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Abstract

In this paper we prove two technical theorems about the equivariant moduli
space of ASD connections on a SU2 or 803 bundle over a smooth oriented four­
manifold X which is equipped with a smooth and orientation preserving action
of a finite group 1T. Thc first theorem relates, in the case 1T = Z/p and compact
moduli spaces, thc existence of a non empty fixed set in the moduli space to the
value of a certain Donaldson polynomial invariant. The second theorem gives a
criterion under which one can avoid fixed reducible ASD connections by slightly
varying the metric on X within the class of equivariant metrics.

1991 Mathematics Subject Classification: 55, 58.

1 Introduction

Since the ground breaking work of S. K. Donaldson [Don83] Yang-Mi11s gauge the­
ory proved to be a powerful tool for understanding the geometry of smooth four­
dimensional manifolds. Beside answering many of thc mainstrearn questions in
four-dilnensional topology, like the existence and uniqueness of smooth structures
on topological four-nlanifolds, a couple of authors, among others see [FS85, HL92,
BM93], uscd the Donaldson moduli space to investigate smooth group actions on
four-manifolds. By now a11 of the mainstream questions in four-dimensional topol­
ogy have been reproved using the Seiberg-Witten moduli space. However, till now,
the Sciberg-Witten moduli space has not been used to investigatc group actions, and
it seems that thc Donaldson moduli space will continue to be thc more appropriate
tool for equivariant problems.

Thc ainl of this paper is to prove two theorelns about this equivariant moduli
space. Theorem Adeals with the question when the fixed set of the induced 1f action
on M is non empty. The theorem relates, in the case of a compact moduli space
and 1f = Z/p, the existence of a non empty fixed set in M to the divisibility of the
Donaldson polynomial invariant associated to M. Theorem A is shown to apply to
some algebraic surfaces. Thc second theorem deals with the question of singularities
in M arising,frOlll reducible connections. -In the non equivariant setting'it is proved
in [DK90] that Olle cau avoid reducibles by slightly varying the metric as long aB
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X has indefinite intersection form. Theorem B gives a criterion, depending only on
the representation of 1T" on H* (X), that allows such aperturbation within the class
of equivariant Inetrics.

Acknowledgements: This paper is part of the authors Ph.D. thesis [Web97] writ­
ten under the supervision of Prof. lan HaIubleton to whom the author is indebted
for support and many helpful discussions. The author also thanks the German Na­
tional Scholarship Foundation for financial support and the Max-Planck-Institut for
its warm hospitality and financial support in the final stage of his thesis.

1.1 Equivariant gauge theory

Let X be a smooth, closed, oriented siluply connected 4-manifold on which a finite
group 1r acts smoothly preserving the orientation. Let G = SU2 or G = 803 and
let G -t P -t X bc a principal G-bundlc such that g* P ~ P \lg E 1T". This is
always fulfilled for G = 8U2l and since 803 bundles are classified by W2 and PI this
is always fulfilled as long as 1T" preserves the orientation and fixes W2.

Let A be the space of connections on P and Q the space of all gauge transforma­
tions on P l i.c. G-equivariant solf-maps of P which cover thc identity on X. Since
for all 9 E 1r g* P ~ P there is a bundle isomorphism g : P -t P which covers g.
Any two such lifts differ by a gauge transformation, which means that there always
is a weIl defined 1T" action on B = A/Q, no matter if P carries a 1T" action covering
the one on X or not.

We refer to [HL92] and [BM93] as references for equivariant gauge theory. Here
we'll follow the exposition in [BM93]. There is a group extension

1 -t Q -t Q(1T") -t 1T" -t 1

where we identify 1T" with its image in Diff+(X) and Q(1T") are thc bundle isomorphisms
of P covering the elements in 1T". Ir [A] E W then for every Ao E [A] there is an
extension of finite dimensional groups

1 -t QAo -t Q(1T")Ao -t 1T" -t 1

where QAo and Q(1T)Ao are the stabilizers of Ao in Q anel Q(1T") respectively. Ir [A] E B*
is fixed under 1T" then QAo = 1 for all Ao E [A] and therefore there is a unique lift of
?T to Q(1r) which fixes Ao.

We call two lifts from 1r to g(1r) equivalent if they are conjugate via an elelnent
of g. Let I be the set of equivalence classes of these lifts, then the fixed set (B*) 'Ir

decomposes as the disjoint union

(B*)1r = Il(Ai jgi) =: Il Bi,
iEI iEJ

where Ai is the spacc of i-invariant irreducible connections and gi is the space of
i-invariant gauge .transformations. Note that for. i i- j Ai/gi and A j /gj might
intersect at reducible connections.
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Putting the COO-quotient topology on B* turns them to Frechet manifolds, and
we have

Lemma 1.1 The fixed set (B*)1I" is a srnooth, closed stibrnanifold oJ B* oJ infinite
codirnension.

Except for the codimension part this is Proposition 1.3 from [BM93]. The rest can
be seen by varying a fixed connection within a small chart contained in the free
stratulll of X. This yields an infinite dimensional complement to the space of fixed
connections.

Ir J-.Lo is a 1r-equivariant metric on X then the moduli space M of anti self dual
connections on P is 1r-invariant.

2 A fixed point theorem

In this section we restrict our attention to the case G = S03, W2P i= 0 and -4 :::;
piP < O. By the Uhlenbeck compactification theorem this forces the Inoduli space
to be compact for all metrics on X.

For the case of a cOInpact moduli space wo give abrief renünder for the definition
of the Donaldson polynolnial invariants: The free S03 action on P induces a free
S03 action on S*(P) Xo P with quotient S* x X. The associated principal bundle
is called F d and we call PI E H 4 (B* x X; Z) its first Pontrjagin dass. Thc J-.L map
is defined by

J-.L : H2(Xj Z) --+ H 2(B*j Q) : a 1-7 ~PI/a.

If W2(P) = 0 then J-l(~) is integral, if W2(P) i= 0 then 2J-l(~) is integral, see [Kot91,
2.8-9].

Now let k = -1/4PdP) and let dilnM = 8k - 3(1 + bt) =: 2d bc even. Thc
Freed-Uhlenbeck generic metric theorem allows us to choose ametrie on X such that
M is a smooth manifold. Note tImt it Inight not be possible to choose this metric
out of the equivariant ones. Let n be an orientation of HO(Xj Z) EI) H+(Xj Z) and
a be an integral lift of W2 (P) . Then n and 0- determine an orientation of M (sec
[Kot91, 2.16-17]), and formally the value of the Donaldson polynomial associated to
M -with this orientation- on c1asses ~l,"" ~d E H 2(Xj Z) is

This is independent of thc good metric chosen as long as b+ ;::: 2. In the case
b+ = 1 the invariant depends Oll the Inetric chosen in the following way: The
c1asses e E H 2(X; Z) satisfying e == W2(P) luod 2 and PI (P) ::; e2 < 0 give rise
to topological Sl-reductions of P and the bundles of lower charge. They detcrmine
achamber structure on HleR(X). A metric on X determines a up-to-sign unique
normalised self dual two fonu w E HJeR(X), The Donaldson Polynomial in the b+ =
1 case depends on the met'ric only through thc chamber of w. (See [Kot91, KM94].)
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The choice of orientation n of HO(X) EB H+(X) and thc particular choice of the
integral lift & of a = W2(P) only affect the sign of the Donaldson polynOluial. Since
we will be interested only in the divisibility of it, we will drop this frOlu our notation
and will write q:o for the degree d Polynomial associated to the 503 bundle with
W2(P) = ü.

Ir W2(P) = 0 then q(~l,"" ~d) is an integer. Ir W2(P) =I- 0 then q takes values
in lcrZ. This justifies

Definition 2.1 We say that an odd prime p divides the Donaldson Polynomial qdX
,0

iff p divides the numerator of qd,o(~l,"" ~d) Jor every combination oJ ~1,"" ~n

in H2 (X; Z).

We can now state

Theorem A Let X be a smooth, closed, simply connected four-manifold with b+ = 1
on which Z/p, with p an odd prime number, acts preserving the orientation on X
and on H+(X; Z). Let G ~ P -T X be a principal 503 bundle with nonzero
a := W2(P) E H 2(Xj Z/2)Zjp and -4 :::; pdP) < O. Moreover if a is some integral
lift of a we assume that a is fixed by Z/p.

Let /--Lo be an equivariant metnc on X S.t. M(X,/-lo) does not contain any re­
dticible connections. The Donaldson invariant q:!Cf is understood to be associated to
the chamber of J-lo. '

1J the indticed Z/ p action on M p (X, /-Lo) is Jree then p divides q~Q when restricted

to H2(X; Z)Zjp.

Proof of Theorem A

We start with the main topological ingredient of our fixed point theorem:

Lemma 2.2 Let n be a finite cyclic grotip and Z a free n-space with b1Z = O. Let
pr : Z -T Z / n be the projection.

1f x E H 2(Z; Z)1f then x = pr*(x') for some x' E H 2(Z/n; Z).

Prüof: We follow [HL92, Theorelu 6.1]' Recall that the Borel cohomology of a
1T"-space Z is defined by

H;(Zj Z) := H*(Z X1T E1T"j Z),

which can be calculated using thc Leray-Serre spectral sequence for the fibration
Z -T Z X 1r E1T" -T B 1r with ~- term given by E~,q = HP (1T" , Hq (Z) ). In the case when
Z is a free 1T"-space E X 1r Err is hOIuotopy equivalent to Z/1r and the fiber inclusion
Z y Z X 1r Err is homotopic to thc quotient map pr : Z ~ Z/rr. Combining this
with the fact tlmt thc fiber inclusion induccs thc edge homomorphism

Hi(Z x Err) -* EO,i C ... C EO,i = Jr(Z' Z)1T1T 00 _ - 2 "

we see that the lemIlla follows if we show that thc Eg,2-term survives to Ef(x}.
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All of this was true for an arbitrary finite group 7r and we now specialize to 7r

being finite cyclic. Since Hi(7rj Z) is infinite cyclic for j = 0, 1r for positive even j
and zero otherwise, we see that b1Z = 0 implies that all differentials starting at EZ,2
are zero. Thereforc H2(Z)1r = Eg,2 = Ef(.;} which proves thc claiIll. 0

In our case Z will be ß* \ (ß*)Zjp and the classes x will be J-.L(~) for SOIne
~ E H2 (Xj Z)Zjp. To see that J-.L~ is invariant we need the following remark:

Note that any f E Diff(X) satisfying f* P ~ P induces a self map f* of B* (P)
given by pull back. Therefore (f* x f) is a self lnap of B* xX. For any such 1
we will write in abuse of notation 1* for thc inel neeel map on S* and for the lnap
induced by 1* on H*(B). With t.his simplifying notation we have

Proposition 2.3 With the notation as above the relation

holds for any ~ E H2 (Xj Z).

Proof: First note that the relation 1*P ~ Pimplies that (1* x It (JIMd ) ~ JIMd

over B* x X. The proposition follows from this alld the naturality properties of the
slant product. 0

Now turn to the seeond technical problem: Recall that in order to define the
Donaldson invariants for a moduli space M oue chooses a Inetric J-.L with the property
that M and all Inoduli spaces involved in the cOIupaetification of M are snlooth.
The Freed-Uhlenbeck theorem enables one to pick such ametrie out of a generic set
but this generic set might not contain an equivariant metric.

Beeause of this we'll have to work in a slightly more complicated setting, namely
a cmubination of the two perturbations: variation of the metric and perturbation of
the ASD equation.

Fix a S03-bundle P satisfying the assumptiolls of Theorenl A anel choose a
metric tL on X. Recall that the moduli space M (X, J-.L) is the zero set of the section
F+ : B -t Ot, where 0t = A Xg L~n+(adP) -t Band F+ is the plus part of
the curvature wit.h respect to J-.L. F+ can be perturbed in two ways: Let (J : B -t

A Xg L~O+ be a section, anel let i : L~O+ y L~O+ be the compact inclusion. Then
i 0 a is a cOInpact perturbation of F+ and for a generic choice of a the zero set
MCT(X, J-.L) := (F+ + ia)-l(O) is a smooth Inanifold of the expected dimension. On
the other hand we can vary the metric as described in [DK90, p.148] or the next
seetion.

Combining these two we set P := Cx 5, where C is the space of conformal classes

of Iuetrics on X and 5 is the space of sections in L~ (0+), and set B x P ~ n+,
the parametrized self dual curvature map. Since the partial derivatives in one of
the P directions alone sufficcs to achicve a surjective differential of F+ l we see
that the 'universal IllOduli .space' (F+)-l (0)· c ß x P is sIllooth. Recall that the
regular values of the projection pr : (F+)-l (0) -t P are exactly the perturbation
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parameters which yield smooth moduli spaces. Any two good parmueters (JLi, ad,
i = 1,2, can be joined by a good path 'Y, i.e. pr-1('Y) is a smooth cobordism between
Mrrl (X, gJld and M rr

2 (X, Jl2)' This cobordism is also compact for thc proof of
the 'parametrized cOlupactness theorem' [DK90, 9.1.2] is the same for families of
perturbed ASD connec~ions. The point is that Uhlenbeeks eompactness theorem
requires bounded cnergy, and this is still fulfilled as long as thc perturbation a is
bounded. In partieular if one end of the eobordism is eOlupact so is the other, and
they define thc same homology dass in B.

Now let Jla be the equivariant metric frOlu Theorem A. We assurne that M(X, /-lo)
is compact and that the Z/p action on M (X, Jla) is free. Therefore M (X, /-lo) has a
positive distanec to the fixcd set ßZ/p and so we ean find an equivariant perturbation
ao S.t. (/-la, ao) yields a smooth moduli spaee. Now choose a good metric g} elose to
/-lo. By the preceeding renlurk wo see that the homology dasses of MrrO(X,JIa) and
M (X, gd in H. (ß) agree. This nlCans that the Donaldson Polynomial associated to
P can be calculated by evaluating thc cohOluology classes J-L(E) on the fundamental
dass of MrrO(X, /-La). We summarize this paragraph in

Lemma 2.4 Let P ~ X be a 803 principal bundle satisfying the conditions of
Theorem A. When the Z/p action on M(X, J-Lo) is free then there is an equivariant
perturbation ao of the ASD eqtwtion 8. t. the Donaldson invm'iant associated to P
can be calculated by evaluating against the fundamental class of Mrro, which is a
smooth compact manifold with free Z/p action.

Proof of Theorem A: Ta complete the proof of our fixed point theorem we now
eoHeet the pieees:

Assume that the Z / p action on M (X, JLQ) is free. Choose an equivariant pertur­
bation ao like in LeIlllua 2.4. Note that the restrictions on PI (P) and b1(X) iIuply
that Mrro (X, /La) is zero or two dimensional. In both cases Mrro (X, JLo) is a snlooth
compact manifold on which Z/p acts freely preserving the orientation.

In the zero dimensional case this just mcans that the points in Mrro (X, JLo) corne
in free p-orbits, which 1l1eanS that their count with orientation is divisible by p.

For the two dimensional case take E E H2(Xj Z)z/p. Then 2.3 implies that
JLE E H 2(B·)z/p. Now [AMR95] calculated

7r} (8.) = {Z/2 PI (P) ~ sign(X) mod 8 and W2(P) = W2(X)
o otherwlse.

Combining this with the fact that (B·)z/p '-7 B· has infinite codiInension wc see
that bl (ß* \ (B·)Z/P) = O. Set B; := B· \ (B·)Z/p, i : ß; '-7 B· and pr : B; ~ B;/z/p'
Lemma 2.2 implies that i·'L(B) = pr·(x l

) for some Xl E H 2(ß;/(Z/p)j Z). Now
pr. : H2(Mrro) ~ H2(M rrO/(Z/p)j Z) has degree p and thercfore

qfa(E) = (i· JL(E) I [M rro ]) = (x' Ipr*[Mrro])
J, il t'" ~.

is divisible by p.
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Examples

In the following let Po.,p stand for the 803 bundle over X with W2(P) = 0:' and
PI(P) = p. Note that (wz,pd dassifies P and every pair (WZ,PI) wmch satisfies
PW2 == PI 11lOd 4, P being the Pontrjagin square, is realized , (see (OW59]). Let
Mo.,p(X,llo) be the moduli space of ASO connections on Po.,p with respect to the
llletric Ilo. We assurne that X and P satisfy thc assuluptions of Theorem A. Here
/-La will always be a Z/p equivariant metric on X. In addition we will always assume
that the induced Z/p action on H* (X j Z) is trivial.

Suppose b+ = 1, W2X =f:. 0 and sign(X) == 0,1,2 or 3 mod 8. Then there are
no reductions on a 803 bundle pw2 (X),k for -4 ~ k < O. This follows since a dass
e E H 2(X) associated to a reduction of P to a SI bundle is characteristic by the
Wz assumption. Therefore e2 == sign(X) fiod 8 and these were the cases excluded.
This means that in this case the invariant does not depend on the metric.

• The blown up complex projective plane
Here H 2(CP2 #cpz ; Z) = < H, E > where H anel E stand for thc hyperplane dass
and the dass of the exceptional divisor. We have that H2 = 1, E Z = -1 anel Hand
E are perpendicular. Let Q' := H - E be the Z/2 reduction of H - E. Then Q' =
Wz (P), and by the remark above there is no chamber dependence of the Donaldson

polynonlial. In [Kot91, Proposition 7.1(4)] it is calculated that q'Co.2
# CP

2 = -2E,

and thcrefore M o ,_4(CP2#CPZ,J-LO) has a Z/pfixed point.
The bundles Pu -3 and Pe -5 also yield compact moduli spaces, but unfortu­

nately we do get a 'chmnber st'ructure in these cases, and in (Kot91, Proposition

7.1(3)] it is calculated that there a.re chambers for which qC;:;;#CP
2 vanishes.

• The Barlow surface and its blow up
The Barlow surface B is defined to be the nliniInal desingularisation of a quotient
of a certain Hilbert Illodular surface. It is a siInply connected algcbraic surface
homeOInorphic to cp2 #8cpz, (see [Kot89, §5]).

Let 0:' = wz(B). Then 0:'2 ;::; 1 IllOd 8 and thc moduli space for thc 803 bundle
Po.,-3 is zero dimensional. By the reulark above the Donaldson invariant does not
depend on the metric chosen, and in (Kot91, 7.8] it is calculated that q~Q. = - 8.
Therefore every Z/p action on Binduces a non free action on MOI-3(B,Il~).

Let X = B#cp2 be the blow up of the Barlow surface at one point. Then
0:' = wz(X) and PI = -4 give rise to a 2 dimensional moduli space, which again
yields a Oonaldson invariant which is independent of the metric. In [Kot91, 7.10]
it is calculated that qfo = -16E where E is the dass of the exceptional divisor.
Bence every Z/p actiOI~ on X induces a non frec action on M o ,-4(X, IlO).

• Dolgachev surfaces
The Dolgachev surface X(a, b) is a nünimal elliptic surface obtained frolll the rational
surface CP2#9Cpz by two logarithmic transforms of luultiplicitics a , b > 1. Thon
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Y := X(2)3) is homeomorphic to cp2 #9cp2 [Don87, Proposition 3.16]. For 0' =

W2(Z) it is shown in [Kot91, 7.10] that q~ 1 -which again does not depend on the
metric- is equal to 8~ whcre ~ is priInitive.

l

This shows that every Z/p action on Y
induces one on M o ,-4(Y,1l0) which has a fixed point.

3 Avoiding reducibles by equivariant perturbations of
the metric

Let 110 be a 11"~equivariant metric and A~ be the ±1 eigenbundles of *0 = *1-'0 on
A2(T*X). All confonnal classes of metries on X can be parametrized by the bundle
maps from Aü to At with pointwise norm less than 1: C := HOM<l(Aü,At). c
carries a 11" action by setting (g. J-L)(a) := g* (J-L((g-l)*a)) for ~ E C and a E Aö'
The equivariant confonnal dasses correspond to the fixed set of 11" on C: C1r. Note
that the 7r action naturally extends to a 7f action on Tl-'oC = HOM(Aü,At) and
that TJlQ (C1l") = (Tl-'oC)lI". Let J-.L be ametrie such that [J-.L] E C1r. The average of J-L is
equivariant and in the Satue confonual dass as J-L. Therefore, if we pick a metric out
of an equivariant conformal dass, we will assume that the metric itself is equivariant.

Let H2(X) be the J-L-harIUOnic 2-forms on X, and recall that a H [0'] is a
canonical isomorphism from H 2 (X) to H~eR(X), We will write H 2 (X) for HJeR(X)
in the following. Let Negb- (Hf) C Grb- (H2) be the open submanifold of Grb- (H2)
consisting of negative definite subspaces with respect to the intersection form on

H 2. Note that under HJ~ ~ H2 the subspace H; := H~ n rA~ is nlapped to an
element of Negb- (H2). This defines the period map

Since on 0 2 the star operator is conformally invariant, we have that H"!: is invariant
under conformal changes of thc luetric, which means that the period lnap factors
through the conformal classes:

P : C -7 Negb- (H2
).

Now take x E H 2(X) with x2 < 0, and set Nx := {V E Negb-(H2 )lx E V}. Recall
the following

Lemma 3.1 The tangent space 0] Negb- (H2 ) at a subspace A is given as

NT, is a submani]old 0] Negb- (H2 ) 0] codimension b+. The tangent space 0] NT, at
an element A E Nx is equal to

K er(evx ) :::; HOM(A, A.L), where evx : HOM(A, A.L) : Q' H a(x) .
.... T ... t.
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In [DK90, 4.3.24] the differential of P at Il-o is ealculated:

DJlOP: HOM(Aö,At) -T

m 1--7

HOM(Hü,Ht)
(a 1--7 IIH+m(a)),

o

Where II H+ is the L2_projeetion to the spaee of Il-o-harmonie and Il-o-SD forms. We
o

define a 1r action on HOM(Hü,Ht) by setting 9 . <p := g* 0 <p 0 (g-l)*.

Proposition 3.2 D~oP is 1r-equivariant.

Proof: First note that for any ß E rAt and 9 E Ditr+(X) a Il-o isometry the
relation

(ilut 0 g*) ß = (g* 0 nut) ß

holds. This follows frOln the Hodge deeomposition theorem and the fact that
pullback via 9, being a Il-o-isonwtry, eommutes with d* .The proposition is now a
direct consequence of the definition of thc two 1r actions on HOM(Aö,At) and
HOM(Hö,Ht). 0

Let P -T X be a SU2 principal bundle with C2 (P) = k > 0. Sincc Il-o is 1r­
equivariant the moduli spaee of gauge equivalence dasses of *0 ASD connections
on P, M (P, Il-o), carries a 1r action, induecd [rOln thc oue on X. A siugularity
in the moduli space eoming from a reducible connection corresponds to a dass
±x E H 2 (X; Z) with x2 = -k, and ±x gives rise to a singularity in M(P, IJ.O) Hf
x E H;;o' Here we also wrote x for the image of x in real eohOIllology. Moreover, the
singularity. is in the fixed set M1T iff {x, -x} is 1r-invariant.

Let P -T X be a 803 principal bundle with W2(P) = w and pdP) = p < O.
Here a singularity corresponds to a dass ±x E H2 (X; Z) with x == W Inod 2 and
x 2 = p. Any such class gives rise to a singularity in the Illoduli space M (P, !--Lo) iff
x E H;;o' Again, the singularity is in the fixed set M1T iff {x, -x} is w-invariant.

Definition 3.3 Let!1-o be an equivariant metrie.
IJ P -T X is a prineipal SU2 bundle we call x E H 2(X; Z) a fixed redticible iJ

x2 = -C2(P), {x, -x} is 7T invariant and x E H;;o'
If P -T X is a principal 803 bundle we cali x E H2(X; Z) a fixed reducible iJ

x == pdP) liod 2, x2 = PI, {x, -x} is 1f-invariant and x E H/~'

In both cases we say that x is oJ type I iJJ x E H 2(X)1T, otherwise oJ type 11.
Note that a fixed reducible oJ type II determines a subgroup 7Tx :::; 1f oJ index two

which fixes x. 7l"x determines a representation Xx : 1f -T {±I}, and Jor 9 E 7l" the
relation g*x = Xx(g)x holds.

We want to apply the calculations above to show that under a certain cohomo­
logical condition there are no fixed reducible connections in M. Note that the 7r

representation H; is independent of the equivariant metric chosen, and therefore a
cohomological invariant of the group action on X. In thc proof of our theorem we'll
need the following
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Lemma 3.4 Let II, 12, ... be countably many non zero contintwus homomorphisms
between two real veetor spaces V and W.

Then there is a Baire set V;i:o C V S.t. h(v) 1= 0 Vi and all v E V;i:o, 1J there are
only finitely many h then V;i:o is also open.

Proof: We look for these v E V which are in the complemcnt of the union of all
kerneis of the h. Set

Since f i-
1(w \ {O}) is open anel dense in V, we see that V;i:o is a countable intersect ion

of open and dense sets in V land therefore a Baire set. 0

Definition 3.5 A fixed reducible oJ type 1 is called removable iff H({ (X)1r f; O. A
fixed redueible x oJ type 11 is called removable iiJ H({(X)1r < H({(X)7l':&.

Theorem B Fix an equivariant metne J..L0.
1J all fixed reducibles are removable then the tangent space 7j l oCll" contains a Baire

set r 01 (good' tangent direetions s. t. Jor all J-Lt" := J..Lo + t" 0 f= t E IR small and
, Er, the moduli space M (P,/tt{y) does not contain any fixed reducibles.

On the other hand: 1J there is a fixed reducible x which is not removable then
M (P, p.) will contain a reducible fixed connection Jor all equivariant me tries J-L.

Proof: Let XI , X2, ••. be integral classes in HJ-;o (X) which are fixed reducibles.
We will show that evx 0 DP ~ 0 iff x is removable.

Assume that all fixed reducibles are rCIuovable. Therefore eVXi 0 DP t 0 for
all i and Lemma 3.4 yielcls a Baire set r c TJ-lOC1r S.t. eVXi 0 DP(,) f= 0 Vr E r
and all i. This nIeans that DP(,) is not tangential to NXi for all i, and therefore
Xi ft H,~ (X) for all i, , E rand t E IR small. This is equivalent to saying that,- ,.,.
P(J..Lt,,) rt N Xi for all i.

On the other hand let evx 0 DP == O. This 1l1eanS that DP Inaps TJ.1.oClI" into
the tangent space of N x . So P will map all equivariant metrics elose to Mo into N x .

Since thc cohOInological condition doesn't change in thc passage from J..Lo to J.L elose
by and the equivariant lnetrics are path connectcd it follows that P(J-L) E N x for all

J-t.

Case I: The fixed reducible x is of type I. So x E (H2 )lI", and therefore the
evaluation map

evx : HOM(Ho1 H({) ~ H({ : a H- a(x)

is 1I"-equivariant. This means that thc composition
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is 1T-equivariant. In [DK90, p.153] it is shown that evx 0 DJ.lOP maps surjectively
onto Ht. Therefore the restriction to the 1T-invariant part is also surjective:

This means in particular that evxoDJ.lOP restricted to T/loC1r is not zero iff (Ht)1t -=f:. O.

Case 11: The fixed reduciblc x is of type H. We start with an elementary
remark: Ht(X)1r < H(j(X)trx iff 30 -=f:. Y E Ht(X) S.t. g*y = Xx(g)y. It is clear that
the existence of such a y inlplies strict indusion of Ht(X)1r in Ht(X)1rx

• Now let
the indusion be strict. Since 1Tx is anormal subgroup of 1T it follows that Ht(X)1rz

is 1T invariant. The ioduced 1T action on Ht(X)1rx dctermines a 1T / 1Tx ~ {±I} action
on Ht (X)1rz , which is not trivial since the indusion is strict. This means that there
is a 0 -=f:. y E Ht(X)1r x with g*y = Xx(g)y.

Now assume that x E Hö is removable and take 0 -=f:. y E Ht(X)1r+ with g*y =
Xx(g)y. Since evxoDP is surjcctivc it follows that therc is a mo E HOM(Aö,At) S.t.
DP(mo)(x) = y. Set rno := 11T1- 1 2:9E1r go mo 0 g-l. Thon mo E HOM(Aö,At)'!'.
Since DP is equivariant we calculate

DP(mo)(x) = I~I [L g*DP(rn)(x) + Lg* DP(m)(-X)]
gEtr+ gE1r\1r+

= I~I [L g*y + L g*(-V)]
gE1r+ gE1r\1r+

=y -=f:. O.

And therefore evx 0 DRIT C1r -=f:. O.
}.Jo

On the other hand let (Ht)1r = (Ht)1r+. Take go E (1T \ 1T+). For any m E

HOM(Aü,At) wc calculate

L DP(g· m) = L g* DP(m)(g-l)* (x) + L (gOg)* DP(m)(g-l )*(-x)
gE1r gE1r+ gE1r+

= L g* DP(m)(x) -go L g*DP(m)(x)
gE1r+ gE1r+
'...,. ~'----...,......---'

E(l/t)1f+ E(Ht)1f+

= 0,

which implies that DP(m)(x) = °for all rn. E Tllo (C1r ). o

Remarks:

11
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i) Suppose there is an dass x E H2(X; Z) with x2 = -C2(P), {x, -x} 7f-invariant
and the cohomological cOllditioll of removability on H+ is not fulfilled. The
theorem does not imply that there will be a fixed reducible connection for
all equivariant Inetrics, since x might not lie in H; for any equivariant f.L.
However the theorenl says that if x EH,; for one f.L then there will be a fixed
reducible connection for all J1..

ii) Oue can not hope for the stronger stateInent that I1c'" is transversal to Nx
in general. In fact the proof shows that for x E H 2 (X)7r transversality is
equivalent to the much stronger cohomological condition H+(X)7r = H+(X).

iii) The first results about avoiding reducibles by equivariant metries known to
the author were proved by M. Klenlffi in his thesis [Kle95]. The results are
written up for the case X = 82 X S2, but almost literally generalize to tbe case
when the induced 7f action on cohonlOlogy is trivial.

iv) The above theorem sheds some light on R. Fintushel's standard cxample for the
failure of good properties in equivariant gauge theory as written up in [HL92,
Example 2.15J. After reversing the orientation to stay in our setting of ASD
IllOduli spaces the exaIuple describes a Z/2 action on a K3 surface with negative
orientation and quotient -CF2. Pulling back connections fronl M ~~2 (PI, g)
produces a 5 parameter fanlily of in M~7(~(P2,7f*9) which will always contain
the unique reducible from the moduli space over -cp2• Therefore one should
not expect that one can perturb away all reducibles by an equivariant metric.

This is consistent with our theorem for H 2 (-K3; IR)Z/2 = H 2 (-cp2j IR) im­
plies that H-( -K3) = IR EB 2IR- and H+( -K3) = EB19IR-. I.e. for auy cquiv­
ariant metric there is at 1l10St oue fixed rcducible cf type I which is not per­
turbable since H+( -K3)z/2 = O. However all fixed reelucibles of type II are
perturbable, anel therefore the theorem preclicts one fixed reducible conuection
for a good equivariant Iuetric.
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