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EVERY HOLOMORPHIC SYMPLECTIC MANIFOLD ADMITS A KAHLER METRIC
ANDREY N. TODOROV
#0. INTRODUCTION.

It is well known that the class of Kahler manifolds form a very important class of complex

madnifolds. In dimension two combiping the results of Myaoka, Harvey and Lawson, [15] and

[16] one can conclude that every ftwo dimensional complex manifold with even first Betti o
number is a Kéahler surface. KODAIRA conjectured this. In higher dimension it is no longer
true that if a manifold has an even first BETTI number then the manifold has a Kahler
metric. Hence it is important to give some simple conditions in higher dimensions that will
imply the Kahlerian property of the given manifold..'inA this paper we give such a condition.

It is well known that every K3 surface admits a Kahler metric (See [15] and [16]). A
natural generalization in higher dimension of K3 surfaces are the so called Hyper-Kahlerian
manifolds. The first examples of compact Hyper-Kihlerian manifolds were constructed by
Fujiki and later his construction was generalized by Beauville. (See {02]). In [02] Beauville
gave second construction of Hyper-Kihlerian manifolds, different from the first which
generalizes Fujiki’s example.

The aim of this article is to generalize the statement that every K3 surface is Kdahler one.
More precisely the following theorem is proven:

THEOREM. Every holomorphic symplectic manifold admits a Kahler metric.

The definition of a holomorphic symplectic manifold is the following one:
DEFINITION,
Suppose that X is a compact complex manifold s;uch that: -
1) There exists a closed holomorphic two form wx(2,b) such that at each point
x€X, wy(2,0) is a non-degenerate skew symmetric matrix, i.e. everywhere wy(2,0) has a
maximal rank equal to 2n=dimCX.
2) dimcH?(X,0y )=1
3) dimX>4
then X will be called a holomorphic symplectic manifold. If X has a KAHLER METRIC we
will called it HYPER-KAHLERIAN.
Remark. From Condition 2 it follows that up to a constant we have a unique close
holomorphic two form on X,

The proof of the Theorem follows the lines [15] and [16]. The main points of the proof are:

pagel



a) On holomorphic symplectic manifold there exists a real closed two form
w=w2‘°+w1'1+w§'6

2.0=aal,0 1,1

where w and w is a positive definite Hermitian form at each point. The
construction of w is done by checking the conditions of Theorem 38 in the beautifull paper by
R. Harvey and B. Lawson. (See [10]).

b) Modification of arguments of Bogomolov proves that there exits a non-singular Kuranishi
family $—U of symplectoc manifolds such that dimeU=domg¢ H*(X,C)-2.

c¢) We prove that ”small” deformations of Hyper-Kahlerian manifold X are also Hyper-
Kéhlerian manifolds. .

d) Next we show an anologue to criterium of Moisheéon—Nakai which establishes which Hyper-
Kahlerian manifold X to be an algebraic one. From this result and the local Torelli Theorem
we deduce that in U there exists an open and everywhere dense subset W such that each point
T€U corresponds to an algebraic Hyper-Kahler manifold.

e) Using Yau’s solution of Calabi conjecture the so called isometric deformations are
constructed. (See [16].) The Harvey-Lawson metric w defines a disk D in U. So there is a
family $—D containing X. Moreover it may be supposed that in D there is an everywhere
dense subset W[)D corresponding to the algebraic Hyper-Kahlerian manifolds. Using the
isometric deformations a new family %$’—D is constructed such that all its fibres are Hyper-
Kahler manifolds. Moreover those two families are isomorphic over an open and everywhere
dense subset in D. From Bishop’s criterium we conclude that the two families are isomorphic.
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#1. CONSTRUCTION OF A HARVEY-LAWSON METRIC.

THEOREM.
Let X be a holomorphic symplectic manifold, then X admits a real closed
two form
w=w2’0+w1’1+w0’2
such that

a) w20pal0, 022 9o 10

1,1, . . .
b) w " is positive definite at each point x€X.

PROOF:
The proof is based on the following Theorem of Harvey and Lawson:
THEQREM. (See [10].) Suppose that X is a compact complex manifold, then X admits a real
closed two form
w=w2’0+w1’1+w0’2
such that

2,0 1,0 0,2 O
o, w

ayw =8 =(9011’

by wl'L

is positive definite at each point x€X if and only if X does not support a non-trivial, d-
closed positive current which is the bidimension (1,1) component of a boundary.
We need to check that if X is a holomorphic symplectic manifold then X satisfies the
conditions of the Theorem of R. Harvey and B. Lawson Jr.
Let _
p=v-1 Zpi*j il/\:":
oz' 94
be an exact real (1,1) positive current on X: Since on X we have a closed holomorphic form
wx(Z,O) which is non-degenerate at each point xeX we get immediately from g an exact (2n-

1,2n-1) current 7 in the following way:
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n=pA((A" 1wk (2,0)A (A" 1% (2,0))

REMARK. From now on L will denote contruction of tensors, i.e. ﬁ.J.dzi=6..

1
Definition of w;((2,0). 07

Since u;((Z,O) is a non-degenerate closed holomorphic form, the arguments of Darboux
Lemma can be repeated(See [01].) to get a local coordinate system (z1,...z",...,2%") such that

locally
I i i+n
wy (2,0)=) " dz' Adz
i=1

* "~ il
wy (2,0):= E S A——
X i=1 dz' 0Zl+n

then

Let n=dj*, then clearly
a=n LA (wy (2,0)) A(A™ (wye (0,2))=
d(§* LA™ (wx (2,0) A(A" (wy (0,2))))=d]
where « is & real two form of type (1,1) with distribution coefficients and j is also a real one
form. We can write j=f8+8 where 8 is a (1,0)-form on X. Since « is of type (1,1) it follows
that
a=08 +0F and § f=0
So from 8F=0 it follows that
' BeH!(X,0)
Proposition 1. If X is a holomorphic symplectic manifold, then
H‘(x,ox)=0
if dimX>4.

Suppose that dimCHl(X,Ox)=1.

Let HI(X,OX)=Ca, where o is a form of type (0,1) and &a=0. Consider the map:
¥ a—+aA(/\n'lwx(2,0)/\(/\nwx(2,0))
Since wy(2,0) is a non degenerate holomorphic two form it follows that ¢ gives an

isomorphism between
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H'(X,0y) and H2%1(X,027)
From Serre’s duality we know that the pairing HI(X,OX) X Hzn'l(X,QQH)—rC, given by

(a8)— [ ans
X

is non-degenerate. On the other hand « generates HI(X,OX) and

H201(X,02%)=Can (AP Loy (Z0) A (AP wy (2,0)))
Since

cr'AaA(An'lwx(2,0)A(Anwx(2,0)))=0

we get a contradiction with Serre’s duality. Hence if X is a symplectic holomorphic manifold
we have two possibilities in case of dimX>4; either HI(X,OX)=0 or dimCHl(X,Ox)22.
Case 2.

dimCHl(x,ox)zz.

Sublemma. Suppose X is a holomorphic symplectic manifold and dimCX24. Let
a, fel'(X,0y)

then
aAB=8p l

where gz is a (0,1) form.

Proof: Clearly
aAFEN?(X,0y)

Since :

dimH2(X,05)=1 and H3(X,0y )=Cuy (2,0)

it follows that
a/\,ﬁ‘:cw_x(?,_ﬂ) +5,u

It is necessary to prove that c=0. Clearly we have

aABAaAB=0=c? A" W +c3,ul\m—,ﬁ—)+5y/\5,u

From dimeX2>4 it follows that

JaAﬁAaAﬁA(A“'wa(Q,O)A(Anwx(2,0))=
X

paged



C2J(A“w7_‘x 2,0))A(A"wx(z,O))Jch?a‘pA(A“'lw_(—jx 2,0)) A(A"wy (2,0))+
X X

JEpAEpA(A"'%_x(z,o))A(A“wx(z,onzo.
X

From

FuAAP DR ZO) AN wy (2,0)=d(u AN Hoy TZ0) A(A oy (2,0))
B(uAB uA(A™ 205 (20) A(A"wy (2,0))=

d(pAD uA(AY 2T (Z0)) A(APwy (2,0))
and Stokes’ Theorem we get that

JEpA(/\n'lwxh,O))A(Aan(Q,O))zo

X
Jﬁp/\ﬁm\(A“‘2wx(2,0))/\(A“wX(2,O))=0
X

Hence c2J(/\nwxi2,05)A(/\nwx(2,0))=0
x B

Since wy (2,0} is a non-degenerate form it follows that

J(AHW)A(ADwx(2,O))>0
Thus X
czj(AHW)A(Aan(Q,O))=O=>czO
X Q.E.D.
Recall that every element of H2n'1(X,Q2n) can be expressed as
BAAP Loy (20N A(APwy (2,0))
where feH'(X,0).
By Serre’s duality the pairing
(a,ﬂA((A"'lwx(_'z,O))A(A“wx(z,O))=] aABA((AT LG TZ0)) A (A wy (2,0))
X

is a non-degenerate bilinear map. Since aAfF=08 p it follows that
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aABA(AT 1o TN A(A wy (2,0))=

d(A(A™ Ty ) A (A" wy (2,0))
Stokes’ Theorem yields

J aAﬁA((A“'lm)A(A“uX(2,0)):

X
[ dwacamtz@mAAn ey 20)=0
X

which contradicts Serre’s duality. This proves that HI(X;OX)=0.
Q.E.D.
Proposition 2. Suppose that 7 is a positive (1,1) current and n=dj*, then n=0.
Proof:
Let p=dj*, then we have
aqu_(An(wx(Q,O))/\(An(wx(O,?))=
4G* L(AR(wy (2,0)) A(AP (wy (0,2))))=dj
where « is a real two form of type (1,1) with distribution coefficients and j is also a real one
form. We can write j=g+8 where g is a (1,0)-form on X. Since « is of type (1,1) it follows
that
a=88+88 and 8 8=0
Hence § 3 =0 yields
BEeH!(X,054)=0=F=00
where ¢ is a (0,0) current on X. Hence
a={-189 r, where r={-1(7 —0)
The positivity of the (1,1) current on X implies that 7 is a plurisubharmonic Hence
=88 const=0 and n=0.
Q.E.D.
Proposition 3.
Let n be a positive closed (1,1) current and n=(da)(1,1){i.e. 7 is a (1,1) component of a
boundary), then n=0.
Proof: The existence of the closed holomorphic two form wx(2,0) which is a non-degenerate
form on X shows 75 can be considered as a form of type (1,1) on X. Since dnp=0 and
r)=§al’0+6a0’1=>650:1’0=—38a1’0=0 and the regularity of the 0 operator implies that

: . : 1 .
8a*? is a holomorphic form on X. It is easy to see that &fo ’0=0, indeed suppose that
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8a>C£0 then

I3a1’0Aﬁal’ol\(/\n'l(wx(2,0))/\(An'l(wx(O,?))>0
X
On the other hand we have
dlat 5. 1,0 n-1 n-1 —
(a7 A8 T AN H(wx (2,0)A (AT H(wx (0,2))=
8™ A9 0 A(A L (wy (2,0 A (AT L(wy (0,2))
From Stokes’ Theorem it follows that
0< J Bal’OAaal’E/\(An'l(wx(Q,O))A(An'l(wX(O,Q))z
X

[ (@t A0a1 O AAT L g (2,0 AN oy (02))=0
X

This contradicts da£0. Therefore Ja=0.
Q.E.D.
Since aa”’:o, hence p=da. From Proposition 3 it follows that n=0. So the conditions
of The THEOREM of Harvey and Lawson are fulfilled for holomorphic symplectic manifolds.
Q.E.D.
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#2. HODGE THEORY OF WEGHT TWO.

LEMMA 2.1.
Let [¢] be a non-zero element of IH?(X,R), then [¢]=cwx(2,0)+¢l'l+m, where ¢ is a
real closed form of type (1,1).
PROOF: From de Rham’s Theorem it follwos that [¢] can be realized as a real closed two
form ¢. (See [09].) Let

(2.1.1.) ¢,=¢2'0+¢1~1]}_;§-.6
From d¢=0 we get:
(2.1.2) 962°=0420=0 542 +8¢' =09 +T 4 =0

From (2.1.2) it follows that ¢T'6:‘¢0‘2EH2(X,OX).~Fr0m the condition H*(X,0y)aCuwy(2,0)
yields

(2.1.3.) " =cwy (2,0)+8a"°

Hence 3¢2'0+8¢1’1=0 gives

(2.1.4.) 50a"° + 84 =0 & 080 C=84"

Combining (2.1.1.) and (2.1.3.) yields

(2.1.5.) p=cwy (2,0)4+0a" 40 4T "0 43un (2,0)

Now (2.1.4.) and (2.1.5.) imply

(2.1.6.) p—d(a® +a®")=cwy (2,0)~Fa 0 =80’ 14" 4T3 (2,0)=

cwy(2,0) +w 4 cwy (2,0)

where
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w1.1=¢1.1_ 301,0_6_17)

and hence d(w!'})=0. See 2.1.4. Lemma 2.1.1. follows immediately from 2.1.6..
Q.E.D.
Cor.2.1.1. If [w]eH*(X,R)®C, then [w]:awx(2,0)+w1'1+bm, where dw'!'=0 and
a&beC.
Next we show that HE(QI)#O, where

H}:(Ql) :={[w]€H2(X,C)| 0#[w] contains a form of type (1,1)}
Lemma 2.2,
Let w be the closed 2-form constructed in THEOREM 1, then
a) w defines a non-zero class in HZ(X,R).

b) there exists a real closed (1,1) form © such that [@]=[w] in H*(X,R).

Proof:

Condition a) follows directly from the following proposition and Stokes’ Theorem.

Proposition 2.2.1.

Iw2n>0, where w2n=/\2n(w) and 2n=dim-X=2n.
X

Proof:

We nced to compute wA...Aw:(w2'0+w1'1+w0‘2)A...A(w2’0+w1'1+w0'2)=

2n 2,0,k ., O,3.k 1,1,2n-k

E (W)Y AW )Y A (W) E and ¢} is a positive number.

l"F_f'gm the following Lemma:

LEMMA, If  is a primitive form of type (p,q), then

(ﬁ )P-Q(_l)(P+Q)(12>+Q+1) L2n-p-q

= )

where * is the Hodge star operator and L=Im(ga ﬁ) and (ga B) is a Hermitian metric on X.
b ’
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(For a proof see [05].)
This Lemma yields

*(wﬂuo)k:(w1=1)2n-2k A(w2»0)2k

1

where * is the Hodge operator with respect to the metric defined by w"! on X. Applying the
g

formula above we get:

2n_v 3,01k (2

Iw =E ¢ ll(w™7) [I*+vol(X), where ¢} >0
k=1

X

where the norm is taken with respect to the Harvey-Lawson metric Wil

Q.E.D.

Proof of a:

Suppose that w=dn, then by Stokes’ Theorem gives
0=J d(n/\(w)2n'1)=J w0

Therefore we get a contrudiction that proves part a) of the Lemma.

Q.E.D.
Proof of b:

Let e=w-3a"°—aa°". Recall that w=6a1'0+w1'1+5a0’1 and dw=0. Hence

d@:@wl‘l—f)gal'o—}-gwl'l —38a”1=0
and
e_w=w1.1_3a1,o_aa1,o_w1,1_-5ao,1_aao.1=_d(a1,o+ao.1) |
Q.E.D.
Cor.2.2.2. dim-HE(R'))>0, where HE(Q')CH*(X,C).

Cor.2.2.3. Let w be the form constructed in THEOREM 1. let @ be the closed (1,1) form that

represents the non-zero class [w] €H%(X,R) and CCX be an irreducible complex subspace in X.

Then if dimCC=r we have

J6k>0 and C is a non-zero element in H,, (X,Z)
C
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Proof; From chapter 1 [09] we know that
Jek = I ok
C C-singC
Hence C can be taken as a non-singular submanifold in X. Repeating the calculations and

arguments in (2.2.1.) we get that K1
wk|C=(u2'°)klc+(w°'2)klc+zci(w’-o)i/\*(w2'°)k +vol(C)
i=1

Since (w2'°)k|C=0 and (w0.2)klc=0 we get that

k .
J¢k=z 1(w*°) 12 4vol(C) >0
C =1

Since ¢=9+d(al'°+a0'1) we get that
e
C C

Stokes’ theorem yields for C=8B
Jok=[ k=0
C B

Which contradicts Jqﬁk >0

C Q.E.D.
Remark 2.2.4.

From (2.2.3.) it follows that the cohomology class of GEHI'I(X,R) behaves like the imaginary

part of a Kahler metric.
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#3. LOCAL DEFORMATION THEORY OF HOLOMORPHIC SYMPLECTIC MANIFOLDS

First we will make some remarks.
Remark 1. The closed holomorphic non-degenerate two form wX(2,0) induces an isomorphism:

. . — 1
lwx(2’0).ex Q

where iwx(Q,O)(a)zaJ'wX@’O)'

Remark 2.
We know from Kodaira-Spencer-Kuranishi theory that ”small” deformations of the complex
structure on X are determined by:
q!utzz%(t)d'z'J@f-iEI‘(X,G@QO'I).
. . . . z
Using the isomorphism 1wx(2’0) w? get t;ha,t:1 o
lwx(2’0)¢t=¢t€I‘(X,Q T )
Remark 3.
Let ¢= lird @2, and y= i 47799, are elements of T X,G@Qo‘l , then we can
¢ E‘#J— P ¥ Z’% P ( ), then we car

Z

define [¢,4]€T(X,000%2), where

[¢,¢]|U=Z(Z(¢i6i¢fj—abiaicij))@f;

. . j - . j
¢1=E¢J;d7 and :,!}:Z:v,%dZ

J J

The operator iw (2,0) transforms the braket operation [, ] into a braket operation
x ’

{,]on I‘(X,QI'O®Q°'1), i.e. we have:
[,): TX,0 e )xr(X,0 20" (X, 90%?)
Remark 4.
Suppose that w, and wgeF(X,Ql‘O®QO'1) and either w,=0wy=0 or dw,=dw,=0, then it is to
easy to see that d[w,,wy]=0 or d[w,,w,]}=0. (See [04].)
Remark 5.
We know from Kodaira-Spencer-Kuranishi deformation theory that first order deformations of
a complex structure X are contained in H'(X,0) and if X is a symplectic holomorphic manifold

we know that iwx(g’g):Hl(x’eX);’HI(X’QI)-
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Definition. Let Hé(X,Ql)={[w}D°|€Hl(X,Ql)l[w]Dol contains a closed representative, where
[w]po) denotes the Dolbault class}.

Let H(X,0)= i, Ly x,aM).

x (2,0)
Remark 6.
We should mention that Hé(X,Ql) in the case when X is a holomorphic symplectic manifold
can be realized as a subspace of H?(X,C) however more it is not at all dificult to see that we
can identify H(li(X,Ql) with H‘I:(Ql). From Lemma 2.1. it follows that that
dim  H}(X,Q")=dim ~H}(X,0)=b, —2, where b,=dimH?*(X,C).
THEOREM 3.1.(Bogomolov)
There are no obstructions for one parameter deformations of complex structures on X that
correspond to the elements of H(li(X,G)iH(li(X,Ql).
Proof of 3.1.:
From Kodaira-Spencer-Kuranishi THEORY it follows that if for each ¢, EHé(X,@) we can find
a power series:

$=d1t+8,67+. +dnt"+..
such that
(3.1.1.) B (t)=3[6(t),8(t)]
then our LEMMA will be proved. This is so because KURANISHI proved that if (3.1.1.) is
fulfilled, then we can find a convergent power series

=0 t+d5t7+. .+ dnt"+..
such that
s) [b:1=l6]eH}(X,0)
b) ¢, is a harmonic representative of the class [¢] with respect to some Hermitian metric on X.
¢) DH(H)=1[3(£),3(1)].(See [11].)
PROPOSITION 3.1.2.

If w, and w,EH(li(X,Ql), then [w,,w,] is the zero cohomology class in Hg(X,Ql), where
Hg(x,Ql)z{[w]eHS(x,Cﬂ [w]#0 and [w] can be represented by de Rham theorem by a form
of type (2,1)}

Proof:
Let w; and w,EH(li(X,Ql). From the Definiton of H%I(X,Q]‘) it follows that dw;=dw,=0 and
remark 4 yields d[w,,w;]=0. From here we get that

(3.1.2.1) [wy.w0,]€H3 (X, 01)
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If we prove that for any three dimensional cycle yeH3(X,Z)
{wy,w,]=0
then we will have 7
[wy,w]=0 in H3(X,01)cH3(X,C)
REMARK. We will prove that if [y]JeH3(X, Z), then [v] can be realized as a three dimensional
oriented manifold yCX such that H,(7,R)=Hy(7,R)=H(X,R)=0. (See [04].)
Proof of the remark:
From a THEOREM of R. THOM (See [21] THEOREM II1.27) it follows that we can realize
each cycle [y]€H3(X,Z) by a three dimensional real manifolds 4’CX. This follows from the fact
that
dimg[7}=3<3dimgX>8
We will prove that after some surgary we can assume that H,(y’,R)=0 since H,(X,R)=0.
Indeed let geker(iy), where
) O0—ker(ix)— 7 (¥)— 7 (X).
Then B can be realized as S'xD? in v’. (See Prop. IV.1.4. in the book [22])). Let us do now
surgery, i.e. replace $'xD? by D2xS! in 4’. We will obtain a new manifold %>’ imbedded in X. If
0#[p]€H,(7",R) then dimgH,(y”,R)<dimg(7’,R). acording to Proposition I1V.2.5. in [22]
Now if we continue this process we will get that the three dimensional cycle [¥] can be realized
as an imbedded three dimensional manifold yCX such that H;(%,R)=H,(X,R)=0 and
H,{v,R)=0 by Poincare duality. Q.E.D.
Bogomolov proved the following fact:

LEMMA 3.1.2.2.(See [04].)

For each cycle [7i]EH3(X,R) we can find a nonsingular three dimensional compact manifold v;,

realizing {v;] and v; fulfills the following conditions:

a) 'yiﬂ'yj:ﬂ b) H,(7v;,Z)=H,(7;,Z) and ¢) For each 7, there exists a small neighborhood U(y,),
where U(#;) is a STEIN manifold and H*(U(¥;),R)=0.

Let U(7;) be a small Stein manifold of y; constructed by (3.1.2.2.). Let w, and wze}lé(x,ﬂl),
then since dw,=dw,=0 it follows that w1|U(7|) and wsz(‘n) are zero elements in

H2(U(7i),R), since Hz(U('yi),R)ZO. We need the following sublemma, which is proved in [04]:
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Sublemma 3.1.2.3.
Let U be a STEIN manifold. Let w be a (p,q) form (p,q>1) such that dw=0 and [w]=0 in
Hp+q(U). Then w=380 ¢ for some form ¢.

From (3.1.2.3.) it follows that wllU(v-)=a§¢il and w2|U(7.)=05¢12. We can continue
¢v12 and qbll as C® forms to $12 and 33 on X. 1L&t :

wi=w1_35$i1 and w{:ul—aﬂsf
then clearly we have

a) wi|U(7i)=wé[U(7i)EO b) [w}l=[w,] and [w%]:[wl] and ¢) [w}.wi]=0 on U(y;)

From c) we get that I[w%,w%]:O and this proves 3.2.1..

7 Q.E.D.

Proposition 3.1.1.

Let X be a symplectic holomorphic manifold. Let U be a STEIN submanifold in X and let w be
a d-closed from of type (1,2), [w]=0 in H3(X,C) with w|y=0. Then there exists a form ¢ such
that a) 8¢=0 b) §¢=w c) $|;;=0

Proof:
Since w is such that [w]=0 in H3(X,C) and w is of type (1,2) we get that
w=da®?+d8", where 8a°2=08" =0
So we have a”?€H?(X,05)=Cwy (0,2). If a®? 30 in HX(X,0y), then wy(0,2)=a?45,%"
Since dwy (0,2)=0 we get
PYCEN, PR
and therefore

w=da°'2+dﬂl'1=58,u°'l-E,Bl’lzﬁ(a,uo'l—ﬁl‘l)

Let ¢=3,u0'1—51‘1. Then 6¢=08p0'1—361'1=0 and hence § ¢=w. We have proved a) and b).

Condition ¢) follows immediately from the fact that w|UEO, therefore ¢|UEO.

1f %2 is zero in H’(X,c‘x), then o®? za,uo'l. Hence we get that
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w=800'2+3ﬁ1'1=85p0’1+5ﬁ1'1=3(ﬁ1'1—3,30'1)

Let ¢=ﬁ1'1——8ﬁ°'1. Clearly 8¢=3ﬁ1'1—38,u°'1=0 and J¢=w. Therefore condition a),b) and c)
are fulfilled.

Q.E.D.
The end of the proof of THEQOREM 3.1.

Suppose that uleHd(X Ql) and w1|U( )_O We have proved that [wy,w;]=0 in
H3(X,0M)CH3(X,C), ie.
(3.1.4)) [wy,w;]=08 w,, where Sw,=0 and wle( )_0
This follows directly from (3.1.2.) and (3.1.3.). From (3.1. 4. ), (3.1.2.) and (3.1.3.) it follows
that [w;,w;]=8wj, where fwz=0 and w3|U(7_)=0. Since
dw;=0w,=0=>8[w,,w,y]=0.

On the other hand we have automatically that &[w,,w;]=0. This is the Jacobi identity.

By induction we can form the power series w(t)=w1t+w2t2+.,.+wnt"+.. such that 1)
duw(t)=0, 2) Ew(t):.—.%[w(t),w(t)] and 3) wiIU(‘ri)EO' Notice that condition 2) is equivelent to

_ n-1
(%) 6wn=%'zl[wi,wn_i] and Qwp=0
1=

Using (3.1.2.), (3.1.3.),

_ 1n-l

] (§Z [wi,wn_i])=0(Jacobi identity)
and the induction hypothels'Ts (*) can be solved step by step. Hence all obstructions vanish.
THEOREM 3.1. is proved. Q.E.D.

Cor. 3.1.A.
From KURANISHI existence THEOREM we can conclude that there exixts a semi-universal
family of complex analytic manifolds =:%-U, where
1) U is a non-singular manifold with dimCUzdimcHé(X,Ql). T
2) The tangent space TO,U=H5(X,QI).
3) X-%
Ll
oe U
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REMARK 1.

We will denote the KURANISHI family of hyper-Kahlerian manifolds by m=:%—U.

REMARK 2.

We may suppose that U is a Stein manifold. For each p€Z and each coherent sheaf F on %
Grauert’s “direct image theorem” yields Hp(°.6,€F) A HO(U,RPﬂ'*‘:‘F). Hence Hp($,€F) is a
finitely generated T'(U,0y;) module. See [08)].

THEOREM 3.2.

Every fibre Xt=1r'1(t) is a holomorphic symplectic manifold in the KURANISHI family
m:%— U defined in Cor. 3.1.A..

Proof:
Let D={teC| |t|<1} be any disk containing o€U. Theorem 3.2. will follow if it can be
proved for the restriction of m:%—TU to the family w:%D——»D
Denote by w:?'oD —D by m:%—D. From now on we will consider the family 7:%— D, where
a"l(o)zxo is & holomorphic symplectic manifold

The following notation will be used:

DEFINITION 3.2.1. Denote by Q%s/D:Qg,s/«*Qb, then by definition Akn%le:Qc};/D
DEFINITION 3.2.2.

Let wkEI‘(EB,QgB/D). Define d/DwkeI‘(SS,Q]é-I/']l)) in the following way:

Let {°U.i} be a covering of %, where U=UxD and U be an open subset in X,. Let
(z1,.....,2°%,t) be local coordinates in AL, then .
Kk _ iy, ip 'k
w ju= z wil.ig.---.ikdz Adz “A..Adz
iy <ip<..<iy

where wilv-w‘k is a complex analytic function of (zl,...,zzn,t), then define:

]

K 0 dwi ol i i
d/Dw |u = -sz— dz™Adz 1A...Adz
m=1

For the proof of THEOREM 3.2. we need to prove and recall some auxilaury results:
LEMMA 3.2.3. T(D,0p) is a ring of principal ideals.
PROOF: I'(D,0py) is a subring of C[[t]]. It is a well known fact that C[[t]] is a ring of principal
ideals.(See [23].) This implies the lemma.
Q.E.D.
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REMARK. We will use later the following THEOREM (See [23].): Let F be a finitely
genetated module over I'(D,0)), then F is isomorphic to a direct sum of a free module plus a
n
torsion module, i.e. module isomorphic to @Cft]/(t I)
i

LEMMA 3.2.4.

Hp($,1r*(0D)) is a torsion free finetely generated I'(D,0p)) module for p=2 and 3.
PROQF: The standart Leray spectral seqence yields
(3.2.4.1.) BP(S, 7(0p))~H2($,RP m, 7% (0p))

Proving Rpﬂ'*w*(OD) is a locally free sheaf together with (3.2.4.1.) will give
(3.2.4.2.) HP(%,7%(0))~HO(B,RP m,n*(Op)) is a free I(D,0) module.

In order to prove (3.2.4.2.) we need to prove that Rpﬂ'*n’*(OD)
is a free I'(D,0p) module. From the Cor. 2. p.50-51 proved in [14] it will be enouph to show
that the dimCHp(Xt,ﬂ'*(OD)lx } does not depends on t, i.e. it is constant. This is so since
s (OD)|X is just the constant sheaf € on X; and hence

(3 2.4.3. ) H (Xt”r*(oD)'X ) HO(Xt,C)

since $xXoxD. Hence HP (S, =(Op ))~H°(EG RP e *(Op)) is a free T(D,0) module.
Q.E.D.

LEMMA 3.2.5.

a) Ili($,0$) is a torsion free finetely generated I'(D,0) module, for i=2 and 3.
.
b) Hz(m,d/D(?%) is a free finetely generated I'(D,0p) module.

Proof of a:
We need to use the following exact seqeunces in order to prove 3.2.5.a.

&t
0=09¢/p=Og/p =%, 0

(%) 0~—>H (% 0%/1)) 110(95 O$/D)-»H°(X0,Ox )—»0
0— HY(S, og/D)-»H (Xo:0x, )—H2(%, 0$/D)~H (%, OQSID))—»H (Xo,0x )~

—H3(s, 0$/D) O 3 (s, O /)=
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If we prove that r; and r; are maps onto and because Hi(%,og/D) i=2&3 are finitely
generated modules over F(D,OD) and the multiplication by t is injective it implies that
Hi($,0%/D) i=24&3 are zero or finetely generated free modules over I'(D,0y). (This is proved
in Proposition 3 on p.22.) We already proved that HI(XO,OXO)=O hence we can conclude that
Hi’(%,o%/D) is either zero or a finitely generated free P(D,OD) module. If we prove that the
rank of H2($’0$/D) over I'(D,0p) is 21 and since ‘we assumed that dimCHQ(XO,OXO)zl
we get automatically that r, is & map onto. Hence Hi(%,Og/D) i=2&3 are finitely generated
free modules over I'(D,0). In order to finish the proof of LEMMA 3.2.5. we need to prove
that the rank of H2($,0$/D)21.

Proposition 1. The rank of H(%,0

%/p)21:
PROOYF OF Proposition 1.:

It is enouph to prove that for each t€D dimcﬂz(xt,ot)zl. (See Cor. 2 p.50-51 in [14].) We
will prove this fact using Dalbault cohomology, i.e. that each class in Hz(Xt,Ot) can be
represented by & closed (0,2) form on X,.

Choose a €™ trivialization of m:%—D, i.e. $xXoxD as ¢ manifolds. Since wxo(Q,O) is a
non-zero class of cohomology in I-IQ(XO,C) we will get that for each teD
wxo(2,O)|xt=wt=wt(2,0)+7t(1,1)+qt(0,2). Since w, is a d/D closed form it follows that

8;w¢(2,0)=0 on X, where d=6t+5t on X,.
Hence 3twt(0,2)=0, where w.(0,2) is the complex conjugate of w(2,0), i.e.
w,(0,2)=w,(2,0). Q.E.D.
Next we will prove the following statement:
Proposition 2. For each t€D, w{0,2)is a non-zero class in HQ(Xt,OXt).
Proof:

Suppose that w (0,2) is the zero class in H2(Xt,OXt), i.e. wt(0,2)=5t¢. Then we must get a
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contradiction. The contradiction will be obtained in the following way; Consider A'nwt(O,Q).
Then we will prove that A’nwt(O,Z) is a non-zero Dalbault class in HQ“(S,(J%/D). We get a
contradiction. Hence we need to prove that:

Step 1. /\nwt(O,i’) 18 a non-zero element of Hzn(?o,O%/D).

Remark. w;(0,2) is defined on page 21.

Proof: Note that A“wt(0,2)el‘(%,92n ). Recall that it was shown that 9

%/D (Anwt(0,2))=0.

/D
Since A"w(0,2) for t=o0 is an antiholomorphic 2n form wxo(O,Qn) on X, which has no zeroes,
i.e. we get that A®wy(0,2)#0 in Hzn(XO,OXO). From
n 9 —Al : 2n (6}
A Ut(o, )lxo A WO(0,2)¢0 in H (Xo, XO)
and the exact sequence (*) it follows that Anwt(0,2) is a non-zero section of H2n(°.5,0c£/D).

Q.E.D.

Step 2. H2%(%,04 /p) 18 & free [(D,0p) module of rank 1.

Since Hl(xo,oxo)=0 Serre’s duality implies that H2“'1(XO,OXO)=0. From the exact

sequences:
®t
0-0g,p™Og/p— %%, "
2n-1 ®t
(*) 0=H2" (xo,oxo)—»nﬁﬂ(g,o%/D)—.H2“(95,0$/D)—‘»112“(xo,oxo)-»o

we get that Hzn(S,(J%/D) is a free I'(D,0y) module since by Serre’s duality and the fact that
the canonical bundle of X is trivial implies that
2 ~ -

a) H¥"(Xo,0x )=HO(X0,032) b) Q%‘L:OXO
and therefore .

: 2n —gi o —
(%) dimH (XO,OXO)_dlmCH (XO,OXO)_l
(+x) and (%) implies that HQ“(‘?B,O%/D) is a free [(D,0p) module,

since I‘(D,OD) is a ring of principle ideals. Q.E.D.
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End of the proof of Proposition 2.

Suppose  that wt(0,2)=5tyt for each  teD\{o} then it implies that
Anwt(0,2)=5t(ptA(An'lwt(0,2)). So Anwt(0,2)=0 in H""“(%,OG_B/D). On the other hand we
have that r(Anwt(0,2))=w0(0,2n)¢0 in Hzn(Xo,Oxo). This contradicts Step 2. Q.E.D.

Proposition 2. yields that for each t€D, HQ(Xt,Ot) #0, hence HQ(SS,O,S) as finetely
generated module over principal ideal ring [‘(D,OD)CC[[t]] is a direct sum of a free module of
rank 1 and a torsion part. This follows from the structure theorem of finetely generated
modules over principal ideal rings and the fact that dime H?(Xo,00) =1. (See Lang
” Algebra”[23].)
Proposition 3. The torsion part of the finitely generated I'(D,0y) module H2($,0$) is zero,
Proof:

The following exact sequences will be used:

t
(3.2.5.1.) O —’O$ — Os — OXO—’O

(3.2.5.2.)..—.Hl(xo,oxo)-»r12(s,o$)_t.n2(ss,o$)-+H2(xo,oo)—»H3($,o$)_t.n3(9s,o$)
Since Hl(XO,Oxo)zo we get that the map
j: H3(3,0g) > H2(%,04)
in (3.2.5.1.) is an injection and moreover
(w)=tw.
Hence multiplication by t is monomorphism. Since
Tor H2($,0$)z€i9CEt]]/(tni)
and the multiplication by t is 2 monomorphism j
j: Tor H(%,04 )~ Tor H(%,04)

it follows that Tor H?(?S,Og):O. Q.E.D.
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End of the proof of LEMMA 3.2.5.a:

Hence we have proved that H2($,O‘$) is a free ['(D, Oy) module of rank one.
Claim: Either H3($,0$) is a free I'(D, Opy) module or it is the zero module.

Proof of the claim: From the exact sequence (3.2.5.2.). , the fact that the map in it

is surjective implies that the map
t .3
H3(%,04 ) H3($,0g)
which is a multiplication by t is injective. From the arguments of Proposition 3 the claim
follows. LEMMA 3.2.5.a. is proved. Q.E.D.

PROOF OF LEMMA 3.2.5.b.:

Recall the following exact sequences:

O—vw*(OD)—r(}%-ﬁd/DOD—»O
(3.2.5.b.1.)
@
...—»HQ(S,‘H‘*(OD))—sz($,O$)—>H2($,d/DOD)—>Ha(%,z*(OD))_,m
Claim. The map p in (3.2.5.b.1.) is a surjective map.

Proof of the claim:

From the standart resolutions of the sheaves w*(OD) and Og we get that:
' 0,1

Hn(m,ﬂ*(oD)):z{wer(es,Q%s)|d/Dw=o}/d/D(r(es,Q$ ))
(3.2.5.b.2))

H*(%,0 ):={w(0 2)[3w(0 2)=0}/5(r(95 Q°'1))

Ehadi= 3 ] i

and the map u is given by the following formula:
(3.2.5.b.3.) #w=w(2,0)+w(1,1)+w(0,2))=w(0,2)
Since HQ($,0$) is a free finetely generated module of rank 1 and the generator is defined as

follows:
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Choose a € trivialization of 7:%—D, i.e. BxXoxD as €% manifolds. Since
wxo(0,2):=wxoi2,05
is a non-zero class of cohomology in H2(X0’C) we will get that for each teD
wxo(0,2)]xt=wt=nt(2,0)+7t(l,1)+wt(0,2).
Since wxo(0,2) is a d closed form on $=XxD it follows that w(0,2) is a 8 closed form on .
We already proved that wt(0,2) generates the free module H2($,0$). This implies that u is
a surjective map. The claim is proved. Q.E.D.

End of the proof of 3.2.5.b.:

The surjectivity of the map p and the exact sequence (3.2.5.b.2.) imply that H2($,d/DO$) is
a submodule of a the free I'(D,0p)) module H3(%,7*(0p)) (See Lemma 3.2.4.) These fact

yields that H2($’d/D0%) is a free TI(D,Qr) module since F(D,OD) is a ring of principal

ideals.(See [23].) So (3.2.5.b.) is proved. Q.E.D.

LEMMA 3.2.6. The following equaliffy holds for symplectic holomorphic manifolds:
. 1 .
(3.2.6.1.) dimHO(Xo,dQ )=d1mCH°(x0,Q§O)=1

PROOF OF LEMMA 3.2.6.:

It is sufficient to show that a symplectic hffomorphic manifold does not admit a non-closed

holomorphic two form. Suppose that xo(2Q) is a holomorphic two form on Xy such that

d(ko(2,0)Fwo(3,0)#0. Then :

/WO(S,U)AWO(B,O)Aw2H'3=/ d 3m0(2,0))/\w0(3,0)A(A2“'3w1’l)>o R

Xo Xo

,2

1,1

2,0
w

where w is the form constructed in THEOREM 1, w= +w1’1+w0 and w is positive

definite at each point of X. Since Stokes’ Theorem implies

] d(xo(2,0)AWa B A(A 23w =g
Xo

age24
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A contradiction is reached and equality ('32‘1) is proved.
Q.E.D.
LEMMA 3.2.7. H1($’_Q§/D) is a torsion .-erI‘(D,OD) module.
PROOF OF 3.2.7.: We have the following ":act sequence
(A1) 0 - oL, Lol g o -0
%/D $/D'l_ Xo
(A2)0—H(3,0L , )L HO(E, L, )— 1f(x ol y - rls, ok, )4 uls0l -
B /D ' '®B/D 0 **Xo * "B /D /DT

Proposition 1. H°(X,, Q%(O)=O.

~

Wt

Proof: -
We need to prove that there are no holoiorphic one forms on Xg. Since Hl(xo,oxo)=o
there are no one holomorphic forms that areklosed.

Suppose that o is a holomorphic one foin on X4 such that da#O. Since wo(2,0) is a

nondegenerate form on Xy we get that: .
J dandan( wo(2,0)IA(wo(0,2))2>0,
Xo 1

B NBEA( wo(2:0))™ A(0(0,2))" =d(RADEA( wo(2,0))" A(wo(0,2))")=dp,

3
(x) O< I dandaA( w0(2,0))“/\(w0(0,2i)“ = J d(aA8aA( wo(2,0))" A(we(0,2))")=0
Xo 5 Xo

i
Hence () implies that de=0 and thus a=0! Q.E.D.

t

i
End of the proof of LEMMA 3.2.7.:

The map. HY(S, Qg /D)-B HY(S5, Qg /Dl) in (A2) which is a multiplication by t has zero
kernal. From here it follows that H1(S, Q}S/D) is a torsion free finitely generated I‘(D,O‘D)

module. Thus Lemma 3.2.7. is proved. Q.E.D.
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LEMMA 3.2.8.
H1($,Q{'5/D)/j(ﬁl($,d/D0D) is a torsion free ['(D,0p) sub-module in H(%, d/p

where j is defined from the following exact sequences:

d
1 /D 1
(**) O—vd/DOD—rQE/D—o d/Dﬂg/D—»O
. H(S, d/Dog;/D)—-»H (%, Q$/D)—>H (%, d/p9 %/D)—»Hz(ES, d/p0g /p)—-
REMARK.

(%, )= ={ w(1,1) € (8, %/D) 18 /py @(1,1)=0 }/a/D(r (B, Q?O/D))

,p)

We have proved that H1($,Q%/D) is a finetely generated free T(D,0p) module. (This is

LEMMA 3.2.7.)
Proof:
Lemma 3.2.8. follows directly from the following two propositions:

PROPOSITION 1.

Let wt(l,l)EHl(H;,Q%B/D) be a fixed nonzero class and suppose that there does not exists two

form w;(2,0) such that d/D ‘”t(z’o):d/D”t(l’l)’ then for each n€Z and n>0, there does not

exists a two form ¥{(2,0) such that

d/p " wy(1,1) = 4,y 9{(2.0)

Proof of Proposition 1.:

Suppose that for some n> QO there exists ¢?(2,0) such that
d/p(t" wy(1,1) = d [ (¥7(2,0))
and w,(1,1) satisfies the conditions in the Proposition 1.
From Taylor expensions of w;(1,1)
(A) w(1,1) = wo(1,1)+tw (L, 1)+ +t wn(1,1)+..
and of ${(2,0)

page26



(B) ¥§(2,0) = o+t +.+t"n +

and since d/D and tP comute the following formulas are obtained::

(©) d/p( Yo+t +.+t" 1y 1) =0
(D) tnd/Dwt(1’1)=d/D(tn¢n+tn+1¢n+1+--)=tnd/D(¢n+t’l’n+1+--+tk¢n+k+'-):
= t"d ,w(2,0)

/D%

From (D) we get that

But (E) contradicts the assumtion of w;(1,1). Thus the PROPOSITION 1. is proved. Q.E.D.
Recall that:
PROPOSITION 2.

HY%,d,. O ={w, (2,0)4w, (1,1)|d (2,0)+w, (1,1))=0}/d . (T(%,2L , ), wh
a) ’/DEB/D)’ wi(2,0)+w (1, /Dwt’)“"t(’ /D(’EE/D’wem
Q‘}"o/D is the sheaf of C® relative one-forms.

1 1 = 3,0 2,1 _ 2,0
b) HY(S,d,, O ) ._{ wy € T(%,0g 7 © Qg )l d)p, wt—-O}/ 4/ p(T(B9G7p)
¢) the map p: H1($’Q‘1’£/D) — Hl(?"’d/DQé/D) in the exact sequence (x*) is just the map
d/D’ ie. plwy) = d/D(wt).
PROOF OF PROPOSITION 2.a:

PROPOSITION 2.a. follows directly from the following resolution of the holomorphic sheaf

) 1,0 4/D_ 50 . 11
450 /' 0—~d,0g =R In = 99 +H0g p— - Q.E.D.

PROOF OF PROPOSITION 2.b. & 2.c:

It is verry easy to prove Proposition b. and Proposition ¢. Just use the standart resolutions

of the sheaves d/DOg.o, Ql‘%/D and d/D Q%S/D Q.E.D.

COR.a. The map j in the {formulation of LEMMA 3.8. is defined as follows:

H(wy(2,0) 4w (1,1))=w(1,1).
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End of the proof of LEMMA 3.2.8.:

Lemma 3.2.8. follows directly from PROPOSITION 1, PROPOSITION 2.c. and the definition
of a torsion element of the submodule p(Hl(Q,QéB/D)/j(H1($,d/DO%) in I'Il(%,d/DQ}s/D)

Q.E.D.

Theorem 3.2. is a consequence of the following lemma:

MAIN LEMMA 3.2.9. H!(%,d D 0% /p) is @ torsion free [(D,0p) module.

PROQOF OF LEMMA 3.2.9.:

The following exact seqences will imply 3.2.3.:
1 1
1 it 1 1 1 2

(**) ...— H (S,d/Dog).—» H (%,QEB/D) — H (%,d/D Q%/D) - H (S,d/D(J%) ..

The map j; Hl(%,d/Dog) - HI(E,Q&.’/D) in (%) is given by the formula:
(xx) Hw(2,0)4w(1,1))=w(1,1) (See Cor. a. on the same page.)

From (**} we get :

1 (ol

(3.2.9.1) O—H (%,Q}S/D)/_](H (S,d/DO%)) N Hl(es,d/DQ}s/D) — H2(%,7*(0p)) —-.
It was proved that Hl(HS,ﬂ}S/D)/j(Hl(?'o,d/DOD) and H2(°.5,w*(0D)) are free I'(D,0p)
modules, then (3.2.9.1.) implies lemma (3.2.9.). Q.E.D.

The end of the proof of THEQOREM 3.2.:

COR. 3.2.9.a. From Lemma 3.2.9. follows theorem 3.2.

PROOF OF 3.2.9.a.:

We have the following exact sequences : e

1 t 1 1
(3.2.9.1.) 0= d g n=d/pl%p—d/p g /plx, =0

—H° 1 t.pgo 1 —~H° 1 1 1 gt 1
In the long exact sequence (3.2.3.1.1.) the map

i: HY(%,d

/DQ}S/D)_‘.Hl(m,d/

p%%/p)
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is given by multiplication by t. Recall that Hl(?ﬁ,d/DQ&/D) is a torion free finitely generated
[(D,0p) module and F(D,0p)CC[t]. Hence the map

H(s,d )L HY(S,d

1 1
/p%%/D /p%%/D
is injective. The exact sequence
o 1 t o 1 o 1
the fact that dimCHO(Xo,dQ%(O)zl and the structure Theorem of finetely generated modules
and LEMMA 3.2.6. implies that the Ho(&?,d/DQ}S/D) is a free I'(D,0y) module of rank one.
Let w%/D(2,O) be the generator of I-I°(°.5,d/DQ}$/D) such that w%/D(2’O)]X0 is a non-zero
holomorphic form on Xg. The restriction of
1
2,0 = 2,0 h X, = t

“g/D( )lxt wi(2,0) where X =7""(t)
will be a non-zero closed holomorphic two-form. This follows from the definition of the sheaf
d/DQéB/D' Hence each X; will be a holomorphic symplectic manifold, after possibly shrinking
the disk D. Continuity arguments yield that the form w(2,0):= WS/D@’O)'X is a non-

t

degenerate one on X,. Hence 3.2.3.a. is proved and Theorem 3.2. is proved. Q.E.D.
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#4. THE PERIOD MAP FOR HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Let m:%5—U be the family of symplectic manifolds constructed in #3. Remember that
dimCU=b2—2=dimCH(11(X,Ql) and U is a non-singular complex manifold. Since m:%— U in the
catagory of C® manifolds is diffeomorphic to the trivial familyr: UxX—U, hence if we fix a
basis (51,...,6b2) of H,(X,Z), then (61,...,6b2) will be a basis of Hy(X;,Z) for all t €U. From
now on let us fix the basis (61,...,6b2) of H,(X,Z).

Definition 4.1. The period map p:U—P(H,(X,Z)®C) is defined as follows:

p(t)::(.....,J. wt(2,0),...)
6.

1

where w(2,0) is the only holomorphic two form defined up to a constant on thw'l(t) and
d(w;(2,0))=0.

Let dimeX=2n, J (@ (2,07 Awg (0,2)M)=1 and wy (2,0)=wo(2,0).

X¢

Definition 4.2.

For every a€H?*(X,C) define

a(@)=§ [ (wo(2.0) Awo(02)" L Aa+
X
+(1-ﬂ)(J(wo(2,0)n_1/\wo(0,2))"Aa’)(J(%(2,0)“/\“0(0,2))“_1/\&)
X

.. X
Proposition 4.3. + e

A) The quadratic form q(a) is a non-degenerate one and is defined over Z taking into account
that H*(X,C)=H?(X,2)®C
B) Let © be a subvariety in P(H*(X,Z)®C) defined by q(a)=0 and q(a+@)>0 then p:U—0

is an isomorphism on its image and p(U)CS.
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REMARK. 4.3.B. is the so called local TORELLI THEOREM for holomorphic symplectic -

manifolds, which says that the differential of the period map at each point of U has a maximal
rank equal to dimCU.
Proof of A and B: For the proof of a) and b) see [02].
Q.E.D.
Lemma 4.3.1.
The classes of cohomologies [w] of the forms that are constructed in THEOREM 1. form an
open and convex cone in Hl'l(X,R)CHz(X,R), where 111’1(X,i?):={a]l [w]€EHZ(X,R)| [w]
contains a closed form of type (1,1)},
Proof; From 2.1. follows that dimgH""(X,R)=b,—2. Let 8111 pon be & basis of H"1(X,R),
then if N is a positive sufficiently large real number and €1505€p - ArE sufficiently small rael
positive numbers, then the compactness of X implies that
Nw+ ¢6,€H" (X,R)
and the form
Nw+Zci5i
will fulfill the properties stated in THEOREM 1. Thus 4.3.1. follows.
Q.E.D.

From 4.3.1. it follows that we can choose a basis of H*(X,R) in the following way: {Re
wo(2,0), Im we(2,0), 61,...,6b2_2} where §; for all i are in the convex cone defined in 4.3.1..
Clearly we have q(Re wo(2,0))>0 q(Im wo(2,0))>0. From the way we defined §,, it follows
that §; can be realized by a form w that fulfills the conditions of THEOREM 1., then

a(@)=3] (wo(2.0)rwo(0,2))" L Aw?=

X

g[ (0(2,0) Awo(0,2))* ~ 1 A8atO AT a1+
X
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%J(wo(Q,O)Awo(0,2))n_1Awl'lf\wl'l
X

Clearly q(w)>0, where q(6;)=q(w). This proves that q is a non-degenerate form. In {02] it was
proved that q is deﬁneci over Z up to a constant.

Q.E.D.
Definition 4.4, K(X)::{wEHl‘l(X,R)l J w* >0, where Cy is any k-dimensional complex

Ck

analytic subspace in X}. We will call K(X) the Kahler cone of X.
Remark. Note that from 4.3.1. it follows that if X is a symplectic holomorphic manifold, then
K(X) is an open convex cone in Hl'l(X,R).

Proposition 4.5.

Let m:%—U be the family constructed in 3.1.A., where 11"1(0)=X, then in U we can find an
everywhere dense subset U'CU such that a) U! is an open subset in U. b) for each 7€U’
'.r'l(r)=X1- is a Kdahler manifold.

Proof: From local Torelli Theorem it follows that we can suppose that UccP(H?*(X,Z)®C),
where dim-Q=b,—2 and dim-U=b;—2 and thus U is an open subset in €.

DEFINITION.

i) Let @QCP(H?*(X,R) be the open set defined by q(u)>0 for u€Q and u#0..

ii) Let SCH?*(X,R) be the set defined as {the union of all lines in H?*(X,R) that corresponds
to points inQ}.

iii) Let w:%fbe the union of all K(X;) for reU.
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LEMMA 4.5.1. W is an open subset in H?(X,R).
PROOF OF 4.5.1.;
Note that 2 is an open subset in Hz(X,R). Let T€U, XT=1r'1('r) be a holomorphic symplectic
manifold in the KURANISHI family 7:%5—U. Let wy GIIl'l(XT,R), where
Hl'l(X.,-,R):={[w]EH’(X,,R)[[W] contains a close form of type (1,1)}
and wy be cohomological to Harvey-Lawson form on Xy, i.e w; is cohomological to
wr=6al'0(r)+w1’1(r)+m(r) where wl'l(r) is positive definite at each point of X;. From
LEMMA 2.2. we know that w, exists for each €U, represents a non-zero class in Hl‘l(Xr,R)
and belongs to K(Xy), hence q([w],[w7])>0. This implies that wr €2. Let [w)] be in the open
subset LCH?*(X,R) and sufficiently close to [w;]. The local TORELLI THEOREM implies
that UCP(HQ(X,C)). Let U[WV]:={t€U | a(t,[wy])=0. From the local TORELLI THEOREM
it follows that that for each teU[w,,} [w,,]EHl'l(Xt,R). (For more details see [02].) Continuity
argument yields that if tGU[wU] is suficiently close to 7 then [w,]€K(X,). Since & is an open
subset in H*(X,R) and the above arguments imply that W is an open subset in HZ(X,R).
Q.E.D.

Let W(Q) %f WnH?(X,Q). HX(X,Q) is an everywhere dense subset in H2(X,R). Tt implies
W(Q) is an everywhere dense subset in W.

From the definition of W(Q) it follows that if e W(Q), hence there exists r€U such that
leK(X7). Thus X; is a symplectic holomorphic manifold such that leHl'l(X,R)nHQ(x,Z) and

for every complex analytic subspace C, CXr we have

J1k>0

Hence by a THEOREM 5.1. from the next section X, is an algebraic manifold. , The points

r€U for which W(Q)NK(X;)#9 is an everywhere dense subset in U since W(Q) is an
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everywhere dense subset in W. Let us denote this subset by U”. Thus every point 7 of U”
corresponds to a projective holomorphic symplectic manifold. Proposition 4.5. follows from a
theorem of Kodaira [11a], which says that the Kahlerian property is an open property.

Q.E.D.
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#5. NAKAI-MOISHEZON CRITERIUM.

THEOREM 5.1,

Let X, be a holomorphic symplectic manifold. If L be a line bundle such that for any complex
analytic subspace C,CXy of dimension k J (cl(L))k>O, then X is a projective algebraic
) Cy

manifold.

PROOQF': The proof is based on the following LEMMA :

LEMMA 5.1.1.

Let X, be a holomorphic symplectic manifold and let L be a line bundle on X, such that

¢,(L)}#0, then there exists a divisor D such that L&OXO(D).

PROOF: Let .A‘uxo be the sheaf of meromorphic functions on Xg. We have the following exact

sequences:
*
(*) OqOXO'*J‘bXO—’G.DXO—*O
—HO(O* YO . J° Sutrox vyl ig1 -

where ’iDXO is the sheaf of divisors on X5 and hence Ho(‘ibxo) are all divisors on Xg, i.e
6(D)=OXO(D)EH1(O3‘(O).

Proposition 1. The map i:H]‘(Jﬂaxo)—»Hl(‘.ﬁ)"(o) is an inclusion.

PROOF: '

Step 1.

There exists a family of holomorphic symplecitic manifolds m: % —D such that HI(O;BD)=0‘

PROOF of Step 1:

Recall that the base of the Kuranishi family {n:5—U, w'l(o)=xo} constructed in 3.1.A.
can be viewed as a submanifold UCP(H?*(X,Z)®C) and U is contained in an open set Q of a
quadric in P(H*(X,Z)®C) defined over Z. We suppose that o€Q.

A plane P2CP(H*(X,Z)®C) can be chosen such that P? intresects Q transversally at o and
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P2 is not contained in any hyperplane HL’ for any L €H?(X,Q), where
(*) HL={ueP(H2(x,Z)®C)| <u,L>=o, LeHz(X,Q)}

Let D be a disk, such that DCP?NQ and 0€D. From the definition of the quadratic form q,
that defines Q2 (See #4.) it follows

Condition H*(Xr,Z)NH"(X,,R)#0 for 7€D and 7"1(r)=X; is equivalent to T€H| , where
LEHg(Xr,Z)nHl'l(XT,R). The proof is straightforward. See [02].
From the definition of P? and that of D we get that the set of points T€D such that

HY(X,, D)NHY (X, R)=0
is a non-empty set which is everywhere dense set in D. Let us denote this set bu 9.
Suppose that HI(EBD,(J%D)#O, where %D—-bD is the restriction of £—=U over D. Let
a(L)50 and a(L)eH1($D,o;‘£D)

We know that o(L) corresponds to a line bundle £ on $y,. We will prove that ¢;(£)#0 in
H2($D,Z), where c¢,(L) is the first Chern class of £. We have the following exact sequences:

exp 4
0—*1—»093 ——>O$D——-’1

D
....—»Hl(OgéD)—+H1(0§_3D)£>H""($D,Z)—»..

We have proved that Hl(OD)=0. (See #3.) Since §(a(L))=c,(£)(Sce [05].) Thus we get
that c¢,;(£)#0 since a) § is an inclusion, b) eo(L)#0 a(L)€H1($D,Of$D) and c)
c,(£)=6(a(L))#0.

Since %y is a strong retract of X, it follows that for each r€D H2(?BD,Z)=H2(XT,Z).
From this fact and since L is a non-trivial line bundle on %y we get that the Chern class of
L, on X, is #0. Hence on each X, for r€D 'LT=£|XT is a non-trivial line bundle. Hence we
get a non-zero element cl(.t’.,-)EHE(X,—,Z)OHI'I(XT,R) for each r€D. On the other hand we

know that on a dense subset DCD we have
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H2(X,,2)nH (X, R)=0
for €. We get a contradiction. Hence HI(O& )=0.
D
Q.E.D.

Step 2.

The map i:Hl(Xo,O;(o)—i»Hl(xo,Jfoxo) induced from the exact sequence
*
is such that i(¢)=1 for every ¢GH‘(X0,O3‘(O).

Proof of Step 2:

DEFINITION.
Let U be an open subset in %y, define .A‘laf‘li;D("LL):={a.ll meromorphic functions f#0 on U]
(No#UNX, and (f)m;é‘llﬂxo}. We denote the zero set of f by ()g and (f)ocz(%)o. Let
.Ab}g be the sheaf obtain from the presheaf .A‘b}s (u).
D D
REMARK. Let U be an open subset in % and let (t,Cl,...,Czn) be local coordinates in A,
then if f‘u(t,cl,...,czn)e.&é_}D(‘u) it ca be expressed as:
0 . .
fqu (60 C2M) =09 (¢11 s M+ Y 11805, (¢1eeC2™)
. i=1
where ¢5u((,'1,...,c2") are meromorphic functions.
Hence the sheaf A}ﬁDcorresponding to the presheaf .AL%BD(QJ.) is a subsheafl of the sheaf
of the meromorphic functions on %pp- We have the following exact sequence:
* 1 1
Since Hl(O’éD)zo the following inclusion is obtained:
(5.2.1.) 0—>H1(.AL%BD)—>H1(°.D}$D)—>
Proposition 2.

The restriction map r:Hl(SBD,J!L%SD)—le(XO,Jﬂ:XO), induced from the restriction of the sheaf

1 .
A on X, i.e.
%p
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Cal
r.JﬂsgD—uﬂ:XO—vl

Q. .
where 1'(¢31(C1,-~,C2")+2tl¢fu(Cl,---,Czn))=¢?u(C1,---,Czn)lcunxo is & map onto.
1=
Proof: We have the {following exact sequence of sheaves:
1 1
1M 1} M — My, —1
g, (D= Ry A,
1 — 1 2n 1 -
where .A‘L$D(1)(°d.)._{fql(c yeensl ,t)e./ﬂ;%D| f‘ul"-llr‘IXO_'l}'
REMARK.

It is easy to prove that if fq, € fod (1)(U), then
u €My

fcu=1+;tl ru(Cl,-nsCzn))
where fiql(cl,...,(:"n) are meromorphic functions depending only on {Cl,...,(zn}, i.e. for each i
i, is such that (£} )o #UNXo and (fh))eo #UNXo.
We have the long exact sequence:
" 1%
5.2.2.1. SHY ML Yo H Ay T2 AN HE ML Y-
(5:22.1) § )= R Ay ) =1 ay () Bua )

If we prove that the map

i* w1
H2 (g (1) HE(Ag )
has kernal equal to 1, then
1
Hl(.)ﬂ:.gsD)—-*Hl(.A‘laxo)
is surjective. Thus we need to prove th? following sublemma:
Sublemma 2.1. The map
*H2(L (1))—HZ (Al
( gD( N gD)
has no kernal, i.e. ker i*=1.
Proof: Suppose that ¢EH2(AL!$D(1)), then from the definition of Cheh’s cohomology, it

follows that
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¢={¢ijk}eH r(Uirmjmuk,m,?}$ (1))
i<j<k D
and

{(68)ij} =1k i1 Picii®1j=11, where
0
¢Uk=1+zti¢:jk

i=1
Suppose that i*¢=1, hence

(5.2.2.2.1) {¢ijk}={¢ij¢jk¢ki}’ where

— 6048 P M e r(U. N UL ML d
¢ii=0 +Z:t ¢ij€ ( iN j? $D)an
p=1

oo, .
¢ijk=1+i;tl¢ijk \

From (5.2.2.2.1) we get that
040 0 _1 .
(5.2.2.2.2) qbu Tk =1

Let

1 -1 . o oon-1
{#5)=16;;(40) }={1+p§=:1tu(¢ij(¢‘i}) )}
Clearly {¢%}e[ [ 1"(Uir1Uj,Ju,}S (1)). Since
1<j D

{80010 =058 1 451 (85 i (B0 =106 1) (9580 87 =) ) =145 )
Hence {¢ﬁk}EHF(UiﬂUj,./ﬂ:}5D(1)) is a coboundary. From here we get that keri*=1. Q.E.D.
<]
Proposition 2. follows from (5.2.2.1.). Q.E.D.

End of the proof of Step 2.

Let {CU.?} be a covering of Xg. Since %y as C® manifold is diffeomorphic to XoxD, then

{°U.i="'U.?xD} is a covering of . We may suppose that U, are polycilinders. If U, is a Stein
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manifold then Hk(%i,A%)ﬂ for k>>0. Since Cheh’s cohomologies with respect to the usual
i

topology are isomorphic to the Cheh’s cohomologies with respect to the Zarigki topology (See

[07]) hence

Sublemma 2.2, Hk(q"‘i""ﬂ’é'oqu,l.i)=1 for k>0.

Proof:

I {‘WJ} is a covering of U, by Zariski open sets, then if {4: k} is k-cocyle, i.e.

loilai:h"vi
{¢

1
Ye JI F(Wio”"”wik’“"’%DM)

PR P PR |
fo5t1stzreilic o< 0 <iy i

From the definition of a Zariski open set it follows that we can consider ¢,

TR «+  as a
10511,12,..,1}(

section of I‘(‘Wioﬂ..ﬂWij.nWik,A$D|%i), where intersection with ‘Wij is missing. This holds

2

k—1I-cocycle in the following way: Let Ik =(i0""’,ik) be a (k+1) multiindex and let Ik—l be a k-

since ¢.

s . is a meromorphic function. We can define from the k-cocycle {¢.
10311’12""1k 1

0,11,12,..,lk

1 multiindex. If Ik.—_(-y,lk_l), then

{Ulk-1}={[y[¢(7’lk-1)}

ik}=1 it follows that 6{5"]1-1}={¢
t

Then from 6{¢.

lO,ilsi2’-'s ik}- (See [07].). Q.E.D.

io,iqsl2s0
Rematk. |
From Sublemma 2.2. and a."I‘heorem of Leray, itllfollbws that Hk(‘.?'oD,.AL}gD) are defined from
a Cheh’s complex, arizing .frorﬁ a finite coverin? of %y by {U;}. The last statemnt is true
since X, is compact.

Now we are ready to prove that the map i:Hl(XO,O;(O)—*HI(XO,.ABXO) induced from the
exact sequence |
(%) 0"03‘(0‘”"")(0"%)(0“0
is such that i(¢)=1 for every ¢EH1(X0,O;(O).

Let {¢S}GH1(X0,O;(O), where
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{¢°}eHr(cu nU;,0% )cHr(ou N3, Dy )
i.e. we may consider {¢°}€H (Xo,‘lx ). Smce the map
Hl(gD,G.D%D)—*H (Xo,‘mxo)—*o
is surjective an element {¢ij}eH1($D’€D%6D) can be found such that
1 -
{¢ij}en(%inmj’A%D) 6({¢ij}——1
<
and
(#)lx, =162
Here we can think of {4, } as an element of H(U nU ./I"ux ) since

i<j

OAH(CU. NU;,0% )_.H(eu N, Moy )=
i<j i<y

From the defintion of ED%;, it follows that for each (i,j,)
D

..... +Z t‘u(ﬁ’f where

ij_ 9({1 . E2M), ¢ ..... (f , ,{2") Since ¢1J|X ¢1_]|X we may suppose that
_30
¢ijlxo_¢ij
Notice that ¢E ik i=1 and hence {&:E} is a cocycle. Since {&3} are only finite numbers,
<01 _ 40
#iilxo =4

and all qbf'j has no zeroes and no poles in ‘ll?ﬁ‘u‘? we may suppose that z}g has no zeroes and
. o o — s : 1 4l 1repl
no poles in (U xD)ﬂ(cU.j xD)_CU.iﬂ‘U.j. The inclusion H (.ABSD)CH (".D%D) and the
o 1 1 * . .
definition of P =M Oq imply that —
&, =M% /0% .
20y _q: 1 1
{¢ij} =1in H (.A'ug ).
Thus {:;7:3} is 1 in Hl(‘EDElE ) which means that {q5°}|X _{41 ] is 1in H! (.A‘ux ). and Step 2.
is established

Q.E.D.
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From Step 2 it follows that the coboundary map
RTre) 1 *
is & map onto. Hence if L is a line bundle on X, then L:OXO(Y), where Y is a divisor on Xg,.
This is true, since LeHl(Xo,O;(o) and hence £=6(Y), YeHo(XO,‘EDXO).
Q.E.D.

End of the proof of the THEOQOREM 5.1.

The proof is standart and is based on the following induction hypothesis:
Let Y be a compact analytic manifold such that dimeY <dim-X and £L=0,(D’) where D’ is 2

divosor on Y. Suppose that for any analytic submanifold C of dim=k we have:

J a1 (£)K>0

Ck
then Y is a projective manifold and L™ is defining a holomorphic birational map Y —P". Let X,
satisfies the assumptions of the Theorem, i.e. X5 i3 a holomorphic symplectic manifold and let
L be a holomorphic line bundle on X, such that for any analytic submanifold C, CXg of

dime=k we have:

J cl(.L)k>0

Cy
From LEMMA 5.1.1. it follows that Lioxo(D’), where D’ is a divisor on Xg. Let X be
obtained from X, by blowing up one point on Xg. Notice that if we prove our THEOREM for
Xp it will also hold for Xg.

We can consider on the blown up manifold X{ the exceptional divisor CP2" 1=y and the

line bundle £(D) on Xg, where D=ND’-Y, N€Z+ and N big enouph.. Clearly £ on Xg fulfills
the hypothesis of the Theorem and Y fulfills the induction huposesis, i.e. for some big N,

1
LNIY gives a holomorphic map: Y —PN" which is birational. Thus
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(+%%) Hi(2N}y)=0 for i>1 N
The exact sequence:
(444%) 0—HO(LN (Y —HO(2N)mHo (LN ) B 2N (v —H (2 N) =0
yields that dime H'(LN(-¥))2dim B} (2N)
The exact sequence:
0—2NEY) 2N 2N o
Hirzebruch-Riemann-Roch THEOREM and the fact that dimcHl(LN(-Y))ZdimcHl(LN) we
conclude that:
dimHO(LN)—dim cHO (LN () > x (M) —x (LN (-¥)=x(£N|y)=
aNdimX—1_
where a is positive integer. Thus dimCHo(LN)>0. Let L=LN=0X0(D’) and hence D’ is
effective. From the exact sequences, where M is big enouph positive integer:
0— M1 pM_ M| o
o—mo(eM-hy oMy mo(eM| )~ (e MYy m oMy~ m M| ) -
By the induction hypothesis it fo'~ws that Hi(LMID,):O hence
dimcH' (£ <dimcH M~y < <dimHY(2)
and o
dimcH'(£¥)=dim 1M for 12
From Hirzebruch-chmxi-nn—Roch THEOREM (See [12]) and the facts that

a) Jcl(L)n>0 where 2n=dimCX-and b) dimCH'(X,LM)Sbi, where b; €Z_ we get that S
X

dim~X=2n
dimcHO(X,tM)=am ™ €

where a€Z+. This equality shows that X is a Moishezon space. Now our THEOREM follows

from Moishezon-Nakai THEOREM. (See [13].). Q.E.D.
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REMAREK. Combining the results of #5 & #4 we get that in the Kuranishi family $—U,
more precisely in U, there is an open and everywhere dense subset U’ such that the points of

U’ corresponds to Kihler holomorphic symplectic manifolds.
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#6. REVIEW OF THE ISOMETRIC DEFORMATIONS .

Definition 6.1.
A Kihler metric (gaﬁ) on a holomorphic symplectic manifold X will be called a CALABI-

YAU metric if

Ricci(g —)=08log(det(g —))=0
af afd

The existence of a CALABI-YAU metric follows from the deep work of YAU. (See [19].)
The CALABI-YAU metric (gaﬁ) induces a covariant differenciation V on AQT*X®C‘ (See
[02].)

LEMMA 6.2.
Rewy (2,0),Imwy(2,0) and Im(gaﬁ) are parallel sections of F(X,/\2T*X) with respect to
V.
Proof: See [02]. This is the so called BOCHNER principle.
Q.E.D.

Suppose that x is the HODG‘E star operator with respect to the CALABI-YAU metric
and 1;
i
JRewx(Q,O)A*RewX(ZO)—JImwx(Q,O)A*Imwx(ZO):JIm(gaB)A*Im(gaB)zl
! k !
Rewy (2,0),Imwy (2,0) and Im(gaﬁ) define a three dimensional subspace Ey (L) in
I‘(X,A2T*x) and since Rewy(2,0),Imwy(2,0) and Im(gaﬁ) are harmonic forms with respect
to the CALABI-YAU metric Ey (L) is a three dimensional subspace in H2(X,R). It is easy to

see that qIEX(L) is positive definite. (See [16].)
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Let 7=aRewX(2,0)+blmwx(2,0)+clm(gaﬁ), where a,b and ceR and aZ4b2+c2=1. Since
7GEX(L), then Vy=0. Locally % can be written in the following way:

7:27“adxp/\dxa

If ng‘dxl’@dxu is the Riemannian Ricci flat metric on X defined by the CALABI-YAU

metric (gaﬁ) on X, then

IN=0F) € Q™1 pererreT)

LEMMA 6.3.
a) J(7) defines a new integrable complex structure on X.
b) v is an imaginary part of a CALABI-YAU metric with respect to the complex structure
J(7). The CALABI-YAU metrics defined by 7 and J(v) are equivelent to the CALABI-YAU
metric gaﬁ’ that we started with.
c) Suppose that (X;8,,...,6,,) is § marked Hyper-Kéahlerian manifold and suppose that
P(X;61 52050 )=%X0 €RCP(H?*(X,C)) (p is the period map)
_ then there is a one to one map via p between the complex structures J(v) on X, where
'r=aRewX(2,0)+bIrncul‘x(2,0)+cIm(ga-ﬁ), a,b and ceR, a.2+b2+c2=1
and the points of the non-singular quadric
P(Eyx (L)®C)NQ=P} (L)
Proof: See [16) or [17].

Q.E.D.
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Remark.
Notice that J(Imgaﬁ) is the original complex structure on X, Lemma 6.3.c. yields that

xo €PX (L).
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#7. CONSTRUCTION OF A SPECIAL FAMILY OF KAHLER MANIFOLDS..

Definition 7.1.

NdéfU{Ecﬂg(X,R)l E is spanned by Rewy(2,0), Imwy(2,0) and ¢, where ¢€K(X)}. K(X) is
defined in 6.4.. N is a subset in H%(X,R). Suppose that K(X) is spanned by all we'(X,A?T*X),
where w were constructed in THEOREM 1..

N as a subset in H?*X,R) is diffeomorphic to EyxK(X), where

Ex:={Rewx(2,0),Imwx(2,0)}CHz(X,R) therefore N is an open subset in H?(X,R).(See [16].)

Remark 7.2.a,
In #4.2. we introduce a quadratic form q over Z. This quadratic form has a signature
(3,b,—3). This was proved by Beauville. (See [02].) Let < , > be the scalar product defined by

q on H*(X,R).

Remark 7.2.b.
From the definition of N it follows that N is the union of three dimensional subspaces
ECH?(X,R) which have the following properties:
1)<,>onEis positivte definite.
2) E contains Ey, where Ey is spanned by {Rewy(2,0), Imwy (2,0)}

In [16] the following PROPOSITION was proved:

PROPOSITION 7.3.
There is a one to one map between the points of  and all oriented two planes in

H?*(X,R) on which < , > is positive.
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PROPOSITION 7.4.

Let m:%—U be the Kuranishi family constructed in #3. and let w'l(o)z){, then there
exists a disc DCU such that o€D Le % —D be the family of Kéihler holomorphic symplectic

manifolds such that over an open and everywhere dense subset BCD the restriction ‘5%—»“3 of

>

m:%—U over D is isomorphic to the restriction of 1, —D over D.
Proof; Let N(Q):=U{ECN| ENnH?*(X,Q)##®}. Since N is an open subset in HZ(X,R), it follows
that N(Q) is an everywhere dense subset in N. By the continuity argument we can choose

LeN(Q) such that

a) L=aRewy (2,0)+bImwy (2,0)+cw with s positive definite. Recall that w is a form such

that wi'l s positive definite.

b) If E; is the orthogonal complement to L in the subspace E spanned by L, Rewx(2,0) and
Imwy (2,0) in H2(X,R), then via the period map E; corresponds to a point teU, where m:%—U
is the Kuranishi space constructed in #3., i.e. E; is spanned by Rew;(2,0) and Imwt(Q,O),

where w;(2,0) is the holomorphic closed two form on thvr'l(t).

From 2.2., 2.2.3. and Moishezon-Nakai criterium it follows that X, is an algebraic
manifold, hence t€U’CU defined in 4.5.. Let (gaﬁ(t)) be the CALABI-YAU metric on X,

which corresponds to L. Now we can define the isometric deformation ?."o(L)—»S2 of X; with
respect to ga—B-(t), therefore this family is mapped by the period map p onto P(EQC)NQ,

according to #6.3.. Notice that P(E®C)NQ is a projective non-singular plane curve of degree
two, contained in Q. (See [16].) On the other hand from the definition of E, i.e. ECE(Q) and
# 7.2. it follows that
Un(P(E®C)NQ)=D
is an open disk. Since Ey:={Rewy (2,0}, Imwy(2,0)}CE(L} it follows that
p(X,61,....,6b2)=oeD=Uﬂ(P(E®C)ﬂQ)
In {02] it was proved that for Kihler holomorphic symplectic manifolds there is an everywhere

dense subset in 2 such that each point of this everywhere dense subset corresponds to
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algebraic holomorphic symplectic manifolds This subset is of the form, some union Hy NG,
where Hy:={u€Q| <u,L>=0} and L are vectors in H?(X,Q). Since Hy NP(E®C)NQ#D we get
in D an everywhere dense subset of algebraic holomorphic symplectic manifolds, hence from
here we get that D=U'ND (U’ is defined in # 6 and every point of U’ corresponds to a
HYPER-KA HLERIAN MANIFOLD) is an open and everywhere dense subset in D.

Over D=UN(P(E®C)NQ) there are two families. The first one is the restriction of
7:%—U and the second family QB’D——»D is obtained by the isometric deformations. From local

TORELLI THEOREM it follows that both these families are isomorphic over 9.

Q.E.D.
Cor. 7.4.1.
There exists a biholomorphic mapping
%Z,:D———»ESGI
f: 1|
D —D

such that f induces the identity on H2(X,Z).

Proof: The existence of f was established in Proposition 7.4. since { is an isomorphism of
marked Holomorphic symplectic manifodls it follows that f induces identity on H2(X,Z).
Q.E.D.

Next we will prove, using a THEOREM of BISHOP and the existence of KAHLER-
EINSTEIN-CALABI-YAU metric that f can be extended to an isomorphism over D. This will
imply that X is a Kahlerian manifold. The idea of using BISHOP’S THEOREM in extending
isomorphisms belongs to DELIGNE as it i3 pointed ocut in the paper of D. BURNS and M.
RAPOPORT. See [20].
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#8 APPLICATION OF BISHOP’S CRITERIUM.
LEMMA 8.1. ( Burns and Rapoport, Siu)

Let m:%—U and n:%’—U be two holomorphic families of symplectic manifolds with a complex
manifold as a parameter space so that both are diffeomorphically identified with a trivial
family XxU—U. Let Xs=7r'1(s) and X§=7r"1(s) for s€U. Let 85 be a point of U and let A he
a subset of U such that sy is an accumulation point of A. Assume the following two conditions.
i) X, is Kaihler. ii) For s€A the two symplectic holomorphic manifolds X3 and Xj are
biholomorphic under a map fg which induces 7=id on HQ(X,C).

THEN X5 and X} are biholomophic. (See [15].)

Proof: First we will prove that Xg and X} bimeromorphic.

From THEQOREM 1. we know that there exists a real d close 2-form w on the underlying
differentiable structure X such that (1,1)-component Wl of w with respect to the complex
structure of Xg, is positive definite at every point of XE.,O. By continuity arguments there
exists an open neighborhood W of sg in U such that for s€ W the (1,1) component wl'l(s) of
w(s) with respect to the complex structure of X3 is positive definite at every point of Xg.

Since Xg,, is assumed Kahler, (after shrinking W if necessary) we have for every s€W a
Kiahler form #(s) which depends smoothly on s. Let 1 be a positive definite (1,1)-form on W.

1'1(9.) on Xg, 8(s) and 7, define a Hermitian metric H on

The collection of (1,1) forms w
Fxyy . Then the pullback of H to the submanifold XgxX3 of $xyy, %’ is equal to

8(s)+w" ' (s)
where for notational complicity we use 0(s)+w1'1(s) to denote their pullbacks under the
projections from XgxXg to Xg and X} respectively.

For se WNA let T3 CXgxX{ be the graph of the h}olomorphic map fg5:Xg—X3. We want to
compute the volume of I'y with respect to H on %xyy P’ and show that it is bounded as s
approaches sy hence that we can apply BISHOP’S THEOREM to conclude the convergence of
the subvariety T'g in %xyy, %’ as s approaches sq.

PROPOSITION 8.1.1. vol(T'g)<C for every s€A.
Proof: It is easy to see that:
vol(Tg)=[ (1w (s)+0(s))2"
Let ¢(s)=J (8§ w(8)+6(s))2". Resall that f3w(s)+6(s) is a class of cohomology
Xg
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and 7=id on H?(X,C). We will prove that the following inequalities hold:

vol(T)<d(s)=| (B e)+0(e))? <C
Xs

First we will show that ¢(s)<C. Indeed

#5)=] (rlu(@)HeE)™
Xs

From here it follows that
#(s8)<C

Hence we need to prove that

() vol(T's) <4(s)
Proof of (): Let fw(s)=w?"®(s)+w" (s)+w’?(s), then
(8.1.1.1) (02 (s) 40 ()46 %2 (6) +0(s)) 2" =
(@ ()P AW 2 (6))2M 4+ Y e (0 (DR AT A (@)) AW (6)+0(s))2M P +

(wl'l(s)+0(s))2n, where ¢, €Z_, i.e. ¢, >0
Notice that *(wz'o(s))kz((wz'o(a))kA(wl'l(s)+0(s))2n'k , where » is Hodge star
operator with respect to the Hermitian metric H, where ImH=w"'!(s)+6(s) on XgxX}. By

integrating (8.1.1.1.) we get

(8.1.1.1.) $(5)=l(w*° ) 124 Y e 1w () %12 4vol(Ts)

Therfore from (8.1.1.1.) we get that vol(I's)<¢(s)<C
Q.E.D.
For a subvariety Z of pure codimension in a complex manifold X, we denote by [Z] the
current X defined by Z. Now we invoke BISHOP’S THEOREM (See [03]) to conclude that for
some subsequence {s;,}CA converging to so the current [[g,] over %xy,,%’ converges weakly

to a current on %xw%’ of the form
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k .
Zlmi[rl]

where m, is positive integer and I' is an irreducible subvariety of complex dimension 2n on

XBOXX;O.

For any closed 4n-current & on XSOXX,’;O, define a linear map:
H*(X;,C)—H*(X3,0)
of cohomology rings as follows: a cohomology class defined by a closed p-form o« on Xg is
mapped by f, to the cohomology class defined by the p-current
(pr2)«(6A(pr;)*a) on X3
where pr, and pr, are.respectively the projections of Xs,xXg, onto the first and the second
factors, and pr;* and pr,y are the corresponding pu&hforward and pullback maps. By reversing
the rules of X5 and X3, we define analogously a linear map
o*:H*(X3,C)—H*(Xs,C)
The map [I'gz], defined by the 4n-current [l"s]' in Xg xX3, clearly agrees with the map
defined by f, from H*(X4,C) to H*(X3,C). Since f; defines an isomorphism of H?(X,C) equal

to id, by passing to the limit along the subsequence {s,} we conclude that
k i
(z mi[I‘ Dx
i=1

is just the identity on AH*(X,C).
Let
wo(2n,0):= A0 (we (2,0))

be the non-zero holomorphic 2n form, which has no zeroes on Xsg- Since

k .
(Z mi[l"l])*is an isomorphism of AH%*(X,C)
i=1
it follows that 2n-current

k .
(sz)*(z mi[l"']/\(prl)*wo(2n,0))
i=1

on Xg, (which is automatically a holomorphic 2n-form on X§,) can not be zero. Hence there

must be some I‘J which is projected both onto Xg  and Xso There can be only one such I‘]
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and moreover mj=1 and both projection maps are onto Xz, and xgo and are of degree one,

because both
k i k iyy*
(Z mi[l" 1)« and (2 mi[I‘ ),
i=1 =1

must leave fixed the class in H?(X,C) which is defined by the function on X with constant

values. From here we deduce that Xso and Xéo are bimeromorphically equivelent. To finish

the proof of LEMMA 8.1.we need the following PROPOSITION:

PROPOSITION 8.1.2.
Let Xso be a holomorphic symplectic structure and Xt’,o be a HYPER-KAHLERIAN structure

on a C% manifold X. Let I CXg,xXg, be a complex analytic subspace such that a)
dimCI‘zdimCXso, b) The projection maps pr:F—=Xg and prgzl"—vxgo are holomorphic maps
of degree 1 and ¢) (I'), and (I)* induce the identity map on AHZ(X,C) then T induces a

biholomeorphic map between Xso and xgo.

Proof of PROPOSITION 8.1.2.: The proof is based on the following Proposition:

PROPOSITION 8.1.2.1.
f*(lm(gaﬁ)) is a globally defined C®-form of type (1,1) on Xg, and it is a nondegenerate at

each point x€Xg . |

Proof:

Rememmber that f was a bimeromorphic map therefore we can find szso\.i and
U’=X3,\ A" such that f:U—U’ is an isomorphism. .A gnd A’ are complex analytic subspaces in
Xgo and Xz of complex codimension > 2. Hence f*(w’(1,1)) is well defined form on U, where
w’(1,1) is the imaginary part of the CALABI-YAU metric with respect to which we are
making the isometric deformations. From the definition of isometric deformations it follows that
we can find A€SO(3) such that A will define a new complex structure on X3, which we will

denote by X;‘g, with the following properties:

a) Rewy, (2,0) is a form of type (1,1) on X
So
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b) wyA(Q,O):ImwX, (2,0)+iIm(gaE) is a holomorphic two form on X;ﬁ.
s
o A
So
integrable complex structure on U=Xg \.4, where A is a complex analytic subspace of

codimc.zlz‘z.

Clearly the pullback of the integrable complex structure 1A that defines Xg* via f defines an

Sublermma 1.

The complex structure 14 can be prolonged to an integrable complex structure on Xg,.

Proof:

Let (zl,...,zzn) be a complex analytic system of local coordinates around a point zg GA’CX;“C}
and defined in a policylinder W. Let Cizf"(zi) for 1<i<2n. It is easy to show that (i can be
prolonged through A. (See [09]). Indeed let {2z} be a sequense of points such that:

a) Lim _zp=zo €A’
b) zpeW\(W\A) for each n€Z+

Let (,‘n::f'l(zn). Clearly Cneszso\JL We may suppose that:
lim (n=(oed
Since
¢'(¢n)=2'(zn)
(this follows from the defionitions of ¢! and ¢p). Therfore we can define:
CI(C0)=ZI(ZO)
Let {y'} be local complex-analytic coordinates in a "small” plicylinder ¥ with respect to
the complex structure Xgo such that (o€%. Then clearly (i as functions of the coordinates
{yi} are continuous functions.

Miniproposition.

Ci as functions of {yi} are real analytic functions of (yl,..,yzn).
Proof of the miniproposition:
The PROOF OF THE MINIPROPOSITION CONSISTS OF TWQ STEPS:

STEP 1. Let (gaﬁ) be a CALABI-YAU METRIC on X, then garE is a real analytic function

with respect to
{Rez! ,Imz"),...,Rez2n ,Imzzn}

where {zl,...zzn} is any local holomorphic coordinate system at any point x5 €X.
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Proof of Srep 1:

J. Kajdan and D. Deturk have proved in [06] that if (glJ) is an Einstein metric, then with
respect to the harmonic coordinates it is real analytic, i.e. for each i and j the function gij is a
real analytic with respect to the harmonic coordinates. Recall that (x',....x*") are called
harmonic coordinates if with respect to these coordinates I‘%dzﬂ at xo for all i,j and k. Let me
remind You that Fi{l are the Cristoffel symbols for the Levi-Chevita connection of 8-

Let (gaﬁ) be a CALABI-YAU metric on X. Since (gaﬁ) is a Ricci flat Kahler metric it follows
from one of the definitions of Kahler metric that we can find local holomorphic coordinates
(z*,...,22™) such that I‘;E=0 at zg, i.e.

gaﬁ(z,'z‘)=6aﬁ+0(2)

Hence for any holomorphic local coordinates (zl,...,zzn) ga-ﬁ are real analytic functions of
(Rezl,Imzl,...,Rezzn,lmzzn).
Q.E.D.
Step 2.
Let {Ei} and {‘ri} for 1<i<2n be complex analytic coordinates for two different isometric
complex structures with respect to CALABI-YAU metric at point xo€X, where X is a
HYPER-KA HLERIAN manifold. Then &i for each i is a real analytic function if Reri and

Imri for i=1,....,2n.

Proof of Step 2:
From the KADAIRA-SPENCER-KURANISHI DEFORMATION THEORY and the
Definition of ISOMETRIC DEFORMATIONS it follows that the KADAIRA-SPENCER class
that defines the new complex structure XA, where A€SO(3) is just

(*) #(2.Z)=(aRewy (1,0) +bImwy (2,0) +cIm(gaﬁ))_Lw’)"((2,0)

a2+b2+c2=1
w’;((2,0)€1"(x,/\26x) (©y is the holomorphic tangent bundle) and
<wk(2,0),wy (2,0)>=1

where < , > is induced by the natural pairing

A204x0% —~0y. (205 and Q2 are dual sheaves).
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From STEP 1 and (%) it follows that the coefficients of ¢(z,Z) are real analytic functions with
respect
{Rezl,lmzz,‘...,Rezzn,Imzzn}

where {zl,...zm} is any local holomorphic coordinate system at any point xg€X.

In [18] it is proved that

a)[¢¢1=0and

b) Q‘JEHI(X,GX), i.e. ¢ is a harmonic Dalbault class with respect to the CALABI-YAU

METRIC.

c) 5¢=%[¢,¢], i.e. ¢ defines the complex structure XA.

Let zl,...,z211 be any local holomorphic coordinates in some open subset UCX and let
P

—Sglddel.
¢|U E\“J- z P

then the solutions of the following equations:

5 i P i

(x+) _<,=E¢Jg_4a
a

are local coordinates in the KURANISHI family.
From (#%) and the famous NEWLANDER-NIRENBERG THEOREM it follows that (**) has
real analytic solutions with respect
{Rez',Imz?,...,Rez?" Imz?"}
where {zl,...zzn} is any local holomorphic coordinate system at any point x,€X.
Q.E.D.
The Miniproposition is proved.

Q.E.D.

End of the proof of Sublemma I:

¢! are bounded in P\ A and since A is a complex analytic space of complex codim>2 it

follows ¢! are real analytic functions of (yl,..,yzn). This shows that on Xs, we can define a
A

new complex structure Xz, .

Q.E.D.

pagedT



Since f*(w’A(2,0))=ImwX, (2,0)+ilm(gaﬁ)) is a holomorphic form on U=Xg \A, where
S0
the complex codimension of A>2. Standart technique implies f*(w’A(2,0)) can be prolonged to

a global holomorphic form on XSAO.

From the DEFINITION of f*(w’A(Q,O)), i.e. from the fact that
w,A(2,0)=Imwxéo(2,0)+ilm(gaﬁ)

it follows that f*(Im(gaE)) is a well defined C*° form on Xg_ of type (1,1). Since

2n -
A (Im(gaﬁ))—wxso(Qn,O)AWXSO(O,ZII)
it follows that

PN (Im(g 5= (ux, (0w, (0:2m)=wy, (2n.0)Awy, (0,20)

And hence f*(Im(gaF)) is a non-degenerate form of type (1,1) on Xg,.
Q.E.D.
PROPOSITION 8.1.2.1. implies that f"‘(Im(gaﬁ)) defines a Ricci-flat KAHLER

metric on Xg,. This followss since (ga-ﬁ) is a KAHLER. metric on Xs,\A and f*(Im(gaﬁ)) is
a non-degenerate form of type (1,1) on Xg,. Now we know that f is a bimormorphic map
which map one KAHLER metric to another. Then it is a standart fact that { will be a
biholomorphic map. See [15].

Q.E.D.
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