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MULTI-# UNKNOTTING OPERATIONS:
A NEW FAMILY OF LOCAL MOVES ON A KNOT DIAGRAM
AND
RELATED INVARIANTS OF KNOTS

N. A, ASKITAS

ABSTRACT. We define new families of (so called multi-#) local moves on knot
projections (which contain the #-local move and the ordinary crossing change)
and study some of their properties together with related knot invariants. We
show that they define unknotting operations and hence resulting unknotting
numbers. We use 4-manifold theory as a tool.

1. Introduction

In [M] H. Murakami defines a #-local move on knot diagrams and shows it to
be an unknotting operation. The proof that it is indeed an unknotting operation
is based on knot projections related to non-orientable spanning surfaces for the
knot. Consequently he defines a metric dg on the space X of all knots: There are
finite length sequences of operations from any knot K; to any knot K,. Take the
minimum such length over all knot projections and sequences to be the distance
between the K;'s. An #-unknotting number of knots is then defined as a special
case (unknotting number of K = the distance to the unknot). Murakami studies
some of the properties of these numbers. In [A] I recovered slightly stronger versions
of his estimates on these invariants by using input from four-manifold theory (P.
Gilmer’s thesis [G] is taylored ideally for this and it is the main estimating tool
here). There are, besides the ordinary crossing change, a number of unknotting
operations, defined and studied by various authors, all of which result in producing
metrics on K and associated knot invariants: the unknotting numbers. In this
paper we want to generalize the #-unknotting operation by producing a family
of multi-# unknotting operations’. These are nothing but local moves on a knot
diagram, a finite sequence of which exists, for any given knot which will unknot it.
In the next section we define the family of moves study some of their immediate
properties and then proceed to establish that they are unknotting operations. The
proofs in this section are entirely combinatorial and in fact pictorial. In the next
section we introduce some more unknotting operations and in the last section we
define the relevant resulting invariants and study some of their properties. It is in

Key words and phrases. 4-manifolds, multi-# local moves, knots, unknotting numbers of knots,
singularities.

1Thig is a revised version of my MPI-preprint 97-53. Part 2 remains the same. In Part (1):
The main Theorem 2.1 is improved to Theorem 2.1 here. The ideas of the proof of the present
stronger theorem were, essentially, contained in our previous proof. Some bugs were eliminated
from the proof as well. Finally some more new local moves are intreduced clocely related to the
ones we had already defined and shown to be unknotting operations as well.
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2 N. A. ASKITAS

this section that one can see that the definition of these operations is taylored in
order to involve four-manifold theory in their study.

2. The Multi-# local move
Define the multi-# local move of type (¢, 3,d) on a knot projection as in the
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FIGURE 1

The direction shown in the figure will be called a + to — multi-# crossing change
of type (t,s,d) and its inverse a — to + one. The boxed ¢ in the figure is always
even and indicates |t| (sign(t))-half twists (we will follow this convention every time
we abbreviate a number of twists by boxing them). We will show these local moves
to be unknotting operations. Consequently related metrics on the space of knots
will be defined, as well as related unknotting numbers.

We begin with some preliminary lemmas which will be used later in the proofs.
We will work with non-orientable spanning surfaces of knots as in [M]. It is imme-
diate that a multi-# local move of type (0,1, 1) is nothing but Murakami’s #-local
move and that one of type (2,0, 0) is nothing but the ordinary unknotting operation.
The moves of type (0, s,1) and (2, s,0) are interesting restricted generalizations of
them respectively.

Lemma 2.1. The effect of a = to F, multi-# move of type (t,3,d) on two like-
oriented parallel strings is (¢t — 4d) half twists.

Proof : Notice the equality in the figure below.

2Angn) Y = t-4d
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FIGURE 2



MULTI-# MOVES 3

Applying the move inside the dotted box finishes the proof in the case of a + to
- move. The inverse is entirely similar.

Lemma 2.2, A + to — multi-# local move of type (t,3,d) can be locally expressed
as one + lo — mulii-# local move of type (1 £ 4,8+ 1,dF1).

Proof : Appropriately apply lemma 2.1 above.

Now let D, be a 2-disk bundle over a 2-sphere of Euler class m and let 2D,, be its
double (the latter is therefore diffeomorphic to a punctured $2 x 52 or O P? #—0?2
according as m is even or odd). The handlebody picture of Dy, is then given in

the figure below where we also introduce a homology basis and intersection number
conventions:

m 0

FIGURE 3

Lemma 2.3. Let K be any knot and suppose that it can be unknotted as a result
of applying a + to F multi-# local move of type (t,3,d) on one of its projections.
Then there is a 2-sphere embedded in 2D,y which is smooth everywhere except at
one point where it is a cone on K and represents 2(ax¢/s %ao) on homology.

Proof : The idea is contained in the figure below. Just multiply the strands
appropriately and include the ¢ twists.

FIGURE 4

Remark 2.1. It is an easy conseguence of lemma 2.9 and theorem 4.2 that if K,
and K5 are two knots which differ by an odd (even) number of multi-#¢ moves of
type (t,8,d) with t = 0 mod 4 and d = 1 mod 2 then they have different (equal) Arf
invariants. A move of type (0, s,d) with d = 0 mod 2 preserves the Arf invariant.
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The following lemma is a kind of inverse to lemma 2.2 above.

Lemma 2.4. A multi-# local move of type (1,s,d) is locally expressible in terms
of 2s pass moves and 4s half twists.

Proof : The proof is contained in the figure below:
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FIGURE 5

We are now ready to state the main theorem of this section:

Theorem 2.1. Let K be any knot and t = 0 mod 2, d > 0 and s any integers. If
t=2mod4 ort =0mod4 and d — i = 1 mod 2 then a multi-# local move of
type (t,s,d) is an unknotting operation. Ift = 0 mod 4 and d — Z— = 0mod 2 then
a finite sequence of + to F, multi-# local moves of type (t,s,d) leads to the unknot
(trefoil) if Arf(K) =0 (Arf(K)=1).

We will prove this theorem in the remainder of this section by using non-
orientable Seifert surfaces for knots and the resulting knot projections as in the
example below. We can obviously assume that the feet of each non orientable han-
dle are next to each other and have no other feet in between and that each handle
has an odd number of half twists.

QOdd numbers of half twists

o

N

S

T

L

FIGURE 6

Lemima 2.5. Every knot can be, via a sequence of multi-# local moves of type
(t,s,d) for any t,s,d, reduced to a connected sum #2_; K(qg;,2) of torus knots with
the g;’s well defined modulo |t—4d| and in case [t—4d] > 0 such that 0 < ¢; < |t—4d].
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Proof : We will show how to split off a connected summand of the knot which
is a torus knot of the desired type and the rest of the knot is again the boundary .
of a non-orientable surface as before with one less handle. Then we can repeat the
proccess as many times as we have handles and we will be done.

FIGURE 7

The idea is as follows; along each handle there is a number of (over or under) #-
crossings which when changed all at once unknot the handle from all other handles
as well as from itself so that we do get an unknotted handle with an odd number of
half twists. We will show that we can bring all of these together. The first step is
to turn all of them to {say) cross our handle from under. The picture above shows
that we can do that as the pictures are equal and changing the marked #-crossings
in either has the same effect. Now just slide together all these undercrossings by
following the handle as in the figure below and you are done. We should only point
out that if say we are sliding all the crossings to a given foot of the handle then
organize the sliding of the self #-crossings of the handle so that the ones furthest
from the foot are slid first.

o= Alr

FIGURE 8

Tt is now clear that some (¢, 5,d) move will (at once!) unknot the handle from
all the other handles and will also untie it. We can achieve this by any desired
move (i, 8, d) as long as we are willing to apply it many times and add twists to the
handle which is to be split. In the figure below we see that by adding curls we can
change d and s at will. The effect is that of adding Z4z-half twists to the handle.




6 N. A. ASKITAS

Al
TR

FiGURE 9

This establishes the reduction to a connected sum of torus knots of type K(—, 2}.
That the first parameter can be changed modulo t — 4d is a consequence of lemma
2.1. This finishes the proof of this lemma.

Now we have to deal with the case of a connected sum of K (—,2)’s. For that we
need some preparatory lemmas which we will use as pieces of a puzzle in our proof.
The lemma below is without a doubt, as the careful reader can quickly realize, the
central observation which makes the rest of the proof possible. It and its many
offspring lemmas are the ones which will allow us to desolve connected sums.

Lemma 2.6. We can pass from (a) to any of (b) or (c) in the figure below by
applying two multi-# moves of type (t,s,d) for any t,s,d.

FiGure 10

Proof : We do the case 3 = 0. The case of an arbitrary s will then be clear
from the proof. The latter is based on observing the following equalities:

== 2x half twists

-2x half twists [_ |
[l == =5
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H
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FiGurg 11

Applying a + to — multi-# move of type (¢,0,z + 1) in the figure above inside
the dotted box of (1) and a — to + multi-# move of type (£,0,z + 1) in (2), we get
respectively the figure below. Applying our lemma 2.1 to each of these inside the
dotted boxes for d = x + 1 finishes the proof.
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FiGure 12
Lemma 2.7. We can pass from K(y, 2)#K(3,2) to K(y +4,2) for any y, via one

multi-# move of type (1, 8,d) for any t,3,d.

Proof : The proofis given in the figure below where the arrow means application

1T

FiGuRe 13

Lemma 2.8. We can pass from K(3,2) to K(—3,2) via two (t,s,d) moves any
t, s,d.

Proof : In the figure below apply lemma 2.6 as follows. When (z,y) = (3,-1)
go from (a) to (b) with the lower signs and when (z,y) = (-3, 1) go from (a) to (c)
with the upper signs.

1
Jee]
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FI1GURE 14

The results are mirror images of each other but in either case it is nothing but
the (amphiceiral) figure eight knot! Now apply one of these moves followed by the
inverse of the other and you can connect K(3,2) to K(—3,2).

An immediate consequence of lemma 2.7 is:

Lerama 2.9. We can pass from K(4x £ 1,2) to #&ﬂlK(ﬁTif,Z) via a sequence of
(t,s,d) moves any t,s,d. We can pass from K(—3,2)#K(3,2) to the unknot.

Now we are finally ready to prove our punch-line lemma.:
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Lemma 2.10. Every connected sum #,=1" K{(g;,2) of torus knots can be unknotted
via any multi-# move of type (t,3,d) if t =2mod4 orift =0mod 4 and } —d =
1 mod 2 and can be reduced to either the unknot or the trefoil if t = 0 mod 4 and
L _d=0mod?2.

Proof : By repeated applications of lemma 2.7 {in reverse} and its mirror
image we can reduce any #;=;nK(g;,2) to a connected sum of trefoil knots which
by lemma 2.8 we can assume to be all right-handed: #*, K(3,2). We can change
m by any even number as follows: Introduce a summand of type K(3,2)#K(-3,2)
via lemma 2.9. Turn this to a summand of the form K (3,2)#K(3,2) by lemma
2.8. So now we are left with dealing with K (3,2). We geparate cases. Suppose that
t =0 mod 4 and let £ = 4T. Then we can pass from K(3,2) to K(4d—4T+3,2) =
K (4(d—T+1)—1,2) by lemma 2.1, and from the latter to #°; " T K ( I—ﬁ—ﬂs 2)
by lemma 2.9. We can then pass from the latter to the unknot in case d — T is odd.
Now suppose that ¢ = 4T + 2. Since we can always pass from K(3,2) to K(—3,2)
we can pass from K(3,2) to any of K(4d — 4T 2 + 3,2). From the latter ones
we can, by applying 2.9, pass to #‘d T‘K( =TT L 3,2) or to #ld—T ”K(]d—%“—lﬂ 2)
i.e. we can pass to a connected sum of an even number (jd —T| or |[d— T — 1|} of
trefoils and hence we are finished. This finishes the proof of this lemma as well as
that of Theorem 2.1.

3. Some more local moves

We would like in this section to introduce some more unknotting operations.
We need a definition first which we make as general as possible for the purpose of
future study as well. The moves in this section are really an outgrowth of the ideas
involved in defining and proving the multi-# unknotting operations.

Definition 3.1. 4 grid local move of type (d1,71) % (d2,r2) will be a local move as
in the picture below.
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FIGURE 15
Observe that in this language a multi-# local move of type (¢,0,d) is locally
expressible as a grid move of type (2,0) x (2d,2(s — d)). We then want to observe:
Theorem 3.1. A grid move of type (2,0) x (2d +1,r) is an unknotting operation.

Proof : The proof is a consequence of the fact (see picture below where the
left hand side is nothings but the left hand side of fingure 1 projected in a slightly
different way)
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that a multi-# local move of type (—2, s, d) is locally expressed as a grid move
of type (2,0) x (2d + 1, 2(s — d)).
We write down one last unknotting operation:

Theorem 3.2. A *-full twist on four parallel like-oriented strings is an unknotting
operalion.

Proof: It is clear that we can unknot the handles from each other by applying
the desired moves so that the result is the connected sum of torus knots of type
K{(—,2). Since the moves we are discussing can obviously induce +8 half twists on
two parallel like-oriented strings (just double the band by curling) we can assume
that we have a connected sum of K(3,2)’s and K{~3,2)’s. Now unknot these latter
ones as in the figure below where what we see pictured is nothing but a projection
of the right-handed trefoil. Applying the moves indicated in the picture the reader
can easily see that results in the unknot. The unknotting of a K (5,2) is the same
(by our discussion above) as that of a K(-3,2) which is achieved by taking the
mirror image of our figure 2.

-1 full twist on 4 like-oriented strings.

+8 half twists achieved by a
" +1 full twists on 4 like-oriented

\j“’gs

FIGURE 17

This finishes the proof of our theorem 3.2.

Note 3.1. Y. Chyama’s result in [O] (Corollary 2.14 to his Theorem 2.13) does
not prove our theorem 3.2 (see his Remark 2.5)!

4. Multi-# Knot Invariants, 4-manifolds and Estimates

We can now define knot invariants resulting from the multi-#, grid and twist
unknotting operations we defined in the previous sections. For efficiency of the
write up we will write v = (¢, 8,d). Similarly w will stand for the parameters of a
grid move. As in [M] we can define for every move of type v = (¢, s,d) a metric
d# on the space K of all knots, which we will some times abbreviate as d,. For
i = 0,1, X; will denote the subsets of K of Arf invariant equal to i.
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Definition 4.1. For any knots K1, K, define their multi-# distance d¥ (K, K»)
to be the minimum, over all projections and multi-# sequences, number of multi-#
moves necessary to go from K to Ks. In case t = 0 mod 4 and d = 0 mod 2 these
metrics are defined only on K;. The multi-# unknotting number u¥ of a knot is
nothing but its distance from the unknot.

We can also define the various unknotting sets:

Definition 4.2. By U¥ (p,n) we will denote the set of all knots which can be un-
knotted via p + to - and n - to + multi-# moves of lype v. In other words these
are nothing but the circles of radius p +n in (K,d¥).

We make some further definitions which we find interesting:

Definition 4.3. A local move will be called a slicing operation if every knot leads
to a slice knot after a finite number of moves. We will say that the operation slices
the knot. Every unknotiting operation is a slicing operation.

We find the concept an interesting one because of the following definition which
can be given for every unknotting operation:

Definition 4.4. By S¥(p,n) we will denote the set of all knots which can be sliced
via p + to - and n - to + multi-# moves of type v. In other words these are nothing
but the subset of (K,d¥) whose distance from the subset of slice knots is p+n. We
can similarly to unknotting numbers define slicing numbers s¥.

Notice the inclusion U¥ (p,n) C S¥(p,n). We can also define such invariants as
multi-# distances of knots from their mirror images, ribbon sets and "ribboning
numbers” etc. Similar entities can be defined for the grid unknotting operations:
di,, ul, Ul (p,n) etc and the twist on fours like-oriented strings: d*, u* U*(p,n) etc.

Question 4.1. Do there ezist local moves on knot diagrams which are slicing op-
erations but are not unknotting operations?

What is interesting here is first that slicing numbers seem to, in principle, be
smaller than unknotting numbers and second the difference seems undetectable by
the various methods available. The reader can see that definitions of slicing sets and
numbers of knots are motivated by proposition 4.1 and the question that follows it.

We now quote the various 4-manifold theoretic results which will be used in
giving estimates regarding the various unknotting numbers. The following theorem
is proven in [G] by P. Gilmer (from where we copy it here) and as mentioned there
a special case of it (in the case d = 2 and one singular point) is also due to O. Ya.
Viro. The version we quote here is only a special case of Gilmer’s result (Theorem
4.1, Corollary 4.2).

Theorem 4.1. Suppose A C M* is an embedded sphere in a simply connected 4-
manifold which is smooth everywhere ezcept at q points where it is the cone on knots
Ki, i=1,...,q and is such that on homology [A] = a = df € Ho(M*), withd a
power of a prime p. Then for every 0 < j < d, j # 0 mod p:

(M) + 4~ 12 10(M*) = 5(d =)o = Y3/l

For the following theorem see p. 66 of [K] but beware because it is written down
incorrectly there! See also theorem 1.2 on p. 31 of [K]:
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Theorem 4.2. Suppose M* is closed, smooth, simply connected and w € Ha(M*)
is characteristic. If w is represented by an embedded sphere which is smogth every-
where except at q singular points where it is a cone on knots K;, i=1,...,q then
it satisfies

5(—@51‘?—5 = Z:Arf(Ki) mod 2

Such an w is always representable by an embedded sphere which is smooth every-
where except at one singular point where it is a cone on a knot K.

I quote the following theorem from [K] where it is attributed to D. Ruberman.

Theorem 4.8. The minimal genus of a surface in S* x S? representing the class
(a, b) with respect to basis 5% x q, px S? with ab # 0 is (Ja| - 1)(|b| = 1). The classes
{a,0),(0,b) are represented by embedded spheres. The minimal genus of a surface
in CP2#C P? which represents (a,b) in the obvious basis is

la] =1 ol
(")~
if la] > [b]. If |a| < |b|, the roles of a and b are reversed in the formula. If |a| = |b]

the class is represented by an embedded sphere.

These are the tools I know of that can be used to estimate the multi-# unknotting
numbers defined above. Lemma 2.3 and its analogues for the other unknotting
operations are the connecting tools. We have the following basic estimate:

Theorem 4.4. If K € U¥(p,n) then:
2(n - p)(2d — % +1) —4n < o(k) < 2(n — p)(2d ~ % +1)+4p

Proof : By a repeated application of lemma 2.3 if K € L{(’t d)(p, n) then there
is a 2-sphere embedded in #, (2D:!5)#,,(2D %) smooth everywhere except at one
point where it is the cone on K representing eap(a_—,i + dag) ©n (g ~ dao) on
homology. Now apply Theorem 4.1.

Remark 4.1. It is clear that we need only assume that K € S¥(p,n) in the the-
orem above and we would get the same estimates. This method produces esiimates
on slicing numbers rather than unknotting ones.

Noting the equalities u#(K) = min{p+n: K € U¥(p,n)} and s¥ (K) = min{p+
n: K € S¥(p,n)} we can now get:

Corollary 4.1. |o(K)| < 2u¥(K)(|2d ~ £| + 1). Same for s¥(K).
We can also, by applying Theorem 4.2 get:
Theorem 4.5. Ift = 0 mod 4 and K € U¥(p,n) then
uzf(x)(é —d) = Arf(K) mod 2.
Applying Theorem 4.3 in the cbvious way we obtain:
Theorem 4.6. If K ¢ U¥(1,0) or K € Ll(*f, {0, 1) imply

g5e(K) 2 124 — 5] -1

et e e

SE———
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Since any unknotting operation produces an immersed disk in B* we can get
obstructions for a knot to have multi-# unknotting numwber equal to one in terms
of unknotting numbers of other operations as in the following:

Corollary 4.2. Suppose K € U¥(p,n) withp+n = 1. Then K € U(k,l) implies
that max {k,1} > |2d — £| = 1. Similarly if for ezample K € U} | (k,1) then
4max {k,1} >|2d - £| - 1.

The proof of the following proposition can easily be extracted from the proof of
lemma 2.5:

Proposition 4.1. Any two-strand cable knot (or eguivalently any knot which is
the boundary of non-orientable Seifert surface with rank of first homology equal to
one) has multi-# unknotiing number equal to one for infinitely many unknotiing
operations of type (t,s,d).

Any knot which is the boundary of non-orientable Seifert surface with rank of
first homology equal to one has multi-# slicing number equal to one for infinitely
many unknotting operations of type (t,s,d).

There are of course knots whose slicing (and hence also unknotting) numbers
cannot be one. K(7,4) is one such. Its signature is 4 mod 8 and it cannot be
sliced or unknotted at once by any multi-# unknotting operation!

We finish our discussion of multi-# moves with some questions:

Question 4.2. 1. Can knots with multi-# unknotting number equal to one \be
characterized in some nice way? Corollary 4.2 provides characterizations of some
kind. What if we ask to characterize "knots with multi-# unknotting number of
type (t,s,d) equal to one for some t,s,d”¢ Characterization, up to concordance, of
knots with given slicing numbers are possible in terms of ”canonical projections”.

2. How can knots with slicing number smaller than unknotiing number be de-
tected?

3. For multi-# unknoiting operations of type (t,s,d) with 4d — t =const. the
estimates of their unknoiting numbers coincide. Is there some way to tell them
apart for some knots or are they the same?

Similar estimates can easily be given for the 4-twist and grid unknotting opera-
tions. We write down only the ones for the 4-twist one.

Theorem 4.7. If K € U*(p,n) then:
—-8p+6n<o(K)<8n—-6p, —6p+4n< a%(K) < 6n—4p, and

max {glo(K), gloy (K[} < w*(K)

A basic estimate for the grid move with d; = 2 amd dy = 24 + 1, involving o}
can easily be worked out using P. Gilmer’s Theorem and the fact that such a move
is locally expressed in terms of one 3-twist and Murakami’s # move and hence then
in terms of £3-twists (cf. [O]). In the same manner estimates for all multi-# moves
involving o 1 could be worked out in more than one ways.

REFERENCES
(Al N. Askitas, A note on the #-unknotting operation, Preprint MPIM



A NOTE ON THE #-UNKNOTTING OPERATION

N. A. ASKITAS

ABSTRACT. In this note we use a connection between local moves on knots and
the singularity type of certain PL-spheres in 4-manifolds and use it to recover
(stronger in principle versions of) known results as well as obtain new ones
regarding certain #-unknotting numbers of knotas.

1. Introduction

In {M] H. Murakami defines the #-local move below on a projection of a knot
(notice how it differs from a pass move only by orientation):

The #-local move { I

FIGURE 1

The move shown in the figure below will be refered to as a & — = move (plus for
right to left in the figure, minus for reverse):

LKL/‘
- hS
(-
s
The = local move

FIGURE 2

Y. Ohyama shows in [O] (Proposition 2.11) that a +—= move is locally equivalent
to a #-local move. He shows infact that a (+ : —), #-local move can be locally
expressed in terms of three successive E-operations (first two += and then a —Z
operation) and that a +Z-local move is given locally by a single (+ : —) #-local
move.

H. Murakami proves in {M], by making use of non-orientable Seifert surfaces,
that the #-local move is an unknotting operation (i.e. every knot has a projection
with a finite number of local # crossings so that, when changed, a projection of
the unknot is obtained). This is easily seen to define a metric dﬁ on the space

1
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of all knots, simply by defining dg(Kl,Kg) to be the minimum number {(over all
projections and sequences of moves) of #-crossing changes necessary to pass from
a projection of K; to one of K. The #-unknotting number u# of a knot K is
then nothing but dﬁ(K ,0), where O is the unknot. As a consequence of Ohyama’s
aforementioned theorem the = local move is also an unknotting operation and
we can define similarly d5 and u=. We wish to use a connection between local
moves on knot diagrams and certain PI-embedded spheres in 4-manifolds and use
it to recover {stronger in principle versions of) Murakami’s Theorems 3.2, 3.5 and
Corollary 3.3 as an application. This observation together with Ohyama’s theorem
allows us to get some new estimates on the #-unknotting number which involve
oy The aforementioned connection is inspired by a simple geometric idea of S.
Suzuki in [S]. The results will be obtained by invoking results of Viro and Gilmer
and Kervaire-Milnor, Freedman-Kirby.

We now introduce some language which will improve the write-up of the rest
of this note. By U (p,n) we will denote (in analogy with [CL] where Uk (p,n)
are defined for the ordinary crossing change) the set of all knots which have a
projection which can be turned to one for K by p (+: —) (left to right in Figure 1)
and n (—: +) (reverse direction of figure 1) moves. To say then that the #-local
move is an unknotting operation can be translated into saying that every knot
K belongs to ug (p,n) for some p,n non-negative integers. The same discussion
holds for the Z-local move and we can define Ll;'} {(p,n) etc. Ohyama’s Proposition
2.11 of [O] can then be stated as saying that UZ (p,n) C U5(2p + n,p + 2n) and
UE(p,n) C UL (p,n). Notice that these inclusions imply u# < uf < 3u#. It should
also be pointed out that:

u#*(K)=min{p+n: K € Ug(p,n)},
v*(K) = min {p+n: K € US(p,n)}.
2. From local moves to 4-manifolds

The main lemma which establishes the claimed connection is essentially nothing
but what is called fusion and fision (the two directions). We were motivated by
Suzuki’s idea in [S].

Lemma 2.1. If K € Hg(p,n) then there is an embedded 2-sphere A C My, =
#p1nS? x S2, which is smooth everywhere except at one point where it is the cone
on K and is such that on homology [A] = 2(1,p —n) ®0 € Hao(M,p ) = Ha(S? x
S2# pin—152% x 82) = Hy(S? x S?) ®pyn_1 H2(S2 x §?).

Sketch of Proof Take the projection which becomes one of the unknot after
applying the p (+: —) and n (—: +), # local moves on it. Figure 3 below contains
the idea of the proof. In it one can see how a — to + move results in expressing
the resulting knot as the original one band-connect-summed (four bands) with
the double of a Hopf link with negative linking number. The reverse direction is
completely analogous.

We can then see that this leads to a ”canonical” projection of the knot just as
in [S] (the canonical form says essentially that every knot has a projection which is
obtained from one of the unknot by ”fusions” and ”fisions” with the four component
link obtained from the hopf link by doubling each of its two components). On the
other hand the Kirby calculus picture of a punctured cornected sum of k copies
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of 8% x S% is k copies of the Hopf link all of whose components are zero framed.
This means that in a punctured #p,1,5% x S? our knot bounds a disk which on
homology represents &,(2,2) &, (2,—2). The disk consists of two copies of each
of the core disks of the 2(p + n) 2-handles union with the bands (in the figure the
bands are between the dotted lines) union with a disk that the remaining unknot
bounds in the boundary 3-sphere. C. T. C. Wall’s Theorems of {W1] AND [W2]
on the transitivity of the automorphism group of the intersection form of such a
manifold and its realizability by self-diffeomorphisms lead us to the desired class.
Now close the manifold by adding a 4-ball and cone off the knot to get the singular
sphere.

Remark 2.1. 1. Similarly as above we can see that if K; € U,t {p,n) then there is
an embedded sphere in M, ,, representing the same homology as in the lemma with
two singular points where it is a cone on K; and the mirror image of K.

2. Notice that 2u™(K) becomes the minimum second Betti number of M, . as
in the Lemma.

Similar considerations as in lemma 2.1 above imply then the analogous results
in the case of a Z-local move. Because of this similarity and the geometric nature
of the argument we ommit a sketch of proof in this case:

Lemma 2.2. If K € US(p,n) then there is an embedded 2-sphere A C Npn =
#,CP*#,CP?, which is smooth everywhere except at one point where it is the
cone on K and is such that on homology [A] = 3(®,(1) ®, (1)) € Ha(Np ) =
@, H;(CP?) @, Hy(CP?).

3. The estimates

Now we quote the 4-manifold theoretic results we need to achieve the promised
estimates. The following theorem is proven in [G] by P. Gilmer (from where we
copy it here) and as mentioned there a special case of it (d = 2 and one singular
point) is also due to O. Ya. Viro. The version we quote here is only a special case
of Gilmer's result (Theorem 4.1, Corollary 4.2) but it is more than what we need:

Theorem 3.1. Suppose A C M* is an embedded sphere in a simply connected 4-
manifold which is smooth everywhere except at g points where it is the cone on knots
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K;, i=1,...,q and is such that on homology [A] = a = df € Ha(M*), withd a
power of a prime p. Then for every 0 < j < d, j # 0 mod p:

(M) +q =12 lo(M*) = Z3(d - )a? = 3 0;7a(K]

For the following theorem see p. 66 of [K] but beware because it is written down
incorrectly there! See also theorem 1.2 on p. 31 of [K}:

Theorem 3.2. Suppose M* is closed, smooth,simply connected and w € Hy(M*)
is characteristic. If w is represented by an embedded sphere which is smooth every-
where except at g singular points where it is a cone on knots K;, i=1,... ,q then
it satisfies

ﬂl}g‘—ﬂﬂ = Z Ar f(K:) mod 2

Such an w is always representable by an embedded sphere which i3 smooth every-
where except at one singular point where it i3 a cone on a knot K.

Our Lemma 2.1 and Theorem 3.1 above easily imply:

Proposition 3.1. If K, € U}i(p,n) then —6p+2n— 6 < o(K,) —o(Ka) < b6n —
2p + &8, where § is zero or one according as K; = O or not.

This easily implies Theorem 3.2 and Corollary 3.3 of [M] whereas Theorem 3.5
falls out of 3.2. In analogy we have the corresponding statement in the case of the
= move.

Proposition 3.2. If K € U5(p,n) then —4p + 2n < 04/3(K) < —2p+ 4n and
p+n = Arf(K) mod 2; in particular u=(K) = Ar f(K) mod 2.

Using U2 (p,n) C UE(2p + n,p + 2n) and US(p,n) C UL (p,n) one can get the
following cross information about (#, Z)-unknotting numbers which as far as we
knot is new as we do not know of any estimates regarding uyg which involve o}

Theorem 3.3. If K € L{g(p, n) then —6p < 01 /3(K) < 6n and hence |a1/3(K)| <
6u#(K). If K € US(p,n) then —6p+2n < o(K) < 6n — 2p.

Remark 3.1. Note that similar arguments can be applied for the classical unknot-
ting number u. Changing p positive (n negative) crossings corresponds to p negative
(n positive) full twists. Hence our knot is then the singularity type of a PL-sphere in
#,CP? q!,\é,,—C—"I62 which represents the direct sum of twice the generator of each +CP.
Applying Theorem 3.1 then shows —2p < g(K) < 2n. This in particular is stronger
than the well known |o(K)| < 2u(K), when u(K) = p+n. The general idea can be
applied to any local move on knot diagrams. In fact we will do that for a new kind
of unknotting operation in subsequent work. In that work we generalize the 4t-local
move and the observation here about its unknotting numbers is logically contained
there. However the emphasis in that paper is the new local moves whereas here we
want to bring out the possibility of estimating unknotting numbers via 4-manifold
theory. The present note contains in addition Proposition 5.2 and Theorem 3.8.
It should be noted that input from gauge theory for such unknolting operations are
only possible for studying unknotting number one. The only possible input then for
higher unknotting numbers is P. Gilmer’s thesis. For carefully chosen knots higher
unknotting numbers can be studied via branched covers as in [CL].
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