O} + 11, + k +1+1 - 9,

for k < O. The case I < 0 is deduced [rom the above case by replacing D by DU.
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It remains to prove the case k, l ?: O. Then we look for holomorphic differentials with zeroes at
11. general points, with k zeroes at Panel l zeroes at pu. These are 11. +k + I conditions, but since
min{k, l} of them are the same, we arrive at n + k + l - min{k, l} = n +max {k, I} independent
conditions. It foUows from (5) that we end up with g-n-ma.x{k, l} differentials, as long this number
is positive, otherwise there are no such differentials. Using Riemann-Roch again, we conelude

dim L(D) = max{g - n - max{k,l},O} + n + k + 1+ 1- 9

for k, I ?: O. This completes the proof in case P f; pu.

Suppose now P = pu and let D = L~=l Pi + kP. Ir k < 0 then it follows from (6) that
dim n( -kP) = 9 - k - 1. The 11 points Pi impose n independent conditions on these differentials,
giving dim n( - L:~~1 Pi - kP) =max{g - n - k - 1, O}. Using Riemann-Roch we find

dim L(D) =max{g - n - k - 1, O} +n + k +1 - g,

for k < O. If k ?: 0 thcn there are 9 - fk/21 holomorphic differentiaJs in n( -kP) (as long a.s this
number is positive), since in this case all the holomorphic differentiaJs vanish to even order at P, as
is seen frotn (1), (2) and (4). Therefore the dimension of n( -D) is given by max{g - fk/21 - n, O}
and L( D) is compu ted from the Riemann-Roch theorem as

cl im L(D) = 1llax {g - rk /21 - n, O} + n + k + 1 - 9

for k ~ O. I

'rVe combine Proposition 6 with the previous lennna to cOInpute the sequences S+(D) and
S_(D) and their Young diagrams. The basic relation between the stratifications of Jac(f) anel
Cr X Cr will follow immediately from it.

Theorem 8 Sllppose P f; pu and {D} E Jm,n(f,P). Then S+(D) and S_(D) are seqllences
which depend only on the st7Yztum (i.e., on 111, and n) and are gitJen by

S+(D) = {-111, ] - 1n, 2 - 111, , n - 111, n + 1, 11 +2, 11 + 3, ... },

S_(D) = { - tn - 1, -1n, 1 - 1n, , n - 111 - 2, 11, 11. + 1, ...}.

The con"€sponding Young diagmms are rectangles with 711, column,-~ and 11 + 1 rows Jor S+(D) and
1n + 1 columns a ud n row~r;; Jor S _(D), and their weigh ts are simp/y given by l(S+(D)) = m(n + 1)
and l(S_(D)) = n(1n + 1). They look as Jollows.

1n
111 + 1

n+]
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Seco71dly, suppose that P = pu a71d {D} E Jm(r, P). Then S+(D) = S_(D) is a sequence
tohich depe71ds ouly on the stmtum (i.e., on m) and is given by

S+(D) = {-m,2 - 7n,4 - m, ... ,m - 2,ln,ffi + 1,m + 2, ...}.

The correspoudi71g Young diagram iB a rotated stairs 01 height m, i.e., the first roto has m squares
aud every other row has oue square less theu the preceediug row, heuee it has weight l(S+(D)) =
m(~+1) and is depicted as folIows.

7n

tn

I

'-

Praaf
Suppose at first that Pi pu. For D E Divm,n(f, P) let Dg = D + gP, then by Lemma 7,

dim L(Dg + kP) =max{min{k + 7n,n},0} + 1 + k,

if k + l1l ;::: 0, otherwise this dimension is zero. Since S+(D) = {k I dim L(Dy +kP) > dim L(Dg +
(k - 1)P)} we see that

S+( D) = {-ln, 1 - l1l,2 - 1n, ... ,n - ln, n + 1, n + 2,71, +3, ...}.

Also, since S_(D) = S+(D + P - PU) and since D + P - pu E Divm+1,n-1(r,p) if n ;::: 1, the
fonnula for S_(D) is found in this case by substituting 1n +1 for 7n and n - 1 for 11, in the formula
for S+(D). The proposed formula above for S_(D) gives for n = 0, when properly intcrpreted,
S_(D) = IN. To see its validity, remark that in this case

g-m 9

Dg + p- pu = L Pi +7nP+ p- pu ""I LQi
i=1 i=1

for uruque Qi, all different from P, pu and no two of which correspond under the hyperelliptic
involution (using Lemma 1 again), hence S_(D) = IN. The proof for P = pu goes exactly along
the same lines. I

This theorem leads immediately to the main result of this section.

Theorem 9 The natuml s17Yltificatio71 01 Jac(r) give71 by the subsets Jm,n(r, P), (ln, 71,) E Lg , is
indueed by the (product) stmtifieatioll on Gr X Gr givell by the sets "Es X "E T (8, T sequenees) via
the "map"

F: Jac(r) ~ Gr X Gr

{D} ~ (W+(D), W_(D)).
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PrüüE
From tbe previous theorem it follows that the strata Jm,n(r, P) are mapped into strata of the

stratified space Gr X Gr. Also it follows from this theorem that no two different strata Jm,n(r, P)
and Jm , ,n' (r, P) are mapped in the same stratum. To prove this it suffices to show that tbe
numbers (7n, n) E I g can be reconstructed from S+(D) and S_(D) (or equivalently from their
Young diagrams). If both Young diagrams are empty then (m, n) = (0,0). Otherwise m aDd n are
found by counting rows and columns in one of the non-ernpty diagrarns (remark that for m = 0
or n = 0 it is essential to have both diagrams). In the case P = pu both Young diagrarns are
obviously the same (since W+( D) = W_( D)) and the theorem can be simplified using only the
subsets Jm(r, P) and the planes W+(D) E Gr. I

3.3. The K-P hierarchy on Gr and another stratiftcation

There is another stratification on Gr, (and on Gr X Gr) coarser than the previous one, which
shows up when a certain natural vector field on Gr is considered. Its strata consist of those points
in Gr for which thc associated Young diagrams have a given weight. To see that it is also a
stratification, remark that each stratum is a finite union of the strata of the original stratification,
and the boundary of a stratU1l1 now consists of those strata whose Young diagram has more weight
than the Young diagram of the given stratumj we call it the coarser stratification (on Gr as well as
on Gr X Gr where again the product stratification is considered). The following proposition follows
at once from Theorem 8.

Proposition 10 The natural stmtification 01 Jac(r) given by the subset~ Jm,n(r, P) is aL'Oo
induced by the coarser stmtification on 01' X 01' via Dur extension 01 Krichever's map.

PrüDE
Clearly we only nced to prove that TIO two strata are luapped in the same stratum. If P = pu,

then the stratum which corresponds to Jm(r, P) has weight m(~+l), which is different for all
m. E lN. If P f; pu, thcn we need to reconstruct 7n and n from 1111 =m( n + 1) and Wz =n(m +1).
However, given Wl an<! Wz there are only two solutions to this, namcly (m, n) and (-n - 1, -m - 1),
only one of which is positive. I

The group Coo acts on Gr in an obvious way by W ~ e- t• z • W, (tn E C), and its infinitimal
action determines an infinite number of commuting vector fields ß/8tn on Gr, called the K·P
hiemrchy (this hierarchy can be written down in many equivalent forms, see [DMK5], [55] and

[SW]). The point e- 2:;:1 tjz

j

W is denoted by W t
, in particular W = Wo. It leads to the so-called

tau funetion, also introduced by Sato (see [58] and [SW]), which is defined for a generic point
W E Gr by

cr(W t ) aCe- 2:~""1 tjZ

j

W)
Tw(t) = 2:00>. = 2:00> . .

e- j=l tjzJ u(W) e- j",.l tjzJ u(w)

Here u(W) is a canonical global section of the dual Dct* of the detenninant bundle Dct over Gr,
which can be defined - with some care - as one dcfines thc determinant bundle over a finite
dimensional manifold. For a point for which u(W) = 0, this section is replaced by another (non­
vanislUng) section of Det*. It is a fundamental fact that in the case W = W(.c, 1» as in the previous
paragraph, oue has Wt(L:, 1» = W(L: ® (f, 1>t) wherc (t is the line bundle defined by the transition

function e2:;:l tj~-j on the overlap of W = r \ {P} and Uj moreover, t ~ (t defines a surjective
homomorphism (see [Sh]). It follows that Coo acts on the set Pic9 (r) by tensoring with (f, hence
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the vector fields 818tn give linear vector fields on any Jacobian Jac(f) under our identification with
Pic9 (r) by {D} ~ [D +gP).

We apply this to our case in which f is hyperelliptic, and we concentrate on the vector field
8I8t l. As before, 8 is a. local parameter around P E f. Consicler the indusion

~p:f --. Jac(f):Q ~ {Q - P}.

Then 818t}, as a vector field on J ac(f) has the following property.

Proposition 11 The first K·P vector field 818t], cOfk~idered as a veetor field on Jac(f), 18

tangent to the eurve ~p(f) at tlle origin 0/ Jac(f).

Proof
Let t = (t}, 0,0, ... ) with t} small. The line bundle in Pic9 (f) corresponding to tbe origin of

Jac(f) is [. = (gP]' with transition functions gUW = 8 9 (W = f \ {P}), hence [.t = (gP) ® (t has
transi tion fu nctions

g1.Jw = ~~9 exp( -tlls) = 8 9 -
1

(8 - tt} +V(ti),

and since tl is small, the divisor corresponding to it (up to O(ti)) is (g - l)P + Ptp where Ptt
is the point in U for whicb s = t}. As a point in the Jacobian this is tbe point {Pt1 - P} on the
embedded curve ~p(f). Therefore, around P, ~p(r) coincides with tbe integral curve (which is just
a straight line in the torus) of al8tl at least to first order, hence they are tangent. The components
of this vector in the direction of the holomorphic differentials xkdxlY, (k = 0, ... ,9 - 1) are easily
computedj take for example P = pu then x = 8-2 , Y =S- 29- 1 +0(s-29 ) hence,

(12)

I

Of interest to us is also how the tau function, associated to W E Gr, vanishes in the t}-direction.
This is given by the following proposition, due to [SWJ.

Proposition 12 F07' any W E Gr,

where c f °and 1 is the eodimension 01 the stratum 0/ Cr eontaining W, i.e., it is tlle weight l(Sw)
0/ the Young diagram 01 W.

I

Having associated two points W+(D) and W_(D) to a point {D}, we have also two corre­
sponding tau functions TW+(D) and TW_(D)' They relate to the theta function as folIows.

Theorem 13 Let A be the 9 X oo·matrix with entries Aij defined by expanding the holomorphie
differential /orms Wi in terms 0/ 8 (around P), Wi = L:~l Aijsi-1ds. Then /or any divisor D 0/
degree 0,

TW+(D)(t) = exp(Q(t))O (LS - At - A(D)) ,

TW_(D)(t) = exp(Q(t))O (LS +e- At - A(D)) ,

where Q( t) is a quudratie foml in t whieh is independent 0/ tl .
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Pfaaf
The proof is essentially due to Krichever (see [K]), who shows that if 12 is a line bundle of

degree 9, then
TW(C,Ijl)(t) = exp(Q(t))O(At + Z(,C)),

for some veetor Z whieh depends "linear" on 12 in the sense that

Z(L ® [D]) = Z(L) +A(D), (13)

far any divisor D of degree 0 (see aJso [Sb]). We determine Z. By the preceeding proposition
and Theorem 8, TW+(D)(O) = 0 iff l(S+(D)) 1: 0 iff {D} f/:. Jo,o(r, P). At the other hand, by (9)
(Riemann's theorem), B(Z) vanishüs for tbe points A(D) - ~ for whieh A(D) = {D} f/:. Jo,o(r, P).
Using (13), Z(L) = A(D) - 3. for aJl D of degree 0, leading to tbe first fonnula. The seeond formula
follows at onee form the first one. I
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4. The master systems

4.1. The master systenlS

Consider for a fixed hyperclliptie ellrve r (of genus g), P E fand s a loeal parameter araund
P the map

</>p: r ~ Jac(f): Q r-+ {Q - P}.

Then d</>p (I:;) ,,=0 is a tangent vectar at the origin of Jac(f), tangent to the embedded curve
fj>p(f), and we have seen that it determines thc unique holomorphic vector field on this torus,
which coincides with the first K-P vector field, under the identification of Jac(f) with Pic9 (f),
given by {D} ~ [D +gP). Natural coordinates can be picked for (an affine part of) Jac(f) in
which the differential equations describing the vector field take a. nice form. This was done by
MUluford in case P is a Weierstaß point on f (see [MD, and by us in the opposite case (see [V]).
The result can be written in a compact form as a so-called Lax pair

dA
dt = [A,B], A _ (v(x)

- w(x)
u(x) )

-v(x) , (14)

where
9

u(x) = x9 +L Ui X9-
i ,

i=t

9

v(x) =L Vi X9 -
i
,

i=l

9

w(x) = L Wi x9- i
•

i

The sum in w(x) starts from -1 if P is a. Weicrstraß point and from -2 in tbc other casej in any
case w( x) is taken monic. As for the entry b in B, it is given by

again according to whethcr Pis, or is not, a Weicrstraß point of f. In [V] we callod the vector field
(14) the odd master system in case P = pu and the even master system otherwise.

Thc coefficicnts of u(x), v(x) and lV(X) are mcromorphic functions on Jac(f), which serve
as (a eomplcte set of) coordinates for an affine part of Jae(f)j for example the polynollual u(x)
associated to a generict point {D} = {L:f=l Pi - gP} E Jac(f), is just u(x) = II(x - x(Pi »,
hence its eoefficients are symmetrie functions on the curve; also v(x) is the u nique polynomial of
clegree 9 - 1 which records thc y-values of the points Pi, i.e., v(x( Pd) =y( Pi) for i = 1, ... , g. It
follows tha.t f( x) - v2(x) is divisible by 1L( x) and w(x) is by definition the quotient. Remark that
in particular an equation for the curve r is given by

orb = x - 2UI,

y2 = f(x) = u(x)w(x) + lJ2(X) (15)

and the coefficients of u( x )w(x) + v2
( x) are coustauts. Also the points P and pu are points at

infinity with respect to this equation. It is easy to deduce from this that the vectoT field (14)
coincides with the vector field given by d<pp C~":lJ 1,,=0' hence with the first K-P veetor fieId, as we
show now.

P roposit ion 14 The vector jield (J -4) which deBc7'i beB the master Bystems coincides with the jirBt
K-P vector jield 818t t .

t generic means here that the point lies in Jo,o( r, P)
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Praaf
Take a generie divisor p) +...+Po, Pi = (Xi,Yi) and let u(x), v(x) and w(x) be its associated

polynomials. Using (14),

henee
o kd 9 kd

""' xi Xi ""' Xi t 21: d6 -- ::;:: -2 6 rr ( )= - Uk,g-l t.
i;;;;) Yi i;;;;l i#i Xi - Xi

It follows that the veetor field vanishes in the direetion of dx/y, ... , x 9 - 2 dx/y and takes the value
-2 for xO- 1dx/y exactly as in (12). I

4.2. The Laurent solutions far the master systems
The differential equations describing a vector field such as (14) are known to posses faluilics of

Laurent solutions (see [AvM3]). We explain this by rccalling the argument. Let Z be any point on
Jac( r) and let l1S denote for sim pli city the fun ctions Ui, Vi and Wi by Zl , ••• ,Zm, (711 = 3g+ 1 or fn =
3g + 2). Ir all functions Zi are holomorphic in this point then the solution Zi(t) is obviollsly given
by power series; therefore suppose that one or more functions Zi blow up at Z, say the blow-up
locus of Z) contains Z. We write the divisor of Zl as

k I

(Zl) = L UiDi - L 1niD:,
i;;;;l i=l

where all Di and D~ are different and irredllcible. Then Z belongs to one or more D~, hut may
belong as weIl to same of the Di. In any case, if we pick for each divisor a local defining function
around Z, say fi for Di and gi for D~ (if Z does not belong to some divisor then the loeal defining
function may be taken as the constant function 1), then Zl is written around Z as

We may ta.ke linear coordinates Xl = t, X2, • •• ,Xn for the torus, and think of the loeal defining
functions as being expressed in terms of these. U the t-axis is not contained in any of the divisors
Di or D~ then all these functions ean (again up to a non-vanishing holomorphic fllIlction) be written
as a (Weierstrass) polynomial in t (by the Weierstrass Preparation Theorem) and we see that the

zero or pole Zl has in Z depencls on the eomponents af the divisor of Zl to which Z belongs hut
also on the singularity these divisors have in Z (since then the first few tenus in the series vanish)
and on the contact the vector field d/dt has with these divisors (for the same reasan). Proeeeding
in this way for all functions Zi we find a Laurcnt solution to the differential equations, whieh starts

from Z. The ease in whieh the t-axis is contained in tbc divisor of oue of tbe functions corresponds
to the exceptional ease that both the torus is reducible and one of the functions blows up on a
subtorus, a ease whieh will not be encountered here.

The Laurent series organise themsclvcs naturally in faluilies a.s follows: for every Zi, fix an
intersection of some divisors (contained in the divisor of poles of (Zi)), fix an ordcr of singularity
aud an order of tangeney of thc vectar field. On this set all Zi are written as Laurent series
depcnding on a number of free parameters, equal to the dimension of this set (corresponding to the
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starting point of the series which can be chosen in it) and in a dense subset the order of pole each
expansion experiences is fixed. The pole may however become less severe in an analytic subset,
obtained from the intersection with one of the divisors on which Zi has a zero; in such a case the
leading coefficient of the Laurent series must bc (dependend on) a free parameter, so that it can in
particular take tbe value O. The different sets obtained in tbis way da not give a stratification of
tbe torus in general; indeed, if, for example, Zl and Z1 botb bave a pole on same smooth divisor and
the intersection of these divisors is singular, then this singularity will not be seen by the Laurent
series.

Finding all Laurent solutions in a direct way is in general a hard problem. At first it is not clear
when looking at the differential equations where to start with the solution. For a given choice one
needs to solve a non-linear system of algebraic equations for tbe leading term (which may be very
difficult, especially in the present case where the number of variables is indefinite; here this number
is 3g +1 or 3g +2); the presence of free parameters (giving information about the dimension of the
corresponding subset) can in favorable cases be detected by computing the eigenvalues of a matrix,
dcpending on these leading terms, but this is again very difficult when thc number of variables,
hence the size of the matrix, is indefinite. One also has to show convergence of all Laurent solutions
and see how the different sets they correspon d to are rel ated (see [A vM3)).

Our method to find to Laurent solutions for tbe master systems does not use this sebeme.
lnstead we combine Theorem 12 with the following theorem which expresses tbe symmetrie func­
tions tLi in terms of tbe lliemann theta function. The result is most easily expressed in tenns
of alternative symmetrie functions Ui (on the curve, given by (15)), defined for a generic point
{D} = {L:f:;) Pi - gP} E Jac(r), a.s

(i=1, ... ,g).

Remark that Ui is a weight homogeneous polynOluial in U1 , ••• , Ui when Uk is given weigbt k. We
also introduce tbe Schur polynomials pi(X), x = (X),X2,"') defined by

In order to simplify the notation we will abbreviate

.- (a 1a lß )
a= ßt)' 2. {)t2 ' "3 ßt3 ' .. . .

Theorem 15 11 P = pu then the symmetrie 1unctiofJ....~ Ui are expressed in tenns 01 the Riemann
theta JU71clioll by

2i-l {)

up = Ci - ~ 8t2i_/i(8)(loglJ)(6 - A(D», ( 16)

In particular, since the Schur polynomial Pj(x) has degree j in x), the Laurent expansion in t) Jor
Ui (and hence al~qo Jor 'Ui) will have a lfading behatriour whieh is not worse than t1

2i .
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Alternatively, if P :f pa then the symmetrie functions Ui are expressed in terms of the Riemann
theta function by

i-l 8 8
D '" -.... - ....Ui = ei - L., -8..pj(8)(log O)(L\ - A(D)) - -8. .pj(-8)(logO)(L\ - A(D) +ej.

. t l -) t l -)
);;;;0

(17)

so that in this case any Laurent expansion in tl for Ui (and henee also for un ) will hatJe a leading
behaviour whieh is not worse than t 1i .

PfOO!
Tbe formulas (16) and (17) generalise analogons formulas that have been obtained by severaJ

methods for small n (see [D], [MvMDj our proof is a residue calculation as in [D].
The fundamental formula used here is that, if Z =A(P1 +... + Pg - gP) with Pl +... + Pg

a generic divisor on r, then

O(A(Q - P) - Z + 6.) = 0 iff Q E {Pl , ... , Pg},

an easy consequence of (9) (Riemann 's Theorem). We start with tbe case P = pa. Then it follows
from this formnla that Ui

D is given by

up = Ci - Resq;;;;pxi(Q)dlogO(A(Q - P) - A(D) + ~),

= Ci - ResQ=pxi(Q) tW,(Q) (a:/ IOgO) (A(Q - P) - A(D) +.&) , (18)

for some Ci E C. As before, we expand Wi and thc cOlllponents Ai of the Abel map for Q dose to
P, say x(Q) = s-2 in terms of s,

We lIse Taylor's Theorem,

.... ( 9 8 )F(z+h) = exp ~hi aZ
i

F(Z),

for

(h smaII),

a -. ....
F = -8(logO), z= 1.\ - A(D), h =A(Q - P), Q near P.

Zl

This gives

(a~, lOgo) (A(Q - P) - A(D) +.&) = exp [~ (t yAii a~i) Si] (a~, lOgo) ('& - A(D)) ,

=exp [~Ya~isi] (a:,IOgo) ('& - A(D») ,

=f,sipj{jj) (a: lOgO) (~- A(D)) .
);;;;0 I
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We have used that L:f=1 Aijk = if;, which follows from z = At +( in Theorem 13. We have
now expressed everything in terms of sand can compute the residue:

The modifications for the case P ::j:. pu are the following. In (18) there is an extra. term correspond­
ing to the residue in pu,

Letting QU =Q' it is rewritten as a. residue in P upon using x(QU) = x(Q) and w(QU) = -w(Q)
for alt holomorphic differentials w (hence also A(Qu - PU) = -A(Q - P)), giving:

A second mayor difference with the case P = pu is that now x(Q) = s-1 in terms of the local
parameter ~q. Taylor's Theorem gives thc same result as above for tbe residue in P, while for the
extra. residue term we find

so that finally both residue term are given by

00 00. . (8 _ .... 8 _ .... ) ds
- Res?= L S)+k-l 8tk Pj (ß)(log 0) (ß - A( D)) - ßtk pj( -8)(log 0) (ß +e- A( D)) -:;-,

)=0 k=1

=Ci - ~ (1-) ~ .pj(ä)(logO) (E - A(D)) - {) ~ .pA -ä)(logO) (E +e- A(D))) .
. ut l -) t 1-))=0

I

The above theorem is very helpful to determine the Laurent solutions fOT the master systems.
Since t = t1, we Illay now make the ansatz

(19)
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where p(i) is given by the theorem, namely p(i) = 2i if P = pu and p(i) = i otherwise, and we
will find all the Laurent solutions. We show that they lead indeed to the stratification of Jac(f)
which coincides with the one by the subsets Jm,n(r, P). We give separate propositions for the cases
p = pu and P f; pu.

Proposition 16 For the odd master system there are 9 +1 /amilies 0/ Laurent solutions. The
m~th /amily corresponds to the stmtum Jm(r, P) and the /unctions Ul,"" ug blow up as

u. = (_1)d2i ~ 1)!! (m + i)! 1. O(t-2i+1 )
1 21 ., ( ')' t21 + ,t. m. - t .

ui = O(t-2i+1
),

(i=1, ... ,m),

(i=m+1, ... ,g),
(20)

In particular, the odd master syste1"U induces a stmtification on Jac(r) which coincides with the
stmt2'jication by the subsets Jm(r, P).

Proof
The equations (14) are written out in the case of the odd master system (corresponding to

P = PU) as
ü(x) =2v(x),
v(x) = -w(x) + (x - 2udu(x),

w(x) = -2(x - 2Ul)U(X),

or just as a third order cquation,

Then the ansatz (19) leads to the recursion relation

(i = 1, ... ,g; Ug+1 =0). (21)

(22)

To solve this recursion relation, remark that if ai = 0 then ai+l = 0; since ai = 0 for at least one
i ~ 9 + 1, we find that

1
al = - "2rn( 111 + 1)

for some 1H E {O, ... ,9} which leads by induction iUllllcdiatcly to the formula.

(23)

a' = (_1)i (2i ~ I)!! (1n + i)!
1 21 " ( _ ')"1. m t.

(i= 1, ... ,1n),

and a m +l = ... = ag = 0, hence also to (20). The series for Vi and 1Di follow immediately from it
by differentiation, in particu]ar they da not give rise to separate falnilies of Laurent solutions.

We now show that the 1n~th solution corresponds to Jm(f, P). Take {D} E Jm(r, P) and
let {nt} be the integral curve of dldt = 818t 1 with n° = D. Denote by u DI (x) and UDI (x) the
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associated polynOlnials, as above. Since it follows from the definition of A that At +A(D) = A( Dt),
we may compute, using Theorems 15, 13 and Proposition 12 (in that order),

Ufl = (logO)" (K- A(D t
)) - Cl,

= (logB)"" (K- A(D) - At) - Cl,

= (log 1"W+(D)) " (t) - Cl,

= :2 log (ct1(S+ID)) +O(tlIS+ID»)+!)) - Cl,
= _l(S~;D)) +0(1).

(C f:- 0),

If {D} E Jm(f, P), then we know from Theorem 8 that l(S+(D)) = m(~+1), so we find by (23)
that the nt-th stratum corresponds to Jm · I

We will now prove the equivalent result to Proposition 16 for the case of the even master
system, Le., for the case P f:- pu.

Proposition 17 For the euen master system there are (g+1)Jg+2) Jamilies oJ Laurent solutions
one Jor each element oJ the set I g. The (fn, n )-th Jamily corresJX'nds to the stratum Jm ,n (f, P) and
the fU71ctiofk~ 'Ul, ••. ,'Ug blow up as

111 - Tl.
'Ul =-- +0(1),

t
'Ui = O(t-i), (i = 1n + 1, ... ,9),

(24)

In particular, the euen master system induces a stmtification on J ae(f) which coincides with the
stmtification by the subsets Jm,n(r, P).

Proof
The proof goes along the same lines as the proof of Proposition 16. However one finds using

the ansatz in this ease a recursion relation

2k +3 k + 1 2
ak+2 = -k--alak+l + -k-[(k +2)k - (3a l - 2a2)]ak,+2 +2

which is solved at onee for 9 = 1,2,3, ... , hut scems to he very hard to he solved for general g.
Thcrcfore we eom pu tc as in the prcviolls proposi tion for {D} E Jm,n (r ,P)( r, P) wi th (m, n) E I g:

The formula. for tbe other 'Ui follows from Theorem 15.
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