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Abstract

In this paper we prove two technical theorems about the equivariant moduli
space of ASD connections on a SU; or SO3 bundle over a smooth oriented four-
manifold X which is equipped with a smooth and orientation preserving action
of a finite group 7. The first theorem relates, in the case # = Z /p and compact
moduli spaces, the existence of a non empty fixed set in the moduli space to the
value of a certain Donaldson polynomial invariant. The second theorem gives a
criterion under which onc can avoid fixed reducible ASD connections by slightly
varying the metric on X within the class of equivariant metrics.

1991 Mathematics Subject Classification: 55, 58.

1 Introduction

Since the ground breaking work of S. K. Donaldson [Don83] Yang-Mills gauge the-
ory proved to be a powerful tool for understanding the geometry of smooth four-
dimensional manifolds. Beside answering many of the mainstream questions in
four-dimensional topology, like the existence and uniqueness of smooth structures
on topological four-manifolds, a couple of authors, among others see [FS85, HLI2,
BM93], used the Donaldson moduli space to investigate smooth group actions on
four-manifolds. By now all of the mainstream questions in four-dimensional topol-
ogy have been reproved using the Seiberg-Witten moduli space. However, till now,
the Seiberg-Witten moduli space has not been used to investigate group actions, and
it seems that the Donaldson moduli space will continue to be the more appropriate
tool for equivariant problems.

The aim of this paper is to prove two theorems about this equivariant moduli
space. Theorem A deals with the question when the fixed set of the induced « action
on M is non empty. The theorem relates, in the case of a compact moduli space
and ™ = Z/p, the existence of a non empty fixed set in M to the divisibility of the
Donaldson polynomial invariant associated to M. Theorem A is shown to apply to
some algebraic surfaces. The second theorem deals with the question of singularities
in M arising from reducible connections. -In the non equivariant setting it is proved
in [DK90] that one can avoid reducibles by slightly varying the metric as long as



X has indefinite intersection form. Theorem B gives a criterion, depending only on
the representation of 7 on H*(X), that allows such a perturbation within the class
of equivariant metrics.
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1.1 Equivariant gauge theory

Let X be a smooth, closed, oriented simply connected 4-manifold on which a finite
group 7 acts smoothly preserving the orientation. Let G = SU; or G = SO3 and
let G -+ P — X be a principal G-bundle such that g*P = P Vg € n. This is
always fulfilled for G = SU3, and since SO3 bundles are classified by wq and p; this
is always fulfilled as long as 7 preserves the orientation and fixes ws.

Let A be the space of connections on P and G the space of all gauge transforma-
tions on P, i.e. G-equivariant sclf-maps of P which cover the identity on X. Since
for all g € » g*P = P there is a bundle isomorphism § : P — P which covers g.
Any two such lifts differ by a gauge transformation, which means that there always
is a well defined 7 action on B = A/G, no matter if P carries a 7 action covering
the one on X or not.

We refer to [HL92] and [BM93] as references for equivariant gauge theory. Here
we'll follow the exposition in [BM93]. There is a group extension

l1-G-oG(r)omr—ol

where we identify 7 with its image in Diff* (X) and G () are the bundle isomorphisms
of P covering the elements in m. If [A] € B™ then for every Ay € [A] there is an
extension of finite dimensional groups

19 Gay = G(m)a, 27— 1

where G 4, and G(7) 4, are the stabilizers of Ag in G and G(r) respectively. If [A] € B*
is fixed under 7 then Ga, = 1 for all Ay € [A] and therefore there is a unique lift of
7 to G(x) which fixes Ag.

We call two lifts from 7 to G(m) equivalent if they are conjugate via an element
of G. Let I be the set of equivalence classes of these lifts, then the fixed set (8*)™
decomposes as the disjoint union

B =[1(4/6) =18,
el icf
where A? is the space of i-invariant irreducible connections and G; is the space of

i-invariant gauge-transformations. Note that for.i # j A;/G; and A;/G; might
intersect at reducible connections.



Putting the C*°-quotient topology on B* turns them to Frechet manifolds, and
we have

Lemma 1.1 The fized set (B*)™ is a smooth, closed submanifold of B* of infinite
codimension.

Except for the codimension part this is Proposition 1.3 from [BM93]. The rest can
be seen by varying a fixed connection within a small chart contained in the free
stratum of X. This yields an infinite dimensional complement to the space of fixed
connections.

If pp is a w-equivariant metric on X then the moduli space M of anti self dual
connections on P is 7-invariant.

2 A fixed point theorem

In this section we restrict our attention to the case G = 503, woP # 0 and —4 <
1P < 0. By the Uhlenbeck compactification theorem this forces the moduli space
to be compact for all metrics on X.

For the case of a compact moduli space we give a brief reminder for the definition
of the Donaldson polynomial invariants: The free SO3 action on P induces a free
SOj3 action on B*(P) xg P with quotient B* x X. The associated principal bundle
is called P*¢ and we call p; € H*(B* x X;Z) its first Pontrjagin class. The p map
is defined by

b Ha(X;Z) = HA(B Q) o 1o

If we(P) = 0 then p(Z) is integral, if wo(P) # 0 then 2u(X) is integral, see (Kot91,
2.8-9].

Now let k = —1/4p,(P) and let dimM = 8k — 3(1 + b]) =: 2d be even. The
Freed-Uhlenbeck generic metric theorem allows us to choose a metric on X such that
M is a smooth manifold. Note that it might not be possible to choose this metric
out of the equivariant ones. Let Q be an orientation of H%(X;Z)® H*(X;Z) and
& be an integral lift of wy(P). Then © and & determine an orientation of M (see
[Kot91, 2.16-17]), and formally the value of the Donaldson polynomial associated to
M -with this orientation- on classes £1,...,5q € H3(X;Z) is

Gana(St - Sa) = (uS1 U -+ U pSy[M]).

This is independent of the good metric chosen as long as b+ > 2. In the case
bt = 1 the invariant depends on the metric chosen in the following way: The
classes e € H%(X;Z) satisfying e = wz(P) mod 2 and pi(P) < €? < 0 give rise
to topological S!'-reductions of P and the bundles of lower charge. They determine
a chamber structure on H2 p(X). A metric on X determines a up-to-sign unique
normalised self dual two form w € H3 ;(X). The Donaldson Polynomial in the b* =
1 case depends on the metric only through the chamber of w. (See [Kot91, KM94].)



The choice of orientation Q of H%(X) @ H+(X) and the particular choice of the
integral lift & of & = wa(P) only affect the sign of the Donaldson polynomial. Since
we will be interested only in the divisibility of it, we will drop this from our notation
and will write qu o for the degree d Polynomial associated to the SO3 bundle with
we(P) = c.

If wo(P) = 0 then ¢(¥,...,Ly) is an integer. If wq(P) # 0 then q takes values
in 5;Z. This justifies

Definition 2.1 We say that an odd prime p divides the Donaldson Polynomial qé{a
iff p divides the numerator of g4 o(Z1,...,Lq) for every combination of X1,...,5,
in Hy(X; Z).

We can now state

Theorem A Let X be a smooth, closed, simply connected four-manifold with bt = 1
on which Z/p, with p an odd prime number, acts preserving the orientation on X
and on HY(X;Z). Let G - P — X be a principal SOz bundle with nonzero
o = wy(P) € HY(X;Z/2)%/P and —4 < p(P) < 0. Moreover if & is some integral
lift of @ we assume that & is fized by Z/p.

Let py be an eguivariant metric on X s.t. M(X, po) does not contain any re-
ducible connections. The Donaldson invariant qc‘}’a s understood to be associated to
the chamber of po. ’

If the induced Z /p action on Mp(X, po) is free then p divides qj:'a when restricted

to Hy(X;Z)2/P.

Proof of Theorem A

We start with the main topological ingredient of our fixed point theorem:

Lemma 2.2 Let 7 be a finite cyclic group and Z a free mw-space with byZ = 0. Let
pr: Z — Z]m be the projection.
If x € H*(Z;Z)" then x = pr*(z’) for some 2’ € H*(Z/m, Z).

Proof: We follow [HL92, Theorem 6.1]. Recall that the Borel cohomology of a
m-space Z is defined by ‘

H(Z;Z):= H'(Z x, Em; Z),

which can be calculated using the Leray-Serre spectral sequence for the fibration
Z = Z xx Em = Bm with Ey-term given by E5? = HP(r, H9(Z)). In the case when
Z is a free m-space F x, Em is homotopy equlvalent to Z/m and the fiber inclusion
Z < Z x5 Em is homotopic to the quotient map pr : Z — Z/x. Combining this
with the fact that the fiber inclusion induces the edge homomorphism

(Zx Ew)—»EO" CES'—H‘(Z VAL

we see that the lernma follows if we show that thc E2 2_term survives to EO 2



All of this was true for an arbitrary finite group = and we now specialize to 7
being finite cyclic. Since HY(m;Z) is infinite cyclic for j = 0, = for positive even j
and zero otherwise, we see that by Z = 0 implies that all differentials starting at EX
are zero. Therefore H%(Z)™ = Eg’z = E%? which proves the claim. a

In our case Z will be B*\ (B8*)2/? and the classes = will be u(Z) for some
T € Ho(X;Z)%/P. To see that uY is invariant we need the following remark:

Note that any f € Diff(X) satisfying f*P = P induces a self map f* of B*(P)
given by pull back. Therefore (f* x f) is a self map of B* x X. For any such f
we will write in abuse of notation f* for the induced map on B* and for the map
induced by f* on H*(B). With this simplifying notation we have

Proposition 2.3 With the notation as above the relation

fru(B) = u(f71E)
holds for any £ € Hy(X; Z).

Proof: First note that the relation f*P = P implies that (f* x f)*(Ped) = pad
over B* x X. The proposition follows from this and the naturality properties of the
slant product. a

Now turn to the second technical problem: Recall that in order to define the
Donaldson invariants for a moduli space M one chooses a metric x4 with the property
that M and all moduli spaces involved in the compactification of M are smooth.
The Freed-Uhlenbeck theorem enables one to pick such a metric out of a generic set
but this generic set might not contain an equivariant metric.

Because of this we’ll have to work in a slightly more complicated setting, namely
a combination of the two perturbations: variation of the metric and perturbation of
the ASD equation.

Fix a SOs-bundle P satisfying the assumptions of Theorem A and choose a
metric 1 on X. Recall that the moduli space M{X, 1) is the zero set of the section
F* . B = Qf, where Qf = A xg L2Q*(adP) - B and F* is the plus part of
the curvature with respect to u. F* can be perturbed in two ways: Let 0 : B —
A xg LIQT be a section, and let i : L2Q+ < LZQ* be the compact inclusion. Then
i 00 is a compact perturbation of F'* and for a generic choice of o the zero set
M (X, p) = (Ft +4i0)~1(0) is a smooth manifold of the expected dimension. On
the other hand we can vary the metric as described in [DK90, p.148] or the next
section.

Combining these two we set P := C x S, where C is the space of conformal classes

of metrics on X and S is the space of sections in L3(Q21), and set B x P = o,
the parametrized self dual curvature map. Since the partial derivatives in one of
the P directions alone suffices to achieve a surjective differential of F*, we see
that the ‘universal moduli space’ (F+)~1(0).C B x P is smooth. Recall that the
regular values of the projection pr : (F*)~1(0) — P are exactly the perturbation



parameters which yield smooth moduli spaces. Any two good parameters (g, 0y),
i = 1,2, can be joined by a good path v, i.e. pr!(7) is a smooth cobordism between
M(X,gp1) and M?2(X, pu2). This cobordism is also compact for the proof of
the ‘parametrized compactness theorem’ [DK90, 9.1.2] is the same for families of
perturbed ASD connections. The point is that Uhlenbecks compactness theorem
requires bounded energy, and this is still fulfilled as long as the perturbation o is
bounded. In particular if one end of the cobordism is compact so is the other, and
they define the same homology class in B.

Now let 1 be the equivariant metric from Theorem A. We assume that M (X, ug)
is compact and that the Z/p action on M(X, uo) is free. Therefore M(X, 119) has a
positive distance to the fixed set BZ/? and so we can find an equivariant perturbation
oo s.t. (1o, 00) yields a smooth moduli space. Now choose a good metric g; close to
tto. By the preceeding remark we see that the homology classes of M (X, p9) and
M{X, 1) in H,(B) agree. This means that the Donaldson Polynomial associated to
P can be calculated by evaluating the cohomology classes ;(Z) on the fundamental
class of M7°(X, o). We summarize this paragraph in

Lemma 2.4 Let P - X be a S03 principal bundle salisfying the conditions of
Theorem A. When the Z/p action on M(X, o) is free then there is an equivariant
perturbation oy of the ASD equation s.t. the Donaldson invariant associated to P
can be calculated by evaluating against the fundamental class of M, which is a
smooth compact manifold with free Z/p action.

Proof of Theorem A: To complete the proof of our fixed point theorem we now
collect the pieces:

Assume that the Z/p action on M(X, 115) is free. Choose an equivariant pertur-
bation o like in Lemma 2.4. Note that the restrictions on p;(P) and b;(X) imply
that M?°(X, ug) is zero or two dimensional. In both cases M7(X, ) is a smooth
compact manifold on which Z/p acts freely preserving the orientation.

In the zero dimensional case this just means that the points in M?(X, 11g) come
in free p-orbits, which means that their count with orientation is divisible by p.

For the two dimensional case take © € Ho(X;Z)2/P. Then 2.3 implies that
pT € H2(B*)2/?, Now [AMRY5] calculated

(B Z/2 p(P) = sign(X) mod 8 and wz(P) = wa(X)
T =
! 0 otherwise.

Combining this with the fact that (B*)2/? < B* has infinite codimension we see
that by (B8*\ (B*)2/7) = 0. Set B := B*\(B*)2/?,i: By < B* and pr : B} = B /z/p-
Lemma 2.2 implies that i*;(Z) = pr*(z') for some z' € H*(B;/(Z/p);Z). Now
pre : Ho(M0) = Hyo(M° [(Z/p); Z) has degree p and therefore

Gi5a(B) = (" u(D) | M) = (2’ | pro[M7°))

is divisible by p.



Examples

In the following let P, stand for the SO3 bundle over X with we(P) = @ and
p1(P) = p. Note that (ws,p1) classifies P and cvery pair (ws,p;) which satisfies
Pwy = p1 mod 4, P being the Pontrjagin square, is realized, (see [DW59]). Let
Map(X, o) be the moduli space of ASD connections on P, , with respect to the
metric pp. We assume that X and P satisfy the assumptions of Theorem A. Here
po will always be a Z/p equivariant metric on X. In addition we will always assume
that the induced Z/p action on H*(X;Z) is trivial.

Suppose bT = 1, weX # 0 and sign(X) = 0,1,2 or 3 mod 8. Then there are
no reductions on a SO3 bundle Fy,(x)x for —4 <k < 0. This follows since a class
e € H?(X) associated to a reduction of P to a S! bundle is characteristic by the
wg assumption. Therefore e? = sign(X) mod 8 and these were the cases excluded.
This means that in this case the invariant does not depend on the metric.

¢ The blown up complex projective plane

Here H2(CP2#CP?;Z) =< H,E > where H and E stand for the hyperplane class
and the class of the exceptional divisor. We have that H%2 =1, E? = —1 and H and
E are perpendicular. Let o :== H — E be the Z/2 reduction of H — E. Then o = .

wo(P), and by the remark above there is no chamber dependence of the Donaldson
polynomial. In [Kot91, Proposition 7.1(4}] it is calculated that qﬁzﬂ#cm = —-2F,
and therefore My _4(CP2#CP2, 1g) has a Z/p fixed poins.

The bundles Pﬁ,_.g and PE,—S also yield compact moduli spaces, but unfortu-

nately we do get a chamber structure in these cases, and in [Kot91, Proposition
Cp? #W

7.1(3)] it is calculated that there are chambers for which 457 vanishes.

¢ The Barlow surface and its blow up

The Barlow surface B is defined to be the minimal desingularisation of a quotient
of a certain Hilbert modular surface. It is a simply connected algebraic surface
homeomorphic to CP2#8CP?, (see [Kot89, §5)).

Let o = we(B). Then o® =1 mod 8 and the moduli space for the SO3; bundle
P,,_3 is zero dimensional. By the remark above the Donaldson invariant does not
depend on the metric chosen, and in [Kot91, 7.8] it is calculated that q{fa = —8.
Therefore every Z/p action on B induces a non free action on M, _3(B, up).

Let X = B#CP? be the blow up of the Barlow surface at one point. Then
a = wy(X) and p; = —4 give rise to a 2 dimensional moduli space, which again
yields a Donaldson invariant which is independent of the metric. In [Kot91, 7.10]
it is calculated that ¢f*, = —16F where E is the class of the exceptional divisor.
Hence every Z/p action on X induces a non free action on Mo, —4(X, po)-

¢ Dolgachev surfaces
The Dolgachev surface X {a, b) is a minimal elliptic surface obtained from the rational
surface CP2#9CP? by two logarithmic transforms of multiplicities a,b > 1. Then




Y := X(2,3) is homeomorphic to CP2#9CP? [Don87, Proposition 3.16]. For o =
wy(Z) it is shown in [Kot91, 7.10] that ¢Z, -which again does not depend on the
metric- is equal to 8x where « is primitive. This shows that every Z/p action on Y
induces one on M, _4(Y, p29) which has a fixed point.

3 Avoiding reducibles by equivariant perturbations of
the metric

Let po be a m-equivariant metric and Ag: be the 1 eigenbundles of 3 = *,, on
A%(T*X). All conformal classes of metrics on X can be parametrized by the bundle
maps from Aj to Ag’ with pointwise norm less than 1: C := @M_G(AJ,A;). C
carries a  action by setting (g - p)() = g* (u((¢7')}*)) for u € C and a € Ag.
The equivariant conformal classes correspond to the fixed set of # on C: C™. Note
that the 7 action naturally extends to a m action on T,,C = HOM(A;,A]) and
that T3, (C™) = (T,,C)". Let u be a metric such that [] € C™. The average of p is
equivariant and in the same conformal class as g, Therefore, if we pick a metric out
of an equivariant conformal class, we will assume that the metric itself is equivariant.

Let H2(X) be the p-harmonic 2-forms on X, and recall that a — [a] is a
canonical isomorphism from H2(X) to H3, 5(X). We will write H2(X) for H3, 5(X)
in the following. Let Neg,- (H ﬁ‘) C Gry- (H?) be the open submanifold of Gr,- (H?)
consisting of negative definite subspaces with respect to the intersection form on
H?. Note that under Hf‘ 3 H? the subspace H := Hﬁ NTA; is mapped to an
element of Neg,- (H?). This defines the period map

P : Metrics = Neg,- (H?).

Since on 02 the star operator is conformally invariant, we have that H f is invariant
under conformal changes of the metric, which means that the period map factors
through the conformal classes:

P C — Neg,- (H?).

Now take z € H2(X) with 2% < 0, and set Ny := {V € Neg,- (H?)|z € V}. Recall
the following

Lemma 3.1 The tangent space of Neg,- (H?) at a subspace A is given as
T4(Negy- (H?)) = HOM(A, A*).

N is a submanifold of Neg,- (H?) of codimension b*. The tangent space of N, at
an element A € Ny is equal to

Ker(evy) < HOM(A, AL), where ev, : HOM(A4, A1) : a = ofz).



In [DK90, 4.3.24] the differential of P at ug is calculated:

D, P: HOM(A;,Af) = HOM(H;, HY)
m = (am Hyem(a)),

Where I1 HE is the L2-projection to the space of pg-harmonic and zg-SD forms. We
define a 7 action on HOM(H , Hy") by setting g- ¢ := g* o po (g71)*.

Proposition 3.2 D, P is 7-equivariant.

Proof: First note that for any 8 € TAl and g € Diff*(X) a po isometry the

relation
(Mg 09) = (97 0Tt ) 6

holds. This follows from the Hodge decomposition theorem and the fact that
pullback via g, being a pp-isometry, commutes with d*.The proposition is now a
direct consequence of the definition of the two m actions on HOM(A;,AJ) and
HOM(H; , Hy). O

Let P = X be a SU; principal bundle with co(P) = k > 0. Since pq is #-
equivariant the moduli space of gauge equivalence classes of *g ASD connections
on P, M(P,ug), carries a 7 action, induced from the one on X. A singularity
in the moduli space coming from a reducible connection corresponds to a class
+z € H*(X;Z) with 22 = —k, and *z gives rise to a singularity in M(P, ug) iff
z € H,. Here we also wrote z for the image of z in real cohomology. Moreover, the
singularity.is in the fixed set M™ iff {z, —z} is 7-invariant.

Let P — X be a SOz principal bundle with we(P) = w and pi(P) = p < 0.
Here a singularity corresponds to a class &z € H?(X;Z) with z = w mod 2 and
z? = p. Any such class gives rise to a singularity in the moduli space M(P, yg) iff
z € H, . Again, the singularity is in the fixed set M™ iff {z, —z} is 7-invariant.

Definition 3.3 Let ug be an equivariant metric.

If P » X is a principal SU, bundle we call z € H*(X;Z) a fized reducible if
2% = —cp(P), {z,—x} is 7 invariant and z € H .

If P = X is a principal SOz bundle we call z € H*(X;Z) a fized reducible if
z =p1(P) mod 2, 22 = py, {z, -z} is T-invariant end T € H.

In both cases we say that z is of type I iff x € H*(X)™, otherwise of type IL.

Note that a fized reducible of type II determines a subgroup 7 < 7 of index two
which fires x. m, determines a representation xz : m = {*1}, and for g € © the

relation g*z = xz(g)z holds.

We want to apply the calculations above to show that under a certain cohomo-
logical condition there are no fixed reducible connections in M. Note that the =
representation Hf is independent of the equivariant metric chosen, and therefore a
cohomological invariant of the group action on X. In the proof of our theorem we’ll
need the following



Lemma 3.4 Let fy, fo,... be countably many non zero continuous homomorphisms
between two real vector spaces V and W,

Then there is a Baire set Vigg C V s.t. fi(v) # 0Vi and all v € Vigg. If there are
only finitely many f; then Vg is also open.

Proof: We look for these v € V which are in the complement of the union of all
kernels of the f;. Set

Vigo := V \ U Ker(fi) = Ny (V \ Ker(f3)) = 0 f7 (W \ {0}).

Since f71(W\{0}) is open and dense in V, we see that Vi is a countable intersection
of open and dense sets in V, and therefore a Baire set. 0O

Definition 3.5 A fized reducible of type I is called removable iff Hf (X)™ # 0. A
fized reducible = of type II is called removable iff H(',*(X)” < HJ(X)”‘.

Theorem B Fiz an equivariant metric .

If all fized reducibles are removable then the tangent space T,,,C™ contains a Baire
set I' of ‘good’ tangent directions s.t. for all p; o = po+ty, 0 # ¢t € R small and
v €T, the moduli space M(P, j1;,) does not contain any fized reducibles.

On the other hand: If there is a fized reducible T which is not removable then
M(P, u) will contain a reducible fized connection for all equivariant metrics pu.

Proof: Let z1,zg,... be integral classes in H, (X) which are fixed reducibles.
We will show that evy o DP # 0 iff z is removable.

Assume that all fixed reducibles are removable. Therefore evy, o DP # 0 for
all i and Lemma 3.4 yields a Baire set I' C T},,C™ s.t. evy; o DP(y) # 0¥y € T
and all <. This means that DP(v) is not tangential to Ny, for all 4, and therefore
z; € Hy, (X) for all4, vy € T and ¢ € R small. This is equivalent to saying that
P{pgy) € Ny, for all 1.

On the other hand let evy; o DP = 0. This means that DP maps T,,C" into
the tangent space of N;. So P will map all equivariant metrics close to yy into Nz.
Since the cohomological condition doesn’t change in the passage from pg to p close
by and the equivariant metrics are path connected it follows that P(u) € N, for all

J.

Case I: The fixed reducible z is of type I. So z € (H?)”, and therefore the
evaluation map
evy : HOM(Hy  Hf) = Hf : a— afz)

is m-equivariant. This means that the composition

eve 0 Dy P HOM(A7, Af) - HY

10



is m-equivariant. In {DK90, p.153] it is shown that ev; o Dy, P maps surjectively
onto H('," . Therefore the restriction to the m-invariant part is also surjective:

evg o Dy P HOM(Ag, AD)™ — (HF)".
This means in particular that evy0D,,, P restricted to T},,C™ is not zero iff (H;" )™ # 0.

Case II: The fixed reducible z is of type II. We start with an elementary
remark: Hi (X)™ < Hyf (X)™ iff 30 # y € Hf (X) s.t. ¢*y = xz(g)y. It is clear that
the existence of such a y implies strict inclusion of Hy (X)™ in Hy (X)™=. Now let
the inclusion be strict. Since 75 is a normal subgroup of = it follows that Hy (X)™=
is 7 invariant. The induced m action on Hy (X )™ determines a m/m; = {1} action
on H (X)™, which is not trivial since the inclusion is strict. This means that there
isa03#y e Hf (X)™ with g*y = x(g)y.

Now assume that z € Hj is removable and take 0 # y € H(')"(X)’r+ with g*y =
xz(9)y. Since evzoDP is surjective it follows that there is a mg € HOM(A7, Af) s.t.
DP(myp)(z) = y. Set mp := |m|~! Ygengomoo g~'. Then mg € HOM(A7,A)™.
Since DP is equivariant we calculate

DP()() = o | 2 ¢ DPm)@) + 3 g*DP(m)(—w)}

|1r| | gEnt gem\r+

=|—71r—| Yooyt Y 9“(—10}

| gent gem\nt

=y#0.

And therefore evg 0 DPr, = # 0.

On the other hand let (H;)™ = (HF)™ . Take gy € (v \ nt). For any m €
HOM(Ag, A7) we calculate

Y DP(g-m)= ) ¢"DP(m)(g™")*(a) + ) _ (909)* DP(m)(g™")"(~)

geET gE1r+ gefi-
= Y ¢'DP(m)(z)—g; Y g"DP(m)(z)
gent gemt B
E(Jff;;:)'r+ e(;tr;;}fr+
=0,
which implies that DP(m)(z) = 0 for all m € T,,(C™). O
Remarks: . S

11



i} Suppose there is an class T € H%(X;Z) with 22 = —cy(P), {z,—z} m-invariant
and the cohomological condition of removability on H* is not fulfilled. The
theorem does not imply that there will be a fixed reducible connection for
all equivariant metrics, since z might not lie in H; for any equivariant p.
However the theorem says that if z € H for one p then there will be a fixed
reducible connection for all 4.

ii} One can not hope for the stronger statement that Pe~ is transversal to N
in general. In fact the proof shows that for + € H?(X)™ transversality is
equivalent to the much stronger cohomological condition H+(X)™ = H*(X).

iii) The first results about avoiding reducibles by equivariant metrics known to
the author were proved by M. Klemm in his thesis [Kle95]. The results are
written up for the case X = §% x S2, but almost literally generalize to the case
when the induced 7 action on cohomology is trivial.

iv) The above theorem sheds some light on R. Fintushel’s standard example for the
failure of good properties in equivariant gauge theory as written up in [HL92,
Example 2.15]. After reversing the orientation to stay in our setting of ASD
moduli spaces the example describes a Z/2 action on a K3 surface with negative

orientation and quotient —CP?2. Pulling back connections from Mfgg, (P, 9)

produces a 5 parameter family of in Mff(’g (P2, 7*g) which will always contain

the unique reducible from the moduli space over —CP?. Therefore one should
not expect that one can perturb away all reducibles by an equivariant metric.
This is consistent with our theorem for H2(—K3;R)2/2 = H?(~CP?R) im-
plies that H~(-K3) = R@® 2R~ and H*{-K3) = ®#19R~. ILe. for any equiv-
ariant metric there is at most one fixed reducible of type I which is not per-
turbable since HT(—K3)%2/2 = 0. However all fixed reducibles of type II are
perturbable, and therefore the theorem predicts one fixed reducible connection
for a good equivariant metric.
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