
Max-Planck-Institut für Mathematik
Bonn

Remarks on automorphism and cohomology of cyclic
coverings

by

Renjie Lyu
Xuanyu Pan

Max-Planck-Institut für Mathematik
Preprint Series 2017 (48)





Remarks on automorphism and cohomology
of cyclic coverings

Renjie Lyu
Xuanyu Pan

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Korteweg-de Vries Instituut
Science Park 107
1090 GE Amsterdam
The Netherlands

MPIM 17-48





REMARKS ON AUTOMORPHISM AND COHOMOLOGY OF

CYCLIC COVERINGS

RENJIE LYU AND XUANYU PAN

Abstract. We show that the automorphism group of a smooth cyclic covering

acts on its cohomology faithfully with a few well known exceptions. Firstly, we
prove the faithfulness of the action in characteristic zero. The main ingredients

of the proof are the equivariant deformation theory and the decomposition of

the sheaf of differential forms due to Esnault and Viehweg. In positive charac-
teristic, we use a lifting criterion of automorphisms to reduce to characteristic

zero. To use this criterion, we prove the degeneration of Hodge-to-deRham

spectral sequences and the infinitesmial Torelli theorem for cyclic coverings in
positive characteristic.
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1. Introduction

The Torelli theorem says that:
An isomorphism ϕ : H∗(X) ' H∗(X ′) between the cohomology groups which pre-
serves some algebraic structures (e.g. Hodge structures) is induced by an isomor-
phism ψ : X ' X ′ between the varieties.
It is natural to ask whether the map ψ which satisfies ψ∗ = ϕ is (up to a sign)
unique.
It is equivalent to ask

Question 1.1. Does the automorphism group Aut(X) act on the cohomology group
H∗(X) faithfully?

Recently, Javanpeykar and Loughran [JL15a] relate this fundamental question to
the Lang-Vojta conjecture and the Shafarevich conjecture. The positive answer to
the question for hypersurfaces shows that the stack of hypersurfaces is uniformis-
able by a smooth affine scheme ([JL15b]). On the other hand, the second author
[Pan15] gives a positive answer to this question for smooth complex cubic fourfolds,
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2 RENJIE LYU AND XUANYU PAN

and use it to relate the symmetry of the defining equation of a cubic fourfold to its
middle Picard number.

Historically speaking, this fundamental question is explored for varieties of low
dimension. For example, a positive answer to algebraic curves of genus at least 2 is
confirmed in [DM69]. Later, Burns, Rapoport, Shafarevich and Ogus confirm this
question for K3 surfaces over an algebraically closed field, see [Huy, Chapter 15].
But few higher-dimensional cases are confirmed, see [CPZ15] and [JL15b]. In this
paper, we confirm Question 1.1 for cyclic coverings only with a few exceptions. Our
main theorems are Theorem 4.9 and 6.5.
The proof of Theorem 4.9 depends on the equivariant deformation theory (The-
orem 3.9), the infinitesimal Torelli theorem of cyclic coverings proved by Wehler,
and the finiteness of the automorphism groups of cyclic coverings (Theorem 4.5).
Theorem 6.5 is the positive characteristic version of Theorem 4.9. We use a lifting
criterion of automorphisms to reduce Theorem 6.5 to Theorem 4.9. To apply this
criterion, we need the degeneration of the Hodge-to-de Rham spectral sequences
and the infinitesimal Torelli theorem for the cyclic coverings of projective spaces
in positive characteristic. We use the logarithmic differential forms together with
Deligne’s method in [DK73, Exp XI] to show the degeneration of the Hodge-to-de
Rham spectral sequences (Theorem 5.8). To show the infinitesmial Torelli theorem
(Theorem 5.10), we use a version of Flenner’s criterion in positive charactersitic (cf.
Theorem 5.9) which is developed by the second author with X. Chen and D. Zhang
in the paper [CPZ15].
Acknowledgments. The authors are very grateful to Prof. K. Zuo for his interests
in this paper. The authors also appreciate Prof. M. Kerr for his support of the
algebraic geometry and Hodge theory seminar in Washington University in St.Louis.
The first author is very grateful to his advisor Prof. M. Shen for some dicussions.
The authors also thank their friend Dr. D. Zhang for answering many questions.
Some parts of this paper were written in Max Planck Institute for Mathematics.
The second author is very grateful to the institute for providing the comfortable
enviroments.

2. Finite Cyclic Coverings

In this section, we review some basic facts of the cyclic coverings of smooth projec-
tive varieties.

Definition 2.1. Let Z be a smooth projective variety over an algebraically closed
field K, and let L be an invertible sheaf on Z. Assume that k is an integer number
such that Lk has a nontrivial section s ∈ H0(Z,Lk) whose zero divisor D = Z(s)
is smooth. There is a natural OZ-algebra

A :=

k−1⊕
i=0

L−i,

where the multiplication structure is given by the section s∨ : L−k −→ OZ . We
define the affine morphism associated to the invertible sheaf L

(2.1.1) f : X := Spec(A)→ Z

to be the k-fold cyclic covering of Z branched along D.
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In the following, some geometric results about cyclic coverings are shown through
Lemma 2.2, 2.3 and Proposition 2.4.
We denote by V(L) := Spec(Sym• L∨) the total space of the invertible sheaf L, and
let πL : V(L)→ Z be the natural projection. If t ∈ Γ(V(L), π∗LL) is the tautological
section, then the k-fold cyclic covering X is exactly the zero divisor of the equation

tk − π∗Ls
in V(L). In particular, let {Uα} be an affine open cover of Z such that L|Uα is
trivial. Assume that D is defined by the equation Φα(z) = 0 on Uα. Then X is
locally defined by the equation

(2.1.2) ωkα − Φα(z) = 0,

where (z, ωα) are the local coordinates on V(L)|Uα = Uα × A1. If k is not divided
by char(K), then it follows from the equation (2.1.2) that X is smooth.

Let E be the locally free sheaf OZ ⊕ L−1. Denote by L̂ be the relative projective

bundle P(E) over Z. The cyclic covering X is a divisor in L̂ naturally as follows

(2.1.3) X
� � g

//

f
!!

V(L)

πL

��

� � i // L̂

π
}}

Z ,

where i is the natural inclusion. Let σ be the section of the projection π : L̂ → Z
induced by the canonical map E → OZ ,. Denote by C := σ(Z) the image of the

section σ. In fact, C is the zero locus of the tautological section τ ∈ Γ(L̂, π∗L).

Lemma 2.2. With the notations as above, we have that:

(i) Pic(L̂) ' Pic(Z)⊕ Z[OP(E)(1)];

(ii) the invertible sheaf OL̂(C) associated to the divisor C on L̂ is isomorphic to
π∗L ⊗OP(E)(1);

(iii) the invertible sheaf OL̂(X) associated to the divisor X on L̂ is isomorphic to

π∗Lk ⊗OP(E)(k);

(iv) the line bundle OP(E)(1)|X is trivial.

Proof. The conclusions (i), (ii) follows from the standard results for projective bun-
dles (cf. [Har77, Proposition 2.3 and 2.6, page 370-371])
For the third assertion, we may assume that OL̂(X) can be written as

(2.2.1) OP(E)(d) + π∗M ,

where M ∈ Pic(Z). In the following, we first determine the value of d. Suppose
that ξ is a fiber of the projection π. It follows from the defining equation (2.1.2) of
X that the intersection number [X] · [ξ] is equal to k. On the other hand, we have
c1(OP(E)(d)) · [ξ] = d and π∗c1(M ) · [ξ] = 0. Hence, we obtain d = k.

Then we show M = OZ(D). Recall that V(L) is the line bundle associated to
L with local coordinates (wα, z). The image C is locally defined by the equation

ωα = 0. We claim that X and C intersect transversely in L̂ and the push-forward
class π∗([X] · [C]) is equal to the class of the branched lous [D] and the first chern
class c1((M)) of M in Pic(Z). Indeed, if p is a point of X ∩ C such that

p = (0, z) and Φα(z) = 0.
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It is easy to see that the vector ∂
∂wα

lies in the tangent space TpX of X at p. Then
the transversality condition

TpX + TpC = TpV(L).

is satisfied. Furthermore, the scheme-theoretic intersection of X and C is the
reduced scheme f−1(D)red associated to f−1(D). Note that the ramified divisor
f−1(D)red is isomorphic to the branched locus D via π. Therefore, we have

[D] = π∗[f
−1(D)red] = π∗([X] · [C]).

Moreover, since C is the image of the section σ induced by E → OZ , we have
σ∗OP(E)(1) = OZ . It implies that the intersection c1(OP(E)(1)) · [C] is zero. There-

fore, through (2.2.1), we obtain the equalities as follows,

[D] = π∗([X] · [C]) = π∗(c1(OL̂(X)) · [C]) = π∗(π
∗c1(M ) · [C]) = c1(M ).

It follows that

OL̂(X) = OP(E)(k)⊗ π∗M = OP(E)(k)⊗ π∗OZ(D) = OP(E)(k)⊗ π∗Lk.
We prove our claim as well as the third assertion.
By the second and third assertions, we obtain OL̂(X) = OL̂(C)⊗k. It follows that

c1(OP(E)(1)) · [X] = c1(OP(E)(1)) · k[C] = 0,

in other words, we have OP(E)(1)|X = OX .
�

Lemma 2.3. With the notations as above, we have

OX(f−1(D)red) = OL̂(C)|X = f∗L.

Proof. It follows from the results and the proof of the Lemma 2.2 immediately. �

Proposition 2.4. With the notations as above, we have that:

(i) g∗Ω1
L̂/Z

= f∗L−1;

(ii) the normal sheaf NX/L̂ of X in L̂ is isomorphic to f∗Lk;

(iii) the canonical sheaf κX of X is isomorphic to f∗(κZ ⊗Lk−1), where κZ is the
canonical sheaf of Z.

Proof. (i) Consider the Euler sequence of sheaves

(2.4.1) 0→ Ω1
L̂/Z
→ π∗E ⊗ OP(E)(−1)→ OP(E) → 0.

It follows that Ω1
L̂/Z

= ∧2(π∗E ⊗ OP(E)(−1)) = π∗L−1 ⊗ OP(E)(−2). From

Lemma 2.2 (iv), we see that OP(E)(2)|X is trivial. Therefore, It implies that

g∗Ω1
L̂/Z

= f∗L−1.

(ii) The same argument gives NX/L̂ = OL̂(−X)|X = f∗Lk.
(iii) By the adjunction formula, we have

κX = κL̂|X ⊗NX/L̂,

where κL̂ is the canonical bundle of L̂. Again it follows from the short exact
sequence (2.4.1) that κL̂|X = f∗(κZ ⊗ L−1). Hence, it follows that

κX = f∗(κZ ⊗ Lk−1).

�
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3. Deformation Theory and Infinitesimal Torelli Theorem

In this section, we show that the deformations of some automorphisms of a cyclic
coverings are unobstructed, cf. Theorem 3.9. We start this section by recalling the
theory of equivariant deformations.
Let X be a smooth and proper scheme over a field k. Assume that G is a finite
subgroup of the automorphism group Autk(X) with the natural inclusion

ι : G ↪→ Autk(X).

Denote by Ck the category of Artinian local k-algebras with residue field k. An
infinitesimal deformation of (X, ι) over an Artinian local k-algebra A is a triple
(X , ι̃, ψ) consisting of a scheme X which is flat and proper over A, an injective
group homomorphism

ι̃ : G ↪→ AutA(X )

and an isomorphism

ψ : X ×Spec(A) Spec(k)→ X

of schemes over k such that ι̃|X = ι via the natural restriction AutA(X )→ Autk(X)
induced by ψ. Two infinitesimal deformations (X , ι̃, ψ) and (X ′, ι̃′, ψ′) are isomor-
phic if there exists an isomorphism

Φ : X → X ′

over A which induces the identity on the closed fiber X and Φ ◦ ι̃(σ) = ι̃′(σ) ◦Φ for
any σ ∈ G.

Definition 3.1. With the notations as above, the equivairant deformation functor

DefGX : Ck → Sets

assigns each A ∈ Ck to the set DefGX(A) consisting of isomorphism classes of infin-
itesimal deformations of (X, ι) over A.

Definition 3.2. Suppose that F and H are covariant functors from Ck to Sets. A
morphism F → H is called smooth if for any surjection B → A in Ck, the map

F (B)→ F (A)×H(A) H(B)

is surjective.

The covariant functors from Ck to Sets are called functors of Artin rings in [Sch68].
We refer to the following proposition which is used to prove the smoothness of
morphisms of functors of Artin rings.

Proposition 3.3. [Ser06, Proposition 2.3.6] Let Ck be the category of Artinian
local k-algebras. Suppose that F (resp. H) is the functor of Artin rings having
a semiuniversal formal element and an obstruction space obs(F ) (resp. obs(H)).
Let k[ε] ∈ Ck be the dual number and tF := F (k[ε]) be the space of first-order
deformations. If a morphism h : F −→ H satisfies the following two conditions:

(1) the tangent map dh : tF → tH is surjective;
(2) the obstruction map δ : obs(F )→ obs(H) is injective,

then h is smooth.



6 RENJIE LYU AND XUANYU PAN

Recall that G is a finite subgroup of Autk(X). It is known that the space of first-

order equivariant deformations DefGX(k[ε]) (resp. obstruction space obs(DefGX)) is
isomorphic to the G-invariant part of H1(X,ΘX) (resp. H2(X,ΘX)), where ΘX is
the tangent sheaf of X. We denotes them by H1(X,ΘX)G (resp. H2(X,ΘX)G).
For the details, we refer to [BM00, Proposition 3.2.1 and 3.2.3], in which the results
are built on curves but also hold for higher-dimensional smooth projective varieties.
Let h be the forgetful functor

(3.3.1) h : DefGX → DefX

which associates to an infinitesimal deformation (X , ι̃, ψ) over A, the underlying
infinitesimal deformation X over A. Then the associated tangent map

DefGX(k[ε]) = H1(X,ΘX)G
dh−→ H1(X,ΘX) = DefX(k[ε])

and the obstruction map

obs(DefGX) = H2(X,ΘX)G
δ−→ H2(X,ΘX) = obs(DefX)

are both natural inclusions. In the following, we assume that the field k is the field
of complex numbers C.

Proposition 3.4. Use the same notations as above. Suppose that n is the dimen-
sion of X and the cup product

(3.4.1) λp : H1(X,ΘX)→ Hom(Hn−p(X,ΩpX), Hn−p+1(X,Ωp−1
X ))

is injective for some p. If the group G acts trivially on Hn(X,C), then the forgetful
functor h in (3.3.1) is smooth.

Proof. We specialize Proposition 3.3 to our case for F = DefGX and H = DefX .
The condition (2) of Proposition 3.3 is automatically satisfied. In order to verify
the condition (1), we use the following lemma.

�

Lemma 3.5. Let X be a smooth and proper scheme over C of dimension n , and
let G be a finite group of automorphisms. Assume that the group G acts trivially
on Hn(X,C), and for some integer p, the cup product map λp (3.4.1) is injective.
Then the cohomology H1(X,ΘX) is G-invariant.

Proof. Note that the map λp is G-equivariant. It gives rise to the following diagram

(3.5.1) H1(X,ΘX)G //

��

Hom(Hn−p(X,ΩpX), Hn−p+1(X,Ωp−1
X ))G

H1(X,ΘX) // Hom(Hn−p(X,ΩpX), Hn−p+1(X,Ωp−1
X )).

The right vertical identity follows from the assumption that the action of G on
Hn(X,C) is trivial. Therefore, the injectivity of λp implies that

H1(X,ΘX)G = H1(X,ΘX).

�

The following infinitesimal Torelli theorem of cyclic coverings is due to Wehler.
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Theorem 3.6. ([Weh86, Theorem 4.8]) Let X be a smooth cyclic covering of PnC
of dimension n ≥ 2. Then the cup product

λp : H1(X,ΘX)→ Hom(Hn−p(X,ΩpX), Hn−p+1(X,Ωp−1
X ))

is injective for some p with the only exceptions

• X is a 3-fold covering of P2 branched along a cubic curve;
• X is a 2-fold covering of P2 branched along a quartic curve.

In the following, we introduce some notions for stating Theorem 3.7.
Let f : X → Z be a morphism between schemes over an algebraically closed field
k, and let A be an artinian local k-algebra. An infinitesimal deformation (X , F )
over A of the morphism f is cartesian diagrams

(3.6.1) X

f

��

// X

F

��

Z

��

// Z × Spec(A)

p

��

Spec(k) // Spec(A)

such that F is flat. Two deformations (X , F ) and (Y, G) are isomorphic if there
exists an isomorphism ψ : X ' Y such that G ◦ ψ = F and the restriction of ψ to
the closed fiber X gives the identity IdX . Then it defines a functor of Artin rings
DefX/Z by setting

DefX/Z(A) = {isomorphic classes of infinitesimal deformations of f over A}.

Naturally, the forgetful map % : DefX/Z → DefX assigns a deformation of the form
(3.6.1) to the deformation p ◦ F : X → Spec(A) of X over A. The functor DefX/Z
is called the local Hilbert functor HX

Z if f and F in the diagram (3.6.1) are closed
immersions. In this case, we denote the forgetful functor by δ : HX

Z → DefX .

Theorem 3.7. ([Weh86, Theorem 3.9]) With the notations as in Proposition 2.4,
we assume that Z is the projective space PnC for n ≥ 2. If X is not a K3-surface,
then the forgetful maps % : DefX/Pn → DefX and δ : HX

L̂
→ DefX are both smooth.

Proposition 3.8. Let X be a smooth k-fold cyclic covering of PnC. The deformation
functor DefX is smooth.

Proof. If n = 1 then it is obvious that DefX is smooth. Therefore, we can assume
that n is at least 2. If X is not a K3-surface, we can apply Theorem 3.7 and
claim that the local Hilbert functor HX

L̂
is unobstructed. Then it follows from

the smoothness of the forgetful map δ that DefX is also unobstructed. Indeed, by
Proposition 2.4 (iii) the obstruction space of the local Hilbert functor HX

L̂
is

H1(X,NX/L̂) = H1(X, f∗Lk).

Moreover, we have

H1(X, f∗Lk) = H1(PnC,Lk ⊗ f∗OX) =

k⊕
i=1

H1(PnC,Li) = 0
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by the projection formula and Definition 2.1. Thus we prove our claim. On the
other hand, it is well known that the deformation functor DefX of a K3-surface is
unobstructed. Therefore our proposition follows. �

We state our main theorem of this section.

Theorem 3.9. Suppose that X is a smooth k-fold cyclic covering of PnC. Let G be
a finite subgroup of the automorphisms Aut(X). If G acts on Hn(X,C) trivially,
then the equivariant deformations of X with respect to the action induced by G are
unobstructed, i.e., the functor DefGX is smooth and DefGX = DefX with the only
exceptions

• X is a 3-fold covering of P2 branched along a cubic curve;
• X is a 2-fold covering of P2 branched along a quartic curve;

Proof. By Proposition 3.4 and Theorem 3.6, we conclude that the forgetful functor
h : DefGX → DefX is smooth in our case. We prove the deformation functor DefX
is smooth in Proposition 3.8, then it follows that DefGX is also smooth. By Lemma
3.5, the differential map

DefGX(C[ε]) = H1(X,ΘX)G
dh−→ H1(X,ΘX) = DefX(C[ε])

is an identity. It implies that DefGX = DefX . �

Remark 3.10. The theorem is equivalent to say that an automorphism in G can
be deformed to an automorphism of any small deformation of X. Instead of using
the equivariant deformation theory, the second author provides an alternative view
point to prove this theorem from the variational Hodge conjectures for graph cycles,
cf. [Pan16, Corollary 3.3].

4. Automorphisms of Cyclic Coverings

In this section, we assume that X is a smooth k-fold cyclic covering of Pn over an
algebraically closed field K. Let g : X → X be the automorphism that associates a
point (ωα, z) in X (cf. (2.1.2)) to the point (%ωα, z) where % is a primitive k-th root
of unity. We denotes Cov(X/Pn) the group of covering transformations generated
by g. In other words, we have

Cov(X/Pn) = 〈g〉 = Z/kZ.

In the following, we show the finiteness of the automorphism group Aut(X), see
Theorem 4.5. We start with a lemma.

Lemma 4.1. Let f : X → Pn be a smooth k-fold cyclic covering, and let σ be an
automorphism of X. If σ satisfies the following two conditions:

• σ∗f∗OPn(1) is isomorphic to the line bundle f∗OPn(1);
• dimH0(X, f∗OPn(1)) = n+ 1,

then the automorphism σ induces a unique automorphism µ of Pn, which fits into
the following commutative diagram

(4.1.1) X

f

��

σ // X

f

��

Pn
µ
// Pn.
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Proof. The morphism f gives rise to global sections si = f∗xi of f∗OPn(1) for
i = {0, 1, · · · , n}. If dimH0(X, f∗OPn(1)) = n+ 1, then the set {s0, · · · , sn} forms
a basis of the complete linear system |f∗OPn(1)|. If σ∗f∗OPn(1) is isomorphic to

the line bundle f∗OPn(1), then it follows that σ∗si =
n∑
j=0

αijsj . Hence, the matrix

(αij)0≤i,j≤n gives the desired automorphism

µ
([
X0 : X1 :, · · · , Xn

])
=
[ n∑
i=0

α0iXi :, · · · ,
n∑
i=0

αniXi

]
in Aut(Pn).

�

Lemma 4.2. Let X be smooth k-fold cyclic covering f : X → Pn branched along a
smooth hypersurface D. If X is not a hypersurfaces in Pn+1, then

dim H0(X, f∗OPn(1)) = n+ 1.

Proof. Use the notations as in Definition 2.1 and Proposition 4.6. Assume that
L = OPn(m) such that Lk = OPn(D). The hypothesis in the lemma is equivalent
to say that m is strictly great than 1. Since f is a finite morphism, we have

H0(X, f∗OPn(1)) = H0(Pn,OPn(1)⊗ f∗OX)

=

k−1⊕
i=0

H0(Pn,OPn(1)⊗ L−i).

Therefore we obtain dimH0(X,OX(1)) = n+ 1 when m > 1. �

Proposition 4.3. With the notations as above, we assume that the two assump-
tions in Lemma 4.1 hold for X and every auotmorphism σ ∈ Aut(X). Then we
obtain a short exact sequence

(4.3.1) 1 −→ Cov(X/Pn) −→ Aut(X) −→ AutL(D) −→ 1.

Here the group AutL(D) consists of the linear automorphisms of D(⊆ Pn).

Proof. The linear automorphism µ associated to the automorphism σ in the dia-
gram (4.1.1) preserves the ramified divisor D. Therefore, we obtain a homomor-
phism

Aut(X)→ AutL(D)

σ → µ|D
It is easy to see that the homomorphism Aut(X) → AutL(D) is surjective with
kernel Cov(X/Pn). �

In the following, we take K = C. Note that Lemma 4.2 had shown the second con-
dition in Lemma 4.1 holds for a smooth cyclic covering X if it is not a hypersurface.
In the following proposition, we investigate the smooth cyclic coverings who satisfy
the first condition.

Proposition 4.4. Let X be a smooth k-fold covering f : X → Pn branched along
a smooth hypersurface D. If one of the following conditions hold:

(1) dimX ≥ 4;
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(2) dimX = 3 and the branch locus D is a smooth surface in P3 with deg(D) ≥
4,

then we have Pic(X) = Z = Z〈f∗OPn(1)〉. In particular, σ∗f∗OPn(1) is isomorphic
to the line bundle f∗OPn(1) for any automorphism σ of X.

Proof. Denote by B the reduced scheme [f−1(D)]red associated to the scheme
f−1(D). It is known that f∗L = OX(B), see Lemma 2.3. Hence, the invertible
sheaf OX(B) is ample.

(i) Suppose that the dimension of X is at least 4. Since OX(B) is ample, the
Lefschetz hyperplane theorem gives the isomorphism

µ∗ : Pic(X) ' Pic(B).

induced by the inclusion µ : B ↪→ X. Moreover, we have the following natural
commutative diagram

(4.4.1) Pic(Pn)
ν∗ //

f∗

��

Pic(D)

f |∗B
��

Pic(X)
µ∗
// Pic(B),

where ν∗ is induced by the inclusion ν : D ↪→ Pn. Again by the Lefschetz
hyperplane theorem the restriction map ν∗ is an isomorphism. Note that B
is isomorphic to D via f , then it follows that

Z〈OPn(1)〉 = Pic(Pn)
f∗

' Pic(X).

So we have Pic(X) = Z〈f∗OPn(1)〉.
(ii) Suppose that the dimension of X is 3. By the projection formula and Defi-

nition 2.1, the first and second cohomology group of the structure sheaf OX
vanishes

Hj(X,OX) ' Hj(Pn, f∗OX) =

k−1⊕
i=0

Hj(P3,L−i) = 0 for j = 1, 2.

It follows that the cycle class map c1 : Pic(X)→ H2(X,Z) is an isomorphism
for any smooth cyclic covering X of P3. In the following, we first show that
the induced map f∗ : Pic(P3)→ Pic(X) is an isomorphism for a very general
cyclic covering X with deg(D) ≥ 4. Note that the second cohomolgy group
H2(−,Z) is a deformation invariant and the cycle class c1 is an isomorphism
as shown above, we conclude that f∗ : Pic(P3) → Pic(X) is an isomorphism
for any smooth cyclic covering X with deg(D) ≥ 4.

In fact, if D is a very general smooth surface in P3 with deg(D) ≥ 4, the
Noether-Lefschetz Theorem yields an isomorphism ν∗ : Pic(P3) → Pic(D).
Therefore, the induced map µ∗ : Pic(X) → Pic(B) is surjective since it has
an inverse section f∗ ◦ ν∗−1 ◦ f∗|−1

B (cf. the diagram (4.4.1)).
On the other hand, the induced map H2(X,Z) → H2(B,Z) is injective

by the Lefschetz hyperplane theorem, which implies that the induced map
µ∗ : Pic(X)→ Pic(B) is injective. Therefore, we have

Pic(X) ' Pic(B) ' Pic(D) ' Pic(P3) = Z〈OPn(1)〉.
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for a very general cyclic covering X of P3 branched along a smooth surface D
with degD ≥ 4. Then the assertion follows.

�

Theorem 4.5 (Finiteness of Automorphisms). Let X be a smooth cyclic covering
of PnC branched along a smooth hypersurface D of degree d. Assume that X is not a
quadric hypersurface and the dimension of X is at least 3. Then the automorphism
group Aut(X) is finite. Moreover, if X is very general, the automorphism group
Aut(X) = Cov(X/Pn).

Proof. Note that X is a quadric hypersurface if d = 2. In the rest we may assume
that d is at least 3.

• X is a smooth hypersurface in Pn+1 with n ≥ 3. Poonen proves that for a
smooth hypersurface Y ⊂ Pm of degree l, the linear automorphism group
AutL(Y ) is finite if m ≥ 2 and l ≥ 3 ([Poo05, Theorem 1.3]). Moreover,
Aut(Y ) = AutL(Y ) if m 6= 2, l 6= 3 or m 6= 3, l 6= 4([Poo05, Theorem 1.1]).
Therefore, in our case it follows that Aut(X) = AutL(X). In particular,
the automorphism group Aut(X) is finite.
• X is not a hypersurface. Then Lemma 4.2 and Proposition 4.4 verify the

assumptions in Lemma 4.1. Therefore, we can apply Proposition 4.3 to
conclude that Aut(X) is finite if dimX ≥ 4 or if dimX = 3 and degD ≥ 4.
Note that X is a smooth cubic 3-fold if dimX = 3 and degD = 3, which
is included in the above situation.

�

Proposition 4.6. Let f : X → Pn be a smooth k-fold cyclic covering branched
along a smooth hypersurface D. Then the natural representation

(4.6.1) ψ : Cov(X/Pn)→ GL(Hn(X,C))

is faithful.

Proof. Let L be the line bundle on Pn such that Lk = OPn(D). There is a decom-
position of the sheaf of differential forms [EV92, Lemma 3.16]

(4.6.2) f∗Ω
q
X = ΩqPn ⊕

k−1⊕
i=1

ΩqPn(logD)⊗ L−i.

If g is the generator of the group of covering transformations, for any integer m the
transformation gm acts on ΩqPr (logD) ⊗ L−i by multiplying %mi. It implies that
the Hodge cohomology group Hp(X,ΩqX) splits into %mi-eigenvalue subspaces

(4.6.3) Hp(X,ΩqX) = Hp(Pn,ΩqPn)⊕
k−1⊕
i=1

Hp(Pn,ΩqPn(logD)⊗ L−i).

In particular, if ψ(gm) is IdHn(X,C), then m is equal to 0 modulo k. We thus prove
the proposition. �

In the following, we show that Aut(X) acts faithfully on H2(X,C) separately for
dimX = 2. In higher dimensions, the proof of faithfulness use the results developed
above, see Theorem 4.9.
Recall that for a k-fold cyclic covering of P2, there is

(4.6.4) κX = f∗(κP2 ⊗ Lk−1),
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see Proposition 2.4. We prove Proposition 4.8 with respect to the different type of
κX . Let us start with a lemma.

Lemma 4.7. Let X be a smooth cyclic covering f : X → P2 of P2. Suppose that
X is of general type. Then the action of Aut(X) on H2(X,C) is faithful.

Proof. SinceX is of general type, the canonical bundle κX is isomorphic to f∗OP2(d)
for some positive integer d by the formula (4.6.4). The morphism f gives rise to
global sections {si = f∗xi, for i = 0, 1, 2}, which generate the line bundle f∗OP2(1).

Let N =
(
d+2
d

)
− 1, then the d−symmetric products {sd0, . . . , sd2}, as a linear sys-

tem of the complete linear system |κX |, gives a map h : X → PN that factors as

X
f−→ P2 ↪→ PN , where the later is the d-uple embedding. It is follows that the

pullback h∗(OPN (1)) is equal to the canonical bundle κX .
Assume that an automorphism σ ∈ Aut(X) acts trivially on H2(X,C). It is clear
that σ∗ = Id |H0(X,κX) and σ∗h∗OPN (1) = σ∗κX = h∗OPN (1). Therefore, we have
h ◦ σ = h. It induces the following diagram

X

σ

��

f   

h

((
P2 �
�

// PN

X

f

>>

h

66

Therefore, the automorphism σ lies in Cov(X/P2). By Proposition 4.6, we obtain
g = IdX . We prove the lemma. �

Proposition 4.8. Let X be a smooth cyclic covering f : X → P2 of P2. If X is
not a quadric surface, then the action of Aut(X) on H2(X,C) is faithful.

Proof. Assume that X is a k-fold covering and the L is the line bundle OP2(m) as
in (4.6.4). The canonical bundle κX is either ample or trivial or anti-ample.
If κX is ample, then our proposition follows from Lemma 4.7.
If κX is trivial, then X is a K3 surface. In this case, the conclusion is well known.
If κX is anti-ample, i.e., X is a Fano surface, the possible cases are

• (m, k) = (1, 2), X is a quadric surface in P3;
• (m, k) = (2, 2), X is a 2-fold covering branched over a quartic curve;
• (m, k) = (1, 3), X is a cubic surface in P3.

The last two cases are del Pezzo surfaces with degree 2 and 3 respectively. Hence,
they are blowups of projective planes along 7 and 6 points in general position
respectively. Denote the blowup by Bl : X → P2. If σ∗ = Id on H2(X,C), then
σ fixes the all the exceptional divisors. Hence, in both cases, the automrophism σ
yields an automorphism ρ ∈ Aut(P2) with Bl ◦ σ = ρ ◦ Bl and ρ fixes more than 4
points in general position. Then It follows that ρ = IdP2 and σ = IdX . �

Now we are able to give the answer to the question in the introduction.

Theorem 4.9. Let f : X → PnC be a smooth k-fold cyclic covering over the complex
numbers with n ≥ 2. Suppose that X is not a quadric hypersurface. Then the
natural representation

ϕ : Aut(X) −→ GL(Hn(X,C))
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is faithful.

Proof. If the dimension of X is 2, then the theorem follows from Proposition 4.8.
We assume that dimX is at least 3.
Let g be an automorphism of X such that ϕ(g) = Id, and let G be the cyclic group
generated by g. It follows from Theorem 4.5 that G is a finite group. Suppose
that Y is a small deformation of X. It follows from Theorem 3.9 that the natural
group action G × X → X can be extended to a group action G × Y → Y with
G ∈ Aut(Y ).
On the other hand, it follows from Theorem 3.7 that the small deformation Y
remains a smooth cyclic covering of Pn branched along a smooth hypersurface DY .
Note that the degree of DY is at least 3 since X is not a quadric hypersurface in
our hypothesis, then the linear automorphism group AutL(DY ) of a general smooth
hypersurface DY is trivial, see [MM64]. Therefore, it follows from Proposition 4.3
that Aut(Y ) = Cov(Y/Pn) for a general small deformation Y . By Proposition 4.6,
we conclude that the group G is trivial. Therefore, the automorphism g of X can be
deformed to an identity gY = IdY of Y . It implies that g = IdX by specialization.

�

5. Hodge Decomposition for Finite Cyclic Coverings

Let X be a smooth cyclic covering of a projective space Pn branched along a
smooth hypersurface D over an algebraically closed field K. The algebraic de
Rham cohomology of X is defined to be the hypercohomology of the algebraic de
Rham complex

Hm
DR(X/K) := Hm(X,Ω•X/K).

The Hodge-de Rham spectral sequence is given by

(5.0.1) Ep,q1 = Hq(X,ΩpX/K)⇒ Hp+q(X,Ω•X/K) .

If K = C, the classical Hodge theory shows that the spectral sequence (5.0.1) of X
degenerates at the level E1. It follows the Hodge decomposition⊕

i+j=m

Hi(X,ΩjX/C) = Hm
DR(X/C).

In this section, our goal is to show that the relative Hodge-de Rham spectral se-
quence of X degenerates at the level E1 (see Theorem 5.8).
Deligne use Theorem 5.1 to show that the relative Hodge-de Rham spectral sequence
of a projective bundle P(E) over a scheme S

Ej,i1 = Rip∗Ω
j
P(E)/S ⇒ Ri+jp∗(Ω•P(E)/S)

degenerates at the level E1.

Theorem 5.1. [DK73, Exposé XI, Theorem 1.1]
Let E be a locally free sheaf of rank r+1 over a scheme S, and let P(E) be the associ-
ated projective bundle p : P(E)→ S with the first chern class η ∈ H0(S,R1p∗Ω

1
P(E)/S)

of the invertible sheaf OP(E)(1). Then we have:

(1) The sheaves Rip∗Ω
j
P(E)/S(n) are locally free and compatible with base change;
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(2) For 0 ≤ i ≤ r, the coherent sheaf Rip∗Ω
i
P(E)/S has rank one with the gen-

erator ηi ∈ H0(S,Rip∗Ω
i
P(E)/S). Furthermore,

Rip∗Ω
j
P(E)/S = 0 for i 6= j or i ≥ r;

(3) If n 6= 0, then Rip∗Ω
j
P(E)/S(n) are zero with the only exceptions

(a) i = 0 and n ≥ j,
(b) i = r and n ≤ j − r .

Deligne shows that the degeneration of the Hodge-de Rham spectral sequence holds
for a smooth family of complete intersections by using the following proposition.

Proposition 5.2. [DK73, Exposé XI, Proposition 1.3] Let f : X → S be a smooth
and proper morphism over a noetherian scheme S, and let F be a coherent sheaf
of X. Suppose that there is an integer d ≥ 0 and W is a locally free sheaf of rank
c over X together with a section s : W → OX of W∨ such that

(1) the subscheme H of X defined by the zero locus of the section s is smooth
over S,

(2) locally on X, the coordinates of the section s form a regular sequence with
respect to OX and F ,

(3) for any nonzero integers ki, we have

Rif∗(⊗i ∧ki W ⊗ ΩjX/S ⊗F ) = 0 for all i+ j < d.

Then we have

(a) Rif∗(Ω
j
X/S ⊗F )

∼−→ Rif∗(Ω
j
H/S ⊗F ) for i+ j < d− c,

(b) Rif∗(Ω
j
X/S ⊗F ) ↪→ Rif∗(Ω

j
H/S ⊗F ) for i+ j = d− c.

In the following, we prove similar results as Proposition 5.2 for a smooth family of
cyclic coverings(see Proposition 5.6). We start with a definition.

Definition 5.3. Let S be a noetherian scheme and p : PnS → S be a relative
projective bundle. Denote by L the invertible sheaf OPnS

(l) where l is a positive

integer. Assume that s is a section of Lk for some positive integer k such that the
restriction of s to each fiber Pnt (t ∈ S) defines a smooth hypersurface Dt(⊆ Pnt ) of
degree kl. As in Definition 2.1, the section s defines an OPnS

-algebra

A = (

k−1⊕
i=0

L−i).

Let

f : X := Spec(A)→ PnS
be the associated affine morphism. Denote by D := Z(s) the zero locus of the section
s. Naturally, it gives a family of k-fold cyclic coverings of PnS over S branched along
D as follows

(5.3.1) X
f

//

π
��

PnS

p
~~

S.
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It is clear that D is a flat family over S, see [Mil80, Chapter I Proposition 2.5].
Through the rest of this section, we assume that the morphism π is smooth. In
particular, the integer k is not divided by char(κ(t)) for all t ∈ S, where κ(t) is the
residue field of the point t.
For any smooth morphism h : X → Y and a relative normal crossing divisor D of
X over Y , the notion of logarithmic de Rham complex

Ω•X/Y (logD)

is well defined (see [BDIP96, Section 7]). Then we have the following lemma.

Lemma 5.4. With the same notations in Definition 5.3. We have that

Rif∗Ω
j
X/S = 0, i 6= 0;(5.4.1)

f∗Ω
j
X/S = ΩjPnS/S

⊕
k−1⊕
µ=1

ΩjPnS/S
(logD)⊗ L−µ;(5.4.2)

Riπ∗Ω
j
X/S = Rip∗(Ω

j
PnS/S

⊕
k−1⊕
µ=1

ΩjPnS/S
(logD)⊗ L−µ).(5.4.3)

Proof. By the construction of cyclic coverings, the morphism f is finite. Hence, the
first assertion follows.
The absolute version of the decomposition (5.4.2) has been proved, see [EV92,
Lemma 3.16 d)]. For the sake of completeness, we show the proof can even be
carried out in the relative version.
Let AnS be an affine open subset of PnS , and let U ⊂ X be the inverse image f−1(AnS).
Denote by s′ the local defining equation of the branched locus D ∩ AnS on AnS . We
may assume that the tuple {s′, x1, · · · , xn−1} is a local coordinate system of the
smooth morphism p : AnS → S, which induces a basis {ds′, dx1, · · · , dxn−1} of the
locally free sheaf Ω1

AnS/S
. Then the OAnS

-module Ω1
AnS/S

(logD) is locally free of

finite type with a basis {ds
′

s′ , dx1, · · · , dxn−1}. Similarly, we have a local coordinate
system {t′, f∗x1, · · · , f∗xn−1} on U , where t′ is the restriction of the tautological
section t ∈ H0(X , f∗L) to U . Denote by B the zero locus of the section t′ in U .
Then the associated OU -module Ω1

U/S(logB) is locally free of finite type with a

basis {dt
′

t′ , f
∗dx1, · · · , f∗dxn−1}.

Firstly, we show the relative Hurwitz’s formula

f∗ΩjAnS/S
(logD) = ΩjU/S(logB).

Recall the Definition 5.3 that we have an equation t′k − f∗(s′) = 0 on U , cf.

(2.1.2), which implies f∗ ds
′

s′ = dt′k

t′k
= k · dt

′

t′ . In fact, we can invert the integer
k in the Γ(S,OS)-module Γ(U,OU ) since k is not divided by the characteristic

of the residue field of any point of S. Therefore, the differential form f∗ ds
′

s′ and

sheaf f∗Ω1
AnS/S

generate Ω1
U/S(logB). We obtain the relative Hurwitz’s formula by

exterior products.
By the relative Hurwitz’s formula and the projection formula, we have a natural
inclusion

f∗Ω
j
U/S ⊂ f∗Ω

j
U/S(logB) = ΩjAnS/S

(logD)⊗ f∗OU =

k−1⊕
i=0

ΩjAnS/S
(logD)⊗ L−i.
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We claim that, indeed, the subsheaf

ΩjAnS/S
⊕
k−1⊕
i=1

ΩjAnS/S
(logD)⊗ L−i ⊆

k−1⊕
i=0

ΩjAnS/S
(logD)⊗ L−i

is f∗Ω
j
U/S . Let σ be a local section of ΩjAnS/S

(logD)⊗ L−i written as

σ = ψ · s′i

for some local section ψ of ΩjAnS/S
(logD) and the local generator s′ of L−1. More-

over, the section ψ is of the form

ω ∧ ds
′

s′
or ω

where the local section ω has no pole along D. Therefore, the pullback of the
section σ is given by

f∗σ = k · f∗ω ∧ dt
′

t′
· f∗s′i = k · f∗ω ∧ dt

′

t′
· t′i or

f∗σ = f∗ω · f∗s′i = f∗ω · t′i.

Note that σ lies in f∗Ω
j
U/S if and only if the differential form f∗σ has no pole along

the divisor B. Therefore, the local section σ lies in f∗Ω
j
U/S if and only if i ≥ 1 or

i = 0, ψ = ω. We prove the second assertion.
Using the diagram (5.3.1), we obtain the Leray spectral sequence

(5.4.4) Ea,b2 = Rap∗R
bf∗Ω

j
X/S =⇒ Riπ∗Ω

j
X/S , a+ b = i.

By the first assertion, we have Ea,b2 = 0 unless b = 0. Therefore, the spectral
sequence (5.4.4) degenerates and it follows from the second assertion that

Riπ∗Ω
j
X/S = Ei,0∞ = Ei,02 = Rip∗(Ω

j
PnS/S

⊕
k−1⊕
µ=1

ΩjPnS/S
(logD)⊗ L−µ).

�

Proposition 5.5. With the notations as in Definition 5.3. Then we have

Riπ∗(Ω
j
X/S ⊗ f

∗L−m) = 0, i+ j < n,m ≥ 1.

Proof. A similar arguement as in the proof of Lemma 5.4 (5.4.4) gives

Riπ∗(Ω
j
X/S ⊗ f

∗L−m) = Rip∗(Ω
j
PnS/S

⊗ L−m ⊕
k−1⊕
µ=1

ΩjPnS/S
(logD)⊗ L−µ ⊗ L−m).

Note that Rip∗(Ω
j
PnS/S

⊗L−m) = 0, see Theorem 5.1. Therefore, it suffices to prove

(5.5.1) Rip∗(Ω
j
PnS/S

(logD)⊗OPnS
(l)) = 0 for i+ j < n and l < 0.

For simplicity, we denote by A∨ the line bundle OPnS
(l). Note that there is a short

exact sequence of residue map

(5.5.2) 0→ ΩjPnS/S
→ ΩjPnS/S

(logD)
res−−→ ι∗Ω

j−1
D/S → 0
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where ι : D ↪→ PnS is the natural inclusion. In order to prove (5.5.1), it suffices to
show

Rip∗(Ω
j
PnS/S

⊗A∨) = 0 for i+ j < n

and
Rqp∗(ι∗Ω

p
D/S ⊗A

∨) = 0 for q + p < dimD.

By Theorem 5.1 again, we have Rip∗(Ω
j
PnS/S

⊗ A∨) = 0 for i + j < n since

the invertible sheaf A∨ is anti-ample. Hence, in the following, we show that
Rqp∗(ι∗Ω

p
D/S ⊗A

∨) = 0 for q + p < dimD

Let d be the degree of the smooth divisor D. Then there is a natural resolution

0→ OD(−p · d)→ Ω1
PnS/S

(−(p− 1) · d)|D → · · · → ΩpPnS/S
|D → ΩpD/S → 0.

of the sheaf of relative Kähler differentials ΩpD/S . Tensoring the resolution with

ι∗A∨, we obtain a complex K• whose a-th term Ka is (ΩaPnS/S
(−(p−a) ·d)⊗A∨)|D.

Then the hypercohomology spectral sequence for the complex K• is

Ea,b1 = Rbp∗(Ω
a
PnS/S

(−(p− a) · d)⊗A∨|D)

that abuts to Ra+bp∗(K•) = Ra+b−pp∗(Ω
p
D/S ⊗A

∨|D)). We claim that

(5.5.3) Rbp∗(Ω
a
PnS/S

(−(p− a) · d)⊗A∨|D) = 0 for a+ b < dimD.

To see this, we consider the short exact sequence

0→ ΩaPnS/S
(−d)⊗L → ΩaPnS/S

⊗L → ΩaPnS/S
⊗L |D → 0,

where the invertible sheaf L is the anti-ample invertible sheaf

OPnS/S
(−(p− a) · d)⊗A∨.

By Theorem 5.1 (3),we have

Rbp∗(Ω
a
PnS/S

⊗L ) = 0 for a+ b < n− 1

Rb+1p∗(Ω
a
PnS/S

(−d)⊗L ) = 0 for a+ b < n− 1.

Note that dimD = n− 1, our claim (5.5.2) follows and we are done.
�

Recall the notations in Definition 5.3. Let πL : V(L) → PnS be the line bundle
over PnS associated to the invertible sheaf L. The k-fold cyclic covering X is the
zero locus of the equation tk − π∗L(s) = 0 in V(L), where t ∈ H0(V(L), π∗LL) is the
tautological section in. Let i : X ↪→ V(L) be the natural inclusion, and let B be
the zero locus of the section i∗(t), i.e., B is defined by the equations

tk − π∗L(s) = 0 and t = 0.

on V(L). Therefore, the restriction map f |B : B → D(:= Z(s)) is an isomorphism,
cf. Lemma 2.2.

Proposition 5.6. Use the notations as above. Let g : B → S be the smooth family
of divisors over S with the natural commutative diagram

(5.6.1) B �
�

//

g
  

X

π
}}

S .
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We have that

(1) Riπ∗(Ω
j
X/S)

∼−→ Rig∗(Ω
j
B/S) for i+ j < n− 1.

(2) Riπ∗(Ω
j
X/S) ↪→ Rig∗(Ω

j
B/S) for i+ j = n− 1.

Proof. Note that B is defined by the section i∗(t) ∈ H0(X , i∗π∗LL) = H0(X , f∗L).
It follows thatOX (B) is isomorphic to f∗L. We replaceX/S = X/S,F = OX ,W =
f∗L−1 in Proposition 5.2. The condition (3) in Proposition 5.2 is verified by Propo-
sition 5.5. Therefore, the assertions follow from Proposition 5.2. �

Use the above proposition and the decomposition of the coherent sheaf Riπ∗Ω
j
X/S

in the Lemma 5.4. We prove the following lemma that is analogous to the assertion
(2) of the Theorem 5.1.

Lemma 5.7. With the notations as in Definition 5.3. Let η ∈ H0(S,R1p∗Ω
1
P(E)/S)

be the first Chern class of the twisting sheaf OP(E)(1). We have that

(1) Riπ∗Ω
j
X/S = 0, if i 6= j and i+ j 6= n.

(2) Riπ∗Ω
i
X/S is an invertible sheaf generated by f∗ηi if 2i 6= n, where ηi =

c1(OP(E)(i)) is the generator of the invertible sheaf Rip∗Ω
i
PnS/S

.

Proof. We have a series of identities as follows,

Riπ∗Ω
j
X/S ' R

ig∗Ω
j
B/S ' R

ip∗Ω
j
D/S ' R

ip∗Ω
j
PnS/S

for i+ j < n− 1.

The first identity is the result of the Proposition 5.6, the second is induced by the
isomorphism f |B : B ∼−→ D, and the third one is Proposition 5.2. In particular, the
map f : X → PnS induces the isomorphism

f∗ : Rip∗Ω
j
PnS/S

→ Riπ∗Ω
j
X/S for i+ j < n− 1.

Moreover, by Lemma 5.4 we have

Riπ∗Ω
j
X/S = Rip∗(Ω

j
PnS/S

⊕
k−1⊕
µ=1

ΩjPnS/S
(logD)⊗ L−µ).

It follows from the claim (5.5.1) in Proposition 5.5 that

Rip∗(Ω
j
PnS/S

(logD)⊗ L−µ) = 0, for i+ j ≤ n− 1.

Therefore, f∗ : Rip∗Ω
j
PnS/S

→ Riπ∗Ω
j
X/S is an isomorphism for i+ j ≤ n− 1. Thus

the lemma is proved for i+ j ≤ n+ 1.
For i + j > n, we show that the assertions follow from the Serre duality. Denoted
by Tr1 : Rnπ∗Ω

n
X/S → OS the trace map of the projective morphism f : X → S.

The nondegenerate pairing

℘ : Riπ∗Ω
j
X/S ×R

n−iπ∗Ω
n−j
X/S → OS .

via the trace map Tr1 shows that Riπ∗Ω
j
X/S = 0 if i 6= j. We claim that the class

f∗ηi of the coherent sheaf Riπ∗Ω
i
X/S is the dual class of f∗ηn−i via the pairing ℘

for 2i > n. It is suffices to prove that ℘(ηi, ηn−i) = Tr1(ηn) = 1. Note that we



19

have isomorphisms

h0 : Rnπ∗Ω
n
X/S ' R

np∗(Ω
n
PnS/S

⊕
k−1⊕
µ=1

ΩnPnS/S
(logD)⊗ L−µ) and

h1 : Rnp∗(Ω
n
PnS/S

⊕
k−1⊕
µ=1

ΩnPnS/S
(logD)⊗ L−µ) '

k−1⊕
µ=0

Rnp∗(Ω
n
PnS/S

⊗ Lµ)

since ΩnPnS/S
(logD) = ΩnPnS/S

⊗OPnS/S
(D). Then it follows from Theorem 5.1 that

k−1⊕
µ=0

Rnp∗(Ω
n
PnS/S

⊗ Lµ) = Rnp∗Ω
n
PnS/S

.

The isomorphism h0 ◦ h1 can be identified with the pullback

f∗ : Rnp∗Ω
n
PnS/S

→ Rnπ∗Ω
n
X/S .

Suppose that Tr2 : Rnp∗Ω
n
PnS/S

→ OS is the trace map of the projective space PnS .

We have Tr1 ◦ f∗ = Tr2. Therefore, it gives rise to the identities

Tr1(f∗ηn) = Tr2(ηn) = Tr2(c1(OP(E)(n))) = 1.

For 2i > n, it follows that the invertible sheaf Riπ∗Ω
i
X/S is generated by f∗ηi. We

prove the lemma. �

Theorem 5.8. With the notations as in Definition 5.3, we have that

(1) the coherent sheaves Riπ∗Ω
j
X/S and Rmπ∗Ω

•
X/S are locally free and com-

patible with base change,
(2) and the Hodge-de Rham spectral sequence

(5.8.1) Ej,i1 = Riπ∗Ω
j
X/S =⇒ Ri+jπ∗(Ω

•
X/S)

degenerates at the level E1.

Proof. Note that there exists a scheme S̃ which is smooth and of finite type over
SpecZ and a smooth family of k-fold cyclic coverings f̃ : X̃ → S̃ with a cartesian
diagram

(5.8.2) X //

π

��

X̃

π̃
��

S
µ
// S̃.

By Lemma 5.7, the coherent sheaf Riπ̃∗Ω
j

X̃/S̃
is locally free if i + j 6= n. On the

other hand, the function of Euler characteristic of ΩjX̃s/S̃s

s 7→ χ(ΩjX̃s/S̃s
)

is locally constant on S̃. Hence, for a fixed integer j, the upper semi-continuous
function

s 7→ dimHi(X̃s,ΩjX̃s)

is locally constant on S̃. In particular, since the scheme S̃ is reduced, the coherent
sheaf Riπ̃∗Ω

j

X̃/S̃
is locally free for i + j = n. Moreover, locally free sheaves are
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preserved by base change, see [BDIP96, Proposition 6.6 (c)]. Therefore we prove

that Riπ∗Ω
j
X/S are locally free for any i, j.

It suffices to prove our theorem in the ”universal” case. More precisely, we assume
that the coherent sheaf Rnπ̃∗Ω

•
X̃/S̃ is locally free and the Hodge-de Rham spectral

sequence

(5.8.3) Ẽj,i1 := Riπ̃∗Ω
j

X̃/S̃
=⇒ Ri+j π̃∗Ω

•
X̃/S̃

degenerates at the level Ẽ1. It follows from [BDIP96, Proposition 6.6 (d)] that the
base change map

µ∗Rmπ̃∗Ω
•
X̃/S̃ → Rmπ∗Ω

•
X/S

is an isomorphism since Rmπ̃∗Ω
•
X̃/S̃ is locally free. Therefore, the coherent sheaf

Rnπ∗Ω
•
X/S is locally free. Moreover, by the degeneration of the spectral sequence

(5.8.3), we have the identities

R2iπ∗Ω
•
X/S ' µ

∗R2iπ̃∗Ω
•
X̃/S̃ ' µ

∗Riπ̃∗Ω
i
X̃/S̃
' Riπ∗ΩiX/S for 2i 6= n.

It follows that R2iπ∗Ω
•
X/S is an invertible sheaf for 2i 6= 0. We claim that the

differential map dr : Ej,ir → Ej+r,i−r+1
r is zero for the Hodge-de Rham spectral

sequence

(5.8.4) Ej,i1 := Riπ∗Ω
j
X/S =⇒ Ri+jπ∗Ω

•
X/S .

In fact, the Hodge numbers are known as

• hi,j= rank(Riπ∗Ω
j
X/S)=0 if i+ j 6= n and i 6= j,

• hi,i= rank(Riπ∗Ω
i
X/S)=1 if 2i 6= n.

It follows that the only possible nonzero differential maps are

dr : Ei,ir → Ei+r,i−r+1
r for 2i = n− 1

and

d′r : Ej−r,j+r−1
r → Ej,jr for 2j = n+ 1.

To check the degeneration of the spectral sequence (5.8.4) is a local property on
S. We may shrink S to an open affine subset Spec(A) such that all the locally free

sheaves Riπ∗Ω
j
X/S are presented by free A-modules.

If d′r : Ej−r,j+r−1
r → Ej,jr is the first nozero differential map, the Er+1-term Ej,jr+1

is isomorphic to a nontrivial quotient of A which contradicts to the fact that
R2jπ∗Ω

•
X/S is isomorphic to A. Similarly, the differential map dr is trivial too.

Therefore, we prove that the Hodge-de Rham spectral sequence (5.8.4) degenerates
conditionally.
Now we verify our assumption. In fact, we can shrink S̃ to be an affine scheme
Spec(B), where B is a Noethrian domain. Let K be the fraction field of B, and let

X̃K be the induced scheme by base change. The associated spectral sequence

(5.8.5) Ẽj,i1 := Riπ̃∗Ω
j

X̃K/K
=⇒ Ri+j π̃∗Ω

•
X̃K/K

degenerates as an application of the classical result of Deligne and Illusie [DI87].
Then the degeneration of (5.8.3) follows from (5.8.5). We prove the theorem.

�
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5.1. The Infinitesimal Torelli Theorem. In section 3, we discussed the infini-
tesimal Torelli theorem of a cyclic covering X of PnC, see Theorem 3.6. It turns out
that this conclusion can be generalized to an arbitrary field.

The approach to prove Theorem 3.6 is to verify Flenner’s criterion of the infinites-
imal Torelli theorem [Fle86, Theorem 1.1]. This criterion has been generalized to
arbitrary fields in [CPZ15, Appendix A].

Theorem 5.9. [CPZ15, Appendix A] Let X be a smooth proper scheme of dimen-
sion n over a field K. Assume the existence of a resolution of Ω1

X/K by locally free

sheaves

0→ G → F → Ω1
X/K → 0.

Let DrG be the divided power Symr(G∨)∨, and let κX be the canonical sheaf of X.
If following two conditions:

(1) Hj+1(X,Symj G ⊗ Λn−j−1F ⊗ κ−1
X ) = 0 for 0 ≤ j ≤ n− 2;

(2) the pairing

H0(X,Dn−p(G∨)⊗ κX)⊗H0(X,Dp−1(G∨)⊗ κX)→ H0(X,Dn−1(G∨)⊗ κ2
X)

is surjective for a suitable positive integer p no larger than n

are satisfied, then the cup product map

(5.9.1) λp : H1(X,ΘX)→ Hom(Hn−p(X,ΩpX/K), Hn+1−p(X,Ωp−1
X/K))

is injective.

Theorem 5.10. Let X be a smooth k-fold cyclic covering of PnK branched along
the smooth divisor D over a field K. Suppose that n is at least 2 and k is prime to
char(K). Then the cup product (5.9.1) is injective for X with the only exceptions

• X is a 3-fold covering of P2
K branched along a cubic curve;

• X is a 2-fold covering of P2
K branched along a quartic curve;

Proof. Suppose that X is a hypersurface of degree k in Pn+1
K . If X is not a cubic

surface, the infinitesimal Torelli theorem of X had been proved in [CPZ15, Propo-
sition A.9.]. Therefore, we may assume that X is not a hypersurface. We use the
notations in the diagram (2.1.3) with Z = PnC. Let us apply Theorem 5.9 to the
following natural resolution

(5.10.1) 0→ f∗L −1
D → g∗Ω1

L̂
→ Ω1

X/K → 0,

where LD = Lk = OPn(mk), for some m > 0. The calculation in the proof of
[Weh86, Theorem 4.8] works well in our contents except two cases in which the
characteristic is taken into account. In the following, we prove that the two cases
are not ruled out.
• (n,m, k) = (3, 2, 2). The condition (2) in Theorem 5.9 is independent of the
characteristic. By the calculation in [Weh86, Theorem 4.8], the condition (1) in
Theorem 5.9 is equivalent to

H1(X, g∗Ω2
L̂
⊗ κ−1

X ) = 0.

We calculate the cohomology group H1(X, g∗Ω2
L̂
⊗ κ−1

X ) by using the natural short
exact sequence

0→ f∗Ω2
P3 → g∗Ω2

L̂
→ f∗(Ω1

P3 ⊗ L−1)→ 0.
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induced by (5.10.1). Note that κX = f∗(κP3 ⊗L) by Proposition 2.4 (iv), it follows
that

H1(X, f∗(Ω1
P3 ⊗ L−1)⊗ κ−1

X ) = H1(P3,Ω1
P3 ⊗ κ−1

P3 ⊗ L−2 ⊗ f∗OX)

=

1⊕
l=0

H1(P3,Ω1
P3(−2l)) = H1(P3,Ω1

P3).

and

H2(X, f∗Ω2
P3 ⊗ κ−1

X ) = H2(P3,Ω2
P3(2)⊗ f∗OX)

=

1⊕
l=0

H2(P3,Ω2
P3(2− 2l)) = H2(P3,Ω2

P3).

Therefore, we have the exact sequence

0→ H1(X, g∗Ω2
L̂
⊗ κ−1

X )→ H1(P3,Ω1
P3)

δ−→ H2(P3,Ω2
P3).

The connecting morphism δ is the cup product with the frist Chern class c1(LD),
see [Weh86, Page 470]. Note that the degree of D is 4. The connecting morphism is
injective if char(K) 6= 2. Recall that the smoothness of X implies that k is prime to
char(K). Therefore, char(K) 6= 2 in our case and we obtain H1(X, g∗Ω2

L̂
⊗κ−1

X ) = 0.

Hence the condition (1) is satisfied for (n,m, k) = (3, 2, 2).

• (n,m, k) = (2, 2, 3). In this case, the canonical sheaf κX = f∗OP2(1) is ample.
We refer to a criterion in [LWP77, Theorem 1′] characterizing the cup product

λ2 : H1(X,ΘX)→ Hom(H0(X,Ω2
X), H1(X,Ω1

X))

is injective. We note that the proof of [LWP77, Theorem 1′] is algebraic and holds
for any characteristic though the statement is for a complex compact Kähler man-
ifold. Moreover, as it emphasizes, the first two assumptions in [LWP77, Theorem
1] imply the hypothesis in [LWP77, Theorem 1′]. In our case, it suffices to ver-
ify the second assumption of [LWP77, Theorem 1], which is equivalent to verify
H0(X,Ω1

X ⊗OX(1)) = 0.
By the projection formula and Lemma 5.4, we have

H0(X,Ω1
X ⊗OX(1)) = H0(P2,OP2(1)⊗ f∗Ω1

X)

= H0(P2,Ω1
P2(1))⊕

2⊕
i=1

H0(P2,Ω1
P2(logD)⊗OP2(1)⊗ L−i)

=

2⊕
i=1

H0(P2,Ω1
P2(logD)⊗OP2(1)⊗ L−i).

We claim that

H0(P2,Ω1
P2(logD)⊗OP2(1)⊗ L−i) = 0, 1 ≤ i ≤ 2.

In fact, since the invertible sheaf OP2(1)⊗L−i is negative. It is just a special case
of what we proved in Proposition 5.5, cf. (5.5.1). Therefore we prove our claim and
the infinitesimal Torelli theorem holds for this case. �
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6. Automorphisms in Positive Characteristic

Let K be an algebraically closed field of positive characteristic. We recall the main
theorem of the paper [Pan16].

Theorem 6.1. [Pan16, Theorem 1.7] Let X̄ be a smooth projective scheme over
the Witt ring W := W (K) of K, and let X be the special fiber over Spec(K).
Assume that the Hodge-de Rham spectral sequences of X̄/W degenerates at E1 and
the terms are locally free. Let g0 be an automorphism of X such that the map

Hi
cris(g0) : Hn

cris(X/W )→ Hn
cris(X/W )

preserves the Hodge filtrations under the natural identification

Hn
cris(X/W ) ∼= Hn

DR(X̄/W ).

If the cup product

H1(X,TX)→
⊕
p+q=n

Hom(Hq(X,ΩpX/K),Hq+1(X,Ωp−1
X/K))

is injective, then one can lift g0 to an automorphism g : X̄ → X̄ of X̄ over W .

We are able to show the main theorem of this paper.

Lemma 6.2. Let X be a smooth k-cyclic covering of PnK branched along a smooth
hypersurface D. Suppose that k is not divided by char(K) and n ≥ 2. Then
H1(X,OX) = H0(X,Ω1

X) = 0. Moreover, if n = 2 and the canonical bundle
κX is ample or trivial, then H0(X,TX) = 0.

Proof. It follows from Lemma 5.4 and (5.5.1) that H1(X,OX) and H0(X,Ω1
X) are

zero. Furthermore, we have

H0(X,TX) = H2(X,Ω1
X/K ⊗ κX)

Note that X can be lift to the Witt ring W (K) of K as a smooth cyclic covering
of PnW . It follows from [EV92, Corollary 11.3] that

H0(X,TX) = H2(X,Ω1
X/K ⊗ κX) = 0

if κX is ample and n = 2. If κX is trivial and n = 2, then X is a K3 surface. It is
well known that H0(X,TX) = 0 �

Lemma 6.3. Let X be a smooth k-cyclic covering over PnK branched along D(⊆
PnK). Suppose that k is not divided by char(K) and n ≥ 2. Then the Néron-Severi
group NS(X) is torsion free.

Proof. In fact, by the universal coefficient theorem of crystalline cohomology, we
have an short exact sequence

(6.3.1) 0→ H1
cris(X/W )⊗W K → H1

DR(X/K)→ TorW1 (H2
cris(X/W ),K)→ 0

where W is the Witt ring of K.
It follows from Lemma 6.2 that TorW1 (H2

cris(X/W ),K) = 0, in other words, the
crystalline cohomology H2

cris(X/W ) is p-torsion free. By a theorem of Illusie and
Deligne, see [Del81, Remark 3.5] and [Ill79], we have an injection

NS(X)⊗ Zp ↪→ H2
cris(X/W ).

We conclude that NS(X) is p-torsion-free.
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On the other hand, we have the short exact sequence [Mil80, Chapter V, Remark
3.29 (d)]

(6.3.2) 0→ NS(X)⊗ Zl → H2
ét(X,Zl(1))→ Tl(Br(X))→ 0.

We claim that H2
ét(X,Zl(1)) is torsion free. Therefore, the group NS(X) is torsion-

free.
In fact, we denote the natural lifting of X over W by X. Choose an embedding
W → C. We have the variety XC which is a k-cyclic covering over PnC. Since a
cyclic covering over a projective space is a hypersurface in a weighted projective
space, it is simply connected by [Dol82, Theorem 3.2.4 (ii)’].
By the universal coefficient theorem, we have

H2
sing(XC,Zl) = Hom(H2(XC,Z),Zl) = lim←−n

Hom(H2(XC,Z),Z/lnZ)

= lim←−n
H2

ét(XC,Z/lnZ) = H2
ét(XC,Zl) = H2

ét(X,Zl).

Since H2
sing(XC,Zl) is torsion free, the group H2

ét(X,Zl) is torsion-free. The claim
holds for X over K.

�

Denote by Aut(X)tr the kernel of Aut(X)→ Hn
ét(X,Ql) (l 6= char(K)).

Lemma 6.4. Let X be a smooth k-cyclic covering over PnK branched along D.
Suppose that k is not divided by char(K) and n is at least 2. If one of the following
conditions holds:

(1) the degree of D in Pn is at least 3 and n ≥ 3;
(2) n = 2 and the canonical bundle κX is ample or trivial,

then Aut(X)tr is finite.

Proof. By Lemma 6.2 and Lemma 6.3, we conclude that NS(X) = Pic(X) is torsion
free. Therefore, the following map

(6.4.1) c1 : Pic(X)→ Pic(X)⊗ Zl → H2
ét(X,Zl(1))

is injective by (6.3.2) where l is a prime different from char(K).

• For n ≥ 3. We claim Pic(X) = Z. In fact, we can lift X to a cyclic covering
X over complex numbers C with H2

ét(X,Ql) = H2
ét(X,Ql). By Proposition

4.4, we have H2
ét(X,Ql) = Ql. The claim follows from Lemma 6.3. (If the

degree of D is 3, then X is a cubic hypersurface of dimension at least 3
and the statement still holds by the Grothendieck-Lefschetz theorem). The
claim implies that every automorphism preserves the ample line bundle
f∗OPn(1). Note that AutL(D) is finite if deg(D) ≥ 3 ([Poo05, Theorem
1.3]). It follows from Lemma 4.1, Lemma 4.2, and Proposition 4.3 that
Aut(X) is finite.
• For n = 2. We choose a very ample line bundle L on X such that the

complete linear system

|L| : X → PN

induces an embedding. It follows from the injectivity of the map c1 (6.4.1)
and the torsion-freeness of Pic(X) that every automorphism f ∈ Auttr(X)
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fixes the line bundle L, i.e., f∗L = L. Therefore, we have a linear automor-
phism g inducing the following diagram

X
|L|
//

f

��

PN

g

��

X
|L|
// PN

.

Let G = {h ∈ PGLN+1|h(X) = X}. We have Auttr(X) ⊆ G. We claim
G is an subalgebraic group of PGLN+1. In fact, we consider the Hilbert
scheme Hilb(PN ) parametrizing X. There is a natural action of PGLN+1

on Hilb(PN ). The stabilizer of this action of the point [X] parametrizing
X is G. Therefore, G is algebraic. On the other hand, the infinitesimal
automorphism of X is trivial, i.e., H0(X,TX) = 0 (cf. Lemma 6.2). It
follows that G is a subgroup scheme of PGLN+1 with dim(G) = 0, hence,
it is finite. We conclude that Auttr(X) is finite.

�

Theorem 6.5. Let K be an algebraically closed field of positive characteristic,
and let X be a smooth cyclic covering of PnK with n ≥ 2. If X is not a quadric
hypersurface, then the action of the automorphism group Aut(X) on Hn

ét(X,Ql)
(l 6= char(K)) is faithful, i.e., the natural map

Aut(X)→ Aut(Hn
ét(X,Ql))

is injective.

Proof. Suppose that g0 is an automorphism of X and in

Aut(X)tr := Ker(Aut(X)→ Hn
ét(X,Ql)).

By Proposition 2.4, we have the canonical bundle formula

κX = f∗(κPn ⊗ Lk−1) = f∗OPn(m) for some m.

Therefore, the canonical bundle κX is ample, or trivial or anti-ample.

• Assume that X satisfies two conditions in Lemma 6.4, i.e., one of the fol-
lowing condition is satisfied

– the dimension dimX is at least 3,
– dimX = 2 and the canonical bundle κX is ample or trivial.

It follows from Lemma 6.4 that g0 is of finite order. Let W be the Witt
ring of K. Note that

det(Id−g∗0t,Hn
cris(X/W )W [ 1p ]) = det(Id−g∗0t,Hn

ét(X,Ql)),

see [KM74, Theorem 2] and [Ill75, 3.7.3 and 3.10]. The finiteness of the
order of g0 implies that Hn

ét(g0,Ql) = Id if and only if Hn
cris(g0)W [ 1p ] = Id

since both Hn
ét(g0,Ql) and Hn

cris(g0)W [ 1p ] are diagonalizable. Note that X

can be lift to W as a smooth cyclic covering of PnW . Let X be a such lifting
of the X over W . It follows from Theorem 5.8 that

Hn
cris(X/W ) = Hn

DR(X/W )

is a finite free W -module. Therefore, we have Hn
cris(g0) = Id.

By our assumption, we conclude that X is neither
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– a 3-fold covering of P2
K branched along a cubic curve,

– nor a 2-fold covering of P2
K branched along a quartic curve.

Therefore, the assumptions of Proposition 6.1 hold for g0 by Theorem 5.8
and Theorem 5.10. By Proposition 6.1, one can lift the automorphism g0 to
an automorphism g of X/W . Therefore, the theorem follows from Theorem
4.9.
• If κX is anti-ample and dimX = 2, i.e., X is a Fano surface. The possible

types of X are listed in the proof of Proposition 4.8. Since every Fano
surface is a blowup of the projective plane, we can use the same argument
as in Proposition 4.8 to prove the theorem.

�
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ume 3 of Panoramas et Synthèses [Panoramas and Syntheses]. Société
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