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1. Introduction

In this paper we introduce a one-dimensional family of stratifications on the Jacobian of any
hyperelliptic curve and show how it appears naturally in different situations. Some stratifications of
Abelian varieties, in particular of Jacobians, have been used and studied in algebraic geometry, in
connection with linear systems of (special) divisors on curves. For example, let I" be a hyperelliptic
curve with hyperelliptic involution P + P? and let P be a Weierstrafl point on it. Then Gunning
(see [Gu]) considers for m = 0,...,¢ the subsets J,,(T', P) of the Jacobian of I', Jac(T'), defined by

Jn(T,P) = {{D} | D= i(P,- —P), PeT\{PLi#j=> P # zPJ—} ,

where {D} denotes the class of all divisors linearly equivalent to D, viewed as a point of Jac(T').
He shows that they define a stratification of the Jacobian of T'.

This stratification generalises in a natural way, specific to hyperelliptic Jacobians, to the case
where P is any point on the curve I'. If the point corresponding to P under the hyperelliptic
involution is denoted by P?, then we define for m and n positive, m +n < g = genus ('),

g-m-n
Jm,n(I“,P)z{{DHD: Z P,-+mP+nP"—gP,P.-EF\{P,P”}andi#jiP;#Pf}.

i=1

Remark that in the case P = P? considered by Gunning, one has J,(I', P) = Jy,—; (T, P) for
any ¢ £ m. In the opposite case P # P7 however, all J,, (T, P) are disjoint and we show that
they stratify Jac(I'), with 7+ 1 strata of codimension ¢, (in total Lﬂ%(y_ﬂl strata) and it is shown
how they relate. If the chosen point P € I' is replaced by P? then one obviously obtains the same
stratification, up to a translation; therefore the family of stratifications is essentially pa.rametrlscd

by ['/o, i.e., by P!,

It is easily deduced from [SW] that the stratification considered by Gunning arises in the con-
text of an infinite-dimensional Grassmannian, Gr, introduced by Sato (see [SS]). The Grassmannian
Gr can be defined as the set of all spaces of formal power series in one variable z (which should be
thought of as being large) which have an algebraic base of the form

{wo(2), w1(2),wqy(2),...},
where .
wi(z) = Z wijzj, Wiy, # 0 and s; < 8441,
j=—co

with ¢ = s; for ¢ sufficiently large. To such a plane W there is associated the {ordered) subset
Sw = {s0,%1,...,} of the integers, which has the property that s; = 7 for 7 sufficiently large. Each
such sequence defines in a natural way a (non-empty) subset Eg C Gr, defined as

L= {W €Gr|Sw =5}

These (non-intersecting) subsets can be shown to be the strata of a stratification of Gr (see [PS]). To
relate this stratification to Gunning’s stratification, the Krichever map is used. Roughly speaking
this map associates to a point in the Jacobian the family of all sections of its corresponding line
bundle, which are holomorphic except at the marked point P € T'. This family is identified with an
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element of Gr by using a trivialisation of the line bundle. The point is that although this element
of Gr depends on the trivialisation, the stratum it belongs to is independent of it, hence we may
use the Krichever map to relate both stratifications: we show that (different) strata are mapped
into (different) strata so that we may think of the stratifications considered by Gunning as being
induced by the natural stratification of Gr via the Krichever map.

The natural question arises whether the stratifications by the subsets Jp, (T, P) can for every
P € T be obtained in this way by an appropriate generalisation of the Krichever map. The answer
is affirmative and the generalised Krichever map we introduce, associates now to each point in
Jac(T) two points in Gr, i.e., a point in the product Gr X Gr, which is equiped with the product
stratification. In the special case that P = P? the map reduces to a diagonal map (i.e., both
points are the same) giving the ordinary Krichever map on each component. We also show that
the stratification on Gr X Gr can be weakened to a coarser stratification, which still induces the
family of stratifications. This coarser stratification shows up when considering the so-called K-P
hierarchy on the Grassmannian (see [SS], [SW] and [DJMK]).

This K-P hierarchy, in particular a distinguished vector field of it, determines a special family
of vector fields on Jac(T'), depending on the marked point P on I'. As is well-known from the
theory of integrable systems, every meromorphic function on Jac(I') admits families of Laurent
solutions describing the function on the integral curves of the vector field (see [AvM2]). Taking
one or several functions a decomposition of Jac(T') is given by fixing the way these solutions blow
up. This decomposition may be a stratification. We will show that the choice of the very special
vector field coming from the K-P hierarchy and a natural choice of functions coming from the
symmetric functions on the curve, gives for each choice of the marked point P on the curve, indeed
a stratification which coincides again with the stratification by the subset J,, .(T', P), thereby
providing us with a very explicit description of the former stratifications; in particular the leading
behaviour of the Laurent solutions to the differential equations which describe the vector field will
be computed explicitely by introducing a pair of tau functions which corresponds to the extended
Krichever map.

The text is organised as follows. In Section 2 some preliminaries about hyperelliptic curves and
their Jacobians are recalled and the stratifications are introduced. We give a detailed description of
them since they are fundamental for the whole paper. Section 3 deals with the Sato Grassmannian,
which is also recalled, together with its stratification. The Krichever map is explained and extended
as needed for our purposes, leading to the main result relating the two stratifications. In the end
the coarser stratification is discussed in the context of the K-P hierarchy. In the final Section 4,
we look at special vector fields on the Jacobian, associated to a point on the curve; the relation
between Laurent solutions to the vector field and stratifications of the Jacobian is explained and
related to the stratification in Section 2, relying heavily on some results obtained in Section 3.

All my thanks go to M. Adler, L. Haine and P. van Moerbeke for several useful discussions
on K-P theory, and for giving me access to some unpublished results, which were indispensible for
a clear understanding of the subject. The hospitality of Brandeis University and the Max-Planck
[nstitut fiir Mathematik is also greatly acknowledged.
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2. The algebraic description of the stratification

In this section we introduce a natural family of stratifications on the Jacobian of a hyperelliptic
curve, parametrised by a point on the curve. In the first paragraph we recall some basic results
about hyperelliptic curves and their Jacobians (see [GH] or [H]}). The stratification is introduced in
the second paragraph and its structure is described.

2.1. Preliminaries

Let T be a smooth curve of genus ¢ which is hyperelliptic, i.e., I' carries an involution o: ' —
T, Q— o(Q) = Q°, o = 14, the so-called hyperelliptic involution. This involution has 2¢ + 2 fixed
points, the Weierstraf points of T, which are also the branch points of any 2:1 cover m:T — P,
Such a cover gives rise to an equation y? = f(z) for (an affine part of) T; the degree of fis 29 + 1
or 2¢ + 2 according to whether or not oo € P! is the image of a WeierstraB point, i.e., according
to whether p~1(co) contains one point (with multiplicity two), or two points. These two points
correspond under o, which is given in terms of the coordinates z,y by (z,y) — (z,-y).

The group of divisors D = 3 ¢;Pi(P; € ') on I' is denoted by Div(T") and o extends

finite
linearly to Div(I') giving an involution D +— D?. There is associated to each meromorphic function

f € M(T) its divisor of zeroes minus its divisor of poles, denoted by (f); obviously the map
(-): M(T') — Div(I') is a homomorphism. In the same way (w) is defined for any meromorphic
differential and one has (fw) = (f) + (w). For example, let P € I' and let

deg [

v = f(z) = [] (= - =(B:))

i=1

be an equation for " such that z(P) = co. Then

deg f
W= Bi- deg,f(PJrPa)and (z) = Z (0 (1) \/f((}) (P + P°). (1)
i=1

=1

Also
29+1 2g+2

(dz) = ZB - 3P or (dz) = ZB —-2(P + P°), (2)
according to whether P = P? or P # P? (in that order).
We introduce the spaces L(D) and Q(D) for D € Div(T') as

L(D) = {f| f meromorphic function on T and (f) + D > 0},
(D) = {w | w meromorphic differential on " and (w) + D > 0}.

Their dimensions are related by the Riemann-Roch formula which states (for algebraic curves) that
for any D € Div(T’),

dim L(D) = dim (- D) — g + 1 + deg(D), (3)

the degree of a divisor being defined as deg(}_ ¢i P;) = Y ¢;. In particular, since every holomorphic
function on T is constant, the space 2 = Q(0) of holomorphic differentials has dimension g and by

(1) and (2) has in our case a base
dz zdz 97 'dz
fie sie iy, "

y ¥ Y



when y? = f(z) is an equation for ' as above. Remark that it follows from (3) and (4) that if
Pi(i=1,...,n < g) are such that i # j = F; # Py then

dim §) (Z P,-) =g-n. (5)
i=1
For their meromorphic analogues with poles at P and P? only we have

dimQkP+IP°)Y=g+k+1-1fork>0,1>0. (6)

To sce this in case P # P?, first remark that (1) and (2) imply that z'dz has a pole of order i + 2
at P and at P? (and no other poles), while z9%*dz/y has at these points poles of order i + 1. This
gives one differential form with a single pole at P and P? and for any n > 1 two differential forms
with a pole of order n at these points. Since the first set of forms is even with respect to ¢ and
the other set is odd they are all independent (and independent from the holomorphic differentials).
They are maximal independent, since having another independent form with poles only at P and
P? would result in having a meromorphic differential form with a single pole, which contradicts
the fact that the sumn of the residues of a differential form over all its singular points is always 0.
This leads to (6) in case P # P?, the proof for the case P = P? is very similar.

On the group Div(T') one introduces the notion of linear equivalenceby D ~; D' it D-D' = (f)
for some meromorphic function f on I and the class of D is written as {D}. The homomorphism
deg descends to a homomorphism
Div(T) .

~

y/4

deg;:

and its kernel, ker deg,, is called the Jacobian of T', Jac(I'). In the present case of hyperelliptic curves
there is a very explicit description of the linear equivalence relation as we state in the following
lemma.

Lemma 1.  Let ' be a hyperelliptic curve of genus g with involution o and let P € " fized. Then
1) Dy + D§ ~; Dy + D for any Dy, Dy € Div(T') of the same degree,
2) Y P~ Qi then Yl Pi=Y0_ Qior Pi= Pg for some i # 3,
8) if degD =0 then D ~{ 37_ (P: — P) for some P; € I

The notion of linear equivalence is natural from the basic relation between divisors and (holo-
morphic) line bundles on a smooth curve: if a divisor D has local defining functions ( f4)aer for
some cover (Uq)aer of the curve, then the transition functions of a line bundle [D] are given by
falfp on UsNUp, and it is a fundamental fact that the line bundle [D] is determined by the (linear)
equivalence class {D}; also every line bundle is the line bundle of a divisor. To a meromorphic
section @ of [D] there is associated its divisor () and there exists a section ¢ for which (¢) = D;
fixing such a section shows that L{D) is isomorphic to the vector space of holomorphic sections of
[D], in particular these spaces have the same dimension.

Let the degree of a line bundle be defined as the degree of its corresponding divisor and denote
for any d € Z the set of all line bundles of degree d by Pic?(I'). Then it follows that for any d € Z,
Pic*(T) is isomorphic to Jac(T') via {D} — [D + Dga] where Dy is any fixed divisor of degree d.
Except for d = 0 there is no canonical choice for Dy; if however — as in the present paper — the

curve has a marked point P then one is led to the natural choice Dy = dP, used exclusively in the
sequel.



2.2. The stratification

We now introduce a decomposition of Jac(I') with respect to an arbitrary fixed point P on the
(hyperelliptic) curve T'. Let Z, denote the set

I,={(mn)e INxN|0<m+n<Lyg}

which we order by (m,n) < (m',n') iff m < m' and n < n’. Then for (m,n) € I; we define a
subset Div,, ,(T, P) of Div(T’) by

g—m—n
Divy, (T, P) = { Pi+mP+nP’ —gP | P, eT\{P,P°}andi#j=> P # P;’};

i=1

the term gP is introduced here in order to make every element in Div,, o(T, P) of degree 0. We

denote
g g-‘ll

Divo(T, P) = | J | Pivenn(T, P).

n=0m=0

and show in the following lemma that x:ker deg — ker; restricts to a bijection m: Dive(T', P) —

Jac(T).

Lemma 2.
1) For any (m,n) € I, the restriction of m to Divy, (T, P} is injective.
2) If P # P?, then the subsets m(Divy, o(I', P)), (m,n) € I, are all disjoint.
8) If P = P?, then Divyp1 n(T, P) = Divey nqi(T, P) if m+n + 1 < g. In this case the g + 1
subsets w(Div,, o(T, P)), 0 < m < g are all disjoint.
4) m(Dive(T, P)) = Jac(T).

Proof

Suppose that P # P? and that we are given D € Divy, (T, P) and D’ € Divy (T, P), with
say m > k. Then canceling % terms P it follows that we are asked for a meromorphic function f on
I' with at most g poles P;, no two of which correspond under the hyperelliptic involution. Using (5)
and the Riemann-Roch formula (3) the function f must be constant, hence D = D’. This proves
1) and 2), and since the first part of 3} is obvious, also J).

To prove that w(Dive(I', P)) = Jac(T') we need to show that every divisor D of degree zero is
linear equivalent to a divisor inside one of the sets Divy, 4(T', P). By Lemma 1, D ~; 37, (P; - P),
for some points P; € T, but by the same lemma every occurence of Q + Q¢ can be replaced by
P 4+ P?, so that eventually it must belong to one of the sets Div,, (T, P). (]

We now prove that the sets Jm,n(I‘,P)dzeffr(Divm_n([‘,P)) (or Jm(F,P)défw(Divm'o(I‘, P)} in
case P = P7?) define a stratification of Jac(I'), meaning that they are disjoint differentiable mani-
folds, whose boundary is a finite union of lower-dimensional sets J, (T, P) (resp. J,(T, P)). To this
aim we first need to explain the differential, or even complex, structure of Jac(I'). It is one of the
oldest and most profound results in the theory of algebraic curves that Jac(T') has the structure of
a complex (algebraic) torus C9/A, where A is a lattice of maximal rank in €Y. In fact, it was first
defined as a complex torus and shown (by Abel) to correspond to the above definition. We sketch
the construction of the analytical object. Choose a basis A1,...,Ay, B1,..., By for H1(T', Z) such
that the intersection indices between the cycles obey A; - A; = B; - B; = 0 and A; - B; = §;;. Let
{w1,++,wg} be the normalised basis of holomorphic differentials for which IA.- wj = 6i;. Then the

2g columns of the matrix (/; Z), where Z;; = [ w;, define a lattice A in €¢, which turns out to be
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of maximal rank. The quotient C?/A is a complex torus, which is up to isomorphism independent
from the choice of basis for H,(I',Z). To link this torus with Jac(T") defined above, one introduces
the Abel map A:Jac(T') — C9/A by

A{;(P.-—Q.-)} - (qupmzf:wg) (mod A)

and proves that it is a well-defined isomorphism (Abel’s Theorem).

The subsets Jp,, (T, P) and J,,(T, P) introduced above can thus be seen as subsets of a complex
torus under the Abel isomorphism and we will identify them with their image, writing Jy, (T, P)
for A(Jm n(T, P)) since no confusion can arise. We show that they are submanifolds of the torus

and fit together such that they define a stratification of it. We give separate theorems for the cases
P# P%and P=P°.

Theorem 3  If P # P? then Jac(T') is stratified by the (g — m — n)-dimensional submanifolds
Jmn(T, P), whose closure is given by the (finile) union

Imn(C, P) = U J (T, P). (N
(ks’)?_('mln)

Each stratum J,, (T, P) has two boundary components which are translates of each other by

pP° P°
€= A{P° - P} = (] wl,...,/ wg) (mod A).
P P

More generally, all i + 1 strata of dimension g — t are translates of each other by n€ for some
n € {1,...,i}. The closures of the (g—1)-dimensional strata Jy o(T', P) and Jo 1 (T, P) are translates
of the theta divisor and are tangent along their intersection J;1(T, P).

Proof

We first show that each J,, »(I', P) is a submanifold of Jac(I') of dimension ¢ — m ~ n. Let
d =g —m—n > 0 (otherwise there is nothing to prove) and consider the d-fold symmetric product
of I' with itself, denoted ®9I'. This space is known to have a (complex) differential structure,
with coordinates which derive from coordinates on I'. Namely, on a neighborhood of a generic
point {Pi,..., Py} € @I for which all P; are distinct, the coordinates z; centered at P; serve as
coordinates; when two or more of the F; coincide however, their corresponding coordinates need
to be replaced by the symmetric functions of these coordinates, for example, if P; = P, then take
21 + z2 and z,2; instead of 2, and z;. It is clear that as a subset of the torus, J,, »(T', P) is given
by the image of the (Abel map-like) map A, defined by

d P; d I
Ag(Pr,y...,Ps) = né+ (Zj wl,...,Z/ ) (mod A),
i=17P i=1 7P

on the open set Uy C ®IT for which all P; ¢ {P,P°}and i # j = P; # P7. Therefore it
suffices to show that the Jacobian of this map is nowhere singular on U,. If the holomorphic
differentials w; are written as f(z;)dz; around Pj, then the Jacobian matrix of A, has at the
generic point (Py,..., P;) entries f;(P;) and its rank is maximal since otherwise there would be at
least a (g — r + 1)-dimensional family of holomorphic differentials vanishing at the r points P; in
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contradiction with (5) and the domain of A,. If some of the points P; coincide we arrive at the
same conclusion (including multiplicities): if, say, Py occurs n times then the the i-th column of
the matrix is to be replaced by the (¢ — 1)-th derivative of f;, evaluated at P;; then the rank being
not maximal would mean that there is a (g — r + 1)-dimensional family of holomorphic differentials
vanishing n times at Py and vanishing simply at the other points, again in contradiction with (5).

We now compute the boundary J,, (T, P) of the strata Jy, o(T, P). Since Jac(T') is given
under the Abel isomorphism A the quotient topology coming from ®9T', it is sufficient to compute
the closure of each subset J,, »(T, P) for this topology (recall that we identified Jm (I", P) with
its image A(Jm (T, P))). Let us define the set

g—m-—n
Km,n(F,P)—_— { Z Pi+mP+nP? _gPI P e F} ,

i=1

which is compact since it is just ®4~™""I'. By continuity of =, its image 7(K (T, P)) is also
compact, hence closed; obviously it is contained in J,, (T, P) hence j,,,',,(l“, PY=m(Kp (T, P));
moreover
(Kma(T,P)) = | Jea(T, P).
(k,2(m,n)

which proves (7).

Thus the different strata fit together as dictated by the partial order < on Zg: if we represent
the different spaces J,, (I, P) by J,, u, put those of equal dimension on the same horizontal line
and depict inclusions by arrows, then we find the following.

j0,0

Jy.O Jy—l.l Jl.y-l JO,.!J

Remark that the intersection of two spaces J,, »(T, P) and Ji (T, P) is given by the set J, (T, P)
where (s,1) is the supremum of {(k,1), > (m,n)} (if it exists, otherwise the intersection is empty).
Therefore it is read off immediately from the diagram as follows: if say m < k, then draw on the
diagram a diagonal line (of slope 1) through J_m,,, and another one (of slope —1) through jk_l; then
their intersection point (if any) corresponds to the intersection of these lines.

There is exactly one big stratum (i.e., a stratum of maximal dimension g) namely Joo(T, P), and
its boundary consists of two strata of codimension one, namely J; o(T, P) and Jo (T, P), and so
on. Since

DiVm,n(F, P) = Divm—],ﬂ+1(r1 P) +P-P

for m > 1,n > 0 the sets J; o(T, P) and Jo 1 (T, P) are translates of each other by € = A{P° — P},
namely fo‘,(r, P) = j]yo(F,P) + €, and it can be shown that they are translates of the theta
divisor (see below). In general each stratum J,, ,(T', P) (except the zero-dimensional ones) has
two boundary components, Jo, 41 (T, P) and Jmma1(T, P), which are obviously also translates of
each other by & Therefore the sets J_,,,,,;(F,P) of the same dimension are all translates of each



other by some integer multiple of &, for example for the points Jg0(T, P) and Jp 4T, P) it follows
immediately that Jp o(T, P) = J, (T, P) + g€.

In [Gu] (Chapter 4, p. 143) explicit formulas are found for calculating the intersection of two
translates of the theta divisor. These show that in general the intersection of two translates of
the Riemann theta divisor is reducible and has two components. Since in our case J; o(T', P) N
Joa (T, Py = Jy1(T, P) is irreducible, these components coincide, hence J; o(T', P) and Jo (T, P)
are tangent along Jy 1(T, P). 1

The corresponding theorem for P = P7 is stated as follows and proven in the same way.

Theorem 4  If P = P° then Jac(T") is stratified by the (g — m)-dimensional subsets J,, (T, P),
whose closure is given by the (finite) union

Tn(T, Py = | Ju(T, P).
k>m

and each stratum J,,(T, P) has just one boundary component. Here the stratification is simply
depicted as - _
Jg—-*Jg_l —PJ_Q—F"'—>J1—>JQ

Jo = Jac(T"), Ji is a translate of the theta divisor and J, is the origin in Jac(T).

In Theorems 3 and 4 we claimed that J; o(T, P) and J; were translates of the theta divisor; this is
the divisor of the classical Riemann theta function for Jac(T'), which is the entire function on €

defined as
g(z) = E ewi(l,Al)e%ri(l,z) (8)
teds
when the lattice A of Jac(I") ® €¢/A is written as (/;4). Remark that although 6 is only defined

on €9, the theta divisor is well-defined as its zero locus on Jac(I'). Riemann showed (see [M]) that
there is a constant A € €? such that

-1
8(Z)=0<¢= IP,cl:Z=A {QX:(P; - P)} ~ A (mod A). (9)

=1

The important condition in the right hand side is that the sum runs over ¢ — | points only. Formula
(9) leads at once to the cited claims.



3. The Sato Grassmannian

We show in this section how the stratification from the preceeding section is induced by a
natural stratification of the Sato Grassmannian via an extension of the Krichever map. In the first
paragraph we recall from [SS], [SW] and [PS] the Sato Grassmannian, its stratification and the
Krichever map, which relates the Grassmannian to algebraic curves. In the second paragraph, we
introduce an extension of this map in the case of hyperelliptic curves and relate both stratifications.
A coarser stratification of the Grassmannian is introduced in the last paragraph; it appears in a
natural way when the K-P hierarchy is introduced on the Grassmannian.

3.1. The Grassmannian and its stratification

In this paragraph I' denotes any smooth curve of genus g (i.e., I' needs not to be hyperelliptic),
with a marked point P on it. We also fix a small coordinate neighborhood (8,4} centered at P, for
which s(i/) is the unit disk in €. Then the boundary i/ is diffeomorphic to a circle and L*(9U,C)
is a Hilbert space, with a base

{..,z27%,2701,2,2%, ..},

. The Hilbert space decomposes as L*(8lU,C) = Hy & H-, where

-1

where 2 = ¢
He ={1,2,2%,.. Yand H_ = {271,272,.. .},

(the closure is here the L%-closure). Let Gr denote the set of all closed subspaces W C L3(dl,€)
which have an algebraic base of the form {fi}ien, with

Z cx2” 0 # ¢y, €0, 8i < 841, 8; = 1 for i sufficiently large. (10)

i=—x

fi

We call Gr the (Sato) Grassmannian of L*(dU,C); it is a connected! Banach manifold, modelled
on the Hilbert space of all Hilbert-Schmidt operators Hy — H_. For f; as in (10} we define its
order to be s; and we associate to W the (ordered) subset Sw = {so,$1,$2,...}. We call such a
subset of Z with s; < s;41 and 38; = ¢ for 7 sufficiently large, a sequence. The set of all points in Gr
which have as sequence § will be denoted by g,

Ls={WeGr|Sw=>5}

We define a partial order on sequences by .§ < 5’ if the entries s; and s} of S and S’ satisfy s; > 8}

for all + € IN, and define the length I(5) of a sequence § as the finite sum I(8) = Xisoli — s )
Then § < 5" obviously implies /(S) < 1(S5'). Denoting by Us the set

Us = {W € Gr | proj (W —+{z'|i€e 5'}) is an isomorphism} ,
the stratification of Gr is described as follows (see [PS]).

Theorem 5  For any sequence S, the set g 1s a closed subspace of Us and the collection of all
Us forms an open cover of ('r. The big stratum is given by En and all £ are smooth manifolds
of codimension I(S). The closure in Gr of each Ts is the union of the strata S for which §' > S.

t by the last condition in (10) we singeled out the connected component containing H. of what
[PS] and [SS] call the Grassmannian
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Sequences are in bijection with partitions. By a partition v we mean a finite, non-increasing
sequence of positive integers vy > 1y > - > v, 2 0. The bijection is simply given by v; = 1 - s;
and we see that I(§) = ¥ [_, vi. The sequence corresponding to a partition v will be denoted by
Sy. Also we define I(p) = {(S,)and p < v iff 5§, < 5,.

Partitions in turn are in bijection with Young diagrams, by which they are best visualised; a
Young diagram is a finite (left aligned) arrangement of squares such that each row has at most as
many squares as the preceeding row and the Young diagram correspondingtovy > vy 2 --- 2 v, 20
is given by drawing v; squares in the i-th row. Then the number of squares in a Young diagram
(called its weight) equals the length of its partition. For example, if v is the partition3>22>22> 0
then S, = {-3,-1,0,3,4,...} and its Young diagram is drawn as follows.

We finally recall the Krichever map. The curve T, the point P and a local parameter s around
P being fixed, there is associated to a line bundle £ € Pic?(T') and a trivialisation ¢ of £ (say over
a neighborhood V of the closure of the coordinate neighborhood U of s), a point W(L,¢) in Gr
as follows. Using ¢ we may think of sections of £ over V as functions on V, in particular such a
section determines an element of L2(9,C). Then W (L, ¢) is defined as the closure of the set of all
elements of L2(0U,C) obtained in this way from meromorphic sections of £ which are holomorphic
away from P. Then the pole which the section has at P coincides with the order of the section at P
and in particular is independent of the trivialisation ¢. It follows that although W(L,$) depends
on ¢, the stratum of Gr it belongs to, is independent of ¢. Therefore the Krichever map induces a
decomposition (possibly a stratification) on Pic?(T), hence also of Jac(I'). We will generalise the
Krichever map in the case that T is hyperelliptic to obtain a map which induces the stratifications
on Jac(I') which we considered in the previous section.

3.2. Relating the stratifications

We now return to the case for which I' is hyperelliptic, s a local parameter on a small neigh-
borhood ¥ of a fixed point P; the Grassmannian built using these data is just denoted by Gr. For
a point {D} € Jac(T), let L4 be the corresponding element in Pic?(T") under our identification

Jac(f‘)sl—gj:] Pic/(T"), i.e., L4+ = [D+ gP)and let L_ = L4 ® [P — P?]; also choose a trivialisation
¢4 of L over i and choose a trivialisation of L_ as ¢ = ¢4 sif P # P? and ¢_ = ¢, otherwise.

not

Then we obtain two points Wy (D)W (L, ¢4) and W_(D)S'W(L_,$_), each belonging to a
stratum which is independent of ¢5. Thus, I', P and (s,U) being fixed, there is associated to a
point in Jac(T') and a trivialisation of its line bundle a point in Gr X Gr; if P is a Weierstra point,
then the image of this map is contained in the diagonal of Gr X Gr and we get the Krichever map;
therefore we call our map an exstension of the Krichever map. The two sequences of these strata will
be denoted by S4 (D) and S_(D), since they depend on D only. We will show that the stratification
of Jac(T') with respect to P, as defined in Section 2 is induced from the product stratification on
Gr X Gr via this map.
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Proposition 8  [f deg D = 0 then the sequences S (D) and S_(D) are computed as follows:

S+(DY={n e Z|dim L(D + (g + »)P) > dim L(D + (g + n — 1)P)},
S (DYy={neZ|dmL(D+(g+n+1)P-P°)>dimL(D+(g+n)P - P°)}.

Proof

Since deg D = 0, {D} € Ji (T, P) for some k,{ > 0, k+ [ < g. By Lemma 1, {D} is written
as {Dgy — gP} for a unique Dy = Y i7" 7" P+ mP + nP° of degree g, with P; € T'\ {P, P7},
no two P; corresponding under o. Let ¢ be a holomorphic section of [D,] for which (¢) = D,.
Then the map f — ¢f determines an isomorphism between the meromorphic functions on T’ with
(simple) poles on the points of Dy and an arbitrary pole at P on the one hand, and meromorphic
sections of [D,], holomorphic away from P at the other hand. Consequently we will find a function
in Wi (D) = W([D + gP),¢) of order n exactly when there exists a meromorphic function with
poles on D, and a pole of order n at P, i.e.,

n € S¢(D)iff dim L(Dy + nP) > dim L(Dg+ (n — 1)P), (11)

which shows that S4(D) can be read off from the dimensions dim L(Dg + nP). The formula for
S_{D) follows immediately from S_(D)= §,(D + P - P?). 1

The following lemma will give us neat formulas to compute the sequences S4.(D) and S-(D).

Lemma 7.  Suppose there are given n < g points Py,..., P, € T\ {P,P%} such thati # j =
P # P]. If P # P°, let D be a divisor of the form D = i Pi+ kP +1P° (k€ Z) Then
dim L(D}) is given by

m = g o7 “

If alternatively P = P°, then dim L(D) is given for any divisor of the form D = Y0_ | P; + kP
(k€ Z) by
dim L(D) = max{g—n—-k-1,0}+n+k+1~-g fork<g,
max{g - n—[k/2],0}+n+k+1—-g for k> 0.
Proof
We first consider the case P # P7. Let D = E:;l P; + kP + IP°? as above and suppose that
k < 0. Then by (6), dim Q(—kP) = g— k— 1. If | is non-negative, then the divisor ) P;+ 1P is of

the form E:-':]" Qi where i # j = Q; # QF, which amounts to n+/ linearly independent conditions.
If I is negative then by (6), dim Q(—kP —IP?) = g—k—1—1 and there are n linearly independent
conditions coming from the points P; (i = 1,...,n). It follows as in (5) that in both cases there are
g—n—Fk—1-1independent differentials in Q(~D) as long as this number is positive, otherwise
there are no such differentials. By Riemann-Roch,

dim L(D)=dimQ(-D)+n+k+1+1-g,
=max{g-n—k-1-1,0+n+k+I+1-g,

for k < 0. The case I < 0 is deduced from the above case by replacing D by D°.
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It remains to prove the case k,{ > 0. Then we look for holomorphic differentials with zeroes at
n general points, with k zeroes at P and [ zeroes at P?. These are n 4+ k& + ! conditions, but since
min{k,!} of them are the same, we arrive at n + k + { — min{k,{} = n + max{k,!} independent
conditions. It follows from (5) that we end up with g—n—max{k, [} differentials, as long this number
is positive, otherwise there are no such differentials. Using Riemann-Roch again, we conclude

dim L(D) = max{g — n — max{k,{},0} +n+k+i+1—g

for k,1 > 0. This completes the proof in case P # P°.

Suppose now P = P’ and let D = Y.._, Pi + kP. If k < 0 then it follows from (6) that
dim Q(~kP) = g — k — 1. The n points P; impose n independent conditions on these differentials,
giving dim Q(— 0., P — kP) = max{g — n — k — 1,0}. Using Riemann-Roch we find

dimL(D)=max{g~-n-k-1,0}+n+k+1-g,

for k < 0. If k > 0 then there are g — [k/2] holomorphic differentials in Q(~kP) (as long as this
number is positive), since in this case all the holomorphic differentials vanish to even order at P, as
is seen from (1), (2) and (4). Therefore the dimension of Q(—D) is given by max{g — [k/2] — »n, 0}
and L(D) is computed from the Riemann-Roch theorem as

dim L(D) = max{g — [k/2] - n,0} +n+k+1—g

for k> 0. 1

We combine Proposition 6 with the previous lemma to compute the sequences S4(D) and
S_(D) and their Young diagrams. The basic relation between the stratifications of Jac(T') and
Gr x Gr will follow immediately from it.

Theorem 8  Suppose P # P7 and {D} € J,,, .(I', P). Then Sy(D) and S_(D) are sequences
which depend only on the stratum (i.e., on m and n) and are given by

SDy={-m1-m,2-m,....n—mn+1,n+2,n+3,...},
S (D)y={-m-1,-m,l-m,...;on—m—-2,n,n+1,...}.
The corresponding Young diagrams are rectangles with m columns and n + 1 rows for S4(D) and

m + 1 columns and n rows for S_(D), and their weights are simply given by 1(S4+(D)) = m(n+1)
and I{(S_(D)) = n(m + 1). They look as follows.

m
m+ 1

n+41 n
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Secondly, suppose that P = P° and {D} € J,,(T, P). Then S;(D) = S_(D) is a sequence
which depends only on the stratum (i.e., on m) and is given by

S¢(Dy={-m,2-m4d4—-m,....m=2mm+1,m+2,...}

The corresponding Young diagram is a rotated stairs of height m, t.e., the first row has m squares
and every other row has one square less then the preceeding row, hence it has weight [(S(D)) =
ﬂ—”—;ﬂl and is depicted as follows.

m

m

Proof
Suppose at first that P # P, For D € Div,, (T, P) let Dy, = D + gP, then by Lemma 7,

dim L(Dg 4+ kP) = max{min{k + m,n},0} + 1 + k,

if k +m > 0, otherwise this dimension is zero. Since S, (D) = {k | dim L(D, + kP) > dim L{D, +
(k= 1)P)} we see that

S¢(Dy={-ml—-m2-m,...,n-mn+1,n+2,n+3,...}.

Also, since S_(D) = S4(D + P — P?) and since D + P — P’ € Divyyq n—1(T, P) if n > 1, the
formula for S_(D) is found in this case by substituting m + 1 for m and n - 1 for 2 in the formula
for S4(D). The proposed formula above for S_(D) gives for n = 0, when properly interpreted,
S5_(D) = IN. To see its validity, remark that in this case

g—m g
D,+P—P° = ZE+mP+P—P“~;ZQ,~

i=1 i=1

for unique Q;, all different from P, P’ and no two of which correspond under the hyperelliptic

involution (using Lemma 1 again), hence S_(D) = IN. The proof for P = P? goes exactly along
the same lines. ]

This theorem leads immediately to the main result of this section.

Theorem 9  The natural stratification of Jac(T') given by the subsets Jp, (T, P), (m,n) € I,, is
induced by the (product) stratification on Grx Gr given by the sets ¥g X Y (5,T sequences) via
the “map”

F:lac(T'}) = Grx Gr

{D} = (Wi(D), W_(D)).
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Proof

From the previous theorem it follows that the strata Jy, (T, P) are mapped into strata of the
stratified space Gr x Gr. Also it follows from this theorem that no two different strata Jo, (I, P)
and Jy, (T, P) are mapped in the same stratum. To prove this it suffices to show that the
numbers (m,n) € Z, can be reconstructed from Si(D) and S_{D) (or equivalently from their
Young diagrams). If both Young diagrams are empty then (m,n) = (0,0). Otherwise m and n are
found by counting rows and columns in one of the non-empty diagrams (remark that for m = 0
or n = 0 it is essential to have both diagrams). In the case P = P? both Young diagrams are
obviously the same (since Wi (D) = W_(D)) and the theorem can be simplified using only the
subsets J,,(T, P) and the planes W, (D) € Gr. i

3.3. The K-P hierarchy on Gr and another stratification

There is another stratification on Gr, (and on Gr x Gr) coarser than the previous one, which
shows up when a certain natural vector field on Gr is considered. Its strata consist of those points
in Gr for which the associated Young diagrams have a given weight. To see that it is also a
stratification, remark that each stratum is a finite union of the strata of the original stratification,
and the boundary of a stratum now consists of those strata whose Young diagram has more weight
than the Young diagram of the given stratum; we call it the coarser stratification (on Gr as well as
on Gr x Gr where again the product stratification is considered). The following proposition follows
at once from Theorem 8.

Proposition 10  The natural stratification of Jac(I') given by the subsets Jm (T, P) is also
induced by the coarser stratification on Gr x Gr via our extension of Krichever’s map.

Proof

Clearly we only need to prove that no two strata are mapped in the same stratum. If P = P,
then the stratum which corresponds to J,,(T', P) has weight ﬂ%ﬂl, which is different for all
m € IN. If P # P?, then we need to reconstruct m and n from w; = m(n+ 1) and wy = n{m+1).
However, given w; and w; there are only two solutions to this, namely (m,n) and (-n—1,-m—1),

only one of which is positive. I

The group €™ acts on Gr in an obvious way by W s e~%*" W, (¢,, € C), and its infinitimal
action determines an infinite number of commuting vector fields 8/8t,, on Gr, called the K-P
hierarchy (this hierarchy can be written down in many equivalent forms, see [DMKS], [SS] and

[SW]). The point e PRI L W is denoted by W*, in particular W = WO, It leads to the so-called
tau function, also introduced by Sato (see [SS] and [SW]), which is defined for a generic point
W € Gr by

a(W") _ofe” Lo i W)
;:-;1 tjzd O’(W) e"’ E:.x iz U(W) ’

Here (W) is a canonical global section of the dual Det* of the determinant bundle Det over Gr,
which can be defined — with some care — as one defines the determinant bundle over a finite
dimensional manifold. For a point for which o(W) = 0, this section is replaced by another (non-
vanishing) section of Det*. It is a fundamental fact that in the case W = W(L, ¢) as in the previous
paragraph, one has W*(L, ¢) = W(L ® (i, ¢:) where (, is the line bundle defined by the transition

function ezi=1 97" on the overlap of W = I'\ {P} and U; moreover, t — (; defines a surjective
homomorphism (see [Sh]). It follows that C* acts on the set Pic?(I') by tensoring with (;, hence

Tw(t) = -5
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the vector fields 8/8t,, give linear vector fields on any Jacobian Jac(I') under our identification with
Pic?(T) by {D} & [D + ¢P].

We apply this to our case in which T' is hyperelliptic, and we concentrate on the vector field
0/dt;. As before, s is a local parameter around P € I'. Consider the inclusion

ip: T = Jac(T):Q - {Q — P}.
Then 3/0t, as a vector field on Jac(I') has the following property.

Proposition 11 The first K-P vector field 0/0t;, considered as a vector field on Jac(T), is
tangent to the curve 1p(T") at the origin of Jac(T").

Proof
Let t = (%1,0,0,...) with ¢; small. The line bundle in Pic(T") corresponding to the origin of
Jac(T) is £ = [gP], with transition functions gyw = 9 (W =T\ {P}), hence £; = [¢P] ® (; has
transition functions
Guw = s exp(=t1/s) = 7 (s — t1) + O(t}),

and since t; is small, the divisor corresponding to it (up to O(t?)) is (g — 1)P + P,,, where P,
is the point in & for which s = ¢;. As a point in the Jacobian this is the point {F;, — P} on the
embedded curve 1p(T"). Therefore, around P, :1p(T') coincides with the integral curve (which is just
a straight line in the torus) of /3¢, at least to first order, hence they are tangent. The components
of this vector in the direction of the holomorphic differentials z*dz/y, (k = 0,...,g — 1) are easily
computed; take for example P = P° then z = 572, y = s7297! 4 (O(s7%9) hence,

Py .k 2
! 1
lim 1 ' eldz = —2lim —/ 2=k 4 O(s))ds = =264 5-1. (12)
0

6 —0 1y P Y s—0 8

Of interest to us is also how the tau Tunction, associated to W € Gr, vanishes in the t;-direction.
This is given by the following proposition, due to [SW].

Proposition 12 For any W € Gr,
Tw(t1,0,0,...) =t} + O,

where ¢ # 0 and | is the codimension of the stratum of Gr containing W, i.e., it is the weight I(Sw)
of the Young diagram of W.

Having associated two points W, (D) and W_(D) to a point {D}, we have also two corre-
sponding tau functions Ty, (p) and Tw_(p). They relate to the theta function as follows.

Theorem 13  Let A be the g X co-matriz with entries A;; defined by ezpanding the holomorphic

differential forms w; in terms of s (around P), w; = 172, Aijs7~'ds. Then for any divisor D of
degree 0,

rw,(0)(8) = exp(Q()0 (& - At - A(D))
rw_(o)(t) = exp(Q(1))6 (& + & - At~ A(D))

where Q) is a quadratic form int which is independent of t,.
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Proof
The proof is essentially due to Krichever (see [K]), who shows that if £ is a line bundle of
degree g, then

Twic,¢)(t) = exp(Q(t))8(At + Z(L)),

for some vector Z which depends “linear” on L in the sense that
Z(L ® D)) = Z(L) + A(D), (13)

for any divisor D of degree 0 (see also [Sh]). We determine Z. By the preceeding proposition
and Theorem 8, rw, (p)(0) = 0iff I(S4(D)) # 0iff {D} ¢ Joo(T, P). At the other hand, by (9)
(Riemann’s theorem), 6(Z) vanishes for the points A(D) — A for which A(D) = {D} ¢ Joo(T, P).

Using (13), Z(L) = A(D)— A for all D of degree 0, leading to the first formula. The second formula
follows at once form the first one. 1
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4. The master systems

4.1. The master systems

Consider for a fixed hyperelliptic curve I' (of genus ¢), P € I' and s a local parameter around
P the map

¢p:T - Jac(T):Q — {Q - P}.

Then dép (-0%)3=0 is a tangent vector at the origin of Jac(T'), tangent to the embedded curve
#p(T), and we have seen that it determines the unique holomorphic vector field on this torus,
which coincides with the first K-P vector field, under the identification of Jac(T') with Pic?(T),
given by {D} « [D + gP}]. Natural coordinates can be picked for (an affine part of) Jac(T) in
which the differential equations describing the vector field take a nice form. This was done by
Mumford in case P is a Weiersta point on I' (see [M]), and by us in the opposite case (see [V]).
The result can be written in a compact form as a so-called Lax pair

aewa a=(0d ) m-(0a) 19

where
g

g g
u(zx) = 9 + Zu,-z-"_', v(z) = Z vz w(z) = Z w;zdt
i=1 i=1 i
The sum in w(z) starts from —1 if P is a WeierstraB point and from —2 in the other case; in any
case w{z) is taken monic. As for the entry b in B, it is given by

b=z - 2u,, or b=m2—2ulz+2uf—ug+wo,

again according to whether P is, or is not, a WeierstraB point of I'. In [V] we called the vector field
(14) the odd master system in case P = P° and the even master system otherwise.

The coefficients of u(z), v(z) and w(z) are meromorphic functions on Jac(I'), which serve
as (a complete set of) coordinates for an affine part of Jac(T'); for example the polynomial u(z)
associated to a generic! point {D} = {7, i — gP} € Jac(D), is just u(z) = [[(z — 2(P;)),
hence its coefficients are symmetric functions on the curve; also v(z) is the unique polynomial of
degree g — 1 which records the y-values of the points P;, i.e., v(z(F;)) = y(P) fori=1,...,g. It
follows that f(z) — v*(z) is divisible by u{z) and w(z) is by definition the quotient. Remark that
in particular an equation for the curve I is given by

vt = f(z) = u(z)w(z) + v¥(z) (15)

and the coefficients of u(z)w(z) + v*(z) are constants. Also the points P and P are points at
infinity with respect to this equation. It is easy to deduce from this that the vector field (14)
coincides with the vector field given by dép (%)Iﬂﬂ’ hence with the first K-P vector field, as we
show now.

Proposition 14  The vector field {14) which describes the master systems coincides with the first
K-P vector field 3/, .

! generic means here that the point lies in Jo o(T, P)
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Proof
Take a generic divisor Py + -+ Py, P; = (z;,¥;) and let u(z), v(z) and w(z) be its associated
polynomials. Using (14),

I du 1 de;
=t = H 0 =4 e -2
I#i
hence 7 g k
Z I dZi — _2z_zlii_t__ = —26k,9_]dt‘
Ty, pot H#‘.(z; - Ij)

It follows that the vector field vanishes in the direction of dz/y,...,z9"%dz/y and takes the value
-2 for z9~1dz [y exactly as in (12). ‘ |

4.2. The Laurent solutions for the master systems

The differential equations describing a vector field such as (14) are known to posses families of
Laurent solutions (see [AvM3]). We explain this by recalling the argument. Let Z be any point on
Jac(I') and let us denote for simplicity the functions u;, v; and w; by 21,...,2, (m =3g+lorm =
3g + 2). If all functions z; are holomorphic in this point then the solution z(t) is obviously given
by power series; therefore suppose that one or more functions z; blow up at Z, say the blow-up
locus of zy contains Z. We write the divisor of z; as

k

{
(1) = z n; D — E m; Dj, (mi,n; € IN\ {0}),

=1 i=1

where all D; and D} are different and irreducible. Then Z belongs to one or more D}, but may
belong as well to some of the D;. In any case, if we pick for each divisor a local defining function
around Z, say f; for D; and g; for D! (if Z does not belong to some divisor then the local defining
function may be taken as the constant function 1), then z is written around Z as

ny png Ny
N AR
g LTI

21 = f
netteg

We may take linear coordinates z, = t,zq,...,2, for the torus, and think of the local defining
functions as being expressed in terms of these. If the t-axis is not contained in any of the divisors
D; or D] then all these functions can (again up to a non-vanishing holomorphic function) be written
as a (Weierstrass) polynomial in ¢ (by the Weierstrass Preparation Theorem) and we see that the
zero or pole z; has in Z depends on the components of the divisor of z; to which Z belongs but
also on the singularity these divisors have in Z (since then the first few terms in the series vanish)
and on the contact the vector field d/dt has with these divisors (for the same reason). Proceeding
in this way for all functions z; we find a Laurent solution to the differential equations, which starts
from Z. The case in which the t-axis is contained in the divisor of one of the functions corresponds
to the exceptional case that both the torus is reducible and one of the functions blows up on a
subtorus, a case which will not be encountered here.

The Laurent series organise themselves naturally in families as follows: for every z;, fix an
intersection of some divisors (contained in the divisor of poles of (2;)), fix an order of singularity
and an order of tangency of the vector field. On this set all z; are written as Laurent series
depending on a number of free parameters, equal to the dimension of this set (corresponding to the
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starting point of the series which can be chosen in it) and in a dense subset the order of pole each
expansion experiences is fixed. The pole may however become less severe in an analytic subset,
obtained from the intersection with one of the divisors on which z; has a zero; in such a case the
leading coefficient of the Laurent series must be (dependend on) a free parameter, so that it can in
particular take the value 0. The different sets obtained in this way do not give a stratification of
the torus in general; indeed, if, for example, z; and z; both have a pole on some smooth divisor and
the intersection of these divisors is singular, then this singularity will not be seen by the Laurent
series.

Finding all Laurent solutions in a direct way is in general a hard problem. At first it is not clear
when looking at the differential equations where to start with the solution. For a given choice one
needs to solve a non-linear system of algebraic equations for the leading term (which may be very
difficult, especially in the present casec where the number of variables is indefinite; here this number
is 3¢ + 1 or 3g + 2); the presence of free parameters (giving information about the dimension of the
corresponding subset) can in favorable cases be detected by computing the eigenvalues of a matrix,
depending on these leading terms, but this is again very difficult when the number of variables,
hence the size of the matrix, is indefinite. One also has to show convergence of all Laurent solutions
and see how the different sets they correspond to are related (see [AvM3]).

Our method to find to Laurent solutions for the master systems does not use this scheme.
Instead we combine Theorem 12 with the following theorem which expresses the symmetric func-
tions u; in terms of the Riemann theta function. The result is most easily expressed in terms
of alternative symmetric functions U; (on the curve, given by (15)), defined for a generic point

{D}={>1, Pi—-gP} e Jac(l), as

Remark that u; is a weight homogeneous polynomial in Uy,...,U; when Uy is given weight k. We
also introduce the Schur polynomials pi(z), = = (z1,22,...) defined by

o (S5 me') = S miore
i=1 =0

In order to simplify the notation we will abbreviate
(2 10 10
TA\O 208,30t

Theorem 15 If P = P? then the symmeltric functions U; are ezpressed in terms of the Riemann
theta function by

2i=-1 ;
UP = ci= Y s pi(D)1og XA~ AD)), (i €C). (16)
j=0 T TTd

In particular, since the Schur polynomial p;(z) has degree j in xy, the Laurent ezpansion in ty for
U; (and hence also for u;) will have a leading behaviour which is not worse than t7**.
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Alternatively, if P # P then the symmetric functions U; are ezpressed in terms of the Riemann
theta function by

=ci— Z o pJ(B)(logB)(A A(D)) - Bti i(=8)(log 8)(A — A(D) + &), (17)

s0 that in this case any Laurent ezpansion in 1y for U; (and hence also for u,) will have a leading
behaviour which is not worse than t*.

Proof

The formulas (16) and (17) generalise analogous formulas that have been obtained by several
methods for small n (see [D], [MvM]); our proof is a residue calculation as in [D].

The fundamental formula used here is that, if Z = A(P, 4+ -+ Py — gP) with P, +--- + P,
a generic divisor on I', then

AQ-P)-—Z+A)=0iff Q € {P1,..., Py},

an easy consequence of (9) (Riemann’s Theorem). We start with the case P = P?. Then it follows
from this formula that UP is given by

UP = ci ~ Resqapz*(Q)d1og 8(A(Q ~ P) — A(D) + &),

~ Resgepz*(Q) iw,(Q) (a%log a) (A(Q — P)- A(D) + 3) , (18)
i=1

for some ¢; € C. As before, we expand w; and the components A; of the Abel map for () close to
P, say 2(Q) = s~% in terms of s,

oo o0
wi(@) =) AisiTlds  A(Q) =) sAysids.
'—1 ‘_1 J
i= =
We use Taylor’s Theorem,

F(Z+ k) =exp (Zh, ) F(2), (h small),
for

F= -é%—(logﬁ), 7= E—A(D), E:A(Q - P)., () near P.
{

This gives

(58?, ]oge) (A(Q — P)— A(D) + 5.) = exp i (Xg: %Aijaiz‘_) siJ (é%logﬂ) (5 - A(D)) ;




We have used that 37, A"J'Ei_.- = 5%, which follows from z = At + ¢ in Theorem 13. We have
now expressed everything in terms of s and can compute the residue:

UP = ¢; ~ Ress™ ipj s (ilogﬂ) (5 - .A(D)) iAgksk']ds,
J—O k=1
Resrz0 gs-"“ %p (a)a—(IOg ) (A A(D))

2i-1

-3 5 ri@)og0) (& - A(P))

The modifications for the case P # P7 are the following. In (18) there is an extra term correspond-
ing to the residue in P7,

Resgr=pz' (Q' )Ew, Q" ( (log 9)) (.A(Q' - P)- A(D) + [\’) .

Letting Q¢ = Q' it is rewritten as a residue in P upon using z(Q7) = z(Q) and w(Q7) = —w(Q)
for all holomorphic differentials w (hence also A(Q7 — P?) = —A(Q — P)), giving:

—Resg=pz'(Q) iw,(g) (a%mg 9) (-A@-P) - AD)+E +7).
=1

A second mayor difference with the case P = P is that now z(Q) = s~! in terms of the local
parameter 3. Taylor’s Theorem gives the same result as above for the residue in P, while for the
extra residue term we find

0 = d ~
(az—tlogﬁ)( ~AQ-P) - .A(D)+A+e)_z=:os )(a—z‘]ogﬁ) (A+e—A(D)),
so that finally both residue term are given by

— Res Z E gitk—i (3‘? pj(d)(log 6) (A A(D)) pJ( d)(log 6) ( +é- A(D))) %’

7=0 k=1

—( 0 = - )
_ (at.._,- (8)(1og8) (& - A(D)) - T 8)(10g8) (A + A(D)))

=0

.,

The above theorem is very helpful to determine the Laurent solutions for the master systems.
Since t = t1, we may now make the ansatz

1 :
W= oy Zu,-jt’ (19)
i=1
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where p(i) is given by the theorem, namely p(i) = 2i if P = P? and p(i) = 7 otherwise, and we
will find all the Laurent solutions. We show that they lead indeed to the stratification of Jac(T)

which coincides with the one by the subsets Jy (T, P). We give separate propositions for the cases
P=P%and P# P°.

Proposition 16  For the odd master system there are g + 1 families of Laurent solutions. The
m-th family corresponds to the stratum J,,(I', P) and the functions uy,...,uy blow up as

o @i m4t 1 —2i41 ;=
wi = (=1)" ("1_£ytﬁ-+cXt ,  @G=1,...,m), (20)

u; = O(t~ 8, t=m+1,...,9),

In particular, the odd master system induces a stratification on Jac(I') which coincides with the
stratification by the subsets J,,(T, P).

Proof
The equations (14) are written out in the case of the odd master system (corresponding to
P =P% as
i(z) = 20(z),
v(z) = —w(z) + (z — 2uy)u(z),
w(z) = -2(z — 2uy)v(x),

or just as a third order equation,
wi(z) = 4 (hip1 — 2wt — Wwi), (i=1,...,9; ugy1 = 0). (21)
Then the ansatz (19) leads to the recursion relation

2+1[ii+1)
i+ 1 [ 2 *'"‘] i

(22)

Qi+ =

To solve this recursion relation, remark that if a; = 0 then a;41 = 0; since a; = 0 for at least one
1< g+ 1, we find that

1
a; = —Em(m +1) (23)

for some m € {0,...,¢} which leads by induction immediately to the formula

(2 =D (m+13)!
-1 : 21! : Enzj:i;’

a; = ( (i=1,...,m),

and @41 = -+ = ag = 0, hence also to (20). The series for »; and w; follow immediately from it
by differentiation, in particular they do not give rise to separate families of Laurent solutions.

We now show that the m-th solution corresponds to J.(T', P). Take {D} € J,.(T', P) and
let {D'} be the integral curve of d/dt = 8/dt; with D° = D. Denote by vP*(z) and UP'(z) the

23



associated polynomials, as above. Since it follows from the definition of A that At+.A(D) = A(D*),
we may compute, using Theorems 15, 13 and Proposition 12 {(in that order),

uP' = (log ) (& - A(D‘)) —e,
= (log8) (& - A(D) - At) - 1,
= (log Tw,(py) " (1) ~ a1,
d*
= 7 log (ctt(sum) + O(tl(a(n)m)) —a,  (c#£0),

= _——-—I(S:SD)) + O(1).

I {D} € J(T, P), then we know from Theorem 8 that {(S,(D)) = ﬂ(";—“l, so we find by (23)
that the m-th stratum corresponds to Jy,. [

We will now prove the equivalent result to Proposition 16 for the case of the even master
system, i.e., for the case P # P°.

Proposition 17  For the even master system there are L&%&ﬂl families of Laurent solutions
one for each element of the set I,. The (m,n)-th family corresponds to the stratum J,, (T, P} and
the functions uy,...,ug blow up as

m-n
oQ
T o (24)
u; = O(t™), i=m+1,...,9),

Uy =

In particular, the even master system induces a stratification on Jac(T') which coincides with the
stratification by the subsets J., (T, P).

Proof

The proof goes along the same lines as the proof of Proposition 16. However one finds using
the ansatz in this case a recursion relation

2k+3 k+1
Qpy2 = mﬂlﬂkﬂ + m[(k + 2)k — (3“% — 2ay)]ax,

which is solved at once for ¢ = 1,2,3,..., but scems to be very hard to be solved for general g.
Therefore we compute as in the previous proposition for {D} € J,, (T, P)(T, P) with (m,n) € Z,:
Dt _ A ¢ AR ¢ =
uP* = (log§) (A _AD )) ~ (log §) (A — A(D )+e) .

= (og 7wy 1) () (o8 7w-()’ () = o1,
_ HS2(D) = HSDY) | oy,

t
_m-—mn +O(1).
The formula for the other u; follows from Theorem 15. [
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